10,506 research outputs found

    Wireless interrogation of an optically modulated resonant tunnelling diode oscillator

    Get PDF
    n this work, a resonant tunnelling diode-photo-detector based microwave oscillator is amplitude modulated using an optical signal. The modulated free running oscillator is coupled to an antenna and phase locked by a wireless carrier that allows remote extraction of the information contained in the modulation. An off-the-shelf demodulator has been used to recover the envelope of the baseband data originally contained in the optical signal. Data were successfully transmitted at a rate of 1 MSym/s with a bit error rate below 10−6

    MKID development for SuperSpec: an on-chip, mm-wave, filter-bank spectrometer

    Get PDF
    SuperSpec is an ultra-compact spectrometer-on-a-chip for millimeter and submillimeter wavelength astronomy. Its very small size, wide spectral bandwidth, and highly multiplexed readout will enable construction of powerful multibeam spectrometers for high-redshift observations. The spectrometer consists of a horn-coupled microstrip feedline, a bank of narrow-band superconducting resonator filters that provide spectral selectivity, and Kinetic Inductance Detectors (KIDs) that detect the power admitted by each filter resonator. The design is realized using thin-film lithographic structures on a silicon wafer. The mm-wave microstrip feedline and spectral filters of the first prototype are designed to operate in the band from 195-310 GHz and are fabricated from niobium with at Tc of 9.2K. The KIDs are designed to operate at hundreds of MHz and are fabricated from titanium nitride with a Tc of 2K. Radiation incident on the horn travels along the mm-wave microstrip, passes through the frequency-selective filter, and is finally absorbed by the corresponding KID where it causes a measurable shift in the resonant frequency. In this proceedings, we present the design of the KIDs employed in SuperSpec and the results of initial laboratory testing of a prototype device. We will also briefly describe the ongoing development of a demonstration instrument that will consist of two 500-channel, R=700 spectrometers, one operating in the 1-mm atmospheric window and the other covering the 650 and 850 micron bands.Comment: As submitted, except that "in prep" references have been update

    GaAs optoelectronic neuron arrays

    Get PDF
    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10^4 cm^-2 are discussed

    Toward an optimal foundation architecture for optoelectronic computing .1. Regularly interconnected device planes

    Get PDF
    Cataloged from PDF version of article.By systematically examining the tree of possibilities for optoelectronic computing architectures and offering arguments that allow one to prune suboptimal branches of this tree, I come to the conclusion that electronic circuit planes interconnected optically according to regular connection patterns represent an alternative that is reasonably close to the best possible, as defined by physical limitations. Thus I propose that this foundation architecture should provide a basis for future research and development in this area. © 1997 Optical Society of Americ

    Large atom number dual-species magneto-optical trap for fermionic 6Li and 40K atoms

    Get PDF
    We present the design, implementation and characterization of a dual-species magneto-optical trap (MOT) for fermionic 6Li and 40K atoms with large atom numbers. The MOT simultaneously contains 5.2x10^9 6Li-atoms and 8.0x10^9 40K-atoms, which are continuously loaded by a Zeeman slower for 6Li and a 2D-MOT for 40K. The atom sources induce capture rates of 1.2x10^9 6Li-atoms/s and 1.4x10^9 40K-atoms/s. Trap losses due to light-induced interspecies collisions of ~65% were observed and could be minimized to ~10% by using low magnetic field gradients and low light powers in the repumping light of both atomic species. The described system represents the starting point for the production of a large-atom number quantum degenerate Fermi-Fermi mixture

    A Breakdown Voltage Multiplier for High Voltage Swing Drivers

    Get PDF
    A novel breakdown voltage (BV) multiplier is introduced that makes it possible to generate high output voltage swings using transistors with low breakdown voltages. The timing analysis of the stage is used to optimize its dynamic response. A 10 Gb/s optical modulator driver with a differential output voltage swing of 8 V on a 50 Ω load was implemented in a SiGe BiCMOS process. It uses the BV-Doubler topology to achieve output swings twice the collector–emitter breakdown voltage without stressing any single transistor

    Optically interconnected phased arrays

    Get PDF
    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed

    Real-time optical manipulation of cardiac conduction in intact hearts

    Get PDF
    Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all‐optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide‐field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free‐run mode with submillisecond temporal resolution or in a closed‐loop fashion: a tailored hardware and software platform allowed real‐time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real‐time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real‐time resynchronization therapy and cardiac defibrillation. Furthermore, the closed‐loop approach was applied to simulate a re‐entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart
    • 

    corecore