302 research outputs found

    Prognostic Reasoner based adaptive power management system for a more electric aircraft

    Get PDF
    This research work presents a novel approach that addresses the concept of an adaptive power management system design and development framed in the Prognostics and Health Monitoring(PHM) perspective of an Electrical power Generation and distribution system(EPGS).PHM algorithms were developed to detect the health status of EPGS components which can accurately predict the failures and also able to calculate the Remaining Useful Life(RUL), and in many cases reconfigure for the identified system and subsystem faults. By introducing these approach on Electrical power Management system controller, we are gaining a few minutes lead time to failures with an accurate prediction horizon on critical systems and subsystems components that may introduce catastrophic secondary damages including loss of aircraft. The warning time on critical components and related system reconfiguration must permits safe return to landing as the minimum criteria and would enhance safety. A distributed architecture has been developed for the dynamic power management for electrical distribution system by which all the electrically supplied loads can be effectively controlled.A hybrid mathematical model based on the Direct-Quadrature (d-q) axis transformation of the generator have been formulated for studying various structural and parametric faults. The different failure modes were generated by injecting faults into the electrical power system using a fault injection mechanism. The data captured during these studies have been recorded to form a “Failure Database” for electrical system. A hardware in loop experimental study were carried out to validate the power management algorithm with FPGA-DSP controller. In order to meet the reliability requirements a Tri-redundant electrical power management system based on DSP and FPGA has been develope

    A new model of electromechanical relays for predicting the motion and electromagnetic dynamics

    Get PDF
    In this paper, a novel multiphysics and nonlinear model for electromechanical relays is presented. The electromagnetic dynamics is analyzed by calculating the total reluctance of the magnetic equivalent circuit (MEC), which is composed of a fixed length iron core and an angular air gap. Magnetic saturation and angular dependency of the reluctance are considered in the analysis. Then, an energy balance over the electromagnetic components of the system is used to obtain the torque which drives the movable armature. A planar mechanism of four rigid bodies, including spring-damping torques that restrict the motion and model the contact bounces that occur in the switchings, is proposed to explain the dynamics of the movable components. Experimental tests show the accuracy of the model in both the electromagnetic and the mechanical parts

    Simultaneous use of shape memory alloys and permanent magnets in multistable smart structures for morphing aircraft applications

    Get PDF
    This Thesis considers the simultaneous use of shape memory alloys and permanent magnets for achieving multistable smart structures aiming towards morphing applications. Motivation for this approach lies in the poor energetic efficiency of shape memory alloys, which can void system-level benefits provided by morphing technologies. Multistability can therefore be adopted to prevent continuous operation of shape memory alloy actuators. Objectives of the study involve the combination of shape memory alloys and permanent magnets in new geometrical arrangements to achieve multistable behavior; the development of a numerical modeling procedure that is able to simulate the multi-physics nature of the studied systems; and the proposal of a geometric arrangement for morphing applications that is based on a repeating pattern of unit cells which incorporate the combined use of shape memory alloy wires and permanent magnets for multistability. The proposed modeling strategy considers a geometrically nonlinear beam finite element; a thermo-mechanical constitutive behavior for shapememoryalloys;theinteractionofcuboidalpermanentmagnetswitharbitraryorienta- tions; and node-to-element contact. Experiments are performed with three distinct systems, including a proof-of-concept beam, a three cell morphing beam metastructure, and a morphing airfoil prototype with six unit cells. Results show that the combination of shape memory alloys and permanent magnets indeed allows for multistable behavior. Furthermore, the dis- tributedactuationcapabilitiesofthe morphingmetastructureallowforsmoothandlocalized geometrical shape changes.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoTese (Doutorado)Esta Tese considera o uso simultâneo de ligas com memória de forma e ímãs permanentes para a obtenção de estruturas inteligentes multiestáveis, com vistas a sua aplicação em aeronaves de geometria variável. A motivação para tal abordagem reside na baixa eficiência energética associada às ligas com memória de forma, a qual pode eliminar benefícios oriundos de tecnologias relacionadas a geometria variável. Multiestabilidade pode, desta forma, ser adotada para prevenir operação contínua de atuadores baseados em ligas com memória de forma. Objetivos do estudo envolvem a combinação de ligas com memória de forma e ímãs permanentes em novos arranjos geométricos para a obtenção de comportamento multiestável; o desenvolvimento de um procedimento de modelagem numérica que pode simular a natureza multifísica dos sistemas estudados; e a proposição de um arranjo geométrico para aplicações que envolvem geometria variável, o qual é baseado num padrão repetitivo de células unitárias que incorporam o uso combinado de ligas com memória de forma e ímãs permanentes para mul- tiestabilidade. A estratégia de modelagem proposta considera um elemento finito de viga com não-linearidades geométricas; um modelo constitutivo termomecânico para ligas com memória de forma; a interação entre ímãs permanentes cúbicos com orientação arbitrária; e contato entre elemento-e-nó no contexto de elementos finitos. Experimentos são realizados com três sistemas distintos, incluindo uma viga para prova de conceito, uma metaestrutura do tipo viga com geometria variável composta por três células unitárias, e um protótipo de aerofólio com geometria variável composto por seis células unitárias. Resultados mostram que a combinação de ligas com memória de forma e ímãs permanentes permite a obtenção de comportamento multiestável. Além disso, a característica de atuação distribuída das metaestruturas com geometria variável permite alterações de forma suaves e localizadas

    A new run-to-run approach for reducing contact bounce in electromagnetic switches

    Get PDF
    Contact bounce is probably the most undesirable phenomenon of electromagnetic switches. It reduces the performance of relays and contactors and is directly related to some of the processes that result in the destruction of the device. In this paper, a complete formulation of the problem is provided and a new strategy inspired by Runto-Run control is presented for reducing contact bounce. The method, which makes use of the repetitive functioning of these systems, is highly versatile and may be applied to different switches under diverse operating conditions. In addition, it is able to deal with changes during the service life of the device, such as plastic deformations or the erosion of the contacts. Several experimental results are included to prove the effectiveness of the method

    A rare-earth free SHEV powertrain and its control

    Get PDF
    A topology of a candidate rare-earth free Series Hybrid Electric Vehicle (SHEV) powertrain and the coordinated control of its components is presented in this paper. The powertrain is fed with a field controlled synchronous generator and a controlled battery bank and drives a 60 kW rare-earth free traction motor. Simulation results are presented for normal operating conditions and two faulted-mode operating scenarios where the power electronic converter in the system is faulted are investigated

    PHM Based Adaptive Power Management System for a More Electric Aircraft

    Get PDF
    This research work presents a novel approach that addresses the concept of an adaptive power management system design and development framed in the Prognostics and Health Monitoring(PHM) perspective of an Electrical power Generation and distribution system(EPGS).PHM algorithms were developed to detect the health status of EPGS components which can accurately predict the failures and also able to calculate the Remaining Useful Life(RUL), and in many cases reconfigure for the identified system and subsystem faults. By introducing these approach on Electrical power Management system controller, we are gaining a few minutes lead time to failures with an accurate prediction horizon on critical systems and subsystems components that may introduce catastrophic secondary damages including loss of aircraft. The warning time on critical components and related system reconfiguration must permits safe return to landing as the minimum criteria and would enhance safety. A distributed architecture has been developed for the dynamic power management for electrical distribution system by which all the electrically supplied loads can be effectively controlled. The different failure modes were generated by injecting faults into the electrical power system using a fault injection mechanism. The data captured during these studies have been recorded to form a “Failure Database” for electrical system. A hardware in loop experimental study was carried out to validate the power management algorithm with FPGA-DSP controller. In order to meet the reliability requirements a Tri-redundant electrical power management system based on DSP and FPGA has been developed

    An audio-based iterative controller for soft landing of electromechanical relays

    Get PDF
    Electromechanical relays and contactors suffer from strong collisions at the end of the switching operations. This causes several undesirable phenomena, such as clicking, mechanical wear and contact bounce. Thus, there is great interest in mitigating these switching impacts while keeping the advantageous features of these devices. This paper proposes a complete control strategy for soft landing. The control structure includes three main components. The first one is a real-time flux-tracking feedback controller, which presents several advantages over voltage or current control. The second one is a feedforward controller, which computes the flux reference signal based on a proposed dynamical model and the desired position trajectory for the switching operations. Lastly, the third control component is a learning-type run-to-run adaptation law that iteratively adapts the model parameters based on an audio signal. It exploits the repetitive nature of these devices in order to circumvent modeling discrepancies due to unit-to-unit variability or small changes between operations. The effectiveness of the proposed control is demonstrated through various experiments

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Integrated DC-DC Charger Powertrain Converter Design for Electric Vehicles Using Wide Bandgap Semiconductors

    Get PDF
    Electric vehicles (EVs) adoption is growing due to environmental concerns, government subsidies, and cheaper battery packs. The main power electronics design challenges for next-generation EV power converters are power converter weight, volume, cost, and loss reduction. In conventional EVs, the traction boost and the onboard charger (OBC) have separate power modules, passives, and heat sinks. An integrated converter, combining and re-using some charging and powertrain components together, can reduce converter cost, volume, and weight. However, efficiency is often reduced to obtain the advantage of cost, volume, and weight reduction.An integrated converter topology is proposed to combine the functionality of the traction boost converter and isolated DC-DC converter of the OBC using a hybrid transformer where the same core is used for both converters. The reconfiguration between charging and traction operation is performed by the existing Battery Management System (BMS) contactors. The proposed converter is operated in both boost and dual active bridge (DAB) mode during traction operation. The loss mechanisms of the proposed integrated converter are modeled for different operating modes for design optimization. An aggregated drive cycle is considered for optimizing the integrated converter design parameters to reduce energy loss during traction operation, weight, and cost. By operating the integrated converter in DAB mode at light-load and boost mode at high-speed heavy-load, the traction efficiency is improved. An online mode transition algorithm is also developed to ensure stable output voltage and eliminate current oscillation during the mode transition. A high-power prototype is developed to verify the integrated converter functionality, validate the loss model, and demonstrate the online transition algorithm. An automated closed-loop controller is developed to implement the transition algorithm which can automatically make the transition between modes based on embedded efficiency mapping. The closed-loop control system also regulates the integrated converter output voltage to improve the overall traction efficiency of the integrated converter. Using the targeted design approach, the proposed integrated converter performs better in all three aspects including efficiency, weight, and cost than comparable discrete solutions for each converter

    Overview of 2-Degree-of-Freedom Rotary-Linear Motors Focusing on Coupling Effect

    Get PDF
    corecore