921 research outputs found

    Uav last-mile delivery in the humanitarian aid context: a qualitative analysis of the implementations in the health supply chain

    Get PDF
    Drones as innovative transportation mode for medical supplies have the potential to contribute significantlyto humanitarian aid. Building on three key case studies and fivein-depthinterviews, this work projectdeveloped a conceptual frameworkillustrating the success drivers and factors of UAV delivery in the health supply chain. Thefour identified main categories of the project environment, namely project operators, UAV environment, regulatory environment and public,are influenced by local conditions and specifications of thecargo. Thefocus on and understanding of all interdependent dimensionsis crucial for a project’s success. However, to allow for scalable operations,technological featuresandregulatory environments require further development

    An Innovative Human Machine Interface for UAS Flight Management System

    Get PDF
    The thesis is relative to the development of an innovative Human Machine Interface for UAS Flight Management System. In particular, touchscreena have been selected as data entry interface. The thesis has been done together at Alenia Aermacch

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Use of Unmanned Aerial Systems in Civil Applications

    Get PDF
    Interest in drones has been exponentially growing in the last ten years and these machines are often presented as the optimal solution in a huge number of civil applications (monitoring, agriculture, emergency management etc). However the promises still do not match the data coming from the consumer market, suggesting that the only big field in which the use of small unmanned aerial vehicles is actually profitable is the video-makers’ one. This may be explained partly with the strong limits imposed by existing (and often "obsolete") national regulations, but also - and pheraps mainly - with the lack of real autonomy. The vast majority of vehicles on the market nowadays are infact autonomous only in the sense that they are able to follow a pre-determined list of latitude-longitude-altitude coordinates. The aim of this thesis is to demonstrate that complete autonomy for UAVs can be achieved only with a performing control, reliable and flexible planning platforms and strong perception capabilities; these topics are introduced and discussed by presenting the results of the main research activities performed by the candidate in the last three years which have resulted in 1) the design, integration and control of a test bed for validating and benchmarking visual-based algorithm for space applications; 2) the implementation of a cloud-based platform for multi-agent mission planning; 3) the on-board use of a multi-sensor fusion framework based on an Extended Kalman Filter architecture

    Reference Model for Interoperability of Autonomous Systems

    Get PDF
    This thesis proposes a reference model to describe the components of an Un-manned Air, Ground, Surface, or Underwater System (UxS), and the use of a single Interoperability Building Block to command, control, and get feedback from such vehicles. The importance and advantages of such a reference model, with a standard nomenclature and taxonomy, is shown. We overview the concepts of interoperability and some efforts to achieve common refer-ence models in other areas. We then present an overview of existing un-manned systems, their history, characteristics, classification, and missions. The concept of Interoperability Building Blocks (IBB) is introduced to describe standards, protocols, data models, and frameworks, and a large set of these are analyzed. A new and powerful reference model for UxS, named RAMP, is proposed, that describes the various components that a UxS may have. It is a hierarchical model with four levels, that describes the vehicle components, the datalink, and the ground segment. The reference model is validated by showing how it can be applied in various projects the author worked on. An example is given on how a single standard was capable of controlling a set of heterogeneous UAVs, USVs, and UGVs

    Incorporating Safety Excellence into Urban Air Mobility (UAM): Insights from Commercial Aviation, Rotorcraft, and Unmanned Aerial Systems (UAS)

    Get PDF
    This paper focused on safety considerations in Urban Air Mobility (UAM) through a cross-industry examination of commercial aviation, rotorcraft, and unmanned aerial systems (UAS). Although UAM promises transformative benefits, there are safety concerns remaining. Based on the Federal Aviation Administration (FAA)’s Concept of Operations (ConOps), the literature review explained the fundamental concepts of UAM. In commercial aviation, regulatory framework, pilot training and certification, vehicle design and maintenance, and emergency response planning are emphasized. For rotorcraft, safety requirements for vertical flight, collision avoidance systems, heliport standards, and weather adaptability are crucial. Leveraging UAS advancements, the study suggested autonomous systems, sense-and-avoid technology, and remote piloting for enhanced safety in the UAM sector

    Autonomous landing of fixed-wing aircraft on mobile platforms

    Get PDF
    E n esta tesis se propone un nuevo sistema que permite la operación de aeronaves autónomas sin tren de aterrizaje. El trabajo está motivado por el interés industrial en aeronaves con la capacidad de volar a gran altitud, con más capacidad de carga útil y capaces de aterrizar con viento cruzado. El enfoque seguido en este trabajo consiste en eliminar el sistema de aterrizaje de una aeronave de ala fija empleando una plataforma móvil de aterrizaje en tierra. La aeronave y la plataforma deben sincronizar su movimiento antes del aterrizaje, lo que se logra mediante la estimación del estado relativo entre ambas y el control cooperativo del movimiento. El objetivo principal de esta Tesis es el desarrollo de una solución práctica para el aterrizaje autónomo de una aeronave de ala fija en una plataforma móvil. En la tesis se combinan nuevos métodos con experimentos prácticos para los cuales se ha desarrollado un sistema de pruebas específico. Se desarrollan dos variantes diferentes del sistema de aterrizaje. El primero presta atención especial a la seguridad, es robusto ante retrasos en la comunicación entre vehículos y cumple procedimientos habituales de aterrizaje, al tiempo que reduce la complejidad del sistema. En el segundo se utilizan trayectorias optimizadas del vehículo y sincronización bilateral de posición para maximizar el rendimiento del aterrizaje en términos de requerimientos de longitud necesaria de pista, pero la estabilidad es dependiente del retraso de tiempo, con lo cual es necesario desarrollar un controlador estabilizador ampliado, basado en pasividad, que permite resolver este problema. Ambas estrategias imponen requisitos funcionales a los controladores de cada uno de los vehículos, lo que implica la capacidad de controlar el movimiento longitudinal sin afectar el control lateral o vertical, y viceversa. El control de vuelo basado en energía se utiliza para proporcionar dicha funcionalidad a la aeronave. Los sistemas de aterrizaje desarrollados se han analizado en simulación estableciéndose los límites de rendimiento mediante múltiples repeticiones aleatorias. Se llegó a la conclusión de que el controlador basado en seguridad proporciona un rendimiento de aterrizaje satisfactorio al tiempo que suministra una mayor seguridad operativa y un menor esfuerzo de implementación y certificación. El controlador basado en el rendimiento es prometedor para aplicaciones con una longitud de pista limitada. Se descubrió que los beneficios del controlador basado en el rendimiento son menos pronunciados para una dinámica de vehículos terrestres más lenta. Teniendo en cuenta la dinámica lenta de la configuración del demostrador, se eligió el enfoque basado en la seguridad para los primeros experimentos de aterrizaje. El sistema de aterrizaje se validó en diversas pruebas de aterrizaje exitosas, que, a juicio del autor, son las primeras en el mundo realizadas con aeronaves reales. En última instancia, el concepto propuesto ofrece importantes beneficios y constituye una estrategia prometedora para futuras soluciones de aterrizaje de aeronaves.In this thesis a new landing system is proposed, which allows for the operation of autonomous aircraft without landing gear. The work was motivated by the industrial need for more capable high altitude aircraft systems, which typically suffer from low payload capacity and high crosswind landing sensitivity. The approach followed in this work consists in removing the landing gear system from the aircraft and introducing a mobile ground-based landing platform. The vehicles must synchronize their motion prior to landing, which is achieved through relative state estimation and cooperative motion control. The development of a practical solution for the autonomous landing of an aircraft on a moving platform thus constitutes the main goal of this thesis. Therefore, theoretical investigations are combined with real experiments for which a special setup is developed and implemented. Two different landing system variants are developed — the safety-based landing system is robust to inter-vehicle communication delays and adheres to established landing procedures, while reducing system complexity. The performance-based landing system uses optimized vehicle trajectories and bilateral position synchronization to maximize landing performance in terms of used runway, but suffers from time delay-dependent stability. An extended passivity-based stabilizing controller was implemented to cope with this issue. Both strategies impose functional requirements on the individual vehicle controllers, which imply independent controllability of the translational degrees of freedom. Energy-based flight control is utilized to provide such functionality for the aircraft. The developed landing systems are analyzed in simulation and performance bounds are determined by means of repeated random sampling. The safety-based controller was found to provide satisfactory landing performance while providing higher operational safety, and lower implementation and certification effort. The performance-based controller is promising for applications with limited runway length. The performance benefits were found to be less pronounced for slower ground vehicle dynamics. Given the slow dynamics of the demonstrator setup, the safety-based approach was chosen for first landing experiments. The landing system was validated in a number of successful landing trials, which to the author’s best knowledge was the first time such technology was demonstrated on the given scale, worldwide. Ultimately, the proposed concept offers decisive benefits and constitutes a promising strategy for future aircraft landing solutions

    MH-60 Seahawk / MQ-8 Fire Scout interoperability

    Get PDF
    Approved for public release; distribution is unlimitedAs part of a Naval Postgraduate School's capstone project in Systems Engineering, a project team from Cohort 311-0911 performed a Systems Engineering analysis. This Project focused on defining alternatives for enhanced Anti-Surface Warfare (ASUW) mission effectiveness through increased interoperability and integration for the Fire Scout Unmanned Air Vehicle and Seahawk helicopter. Specifically, the Project explored the available trade space for enhancing communications back to the ship for analysis and decision-making. Modeling and Simulation (MandS) was used to assess the impact of enhanced communication on specific Key performance Parameters (KPPs) and Measures of Effectiveness (MOEs) associated with the ASUW mission. Once the trade space was defined, alternatives were analyzed and a recommendation provided that supports near-, mid-, and long-term mission enhancement

    Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0 (“roadmap”) represents the culmination of the UASSC’s work to identify existing standards and standards in development, assess gaps, and make recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 64 issue areas, identified a total of 60 gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 40 gaps/recommendations have been identified as high priority, 17 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 36 cases, additional R&D is needed. The hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will be widely promoted and discussed over the course of the coming year, to assess progress on its implementation and to identify emerging issues that require further elaboration
    • …
    corecore