277 research outputs found

    Design, Fabrication and Experimental Validation of a Novel Dry-Contact Sensor for Measuring Electroencephalography Signals without Skin Preparation

    Get PDF
    In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes

    A novel 16-channel wireless system for electroencephalography measurements with dry spring-loaded sensors

    Full text link
    Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors make them uncomfortable and inconvenient for users. To overcome the limitations of conventional EEG measurement systems, a wireless and wearable multichannel EEG measurement system is proposed in this paper. This system includes a wireless data acquisition device, dry spring-loaded sensors, and a sizeadjustable soft cap. We compared the performance of the proposed system using dry versus conventional wet sensors. A significant positive correlation between readings from wet and dry sensors was achieved, thus demonstrating the performance of the system. Moreover, four different features of EEG signals (i.e., normal, eye-blinking, closed-eyes, and teeth-clenching signals) were measured by 16 dry sensors to ensure that they could be detected in real-life cognitive neuroscience applications. Thus, we have shown that it is possible to reliably measure EEG signals using the proposed system. This paper presents novel insights into the field of cognitive neuroscience, showing the possibility of studying brain function under real-life conditions. © 2014 IEEE

    An inflatable and wearable wireless system for making 32-channel electroencephalogram measurements

    Full text link
    © 2001-2011 IEEE. Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications

    Design, fabrication, and experimental validation of novel flexible silicon-based dry sensors for electroencephalography signal measurements

    Full text link
    © 2014 IEEE. Many commercially available electroencephalography (EEG) sensors, including conventional wet and dry sensors, can cause skin irritation and user discomfort owing to the foreign material. The EEG products, especially sensors, highly prioritize the comfort level during devices wear. To overcome these drawbacks for EEG sensors, this paper designs Societe Generale de Surveillance S A c(SGS)-certified, silicon-based dry-contact EEG sensors (SBDSs) for EEG signal measurements. According to the SGS testing report, SBDSs extract does not irritate skin or induce noncytotoxic effects on L929 cells according to ISO10993-5. The SBDS is also lightweight, flexible, and nonirritating to the skin, as well as capable of easily fitting to scalps without any skin preparation or use of a conductive gel. For forehead and hairy sites, EEG signals can be measured reliably with the designed SBDSs. In particular, for EEG signal measurements at hairy sites, the acicular and flexible design of SBDS can push the hair aside to achieve satisfactory scalp contact, as well as maintain low skin-electrode interface impedance. Results of this paper demonstrate that the proposed sensors perform well in the EEG measurements and are feasible for practical applications

    Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors.

    Get PDF
    New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach

    Neurotechnology : design of a semi-dry electroencephalography electrode

    Get PDF
    In the research of the brain, the most complex organ of the human body, its function can be studied through the analysis of Evoked Potentials (EP). This evoked activity can be reproduced in a diverse way and recorded with an Electroencephalogram (EEG). To register the different types of brainwaves, the electrodes have a very important role. The first part of the thesis presents an extended literature review of the different types of EEG electrodes available on the market, out-standing publications and patents. A semi-dry porous ceramic electrode prototype was proposed to register EEG signals. The sensor model was developed with the aim of improving the accuracy of the actual sensors, checking many current designs, and improving artefact attenuation. It was not possible to test this design for lack of time and resources. Additionally, an EEG headset was also studied and developed to place the in-built-reservoir sensors according to the 10-20 placement system. Moreover, on the second part of this project, a skin-electrode contact impedance protocol was presented and tested with four different dry electrode materials in a diverse frequency range. The protocol used, which is a combination of some techniques already employed, has differentiated and separated the potential external hazards that can provoke an impact on bioimpedance measurements. The results obtained allow to determine the degree of utility of an electrode and how much time was required and recommended to place the electrodes before its optimal impedance acquisition.Outgoin

    Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording

    Get PDF
    Conventional gel electrodes are widely used for biopotential measurements, despite important drawbacks such as skin irritation, long set-up time and uncomfortable removal. Recently introduced dry electrodes with rigid metal pins overcome most of these problems; however, their rigidity causes discomfort and pain. This paper presents dry electrodes offering high user comfort, since they are fabricated from EPDM rubber containing various additives for optimum conductivity, flexibility and ease of fabrication. The electrode impedance is measured on phantoms and human skin. After optimization of the polymer composition, the skin-electrode impedance is only similar to 10 times larger than that of gel electrodes. Therefore, these electrodes are directly capable of recording strong biopotential signals such as ECG while for low-amplitude signals such as EEG, the electrodes need to be coupled with an active circuit. EEG recordings using active polymer electrodes connected to a clinical EEG system show very promising results: alpha waves can be clearly observed when subjects close their eyes, and correlation and coherence analyses reveal high similarity between dry and gel electrode signals. Moreover, all subjects reported that our polymer electrodes did not cause discomfort. Hence, the polymer-based dry electrodes are promising alternatives to either rigid dry electrodes or conventional gel electrodes

    Hybrid head cap for mouse brain studies

    Get PDF
    Abstract. In this thesis, I present a hybrid head cap in combination with non-invasive multi-channel Electroencephalogram (EEG) and Near-Infrared Spectroscopy (NIRS) to measure brainwaves on mice’s scalps. Laboratory animal research provides insights into multiple potential applications involving humans and other animals. An experimental framework that targets laboratory animals can lead to useful transnational research if it strongly reflects the actual application environment. The non-invasive head cap with three electrodes for EEG and two optodes for NIRS is suggested to measure brainwaves throughout the laboratory mice’s entire brain region without surgical procedures. The suggested hybrid head cap aims to ensure stability in vivo monitoring for mouse brain in a non-invasive way, similarly as the monitoring is performed for the human brain. The experimental part of the work to study the quality of the gathered EEG and fNIRS signals, and usability validation of the head cap, however, was not completed in the planned time frame of the thesis work

    Developing Disposable EEG Cap for Infant Recordings at the Neonatal Intensive Care Unit

    Get PDF
    Long-term EEG monitoring in neonatal intensive care units (NICU) is challenged with finding solutions for setting up and maintaining a sufficient recording quality with limited technical experience. The current study evaluates different solutions for the skin–electrode interface and develops a disposable EEG cap for newborn infants. Several alternative materials for the skin–electrode interface were compared to the conventional gel and paste: conductive textiles (textured and woven), conductive Velcro, sponge, super absorbent hydrogel (SAH), and hydro fiber sheets (HF). The comparisons included the assessment of dehydration and recordings of signal quality (skin interphase impedance and powerline (50 Hz) noise) for selected materials. The test recordings were performed using snap electrodes integrated into a forearm sleeve or a forehead band along with skin–electrode interfaces to mimic an EEG cap with the aim of long-term biosignal recording on unprepared skin. In the hydration test, conductive textiles and Velcro performed poorly. While the SAH and HF remained sufficiently hydrated for over 24 h in an incubator-mimicking environment, the sponge material was dehydrated during the first 12 h. Additionally, the SAH was found to have a fragile structure and was electrically prone to artifacts after 12 h. In the electrical impedance and recording comparisons of muscle activity, the results for thick-layer HF were comparable to the conventional gel on unprepared skin. Moreover, the mechanical instability measured by 1–2 Hz and 1–20 Hz normalized relative power spectrum density was comparable with clinical EEG recordings using subdermal electrodes. The results together suggest that thick-layer HF at the skin–electrode interface is an effective candidate for a preparation-free, long-term recording, with many advantages, such as long-lasting recording quality, easy use, and compatibility with sensitive infant skin contact. Keywords: aEEG; NICU; SAH; HFPeer reviewe

    Developing Disposable EEG Cap for Infant Recordings at the Neonatal Intensive Care Unit

    Get PDF
    Long-term EEG monitoring in neonatal intensive care units (NICU) is challenged with finding solutions for setting up and maintaining a sufficient recording quality with limited technical experience. The current study evaluates different solutions for the skin–electrode interface and develops a disposable EEG cap for newborn infants. Several alternative materials for the skin–electrode interface were compared to the conventional gel and paste: conductive textiles (textured and woven), conductive Velcro, sponge, super absorbent hydrogel (SAH), and hydro fiber sheets (HF). The comparisons included the assessment of dehydration and recordings of signal quality (skin interphase impedance and powerline (50 Hz) noise) for selected materials. The test recordings were performed using snap electrodes integrated into a forearm sleeve or a forehead band along with skin–electrode interfaces to mimic an EEG cap with the aim of long-term biosignal recording on unprepared skin. In the hydration test, conductive textiles and Velcro performed poorly. While the SAH and HF remained sufficiently hydrated for over 24 h in an incubator-mimicking environment, the sponge material was dehydrated during the first 12 h. Additionally, the SAH was found to have a fragile structure and was electrically prone to artifacts after 12 h. In the electrical impedance and recording comparisons of muscle activity, the results for thick-layer HF were comparable to the conventional gel on unprepared skin. Moreover, the mechanical instability measured by 1–2 Hz and 1–20 Hz normalized relative power spectrum density was comparable with clinical EEG recordings using subdermal electrodes. The results together suggest that thick-layer HF at the skin–electrode interface is an effective candidate for a preparation-free, long-term recording, with many advantages, such as long-lasting recording quality, easy use, and compatibility with sensitive infant skin contact. Keywords: aEEG; NICU; SAH; HFPeer reviewe
    corecore