718 research outputs found

    Research into container reshuffling and stacking problems in container terminal yards

    Get PDF
    Container stacking and reshuffling are important issues in the management of operations in a container terminal. Minimizing the number of reshuffles can increase productivity of the yard cranes and the efficiency of the terminal. In this research, the authors improve the existing static reshuffling model, develop five effective heuristics, and analyze the performance of these algorithms. A discrete-event simulation model is developed to animate the stacking, retrieving, and reshuffling operations and to test the performance of the proposed heuristics and their extended versions in a dynamic environment with arrivals and retrievals of containers. The experimental results for the static problem show that the improved model can solve the reshuffling problem more quickly than the existing model and the proposed extended heuristics are superior to the existing ones. The experimental results for the dynamic problem show that the results of the extended versions of the five proposed heuristics are superior or similar to the best results of the existing heuristics and consume very little time

    Sea Container Terminals

    Get PDF
    Due to a rapid growth in world trade and a huge increase in containerized goods, sea container terminals play a vital role in globe-spanning supply chains. Container terminals should be able to handle large ships, with large call sizes within the shortest time possible, and at competitive rates. In response, terminal operators, shipping liners, and port authorities are investing in new technologies to improve container handling infrastructure and operational efficiency. Container terminals face challenging research problems which have received much attention from the academic community. The focus of this paper is to highlight the recent developments in the container terminals, which can be categorized into three areas: (1) innovative container terminal technologies, (2) new OR directions and models for existing research areas, and (3) emerging areas in container terminal research. By choosing this focus, we complement existing reviews on container terminal operations

    Optimization of Container Terminal Operations

    Get PDF
    Over the last years, international sea-freight container transportation has grown dramatically and container terminals play nowadays a key-role in the global shipping network. The increased competitiveness among terminals requires more and more efficiency in container operations, both along the quayside and within the yard, in order to minimize ships turnaround time. Operations research methods and techniques are therefore worth being used in optimizing terminal operations. In this work, we first give an overview of decision problems which arise in the management of a container terminal (e.g. berth allocation, crane scheduling, storage policies and strategies, transfer operations) and we briefly describe models and methods presented in the literature. Then, starting from a collaboration with some of the busiest ports in Europe, we have identified some critical issues which will be illustrated: in particular, we focus on the impact that gate operations and transshipment operations have on the yard and we propose a new approach to the yard management which takes into account these interactions. We conclude with suggestions of possible research tracks and open issues

    Logistic groups in the Republic of Panama

    Get PDF
    A map of the logistic groups in the Republic of Panama and complementary maps of the distribution of the population density, GDP density, the economic activity "transport, storage and communications", and the primary and secondary road network are presented. The clusters of territorial groups on each map were analyzed and created using the "decision tree" data mining method in order to determine territorial groups with similar characteristics, including logistics infrastructure and nodes, socioeconomics and the environmental situation. At the reference scale of 1:800,000 these maps represent a planning tool to decision makers in land use matters

    Un algoritmo en lĂ­nea para el problema de apilamiento de contenedores

    Get PDF
    El manejo eficiente de carga es un elemento clave para un puerto marítimo pueda competir y proveer adecuados niveles de servicio a sus usuarios. El desempeño de un puerto depende del tiempo de permanencia de la nave, que está condicionado por la eficiencia en las operaciones de carga y descarga de las naves. En el patio, los contenedores son almacenados temporalmente para ser cargados a la nave o despachados a los usuarios externos con un alto impacto en los tiempos de atención de las naves. Este artículo propone una política para stacking de contenedores, considerando las características particulares de un terminal de contenedores en Chile. Para medir el desempeño de este procedimiento, se propone una cota superior para el número de despejes de un contenedor en función de la capacidad de los bloques. Se presentan resultados numéricos en comparación con la cota superior, mostrando un buen desempeño del procedimiento propuesto.Efficient cargo handling is a key element for a maritime port to compete and provide good service levels to its users. The performance of a port is related to ship-turnaround, which is conditioned by the ships loading and unloading operational efficiency. At the yard, containers are temporarily stacked in order to later either load them onto a ship or dispatch them to external users. Stacking has a strong impact on ships’ service times. This paper proposes a container stacking policy, considering the particular characteristics of a container terminal in Chile. In order to measure the performance of the procedure, an upper bound for the number of re-handles of containers is estimated as a function of the block’s capacity. Numerical results are provided in comparison to an upper bound, and a good performance by the proposed procedure is demonstrated

    Optimization of operations in container terminals: hierarchical vs integrated approaches

    Get PDF
    Over the last years, international sea freight container transportation has grown dramatically and container terminals play nowadays a key role within the global shipping network. Terminal's operations have received increasing interest in the scientific literature and operations research techniques are more and more used to improve efficiency and productivity. In this work we provide an overview of container terminal's operations and associated decision problems. We review state-of-the-art optimization approaches in terminal's management and we discuss what are in our opinion the current research trends. In particular, we focus on the following streams: the integrated optimization of interdependent decision problems, the analysis of issues related to traffic congestion in the yard and the tactical planning of operations. The discussion is based on the Tactical Berth Allocation Problem (TBAP), an integrated decision problem that deals with the simultaneous optimization of berth allocation and quay crane assignment. Yard housekeeping costs are also taken into account in the objective function. We use the TBAP as a case study to illustrate the benefits of an integrated optimization approach. A comparative analysis with the traditional hierarchical solution approach is provided. Computational results based on real-world data provided by the MCT (port of Gioia Tauro, Italy) show that the additional computational effort required by the integrated optimization approach allows for more efficient solutions

    Optimization on the container loading sequence based on hybrid dynamic programming

    Get PDF
    Retrieving export containers from a container yard is an important part of the ship loading process during which arranging the retrieving sequence to enhance port efficiency has become a vital issue. This paper presents a twophase hybrid dynamic algorithm aiming at obtaining an optimized container loading sequence for a crane to retrieve all the containers from the yard to the ship. The optimization goal is to minimize the number of relocation operations which has a direct impact upon container loading operation efficiency. The two phases of the proposed dynamic algorithms are designed as follows: at the first phase, a heuristic algorithm is developed to retrieve the containers subset which needs no relocation and may be loaded directly onto the ship; at the second phase, a dynamic programming with heuristic rules is applied to solve the loading sequence problem for the rest of the containers. Numerical experiments showed the effectiveness and practicability of the model and the algorithm by comparing with the loading proposals from an existing research and actual rules respectively. First published online: 14 Jan 201
    • …
    corecore