# View metadata, citation and similar papers at core.ac.uk

# **Optimization of Container Terminal Operations**

Ilaria Vacca, Michel Bierlaire, Matteo Salani

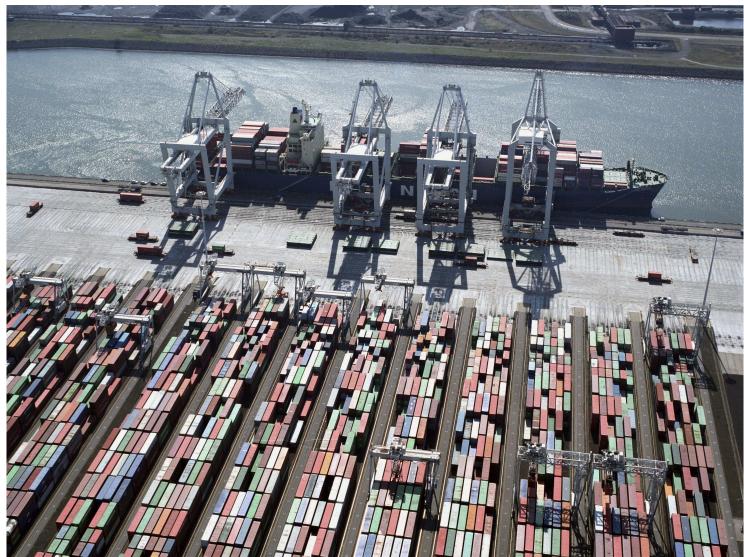
Transport and Mobility Laboratory École Polytechnique Fédérale de Lausanne

5th Joint OR Days - Zurich 27.08.2007



## **Outline**

- Introduction
- Terminal overview
- Terminal operations
- Yard optimization
- Transshipment
- Conclusions




#### Introduction

- Growth of container sea-freight transportation
- Competition among terminals in terms of:
  - Service (ship's turnaround time)
  - Productivity (TEUs per year)
- Issues: traffic, congestion and capacity limits
- OR techniques to improve the efficiency of terminal operations



## **Terminal Overview**





## **Terminal Operations**

Ship-to-Shore

Berth Allocation; Quay Cranes Scheduling; Ship Loading Plan.

Transfer

Quay-Yard; Yard-Yard; Yard-Gate.

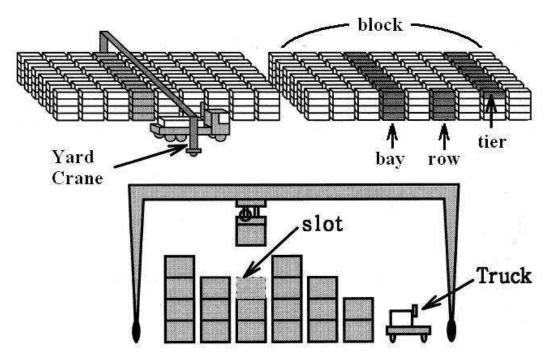
Storage

Yard Management (Block and Bay Allocation); Yard Crane Deployment

Delivery and Receipt

Gate management; Interface with trains and trucks.

In addition to the traditional flow: transshipment containers, empty containers and human resources management.


Vis and de Koster (2003); Steenken et al. (2004); Henesey (2006)



## **Yard Overview**

The yard serves as a buffer for loading, unloading and transshipping containers.

The yard is separated into blocks. The position of the container inside a block is identified by bay, row and tier.





## **Yard Optimization**

- Storage policies for groups of containers at block and bay level, in order to:
  - balance the workload among blocks;
  - minimize the total distance covered to shift containers from quay to yard.

de Castilho and Daganzo (1993); Kim et al. (2000); Kim and Park (2003); Zhang et al. (2003); Kim and Hong (2006); Kang et al. (2006); Lee et al. (2006).

- Re-marshalling of containers according the ship loading plan, in order to:
  - speed-up loading operations and thus minimize ship's turnaround time.

Kim and Bae (1998); Lee and Hsu (in press).

- Yard cranes deployment (allocation of cranes among blocks, routing and scheduling of operations), in order to:
  - minimize the completion time of jobs.

Kim and Kim (1997); Linn et al. (2003); Zhang et al. (2002); Kim et al. (2003); Ng and Mak (2005); Ng (2005); Kim et al. (2006); Jung and Kim (2006).



# **Issues in Yard Management**

The yard is usually the bottleneck of the terminal.

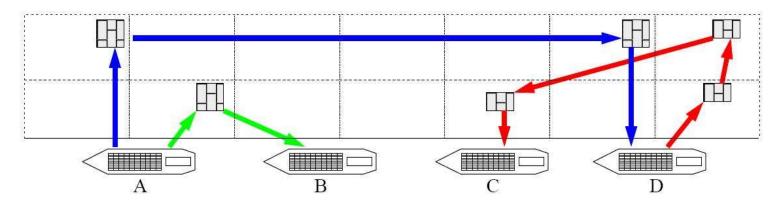
Traffic, congestion and capacity issues originate from here.

Main issue: the "schedule" of the outgoing flow is unknown to the terminal.

- Import/export terminals: yard management is strictly connected to gate operations (trucks and trains).
- Transshipment terminals: yard management is strictly connected to mother vessels and feeders.



## **Transshipment**


- Players in transshipment: mother vessels and feeders;
- Peculiarities of the transshipment flow:
  - known arrival and departure positions;
  - known arrival and departure times;
  - concurrency of loading and unloading operations.
- Definition of new transshipment-related problems:
  - Service Allocation Problem (Cordeau et al., 2007);
  - Group Allocation Problem (Moccia and Astorino, June 2007).
  - Short Sea Shipping: recent study on barge rotation planning in the port of Rotterdam (*Douma et al., June 2007*).



#### The Service Allocation Problem

#### Cordeau et al. (2007)

- Tactical problem (3-month horizon) arising in yard management of transshipment terminals (case study: port of Gioia Tauro, Italy);
- A service (also called port route) is the sequence of ports visited by a vessel;
- Services periodically call at the terminal: they need to be assigned a favorite area along the quayside and in the yard;
- Service allocation has an impact on the number of handling operations inside the yard (housekeeping).





#### The Service Allocation Problem

- N, the set of services, |N| = n;
- M, the set of bays, |M| = m;
- $t_{ij}$ , the traffic intensity between service  $i \in N$  and  $j \in N$ ;
- $q_i$ , the space requirement of service  $i \in N$ ;
- $Q_k$ , the space available at bay  $k \in M$ ;
- $c_i$ , the average number of crane moves required for service  $i \in N$ ;
- $C_k$ , the average number of crane moves allowed at bay  $k \in M$ ;
- M(i), the set of feasible bay assignments for service  $i \in N$ ;
- $d_{hk}$ , the distance between bay  $h \in M$  and bay  $k \in M$ .
- $x_{ik} = \begin{cases} 1 & \text{if service } i \text{ is assigned to bay } k; \\ 0 & \text{otherwise.} \end{cases}$



## The Service Allocation Problem

$$\min \sum_{i \in N} \sum_{j \in N} \sum_{h \in M} \sum_{k \in M} t_{ij} d_{hk} x_{ih} x_{jk} \tag{1}$$

$$s.t. \sum_{k \in M(i)} x_{ik} = 1 \ \forall i \in N, \tag{2}$$

$$\sum_{i \in N} q_i x_{ik} \le Q_k \ \forall k \in M, \tag{3}$$

$$\sum_{i \in N} c_i x_{ik} \le C_k \ \forall k \in M, \tag{4}$$

$$x_{ik} \in \{0, 1\} \ \forall i \in N, \forall k \in M. \tag{5}$$



## The Group Allocation Problem

#### Moccia and Astorino (June 2007).

- Operational problem arising in yard management of transshipment terminals (case study: port of Gioia Tauro, Italy);
- A container group is a set of container of same type, same origin, same destination;
- Arrival/departure times and arrival/departure positions along the quay are known in advance (input: Berth Allocation Plan);
- Objective: minimize housekeeping.



## Transshipment: A New Approach

- Several players: terminal, mother vessels and feeders;
- Negotiation between terminal and feeders on the arrival time;
- Integration of berth and block allocation;
- Objectives: minimize total distance quay-yard; minimize congestion in yard blocks; balance workload among blocks.

#### Research plan on 2 levels:

- 1. Optimization framework for the simultaneous assignment of berths and blocks with feasible scheduling of feeders;
- 2. Definition of ad-hoc pricing policies to support the terminal in the negotiation with feeders.



#### **Conclusions**

- OR techniques are worth being applied to improve the efficiency of terminal operations.
- Focus on yard management and its interactions with:
  - gate operations;
  - transshipment flow.
- A new approach in the management of transshipment operations.
- Investigation of possible negotiation and cooperation between the terminal and the other market players.



#### References

- Cordeau, J., Gaudioso, M., Laporte, G. and Moccia, L. (2007). The service allocation problem at the gioia tauro maritime terminal, *European Journal of Operational Research* **176**: 1167–1184.
- de Castilho, B. and Daganzo, C. (1993). Handling strategies for import containers at marine terminals, *Transportation Research Part B* **27**: 151–166.
- Douma, A., Schuur, P. and Schutten, M. (June 2007). Barge rotation planning and quay scheduling in the port of rotter-dam, TRISTAN VI Sixth Triennal Symposium on Transportation Analysis.
- Henesey, L. (2006). *Multi-agent Container Terminal Manage-ment*, PhD thesis, Karlshamn, Blekinge Institute of Technology.
- Jung, S. and Kim, K. (2006). Load scheduling for multiple quay cranes in port container terminals, *Journal of Intelligent Manufacturing* **17**: 479–492.
- Kang, J., Ryu, K. and Kim, K. (2006). Deriving stacking strategies for export containers with uncertain weight information, *Journal of Intelligent Manufacturing* **17**: 399410.

- Kim, K. and Bae, J. (1998). Re-marshaling export containers in port container terminals, *Computers and Industrial Engineering* **35**: 655–658.
- Kim, K. and Hong, G.-P. (2006). A heuristic rule for relocating blocks, *Computers and Operations Research* **33**: 940–954.
- Kim, K. and Kim, K. (1997). A routing algorithm for a single transfer crane to load export containers onto a containership, *Computers and Industrial Engineering* **33**: 673–676.
- Kim, K., Lee, K. and Hwang, H. (2003). Sequencing delivery and receiving operations for yard cranes in port container terminals, *International Journal of Production Economics* **84**: 283–292.
- Kim, K., Lee, S.-J., Park, Y.-M., Yang, C. and Bae, J. (2006). Dispatching yard cranes in port container terminals, *TRB Transportation Research Board Annual Meeting*.
- Kim, K. and Park, Y.-M. (2003). A note on a dynamic space-allocation method for outbound containers, *European Journal of Operational Research* **148**: 92–101.
- Kim, K., Park, Y.-M. and Ryu, K. (2000). Deriving decision rules to locate export containers in container yards, *European Journal of Operational Research* **124**: 89–101.

- Lee, L., Chew, E., Tan, K. and Han, Y. (2006). An optimization model for storage yard management in transshipment hubs, *OR Spectrum* **28**: 539–561.
- Lee, Y. and Hsu, N.-Y. (in press). An optimization model for the container pre-marshalling problem, *Computers and Operations Research*.
- Linn, R., Liu, J., Wan, Y.-W., Zhang, C. and Murty, K. (2003). Rubber tired gantry crane deployment for container yard operation, *Computers and Industrial Engineering* **45**: 429–442.
- Moccia, L. and Astorino, A. (June 2007). The group allocation problem in a transshipment container terminal (working paper), *World Conference on Transportation Research, Berkeley*.
- Ng, W. (2005). Crane scheduling in container yards with intercrane interference, *European Journal of Operational Research* **164**: 64–78.
- Ng, W. and Mak, K. (2005). Yard crane scheduling in port container terminals, *Applied Mathematical Modelling* **29**: 263–276.
- Steenken, D., Voss, S. and Stahlbock, R. (2004). Container terminal operation and operations research a classification and literature review, *OR Spectrum* **26**: 3–49.

- Vis, I. and de Koster, R. (2003). Transshipment of containers at a container terminal: An overview, *European Journal of Operational Research* **147**: 1–16.
- Zhang, C., Liu, J., Wan, Y.-W., Murty, K. and Linn, R. (2003). Storage space allocation in container terminals, *Transportation Research Part B* **37**: 883–903.
- Zhang, C., Wan, Y.-W., Liu, J. and Linn, R. (2002). Dynamic crane deployment in container storage yards, *Transportation Research Part B* **36**: 537–555.