
Rehandling Strategies for Container Retrieval

Tonguç Ünlüyurt and Cenk Aydin
Sabanci University, Faculty of Engineering and Natural Sciences

e-mail: tonguc@sabanciuniv.edu

1 Introduction
In this work, we consider the problem of optimizing the retrieval of containers
from a bay in a fixed sequence. When there are other containers on top of
the container to be retrieved, there may be alternative locations for those
containers to be relocated. So it is essential to develop algorithms that find
“good” locations in order to minimize the total time of the retrieval. In
the literature, there are not many papers on this subject. The problem is
discussed in some papers but only a few of them actually propose algorithms
whose performance is demonstrated through extensive testing.

In Chen (1999), factors causing unproductive moves during storage from
operational to strategic levels are discussed in a top to bottom perspective.
Kim et al. (2000) derive a methodology to locate export containers within a
bay. An optimization model based on containers’ weight groups is formulated
to find the location within the bay, minimizing the expected number of re-
handles for an arriving export container. The container positioning problem
is defined by Tranberg (2005). The problem is minimizing the total handling
time of a block in an automated terminal. A linear mixed-integer model with
a non-polynomial number of variables is formulated. In Lee & Hsu (2007),
a multi-commodity network problem with side constraints is constructed for
the pre-marshalling problem

Kim & Hong (2006) deals with the problem of the retrieval of import
containers from a single bay and is closet to our study. The problem is to
find exact locations of relocated containers while retrieving all the containers
from a bay according to a predetermined order. Another version of the prob-
lem is also considered. In this version, the retrieval sequence is not given as
a permutation of all individual containers, but the sequence is among groups
of containers. The model is formulated and first solved via a branch and
bound search with the objective of minimizing the number of relocations.

1



Figure 1: A typical block

Then a heuristic based on the expected additional rehandles is proposed.
This heuristic determines the next move by minimizing the expected num-
ber of future relocations assuming that the containers will move randomly.
The heuristic runs fast and gives results with about 3-16% optimality gap
depending on the problem size.

In this study, we develop a branch and bound algorithm and heuristic
algorithms for two objective functions and test the performance of these
algorithms on randomly generated instances. The details of the algorithms
can be found in Aydin (2006).

2 Problem Definition
Each block consists of a number of bays and each bay consists of a number
of rows/stacks. Except for temporary storage all the containers are stacked
in blocks. Mainly yard cranes are assigned to blocks for stacking operations.
An illustration of how the blocks look like and how the yard cranes operate
is given in Figure 1. In the figure, the block consists of 4 bays and each
bay consists of 8 stacks of containers. There is a truck lane that the trucks
use to bring the incoming containers and take away the outgoing containers.
Typically a bay has between 2-10 rows and each row contains 3-7 tiers. There
is no limitation on the number of bays but usually there are up to 20 bays
and yard cranes can move between bays on their wheels.

Arrival and retrieval of the containers are performed by trucks. When a
container arrives on a truck, as in Figure 2, the operator moves the crane to
the right or left so that it would get on top of the truck. Then, the crane
is lowered to pick up the incoming container. Once the container is picked
up, the crane is levered up, to move on top of the available position that
is allocated for the container. Then, the crane lowers down to release the
container and is levered up to its usual position. In order for the crane to

2



Figure 2: A single bay and crane movements

move horizontally, it has to be levered up.
The retrieval of a container is almost like an arrival. The only difference is

that, the container to be retrieved should be accessible by the crane, mean-
ing that there should not be any other containers on top of the container
that is being retrieved. If a container is not accessible, then the containers
above it should be rehandled/relocated to other available positions in the
bay. Obviously rehandling causes operational inefficiency.

In this context, the related decision problem that we study can be de-
scribed as follows: Given an initial configuration of a bay along with the
sequence in which the containers will be retrieved, we would like to decide
how to relocate the containers (when necessary) to minimize an appropriate
objective function, that is related to the total time of the retrieval operation.
We allow a container to be relocated to another position in the bay only
when another container beneath that container is to be retrieved. In other
words, we will try to devise a strategy that will determine how to retrieve
the containers in a bay one by one in a predetermined sequence. When there
are other containers on top of the container to be retrieved, the strategy will
indicate where to relocate those containers.

In this work, two distinct objectives are considered. The first objective
function is the number of relocations as in Kim & Hong (2006) (this will be
referred as Objective 1 ). Secondly the number of relocations and horizontal
movement of the crane are considered together. In this case, both quanti-
ties need to be multiplied by the associated constants such that we obtain
the total time spent for relocations (pick up/drop down) and the horizontal
movement of the crane. (this objective function will be referred as Objective
2 )

3 A Branch and Bound Algorithm
We first propose a branch and bound procedure in order to solve the problem
exactly. Our main goal is to compare our proposed heuristics’ results with

3



the optimal solutions when possible and to have an idea on the computation
times of optimal solutions.

The state of the bay corresponds to the configuration of the bay at a
certain time, i.e. the state of the bay describes which container is in which
location at that particular time. An action consists of a series of movements
of the containers. We will use the following notation introduced mainly in
Kim & Hong (2006).

a) Sk: The state of the bay after k containers are retrieved from the bay.

b) ak: The action taken for the removal of the kth container.

c) h(ak): The number of relocations that occurred during action ak, i.e.
the number of relocations that occurred while the state of the systems
changed from Sk−1 to Sk as the kth container is retrieved.

d) F (Sk): The minimum total number of relocations to retrieve the re-
maining containers from the bay at state Sk.

The problem with Objective 1 is formulated in Kim & Hong (2006) as in
equation 1:

F (S0) = min
a1,a2,...,ak

{
k∑

c=1

h(ac) + F (Sk)} where Sc−1 →ac

Sc for c = 1, ..., k.

(1)
For formulating the problem with respect to Objective 2, we introduce the
following notation:

a) handle(ak): The number of crane pickups experienced during action ak

when the bay is in state Sk.

b) horizontal(ak): The horizontal distance traveled by the crane during
action ak.

c) A and B are the appropriate coefficients for the pickups and horizon-
tal distance such that total time can be computed as A × number of
pickups and B × horizontal distance traveled.

d) V (Sk): The optimal objective function value to retrieve up the remain-
ing containers from the bay that is in state Sk.

The problem with Objective 2 can be formulated as in equation 2:

4



V (S0) = min
a1,a2,...,ak

{
k∑

c=1

(A× handle(ac) + B × horizontal(ac) + V (Sk)} (2)

where Sc−1 →ac
Sc for c = 1, ..., k. Essentially, for equation (2) we update

the objective function with respect to Objective 2. Both for Objective 1
and Objective 2, equations 1 and 2 indicate that after every movement of a
container we have a new problem of the same kind to solve. For solving the
problem for Objective 1 and 2 optimally, a branch and bound search, with
depth-first and backtracking strategies is implemented in C++.

In the branch and bound tree, each node corresponds to the current state
of the bay. The children are produced from the parent such that the state
of the bay corresponding to a child is obtained from the state of the bay
corresponding to the parent by applying a specified action, i.e. a series of
container movements. The effectiveness of our branch and bound scheme will
be demonstrated in Section 5.

4 Heuristic Algorithms

4.1 Expected additional relocation heuristic (EAR1/EAR2)

To the best of our knowledge, the only proposed heuristic for the solution of
the problem other than the branch and bound search, is suggested in Kim
& Hong (2006), for minimizing the number of relocations (i.e. objective 1 ).
In this algorithm, basically, the idea is to check each alternative location for
the container that is being rehandled and estimate the expected additional
relocations that would result by placing that container to the alternative
location, assuming that further container movements will be random. Then
the decision would be to relocate the container to the location with the
minimum expected number of additional relocations. We have implemented
this algorithm (EAR1) and adapted it also for Objective 2, EAR2.

4.2 Greedy Heuristic

The idea of expected additional rehandles relies on the assumption of random
container movements. As a matter of fact, this will not typically be true
since any methodology applied for such a problem will try to make moves to
minimize the total time of retrieval. So assuming random future movements
is rather pessimistic. Algorithms EAR1 and EAR2 choose the locations of

5



containers based on calculations that are built on this assumption. Therefore
we propose another algorithm which does not rely on such assumptions.

In the branch and bound search, we use an effective branching strategy
and generate well structured trees for the optimal solution. In the greedy
algorithm, we branch on the child that has the minimum lower bound for
Objective 1 and Objective 2 respectively. We will refer to these algorithms
as Grdy1 and Grdy2.

4.3 Difference Heuristic

As an alternative to the heuristics proposed above, we propose another
heuristic that requires fewer calculations. The idea behind the algorithm
is to avoid further relocations as much as possible for each relocation. When
container X is to be relocated, the stack it will be relocated to is chosen de-
pending on the other containers of the candidate stack. The following rules
are applied.

a) If there exists a stack such that the container that will be retrieved first
in that stack will be retrieved later than container X, then that stack
is chosen for relocating container X. If this is possible, a recognized re-
handle becomes a realized rehandle. So we do not cause any additional
cost as a result of this relocation. If there are multiple stacks that sat-
isfy this condition, then the stack that has the container that will be
retrieved earliest is chosen. Let us denote this container by Y. By mini-
mizing the difference in the orders of retrieval, we minimize the number
of containers ordered between X and Y, which will be rehandled again
in the case of being relocated on X.

b) If a stack satisfying the above condition is not found then a stack with
a container Z that is accessible (meaning at the top of the stack) by
the crane and with an order number smaller than X is searched. In
this way we stack containers which will be relocated in a reverse order
so that they may become ordered when they are relocated. Again the
difference between X and Z is minimized due to the same reasoning in
the case of multiple stacks satisfying the condition.

c) If there is no stack satisfying conditions a) or b) , we simply mini-
mize the difference between the order numbers of container X and the
container which X will be relocated on.

So in each case we try to minimize the difference in the orders of containers
to minimize the number of containers that would potentially be rehandled

6



in the future. While doing this, the empty stacks are assumed to contain
highest ordered container. We also modify this algorithm for Objective 2
and refer to these algorithms as Diff1 and Diff2.

5 Computational Results
A total of 8000 random instances are generated for different initial configu-
rations, different width and height of bays and with different initial intensity
values. The parameters that we use in our experiments are as follows:

a) 2 types of layouts: Balanced, meaning equal initial stack heights and
unbalanced, meaning random initial stack heights.

b) 5 bay widths: 3 to 7 stacks.

c) 4 bay heights: 4 to 7 which is maximum number of containers in a
single stack.

d) 5 initial intensity values: 55%-60%-65%-70%-75% of the bay is initially
occupied,

We try to solve 40 instances for each combination of parameters optimally
and by the heuristics described above (EAR1/2, Greedy1/2, Difference1/2 )
for Objective 1 and Objective 2. All the algorithms are implemented on a
Celeron 2.8 Ghz processor with 256 MB RAM.

Since the problems are generated randomly, in some cases out of the 40
problems for a certain set of parameters, some of the instances in a group
cannot be solved to optimality. If this is the case, for all the 40 instances in
that group, we consider the best solution obtained in 5 minutes to compare
with the solutions obtained by the heuristics. With this distinction, we use
optimal solutions for 7280 cases for Objective 1 and 6400 cases for Objective
2 out of 8000 cases for the comparisons.

For Objective 2, the parameters are assumed as A=5 and B=1. It turns
out that the average computation time for the branch and bound algorithm
for Objective 2 is considerably higher than those for Objective 1. Also the
average computation time for unbalanced cases is larger than those for bal-
anced cases. In general, the computation times for the branch and bound
algorithm very much depend on the size and intensity of the problems.

Next we compare the heuristic algorithms proposed in Section 4 among
themselves and with the optimal solution, when possible, for Objective 1 and
Objective 2. Let us recall that EAR1 is proposed in Kim & Hong (2006), for

7



Figure 3: % optimality gap plotted against expected number of containers
to be retrieved (7280 instances)

Figure 4: % optimality gap plotted against expected number of containers
to be retrieved (6400 instances)

Objective 1. We implemented EAR1 in addition to EAR2 which we obtained
by adaptation of EAR1 for Objective 2. In addition we propose the heuristic
algorithms Grdy1/2 and Diff1/2 for Objectives 1 and 2 respectively.

We first plot the average percent optimality gaps versus the expected
number of containers to be retrieved for all algorithms with respect to Ob-
jective 1 and Objective 2 in Figures 3 and 4. We observe that the optimality
gaps increase in general as the expected number of containers increases for
both objective functions. The Diff1 algorithm outperforms the other algo-
rithms for Objective 1 while the Grdy2 algorithm outperforms the other two
heuristics for Objective 2. For Objective 1 the average optimality gap for the
Difference algorithm for any group of instances is below 6% for Objective 1
whereas for Objective 2 the average optimality gap for the Grdy2 algorithm

8



Figure 5: % gap from best solution plotted against expected number of
containers to be retrieved (720 instances)

Figure 6: % gap from best solution plotted against expected number of
containers to be retrieved (1600 instances)

is below 10% again for any group of instances.
For the groups of instances that contain large problems for which the

optimal solution cannot be found in 5 minutes by branch and bound, we plot
the gap of the heuristics as compared with the best solution that is found by
the branch and bound algorithm in 5 minutes against the expected number
of containers to be retrieved. We observe that as the expected number of
containers to be retrieved increases, the quality of the solutions obtained by
the heuristic algorithms and the best solutions found by the exact algorithm
in 5 minutes becomes closer to each other. Again in these plots we observe
that for Objective 1, the Diff1 heuristic outperforms the other algorithms.
As can be seen in the plot, for the largest instances the Diff1 algorithm
outperforms the best solutions found in 5 minutes. For Objective2, the Grdy2

9



and Diff2 perform similar to each other and they outperform EAR2.

6 Conclusions
In this paper, we study the problem of optimizing the retrieval of containers
from their stacks. As a matter of fact, one could consider this problem in
a more general setting where standard size boxes are retrieved from their
locations in a certain order. This could be in the context of a warehouse,
temporary storage area etc.

Future research directions in this area may be as follows:

a) For both objective functions heuristic algorithms that find near optimal
cleaning moves can be developed.

b) One can consider the same problem when different container groups
have different retrieval times. This situation could occur due to the
weight or content of the containers.

c) One could develop similar heuristic algorithms that can handle prece-
dence among groups of containers rather than a fixed complete se-
quence.

References
Aydin, C. (2006), Improved rehandling strategies for retrieveing containers
from a bay, Master’s thesis, Sabanci University.

Chen, T. (1999), ‘Yard operations in the container terminal: A study in the
unproductive moves’, Maritime Policy and Management 26(1), 27–38.

Kim, K. & Hong, G. (2006), ‘A heuristic rule for relocating blocks’, Comput-
ers and Operations Research 33, 940–954.

Kim, K., Park, Y. & Ryu, K. (2000), ‘Deriving decision rules to locate export
containers in container yards’, European Journal of Operational Research
124, 89–101.

Lee, Y. & Hsu, N. (2007), ‘An optimization model for the container pre-
marshalling problem’, Computers and Operations Research 34, 3295–3313.

Tranberg, L. (2005), Optimizing yard operations in port container terminals,
in ‘Proceedings of the 10th EWGTMeeting and 16. Mini Euro Conference’,
pp. 386–391.

10


