145 research outputs found

    Derivation of a macroscopic model for transport of strongly sorbed solutes in the soil using homogenization theory

    No full text
    In this paper we derive a model for the diffusion of strongly sorbed solutes in soil taking into account diffusion within both the soil fluid phase and the soil particles. The model takes into account the effect of solutes being bound to soil particle surfaces by a reversible nonlinear reaction. Effective macroscale equations for the solute movement in the soil are derived using homogenization theory. In particular, we use the unfolding method to prove the convergence of nonlinear reaction terms in our system. We use the final, homogenized model to estimate the effect of solute dynamics within soil particles on plant phosphate uptake by comparing our double-porosity model to the more commonly used single-porosity model. We find that there are significant qualitative and quantitative differences in the predictions of the models. This highlights the need for careful experimental and theoretical treatment of plant-soil interaction when trying to understand solute losses from the soil

    Derivation of a dual porosity model for the uptake of nutrients by root hairs

    Get PDF
    Root hairs are thought to play an important role in mediating nutrient uptake by plants. We develop a mathematical model for the nutrient transport and uptake in the root hair zone of a single root in the soil. Nutrients are assumed to diffuse both in the soil fluid phase and within the soil particles. Nutrients can also be bound to the soil particle surfaces by reversible reactions. Using homogenization techniques we derive a macroscopic dual porosity model for nutrient diffusion and reaction in the soil which includes the effect of all root hair surfaces

    The effect of non-uniform microscale distribution of sorption sites on solute diffusion in soil

    Get PDF
    Conventional models of solute transport in soil consider only soil volumes large enough to average over microscale heterogeneities, and it is assumed that microscale variations are unimportant at the macroscale. In this research we test this assumption for cases in which the microscale distribution of solute-sorbing sites is patchy. We obtain a set of equations at the macroscale that allow for the effect of the microscale distribution with the mathematical technique of homogenization. We combine these equations with an image-based model that describes the true microscale pore geometry in a real, structured soil measured with X-ray computed tomography. The resulting models are used to test the microscale averaging assumptions inherent in conventional models. We show that, in general, macroscale diffusion is little affected by microscale variation in the distribution of sorption sites. Therefore, for most purposes the assumption of microscale averaging used in conventional models is justified. The effects of microscale heterogeneity are noticeable only when (i) the rate of sorption is slow compared with diffusion, but still fast enough to affect macroscale transport and (ii) the defined macroscale volume approaches the microscale. We discuss the effects when these conditions are me

    Adsorption and desorption dynamics of citric acid anions in soil

    Get PDF
    The functional role of organic acid anions (e.g. citrate, oxalate, malonate, etc) in soil has been intensively investigated with special focus either on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization, or (iii) metal detoxification. Considering the potential impact of sorption processes on the functional significance of these effects, comparatively little is known about the adsorption and desorption dynamics of organic acid anions in soils. The aim of this study therefore was to experimentally characterize the adsorption and desorption dynamics of organic acid anions in different soils using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast, reaching a steady state equilibrium solution concentration within approximately 1 hour. However, for a given total soil citrate concentration(ctot) the steady state value obtained was critically dependent on the starting conditions of the experiment (i.e. whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs)). Specifically, desorption-led processes resulted in significantly lower equilibrium solution concentrations than adsorption led processes indicating time-dependent sorption hysteresis. As it is not possible to experimentally distinguish between different sorption pools in soil (i.e. fast, slow, irreversible adsorption/desorption), a new dynamic hysteresis model was developed that relies only on measured soil solution concentrations. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use we applied the model to two relevant scenarios (exudation and microbial degradation), where the dynamic sorption behaviour of citrate occurs. Overall, this study highlights the complex nature of citrate sorption in soil and concludes that existing models need to incorporate both a temporal and sorption hysteresis component to realistically describe the role and fate of organic acids in soil processes

    Multiscale modelling of hydraulic conductivity in vuggy porous media

    Get PDF
    Flow in both saturated and non-saturated vuggy porous media, i.e., soil, is inherently multiscale. The complex microporous structure of the soil aggregates and the wider vugs provides a multitude of flow pathways and has received significant attention from the X-ray CT community with a constant drive to image at higher resolution. Using multiscale homogenization we derive averaged equations to study the effects of the microscale structure on the macroscopic flow. The averaged model captures the underlying geometry through a series of cell problems and is verified through direct comparison to numerical simulations of the full structure. These methods offer significant reductions in computation time and allow us to perform 3D calculations with complex geometries on a desktop PC. The results show that the surface roughness of the aggregate has a significantly greater effect on the flow than the microstructure within the aggregate. Hence, this is the region in which the resolution of X-ray CT for image based modelling has the greatest impact

    Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media : A critical review

    Get PDF
    Physical and biogeochemical heterogeneity dramatically impacts fluid flow and reactive solute transport behaviors in geological formations across scales. From micro pores to regional reservoirs, upscaling has been proven to be a valid approach to estimate large-scale parameters by using data measured at small scales. Upscaling has considerable practical importance in oil and gas production, energy storage, carbon geologic sequestration, contamination remediation, and nuclear waste disposal. This review covers, in a comprehensive manner, the upscaling approaches available in the literature and their applications on various processes, such as advection, dispersion, matrix diffusion, sorption, and chemical reactions. We enclose newly developed approaches and distinguish two main categories of upscaling methodologies, deterministic and stochastic. Volume averaging, one of the deterministic methods, has the advantage of upscaling different kinds of parameters and wide applications by requiring only a few assumptions with improved formulations. Stochastic analytical methods have been extensively developed but have limited impacts in practice due to their requirement for global statistical assumptions. With rapid improvements in computing power, numerical solutions have become more popular for upscaling. In order to tackle complex fluid flow and transport problems, the working principles and limitations of these methods are emphasized. Still, a large gap exists between the approach algorithms and real-world applications. To bridge the gap, an integrated upscaling framework is needed to incorporate in the current upscaling algorithms, uncertainty quantification techniques, data sciences, and artificial intelligence to acquire laboratory and field-scale measurements and validate the upscaled models and parameters with multi-scale observations in future geo-energy research.© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)This work was jointly supported by the National Key Research and Development Program of China (No. 2018YFC1800900 ), National Natural Science Foundation of China (No: 41972249 , 41772253 , 51774136 ), the Program for Jilin University (JLU) Science and Technology Innovative Research Team (No. 2019TD-35 ), Graduate Innovation Fund of Jilin University (No: 101832020CX240 ), Natural Science Foundation of Hebei Province of China ( D2017508099 ), and the Program of Education Department of Hebei Province ( QN219320 ). Additional funding was provided by the Engineering Research Center of Geothermal Resources Development Technology and Equipment , Ministry of Education, China.fi=vertaisarvioitu|en=peerReviewed

    Error estimates for elliptic equations with not exactly periodic coefficients

    Get PDF
    This note is devoted to the derivation of quantitative estimates for linear elliptic equations with coefficients that are not exactly ε-periodic and the ellipticity constant may degenerate for vanishing ε. Here ε>0 denotes the ratio between the microscopic and the macroscopic length scale. It is shown that for degenerating and non-degenerating coefficients the error between the original solution and the effective solution is of order √ε. Therefore suitable test functions are constructed via the periodic unfolding method and a gradient folding operator making only minimal additional assumptions on the given data and the effective solution with respect to the macroscopic scale

    Is adding charcoal to soil a good method for CO2 sequestration? - Modeling a spatially homogeneous soil

    Get PDF
    Carbon sequestration is the process of capture and long-term storage of atmospheric carbon dioxide (CO2) with the aim to avoid dangerous climate change. In this paper, we propose a simple mathematical model (a coupled system of nonlinear ODEs) to capture some of the dynamical effects produced by adding charcoal to fertile soils. The main goal is to understand to which extent charcoal is able to lock up carbon in soils. Our results are preliminary in the sense that we do not solve the CO2 sequestration problem. Instead, we do set up a flexible modeling framework in which the interaction between charcoal and soil can be tackled by means of mathematical tools. We show that our model is well-posed and has interesting large-time behaviour. Depending on the reference parameter range (e.g. type of soil) and chosen time scale, numerical simulations suggest that adding charcoal typically postpones the release of CO2

    Challenges in imaging and predictive modeling of rhizosphere processes

    Get PDF
    Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes
    corecore