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Abstract

We propose a simple mathematical model (a coupled system of nonlinear
ODEs) able to capture dynamical effects produced by adding charcoal to
fertile soils. Our main aim is to understand to which extent charcoal (in its
biochar form) is able to lock up carbon in soils. Our results are preliminary
in the sense that we do not actually solve the CO2 sequestration problem, but
we do set up a modeling framework in which this can be tackled by means
of mathematical tools.

We show that our model is well-posed and has interesting steady states.
Depending on the reference parameter range and chosen time scale, numerical
simulations suggest that adding charcoal postpones the release of CO2 for a
large variety of soils.

Keywords: Modeling chemical kinetics in fertile soils, Solvability of a
nonlinear ODE system, Equilibria and steady states, Simulation, Biochar,
CO2 sequestration

1. Introduction

Global warming is an increasingly important issue for mankind. It seems
that it is no longer enough to reduce CO2 emissions; one also needs to remove
CO2 from the atmosphere (carbon sequestration). In his Nature paper [1], J.
Lehmann argues that locking carbon up in soil makes more sense than storing
it in plants and trees that eventually decompose, but can this idea work on a
large timescale? A large community of scientists (mostly biologists, chemists,
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soil engineers) started to support such ideas and tried, with their experi-
mental means, to explore the sustainability of adding charcoal (biochar) to
soils; compare for instance [2, 3, 4] and see also the review paper [5]. For
more information on this research trend, often called the Biochar project,
we refer the reader also to the sites www.biochar-international.org and
http://en.wikipedia.org/wiki/Biochar. The Biochar project1 brings clear
advantages2 (e.g. reduces soil greenhouse gas emissions, improves both water
holding and nutrient holding capacities, improves environment for soil life,
doesn’t alter the carbon/nitrogen ratio, reduces soil acidity, remove pollu-
tants), but is it a secure solution? Is it a permanent one? What about the
possible negative effects like charcoal increases soil fertility and so increases
the microbe population, which finally can lead to an increase in the rate at
which the natural soil carbon is broken down and then released as CO2?
In spite of the intense current experimental research, there is no conclusive
evidence yet about whether putting charcoal in soil is a good idea, therefore
our interest.

In our opinion, Lehmann’s question (see loc. cit. in [1]) can be trans-
lated into mathematical terms as follows: What is the large time behavior
of the complex dynamical system (including transport, soil geometry and
chemistry) provoked by adding charcoal? The major issue is the complexity
of the situation – it is a priori not clear what a good model is to capture
the effect of charcoal on CO2 emissions. This is the place where we wish to
contribute.

In particular, note that charcoal (or biochar) is characterized by a very
special porous structure (see Figure 1), which is responsible for the high
retention of water, dissolved organic nutrients, and even of pollutants such
as hydrocarbons and pesticides3. On top of this, the chemistry of fertile soils
is rather complex and precise characterizations of the microbial evolution are
not available. Furthermore, describing the transport of water together with
nutrients, phenolics, pollutants (etc.) requires a good understanding of the
heterogeneities of the soils.

1Biochar := The idea of trapping carbon in soil for longer by storing it in the form of
charcoal.

2Note also the additional advantage of producing energy by burning organic matter to
make charcoal.

3As a direct consequence of this fact, there are several situations when the soil fertility
has increased after charcoal addition.
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Figure 1: Multiscale geometry of biochar (left: macro, right: micro). This is the place
where nutrients, phenolics etc. undergo adsorption and desorption.

Within this framework we treat a spatially homogeneous soil. Hence we
avoid the aforementioned complications and propose the simplest mathe-
matical model that is able to capture dynamical effects produced by adding
charcoal to fertile soils. This turns to be a nonlinearly coupled system of
deterministic ODEs which behaves well mathematically. The main task is
to understand to which extent charcoal (in its biochar form) is able to lock
up carbon in soils. Our results are only preliminary in the sense that we are
not solving here the CO2 sequestration problem. Rather we are setting up
a modeling framework where this can be tackled by means of mathematical
tools.

The paper is organized as follows: In section 2 we describe mathematically
chemical reactions in homogeneous media (here: fertile soils) and propose
a first model based on differential equations. We prove in section 3 that
our model is well-posed in the sense of Hadamard and perform a stability
analysis of the interesting steady states. We illustrate the behavior of the
profiles of the active concentrations and parameter effects in section 5. The
effects observed regarding the addition of charcoal to soils are summarized in
section 5.2. Appendix A contains a discussion of the equilibria and stability
of a reaction sub-block.

We hope that our paper will bring the attention of the mathematical mod-
eling community on the biochar issue – note that, cf. section 5.2, there are
many open modeling aspects that would deserve a careful multi-disciplinary
attention.

3



2. Modeling chemical reactions in homogeneous fertile soils

2.1. What happens if charcoal is added to soil?

In this section we provide a simple model for the chemical reactions tak-
ing place in charcoal-enriched soil. We model only those processes that are
relevant to carbon dioxide emission: the break down of soil organic matter
and charcoal by microbes and the subsequent release of carbon dioxide, the
reproduction and death of the microbes, and the effect of charcoal on soil
fertility.

We denote the species appearing in the chemical reactions by

CO2 carbon dioxide,
Ch charcoal (actificially added to the soil),
Om soil organic matter (natural soil carbon),
M microbes.

(2.1)

Note that we do not distinguish between different types of soil organic mat-
ter (litter, recalcitrant organic matter, humus, etc.). Also we only consider
heterotrophic microbes, i.e., those that use organic carbon for growth.

Microbes in the soil break down the organic matter and charcoal (this is
called mineralization), releasing the carbon, which then combines with oxy-
gen to form carbon dioxide. Experimental evidence indicates that generally
there is no shortage of oxygen in the soil. Having this mind we assume that
oxygen is present everywhere in equal amounts and thus it enters our model
as a parameter. We model the complex system of mineralization processes
by means of the following chemical reactions mechanism:

Om
k1−→ nCO2, (2.2)

Ch
k2−→ CO2, (2.3)

where n > 0 is taken as a constant. The reaction “constants” k1 and k2
depend generally on the concentration of microbes, i.e,

ki = ki(M).

Here we assume that, as functions, these reaction constants increase if the
concentration of microbes increases. Note that, in general, the reaction con-
stants can also depend on other effects (like the concentration of phenolics
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in the soil), but for the sake of keeping things simple we do not include these
in our model.

The microbes need organic matter and oxygen to reproduce. Since we
assumed that there is an abundance of oxygen, we can model the reproduction
of microbes by means of

M + δOm
k3−→ (µ+ 1)M, (2.4)

where δ, µ > 0 are constants. In general the reaction constant k3 might de-
pend on the fertility of the soil, which in turn depends on the amount of
charcoal in the soil. For our theoretical investigations, we neglect the inter-
mediate step and assume directly that k3 depends on the amount of charcoal,
k3 = k3(Ch), and that k3 increases with charcoal concentration. However,
note that the fertility of the soil contains so much in situ information that it
cannot be neglected in the practical design of a CO2 sequestration scenario
or if one wants to understand why terra preta (or ‘black earth’ ) is so fertile.
Furthermore, in practice k3 depends on many other factors, e.g., tempera-
ture, moisture, soil type, but we assume that these are all constant and so
they do not appear explicitly in our model.

We model the death of microbes by the chemical reaction

M
k4−→ ηOm, (2.5)

where η > 0 is a constant.

2.2. Basics of chemical kinetics

We denote the concentration of speciesA at time t by [A](t), e.g., [CO2](t)
is the concentration of CO2 in the soil at time t. In order to derive evolution
equations for the species concentrations we use the simple reaction ansatz,
see, e.g., [6]. This assumption essentially states that if our set of reactions is
given by the mechanism

n∑
i=1

αijAi
kj−→

n∑
i=1

βijAi, j = 1, . . . ,m, (2.6)

where n ∈ N denotes the number of species Ai, m ∈ N denotes the number
of chemical reactions, and αij, βij ∈ R+ are stoichiometric coefficients, kj
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reaction constants, then the elementary reaction rates are given by

rj (A1,A2, . . . ,An) := kj

n∏
i=1

[Ai]αij . (2.7)

Balancing the mass of the active species Ai, we easily derive the evolution
equations for the concentrations [Ai], viz.

d

dt
[Ai] =

m∑
j=1

(βij − αij)rj (A1,A2, . . . ,An) , i = 1, . . . , n. (2.8)

Before applying this methodology to (2.2)–(2.5), we introduce a new no-
tation, see Table 2.1, which is more convenient for the analysis. For the sake
of readability and clarity, we use both notations throughout this paper.

u1 [Om]
u2 [M ]
u3 [Ch]
u4 [CO2]

Table 2.1: Alternative notation for the concentrations.

Remark 2.9. (Restriction to spatially homogeneous soils) Within the frame-
work of this paper, we consider a “continuously stirred tank reactor” case, a
scenario intensively used in chemical engineering. See, e.g., [6]. In terms of
soils, this means that we focus our modeling on a single space location, where
the measurements are made, and we follow how the information “flows” over
physically-important timescales. To this end, we assume the soil to be homo-
geneous in the sense that no spatial substructures (typically called microstruc-
tures) appear, i.e., all soil components (gravel, sand, solid nutrients, water,
etc) are well-mixed. We postpone for later the study of the more realistic case
when the soil heterogeneities will be explicitly taken into account in terms of
porosities, tortuosities, permeabilities very much in the spirit of [7] (general
theory of flows in porous media), [8, 9, 10] (multiscale approaches to the
chemical corrosion of concrete, smoldering combustion and plant growth, re-
spectively), [11] (accumulation of cadmium in plants). Also, at a later stage
it would be interesting to study the effect of the charcoal’s platelet-like mi-
crostructure (see Figure 1) on the efficiency of adsorption and desorption
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of the nutrients. Most likely this would lead to a two-scale ODE system in-
timately coupled with evolution equations for the transport and storage of
nutrients.

Applying the simple reaction ansatz to (2.2)–(2.5), and assuming addi-
tionally that the system has a constant source s ≥ 0 of organic matter, yields
the nonlinear coupled system of ODEs

d

dt
u1 = −k1(u2)u1 − δk3(u3)u2uδ1 + ηk4u2 + s, (2.10)

d

dt
u2 = µk3(u3)u2u

δ
1 − k4u2, (2.11)

d

dt
u3 = −k2(u2)u3, (2.12)

d

dt
u4 = nk1(u2)u1 + k2(u2)u3. (2.13)

The source s can be thought of as organic matter entering the soil from the
surface in the form of dead leaves, plants, etc. This system also requires
initial conditions. Their role is to incorporate the type of soil. Throughout
the rest of this paper we study the system (2.10)–(2.13).

3. Mathematical analysis of the system (2.10)–(2.13)

We start by making some assumptions on the model parameters entering
(2.10)–(2.13). These assumptions will be of a technical nature and will be
used to prove global existence of positive and bounded concentrations ui and
to study the steady states of this nonlinear ODE system.

3.1. Restrictions on the model parameters

We assume that
δ ≥ 1. (3.1)

Assumption (3.1), together with the assumptions given below on the constitu-
tive functions ki, ensure that the right-hand side of the system (2.10)–(2.13)
is Lipschitz continuous, which guarantees that our ODE system admits a
unique local classical solution.

In addition to assuming that δ, η, µ, n > 0, we assume that

δ ≥ ηµ. (3.2)
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This condition is used in Section 3.3 to show that the solution to (2.10)–(2.13)
does not blow-up in finite time.

Since the ki are reaction constants, we assume that they satisfy ki > 0 for
i ∈ {1, 2, 3, 4}. Note however that ki are nearly never true constants; they
often incorporate a certain dependence on important physical/environmental
quantities (here: spatial location, temperature, soil fertility, oxygen content,
water content, etc). Here we take k4 to be constant and assume that the
functions ki : R→ (0,∞), i ∈ {1, 2, 3}, are Lipschitz continuous and strictly
increasing. For example, k1 being strictly increasing means that an increase
of microbes in the soil leads to an increase in the rate of break down of
organic matter.

Finally, we assume that the initial concentrations are positive and bounded,
i.e. ui(0) = u0i ∈ [0,∞), i ∈ {1, 2, 3, 4}.

3.2. Positivity of concentrations

In this section we show that the concentrations u1, u2, u3, u4 are nonneg-
ative for all times if their initial values are nonnegative. It suffices to show
for each i ∈ {1, 2, 3, 4} that if ui = 0 and uj ≥ 0 for all j 6= i, then u̇i ≥ 0.
This turns to be a trivial exercise:

u̇1(0, u2, u3, u4) = ηk4u2 + s ≥ 0,

u̇2(u1, 0, u3, u4) = 0,

u̇3(u1, u2, 0, u4) = 0,

u̇4(u1, u2, u3, 0) = nk1(u2)u1 + k2(u2)u3 ≥ 0.

3.3. L∞ bounds on concentrations

We prove that the concentrations ui do not blow-up in finite time. Fix
arbitrary initial conditions u0i . Then, based on the result of Section 3.2, we
can assume that ui ≥ 0 for all i = 1, 2, 3, 4.

From the positivity of ui and ki, it follows immediately from (2.12) that

‖u3‖∞ ≤ u03. (3.3)

Adding equation (2.10) to η times equation (2.11) gives

d

dt
(u1 + ηu2) = −k1(u2)u1 − (δ − ηµ)k3(u3)u2u

δ
1 + s ≤ s. (3.4)
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The inequality (3.4) follows from (3.2) and the positivity of the ki and ui.
From (3.4) we conclude that u1 and u2 satisfy L∞ bounds on any finite time
interval. The numerics suggest that this bound is independent of the length
of this time interval, but we do not need this here; see section 5.

Relying on the L∞ bounds on ui for i ∈ {1, 2, 3} on any finite time
interval [0, τ ], we can bound the right-hand side of (2.13) by a constant
C(τ). Integration yields the bound

u4(t) ≤ C(τ)t+ u04 (3.5)

for all t ∈ [0, τ ], which immediately gives a bound on u4 on any time interval
[0, τ ].

3.4. Well-posedness

Based on the positivity and the L∞ bounds on concentrations, together
with the Lipschitz continuity of the right-hand side of (2.10)–(2.13), we recall
classical ODE theory (see [12, 13], e.g.) to prove the following result:

Theorem 3.6. (Global solvability). Assume that the assumptions stated in
section 3.1 hold. Then for any set of initial conditions ui(0) = u0i ≥ 0,
the system (2.10)–(2.13) has a unique classical solution ui : [0,∞) → R,
i ∈ {1, 2, 3, 4}.

Furthermore, a Gronwall-like argument can be employed to show that
this classical solution depends continuously on the initial data and all model
parameters. Since this argument is rather standard, we omit to show it here.

3.5. Equilibria and stability of the system (2.10)–(2.12)

First note that u4 does not appear in the right hand side of (2.10)–(2.13).
Hence equation (2.13) decouples from the system, in the sense that we do
not need (2.13) to solve the subsystem (2.10)–(2.12). Having this in mind,
it is sufficient to study the equilibria of the reduced system (2.10)–(2.12).
The reader is referred to Appendix A for a discussion of the equilibria and
stability of the reaction block given by (2.4) and (2.5). For basic notions of
dynamical systems4, see [16], e.g.

4Dynamical systems theory proved to be very successful in a series of cases arising in
biology and ecology; compare for instance [14, 15] and references cited therein. We expect
therefore that dynamical systems delivers results in the case of biochar research as well.
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We first search for the equilibria of the decoupled system given by (2.10),
(2.11) and (2.12). By equating the right-hand side of (2.12) to zero, it follows
that u3 = 0. By substituting this into equations (2.10) and (2.11) we obtain

0 = −k1(u2)u1 − δk3(0)u2u
δ
1 + ηk4u2 + s, (3.7)

0 =
(
µk3(0)uδ1 − k4

)
u2. (3.8)

For convenience we write k3 instead of k3(0) in the remainder of this section.
Equation (3.8) is satisfied if and only if either

u2 = 0, or (3.9)

u1 =

(
k4
µk3

) 1
δ

=: C2. (3.10)

Let us treat the two cases separately:

Case (3.9): It immediately follows from (3.7) that u1 = s/k1(0).

Case (3.10): By inserting (3.10) in (3.7) we get

0 = −k1(u2)C2 −
k4
µ

(δ − ηµ)u2 + s. (3.11)

The right-hand side of (3.11) is strictly decreasing as a function of u2.
Hence it has at most one solution u2. A necessary condition for the
existence of such a solution is that the right-hand side is nonnegative
for u2 = 0. This is the case when

s ≥ k1(0)C2. (3.12)

From now on we assume that the ki and the parameters δ, η, µ are
chosen such that (3.11) has a solution whenever (3.12) holds. We will
call this solution u∗2. For example, a solution exists if (3.12) holds and
δ − ηµ > 0.

Therefore, depending on the parameter s, we have one or two equilibrium
points: If s ≤ k1(0)C2, then we have only one equilibrium point u1e given by

u1e := (u1, u2, u3) =

(
s

k1(0)
, 0, 0

)
. (3.13)
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If s > k1(0)C2, we have the additional equilibrium point u2e given by

u2e := (u1, u2, u3) =

(
C2, u

∗
2, 0

)
, (3.14)

where u∗2 satisfies (3.11). Therefore s = k1(0)C2 is a bifurcation point.
To test the stability of the equilibrium points u1e and u2e, we linearize

the system (2.10), (2.11), (2.12). Let J denote the Jacobian matrix of this
system. A brief calculation shows that

J(u1e) =

−k1(0) −k′1(0)

k1(0)
s− δk3

(
s

k1(0)

)δ
+ ηk4 0

0 µk3
(

s
k1(0)

)δ − k4 0

0 0 −k2(0)

 . (3.15)

The eigenvalues of J(u1e) are given by the entries on the diagonal. The eigen-
values −k1(0) and −k2(0) are negative, whereas the sign of the third eigen-
value changes from negative to positive as s passes the bifurcation point. So
u1e is asymptotically stable if s < −k1(0)C2 and is unstable if s > −k1(0)C2.

We follow the same procedure for u2e. First we obtain

J(u2e) =

−k1(u∗2)− δ2k3u∗2C
δ−1
2 −k′1(u∗2)C2 − k4

µ
(δ − ηµ) − δ

µ

k′3(0)

k3(0)
k4u

∗
2

δµk3u
∗
2C

δ−1
2 0

k′3(0)

k3(0)
k4u

∗
2

0 0 −k2(u∗2)

 .
(3.16)

Let us denote the 2× 2 upper-left block of J(u2e) by[
A1 A2

A3 0

]
.

Note that A1, A2 < 0 and A3 > 0. Therefore the eigenvalues of J(u2e) are

−k2(u∗2),
A1

2
+

√
A2

1

4
+ A2A3, and

A1

2
−
√
A2

1

4
+ A2A3.

Since A1 < 0 and A2A3 < 0, the real parts of all the three eigenvalues are
negative, which proves that u2e is asymptotically stable.

In summary, for each s > 0 there is one stable equilibrium of the decou-
pled system (2.10), (2.11), (2.12). Depending on the size of the source s, this
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equilibrium is either given by (3.13) or by (3.14). Note that the full system
(2.10)–(2.13) does not have any equilibrium points since u̇4 > 0 (unless s = 0,
in which case ui = 0 for all i = 1, 2, 3, 4 is an equilibrium).

4. Nondimensionalisation

Before solving the system numerically, we rescale it (very much in the
spirit of [17]). We consider the following scalings for the time, concentrations,
and reaction rates: t = τ t̃, where τ is the reference time, ui = Uiũi, where
Ui is the reference concentration of species i, and ki = Kik̃i, where Ki is the
reference reaction constant. Substituting these into equations (2.10)–(2.13)
gives

d

dt̃
ũ1 = −τ1k̃1ũ1 − τ2k̃3ũδ1ũ2 + τ3k̃4ũ2 + τ4s,

d

dt̃
ũ2 = τ5k̃3ũ

δ
1ũ2 − τ6k̃4ũ2,

d

dt̃
ũ3 = −τ7k̃2ũ3,

d

dt̃
ũ4 = τ8k̃1ũ1 + τ9k̃2ũ3,

(4.1)

where τα, α ∈ {1, 2, . . . , 9}, denote the characteristic time scales. Table 4.1
lists their dependence on the reference constants.

Characteristic Typical size
time scale

τ1 τK1

τ2 τδK3U
δ−1
1 U2

τ3 τηK4U2U
−1
1

τ4 τU−11

τ5 τµK3U
δ
1

τ6 τK4

τ7 τK2

τ8 τnK1U1U
−1
4

τ9 τK2U3U
−1
4

Table 4.1: List of characteristic time scales and their expected size.
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parameter value ref. constant value unit
a1 1 C2 1 mol m−3

a2 1 K1 0.01 s−1

a3 1.9 K2 10−3 s−1

b1 1 K3 1 m3δ mol−δ s−1

b2 1 K4 0.1 s−1

b3 0.1 U1 1 mol m−3

b4 1 U2 1 mol m−3

η 10 U3 1 mol m−3

µ 1 U4 103 mol m−3

δ 10 s 0.02 mol m−3 s−1

n 10 τ 1 s

Table 5.1: Parameter values (first two columns) and reference constant values (last three
columns) used for the simulations.

5. Numerical simulation of the system (2.10)–(2.13)

Here we illustrate numerically the behavior of the solution to our ODE
system and test the effects of the various parameters. The main interest lies
in predicting how the emission of CO2 into the atmosphere changes if we put
charcoal in the soil [1]. We make such predictions for different parameter
values.

We start by choosing the following linear constitutive functions for the
reaction rates:

k̃1(ũ2) = a1ũ2 + b1, k̃2(ũ2) = a2ũ2 + b2,

k̃3(ũ3) = a3ũ3 + b3, k̃4 = b4.
(5.1)

The coefficient values are given in Table 5.1, along with the reference values
C2, Ki, Ui, s and τ , and the parameters η, µ, δ, n. Note that we have chosen
the parameters so that δ = ηµ. From (3.10) it follows that

C2 =

(
K4b4
µK3b3

) 1
δ

.

We take s = 2K1a1C2 so that u2e (see (3.14)) is a stable equilibrium point of
the reduced system (2.10)–(2.12).
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5.1. Searching for the effects of adding charcoal to soil

First we simulate what happens to the equilibrium state u2e when charcoal
is added to the soil. This corresponds to the following initial condition:

(ũ1, ũ2, ũ3, ũ4)
∣∣
t=0

=

(
C2

U1

,
s−K1C2b1
K1a1C2U2

, 1, 0

)
. (5.2)

We have exploited the special form of k̃1 to calculate u∗2 explicitly.
Although the simulation is carried out for the dimensionless ũi, we will

refer to them by [Om], [M ], [Ch] and [CO2] for clarity. Figure 2 shows the
simulation results. We see here various interesting phenomena:

• The concentrations [Om] and [M ] change on a short time scale (O(t̃) =
0.1). Essentially this is because their time derivatives depend on [Ch]
through k3.

• On a long time scale (O(t̃) = 100), [Ch] decreases exponentially fast to
0. Therefore [Om] and [M ] converge back to their initial, equilibrium
values.

• On the same long time scale, [CO2] increases linearly.

0 0.2 0.4
0.75

0.8

0.85

0.9

0.95

1

t̃

 

 

[Om]
[M]
[Ch]

0 2000 4000 6000

0.2

0.4

0.6

0.8

1

1.2

t̃

 

 

[Om]
[M]
[Ch]
[CO

2
]

Figure 2: These figures show short-time (left) and long-time (right) behavior of the system
initially at equilibrium. Charcoal is added at time t̃ = 0. The graph of [CO2] is omitted
in the left picture, because it would be too close to the t̃-axis to see anything interesting.
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Now we turn our attention to CO2 emission. In Figure 3 we compare the
case in which we put charcoal in the soil at time t̃ = 0, which corresponds to
initial condition (5.2), with the case in which the soil contains no charcoal,
which corresponds to initial condition

(ũ1, ũ2, ũ3, ũ4)
∣∣
t=0

=

(
C2

U1

,
s−K1C2b1
K1a1C2U2

, 0, 0

)
. (5.3)

Initial condition (5.3) implies that [Om], [M ] and [Ch] are constant in time
and that [CO2] is linear.
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Figure 3: These figures show short-time (left) and long-time (right) emission of CO2. We
compare the case in which charcoal is added to the soil (in red) with the case when the
soil does not contain charcoal (in blue).

From Figure 3 we see that, on the short time scale O(t̃) = 100, putting
charcoal in the soil reduces the CO2 emission. On the other hand, on a
longer time scale (O(t̃) = 1000), we see that putting charcoal in the soil has
no effect on the CO2 emission; the charcoal concentration [Ch] tends to zero,
[Om] and [M ] return to their equilibrium values, and the [CO2] concentration
tends to the linear profile.

A natural question that arises is whether we see similar effects if we
increase the amount of charcoal that we put in the ground initially. We can
simulate this by redoing the previous simulation, but now with U3 = 10 mol
m−3 so that the amount of charcoal is ten times as much. The results are
shown in Figure 4. On the long time scale the behaviour is similar to before.
This is remarkable, because it means that the total amount of emitted CO2
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hardly changes when ten times as much charcoal is put into the soil. On the
short time scale we do see a difference: the rate of CO2 emission is slightly
increased.
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Figure 4: The results of re-running the simulation shown in Figure 3, but now with ten
times as much charcoal in the soil.

Now we test the effect of some of the other parameters on the CO2 emis-
sion. Figure 5 shows the results of doing the simulation with the values in
Table 5.1, but now with K2 decreased by a factor of ten, i.e. K2 = 10−4 s−1.
This corresponds to a slower breakdown of the charcoal by the microbes.
The qualitative behaviour is the same as Figure 3, but now the correspond-
ing time scales are larger. This is because the charcoal is in the system for
longer, and hence it takes longer to reach equilibrium.

Figure 6 is the result of repeating the simulation shown in Figure 3 again,
but now with the nonlinear constitutive function k̃1(ũ2) = a1ũ

100
2 + b1, which

corresponds to a very fast breakdown of the organic matter by the microbes.
The other parameters are the same as in Table 5.1 and equation (5.1). Note
however that changing k̃1 changes the equilibrium u2e and so changes the
initial condition.

We observe that initially the rate of CO2 emission is much higher. This is
because initially the number of microbes increases due to the presence of the
charcoal, which speeds up the mineralization process tremendously because
of the exponential constitutive function. On the long time scale, however,
adding charcoal to the soil makes little difference.
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Figure 5: The results of re-running the simulation shown in Figure 3, but with K2 taken
to be ten times as small.
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Figure 6: The results of re-running the simulation shown in Figure 3 but with the nonlinear
constitutive function k̃1(ũ2) = a1ũ

100
2 + b1.

5.2. Summary of our results and open problems

For a rather large range of parameter values, our simulations clearly indi-
cate that the short-time behaviour of our system can be significantly different
from the long-time behaviour. Therefore, when testing experimentally the
effect of adding charcoal to soil on CO2 emission, it could be important not
to make judgements based solely on short-time data.
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Our numerical results also suggest that the equilibrium u2e is globally
asymptotically stable.

In all of our simulations the long time CO2 emission seems to be inde-
pendent of the addition of charcoal to the soil. This curious effect requires
further study and possibly a refinement of our model.

We are well-aware that we have a large set of parameters and reference
constants that are difficult to relate to available experimental data. Therefore
further simulations and comparison with experiments are required. This
would naturally lead to a better control of the size of the characteristic time
scales and potentially allow for improved predictions on CO2 sequestration.
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Appendix A. Equilibria and stability of the reaction block given
by (2.4) and (2.5)

In this appendix we consider a subsystem of (2.10)–(2.13) that corre-
sponds to reactions (2.4) and (2.5) (without the presence of charcoal, carbon
dioxide or a source of organic matter). The reason for studying this sub-
system is that it gives us a physical reason for imposing (3.2). Moreover,
this subsystem turns out to dominate the short time behaviour of the whole
system.

Substituting s = 0, k1 = 0 and [Ch] = 0 into (2.10) and (2.11) gives

d

dt
[Om] = −δk3(0)[M ][Om]δ + ηk4[M ],

d

dt
[M ] = µk3(0)[M ][Om]δ − k4[M ].

(A.1)

In the rest of this subsection we write k3 instead of k3(0) for brevity.
Figure A.7 shows a sketch of the phase plane corresponding to (A.1).

Note that

d

dt
[Om] = 0 ⇔ [M ] = 0 or [Om] =

(
ηk4
δk3

) 1
δ

=: C1,

d

dt
[M ] = 0 ⇔ [M ] = 0 or [Om] =

(
k4
µk3

) 1
δ

=: C2.

(A.2)

From (A.2) we see that ([Om], [M ]) = (c, 0) is an equilibrium solution of
(A.1) for all c ∈ R. If C1 = C2, then so is ([Om], [M ]) = (C1, c) for all c ∈ R.

To determine the stability of the first equilibria, ([Om], [M ]) = (c, 0), we
compute the Jacobian matrix corresponding to the system (A.1):

k3

−δ2[M ][Om]δ−1 δ
(
ηk4
δk3
− [Om]δ

)
δµ[M ][Om]δ−1 µ

(
[Om]δ − k4

µk3

) . (A.3)

From (A.3) it easily follows that the equilibria ([Om], [M ]) = (c, 0) are stable
if c < C2.

Now we consider the boundedness of the trajectories. We consider three
cases: C1 < C2, C1 = C2 and C1 > C2 (sketches of the corresponding phase
planes are given in Fig. A.7). These cases correspond to:
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Figure A.7: Sketches of the phase plane corresponding to (A.1), depending on whether C1

is bigger or smaller than C2 (see (A.3) for their definitions). Recall that u1 = [Om] and
u2 = [M ].

(δ > ηµ) : From the phase field analysis, we expect the solution of (A.1) to
be bounded for all initial conditions.

(δ = ηµ) : From (A.2), we see that we have more equilibrium points, which
are given by [Om] = C1 = C2 and [M ] ∈ R arbitrary. These equilibrium
points are stably if and only if [M ] > 0.

(δ < ηµ) : From the phase field analysis, we expect the solution to blow up
for most initial conditions.

Therefore a sufficient condition for a solution of the reduced system (A.1) to
be finite in time is

δ ≥ ηµ. (A.4)

This is the same as our assumption (3.2) for the whole system. Equality
in (A.4) would mean that the amount of organic matter that is converted
into microbes by reaction (2.4) is equal to one over the amount of microbes
that is converted into organic matter by reaction (2.5). This means that
[Om] + η[M ] is conserved. Indeed, one sees immediately from (A.1) that

d

dt
([Om] + η[M ]) = 0.

This quantity [Om] + η[M ] was also useful for proving L∞ bounds for the
whole system. See equation (3.4).
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