831 research outputs found

    Dependability checking with StoCharts: Is train radio reliable enough for trains?

    Get PDF
    Performance, dependability and quality of service (QoS) are prime aspects of the UML modelling domain. To capture these aspects effectively in the design phase, we have recently proposed STOCHARTS, a conservative extension of UML statechart diagrams. In this paper, we apply the STOCHART formalism to a safety critical design problem. We model a part of the European Train Control System specification, focusing on the risks of wireless communication failures in future high-speed cross-European trains. Stochastic model checking with the model checker PROVER enables us to derive constraints under which the central quality requirements are satisfied by the STOCHART model. The paper illustrates the flexibility and maturity of STOCHARTS to model real problems in safety critical system design

    Specification of requirements models

    Get PDF
    The main aim of this chapter is to present and discuss a set of modeling and specification techniques, in what concerns their ontology and support in the requirements representation of computer-based systems. A systematic classification of meta-models, also called models of computation, is presented. This topic is highly relevant since it supports the definition of sound specification methodologies in relation to the semantic definition of the modeling views to adopt for a given system. The usage and applicability of Unified Modeling Language (UML) diagrams is also related to their corresponding meta-models. A set of desirable characteristics for the specification methodologies is presented and justified to allow system designers and requirements engineers to more consciously define or choose a particular specification methodology. A heuristic-based approach to support the transformation of user into system requirements is suggested, with some graphical examples in UML notation.(undefined

    Time Properties Dedicated Transformation from UML-MARTE Activity to Time Petri Net

    Get PDF
    Critical Real-Time Embedded Systems (RTES) have strong requirement regarding system's reliability. UML and its pro- file MARTE are standardized modeling language that are getting widely accepted by industrial designers to cope with the development of complex RTES. Relying on Model-Driven Engineering (MDE), critical time properties' verification in UML-MARTE model at early phases of the system lifecycle becomes possible. However, many challenges still exist. A key challenge is to eliminate the gap between UML semi- formal semantics and fully formal executable semantics us- ing model transformation. The model transformation must ensure on the one hand the consistency between high-level user dedicated models and lower-level verification dedicated ones, and on the other hand that the subsequent verification is not too expensive and can be applied to real size industrial models. This paper presents an approach to translate UML- MARTE Activity Diagrams to Time Petri Net (TPN) with the aim of verifying efficiently time properties. This work is under the framework of the UML-MARTE Model Checker which is dedicated to verifying time properties (synchroniza- tion, schedulability, boundedness, WCET, etc.) in RTES. This contribution focuses on how to define the TPN formal semantics to avoid the core problem of state space explosion in model checking. The proposed method is validated using a representative case study. Experimental results are given that demonstrate the method's performance

    Understanding the Elements of Executable Architectures Through a Multi-Dimensional Analysis Framework

    Get PDF
    The objective of this dissertation study is to conduct a holistic investigation into the elements of executable architectures. Current research in the field of Executable Architectures has provided valuable solution-specific demonstrations and has also shown the value derived from such an endeavor. However, a common theory underlying their applications has been missing. This dissertation develops and explores a method for holistically developing an Executable Architecture Specification (EAS), i.e., a meta-model containing both semantic and syntactic information, using a conceptual framework for guiding data coding, analysis, and validation. Utilization of this method resulted in the description of the elements of executable architecture in terms of a set of nine information interrogatives: an executable architecture information ontology. Once the detail-rich EAS was constructed with this ontology, it became possible to define the potential elements of executable architecture through an intermediate level meta-model. The intermediate level meta-model was further refined into an interrogative level meta-model using only the nine information interrogatives, at a very high level of abstraction

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Colored model based testing for software product lines (CMBT-SWPL)

    Get PDF
    Over the last decade, the software product line domain has emerged as one of the mostpromising software development paradigms. The main benefits of a software product lineapproach are improvements in productivity, time to market, product quality, and customersatisfaction.Therefore, one topic that needs greater emphasis is testing of software product lines toachieve the required software quality assurance. Our concern is how to test a softwareproduct line as early as possible in order to detect errors, because the cost of error detectedIn early phases is much less compared to the cost of errors when detected later.The method suggested in this thesis is a model-based, reuse-oriented test technique calledColored Model Based Testing for Software Product Lines (CMBT-SWPL). CMBT-SWPLis a requirements-based approach for efficiently generating tests for products in a soft-ware product line. This testing approach is used for validation and verification of productlines. It is a novel approach to test product lines using a Colored State Chart (CSC), whichconsiders variability early in the product line development process. More precisely, the vari-ability will be introduced in the main components of the CSC. Accordingly, the variabilityis preserved in test cases, as they are generated from colored test models automatically.During domain engineering, the CSC is derived from the feature model. By coloring theState Chart, the behavior of several product line variants can be modeled simultaneouslyin a single diagram and thus address product line variability early. The CSC representsthe test model, from which test cases using statistical testing are derived.During application engineering, these colored test models are customized for a specificapplication of the product line. At the end of this test process, the test cases are generatedagain using statistical testing, executed and the test results are ready for evaluation. Inxaddition, the CSC will be transformed to a Colored Petri Net (CPN) for verification andsimulation purposes.The main gains of applying the CMBT-SWPL method are early detection of defects inrequirements, such as ambiguities incompleteness and redundancy which is then reflectedin saving the test effort, time, development and maintenance costs

    Acta Cybernetica : Volume 15. Number 4.

    Get PDF

    Использование набора диаграмм UML для построения моделей производительности

    Get PDF
    Рассматривается возможность генерации моделей производительности программного обеспечения на основе диаграмм в нотации UML как одна из базовых составляющих методологии интеграции анализа производительности в процесс разработки. Предложен подход, основанный на методологии Software Performance Engineering (SPE), использующий в качестве исходных данных стандартные элементы UML и ряд расширений

    Использование набора диаграмм UML для построения моделей производительности

    Get PDF
    Рассматривается возможность генерации моделей производительности программного обеспечения на основе диаграмм в нотации UML как одна из базовых составляющих методологии интеграции анализа производительности в процесс разработки. Предложен подход, основанный на методологии Software Performance Engineering (SPE), использующий в качестве исходных данных стандартные элементы UML и ряд расширений
    corecore