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ABSTRACT

UNDERSTANDING THE ELEMENTS OF EXECUTABLE ARCHITECTURES
THROUGH A MULTI-DIMENSIONAL ANALYSIS FRAMEWORK

Edwin A. Shuman 1V
Old Dominion University, 2011
Director: Andreas Tolk

The objective of this dissertation study is to conduct a holistic investigation into
the elements of executable architectures. Current research in the field of Executable
Architectures has provided valuable solution-specific demonstrations and has also shown
the value derived from such an endeavor. However, a common theory underlying their
applications has been missing.

This dissertation develops and explores a method for holistically developing an
Executable Architecture Specification (EAS), i.e., a meta-model containing both
semantic and syntactic information, using a conceptual framework for guiding data
coding, analysis, and validation. Utilization of this method resulted in the description of
the elements of executable architecture in terms of a set of nine information
interrogatives: an executable architecture information ontology. Once the detail-rich
EAS was constructed with this ontology, it became possible to define the potential
elements of executable architecture through an intermediate level meta-model. The
intermediate level meta-model was further refined into an interrogative level meta-model

using only the nine information interrogatives, at a very high level of abstraction.
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CHAPTER 1
INTRODUCTION

The objective of this dissertation study has been to conduct a holistic investigation
into the elements of executable architectures, in an effort to address a significant gap in
the literature, contributing to a theory of executable architectures.

This dissertation has explored a method for developing Executable Architecture
Specifications, using the Executable Architecture Concept Triangle (EACT) as a
framework for guiding data triangulation. The Executable Architecture Concept Triangle
was first described in “Understanding Executable Architectures Through an Examination
of Language Model Elements™ (Shuman, 2010); it was developed based on observations
from the literature that suggest a method for data collection and analysis. The EACT was
explored and refined through a qualitative analysis study leading to the development of a
method for constructing meta-models for executable architecture, and to the development
of meta-models describing an Executable Architecture Specification. Application of this
method in the development of meta-models has enabled a holistic investigation into the

potential elements of executable architectures.

1.1 Definitions
There are a number of definitions that are presented in this section that are

foundational to the concepts presented in this paper.

1. Architecture: structure of components, their relationships, and the principles and
guidelines governing their design and evolution over time (DOD, 2007a);

2. Architecture Framework: guidance and rules for structuring, classifying, and
organizing architectures (DOD, 2007a);

3. Graphical modeling language: a language for visualizing, specifying,
constructing and documenting a system (definition derived from UML definition
(Booch, Rumbaugh, & Jacobson, 1999));

4. Holistic: looking at the system as a whole -- a unifying approach to
methodological development, whereby approaches are linked or integrated into a

system; related to System Holism Principle; a System has holistic properties



possessed by none of its parts; each of the system parts has properties not
possessed by the system as a whole (Clemson, 1984);

5. Meta-Model: a model that defines the components of a conceptual model,
process, or system (Booch, et al., 1999); a special kind of model that specifies the
abstract syntax of a modeling language (meta-model, 2011);

6. Necessary: “adj. That which is needed. a. Indispensable, vital, essential;
requisite, citation from the Oxford English Dictionary (necessary, 2011);

7. Necessary condition: n. A fact, proposition, etc., on which another thing is
dependent or contingent; a prerequisite (necessary, 2011);

8. Potential: adj. possible as opposed to actual; having or showing the capacity to
develop into something in the future; latent; prospective; etymology: post-
classical Latin potentialis possible as opposed to actual (4th cent.), classical Latin
potential, potence n.+ -dlis —al suffix; compare Middle French potencial,

potenciel, Middle French, relating to power or ability (late 15th cent).

1.2  Definitions for Executable Architecture
Table 1 provides a snapshot of definitions of the term executable architecture

from the perspective of previous investigators. Levis drew attention to the need for
understanding relationships. Wagenhals emphasized behavioral analysis. Pawlowski
described it as a dynamic model of sequenced activities with organization, using
resources; in this context he focused on model composability in the context of a combat
simulation. Zeigler highlighted the importance of translation of models with sufficient
fidelity. Renzhong focused on the development of Colored Petri Nets (CP-NETs) from
general systems static UML models. Risco-Martin focused on executable UML models.
Mittal described an executable architecture as the use of dynamic simulation software to
evaluate architecture models.

All investigators cited in Table 1 described executable architectures as an
extension of static architecture modeling into the domain of executable process modeling.
Their focus was on what they could solve in the context of specific use cases. This study
starts with what they have in common. The perspective or definition used in this study is
as follows: executable architecture supports executable process modeling as a

component part of an integrated Architecture Framework (e.g., the US Department of



Defense Architecture Framework (DODAF) or UK Ministry of Defence Architecture

Framework (MODAF)) that enables behavioral and performance analysis and extends

static architecture modeling into the domain of executable process modeling. This

description is derived from Wagenhals, Haider and Levis (2002), Pawlowski (2004), and

Mittal (2006).

Table 1 - Definitions of Executable Architectures

Zeigler, 2009)

Author Year Title Executable Architecture Description
Levis (Levis & | 2000 CA4ISR Architectures: 1. A Dynamic Model, used for
Wagenhals, Developing a Process for understanding relationships and to
2000) CA4ISR Architecture Design | analyze the properties of the architecture
(Levis & Wagenhals, 2000)
Wagenhals et al | 2002 Synthesizing Executable An Executable model based on C4ISR
(Wagenhals, et Models of Object Oriented Framework that enables behavioral and
al.,, 2002) Architectures (Wagenhals, performance analysis
et al., 2002)
Pawlowski, T. 2004 Executable Architecture A dynamic model of sequenced
(Pawlowski ITI, Methodology for Analysis, activities with organization, using
et al., 2004) FY04 Final Report resources to produce and consume
(Pawlowski I11, et al., 2004) | information
Zeigler and 2005 Enhancing DODAF with a Translation of DODAF compliant
Mittal DEVS-Based System architectures into modeis with sufficient
(Zeigler & Lifecycle Development fidelity
Mittal, 2005) Process (Zeigler & Mittal,
2006)
Mittal, S., 2007 DEVS-based simulation Use of dynamic simulation software to
Risco, J. & web services for net-centric | evaluate architecture models
Zeigler, B., T&E”
(Mittal, Risco, (Mittal, et al., 2007)
& Zeigler,
2007)
Renzhong, W. 2008 Executable System Development of CP-net from general
(Renzhong & Architecting Using SysML | systems static models
Dagli, 2008) in Conjunction with CP-net
(Renzhong & Dagli, 2008)
Risco-Martin 2009 EuDEVS: Executable UML | Executable UML models
(Risco-Martin, with DEVS Theory of
De La Cruz, Modeling and Simulation
Mittal, & (Risco-Martin, et al., 2009)

This dissertation has examined those architecture elements that have potential to

produce executable process models, in the context of an integrated Architecture




Framework. The elements are used across the architecture artifacts. In executable
process modeling, processes, change, and causality are evaluated over time. In other
words, a static model, having been expressed using some modeling language, is further
explored and analyzed through modeling elaborations supported by simulation. From
this perspective, the static modeling perspective is expanded to include time, resources,
control logic, and behavior, such that there is an elaboration from the two dimensional to
the three, with the addition of time, resources, uncertainty and even the possibility of

emergent behavior patterns.

1.3 Importance of Executable Architectures
The utility of executable architectures has been addressed at length by Wagenhals

and Levis (2000), (2002), Zeigler and Mittal (2005), (2006), and Pawlowski (2004).
They cited the importance of executable architectures as a vehicle for providing a more
holistic, integrated solution for evaluation of designed architectures. Executable
architectures or models can provide a vehicle for evaluation of the logical, behavioral,
and performance characteristics of a dynamic system that has been described through
static models. Additionally, executable architectures can be used to support test and
evaluation of complex architectures, at the system of systems and enterprise system level.

From the perspective of the DOD, Modeling and Simulation is described as one of

the key usages of architecture data (DOD, 2007a) to enable evaluation of the logical,

behavioral, resource, and performance characteristics of systems; from a cost perspective
there is good reason to enable this capability up front rather than it being an afterthought
requiring re-work. Tremendous resources are invested in the development of static
architectures, which are later reconstructed or rebuilt as executables. DODAF is widely
used to build static architectures and models in support of systems analysis and design.
However, DODAF has not been explicitly designed with the perspective of extension into
the dynamic modeling domain (it will be shown that some simulation elements are
present, some are not). Defining the potential elements of executable architectures
should enable the development of future architecture frameworks to support a design that
could enable dynamic modeling. In addition, in this study, identifying the elements that

are useful, and deriving them in general, contributes to theory building by analyzing what



has been done specifically in practice, and then applying analysis methods to understand
what is generally theoretically possible.

The DOD Architecture Framework (DODAF) is widely used across the spectrum
of capability and systems development in the Department of Defense and is an integral
part of the DOD Joint Capabilities Integration and Development System (JCIDS) (CJCSI,
2009) codifies those operational and systems views that should be delivered as part of the
definition of systems capabilities and requirements.

Military experimentation (Alberts, 2002) is a critical and complex endeavor that is
made possible through model-based systems engineering. This involves system of
systems integration between both command and control (C2) and combat simulations.
This is similarly the case in training environments. Technical management for
engineering prototypical efforts such as Joint Capabilities Technology Demonstrations
(JCTD) is realizing the importance of developing Architecture views hand in hand with
systems integration in order to facilitate new capabilities exploration and development.
These products and views run the full spectrum of models and often have a very data
centric focus, thereby facilitating or enabling systems integration.

In order to assess the behavior and performance of complex architectures, static
architecture models must be extended into the domain of simulation. For simple process
models, the implications for performance and resource utilization can be intuitively
determined a priori. However, in more complex models where processing is non-
deterministic and where resources are not fixed, performance analysis requires the use of
simulation techniques to determine measures of performance.

Executable models or simulations serve a number of purposes. One basic
function is model logic verification. Is the model logically correct? Model validity is a
second purpose which addresses fidelity to the modeled domain and business processes,
and may be addressed through model inspection in both a static and dynamic
environment. Model process modification and what-if alternative analysis is a third
function of executable models. Model process may be altered or refined based on
insights gained as a result of dynamic model analysis, which provides an examination of
timing. In general, executable models provide measures of performance, but the

executable process itself helps in model validation, verification, and experimentation.



1.4 Purpose of the Study (Gap in Body of Knowledge) and Proposal
This dissertation has been built upon the current body of knowledge surrounding

executable architectures. Among the main contributors in this domain in particular Levis,
Mittal, Pawlowski, Wagenhals, Zeigler, and Zinn have investigated the transformation of
static DODAF architectures into executable architectures. Each researcher investigated
some dimension of executable architectures through a particular use case developmental
effort; each approached the development of executable architectures in a similar way,
starting with a particular static modeling language translated into some particular target
dynamic implementation; they all investigated the problem space at an elemental level of
translation, from static to dynamic. All researchers provided valuable solution-specific
demonstrations of translations from static to dynamic modeling and also showed the
value derived from such an endeavor. However, a common theory underlying their
applications is still missing. No one has attempted to conduct a holistic investigation into
the theoretical elements of executable architectures. This is the gap in the body of
knowledge which will be addressed in this dissertation study.

The proposal of this study was articulated as follows: to conduct a holistic
investigation into the possible elements of executable architectures by means of a
qualitative investigative study. This study will develop a theoretical framework for
inquiry into the dimensions of executable architectures. In the course of this study,
the theoretical framework for inquiry will be used to further investigate the
elements that have potential for executable architectures.

The following main contributions have been realized:

e A refined theoretical framework and method for analysis of architecture
frameworks in light of the foundational requirement for executable architectures
has been developed;

e Through the utilization of the theoretical framework, a description of the

theoretical elements and their relationships has been derived.



CHAPTER 2
LITERATURE REVIEW

An overview of Architecture Elements, Modeling Languages, and Modeling and
Simulation Formalisms is provided as a foundation for the literature review and to lay the
ground work for further discussion of these topics throughout this dissertation. The use
of these three main categories has been positively evaluated by peers and has been
successfully presented and discussed with experts in the community (Shuman, 2010;
Tolk, Garcia, Shuman, 2010):

e Architecture elements focus on static elements and concepts and their attributes;

e Modeling language describe the behavior of such elements;

e Formalisms ensure that the elements and their behavior are captured consistently.
All three categories contribute to the holistic understanding of executable architectures.

They will be described in detail in the following sections.

2.1 Architecture Elements
Architecture Elements are the components of and defined by architectures.

Architecture (DOD, 2007a) is defined as the structure of Architecture Elements, their
relationships, and the principles and guidelines governing their design and evolution over
time. An architecture framework, such as DODAF (DOD, 2007a) “provides the guidance
and rules for developing, representing, and understanding architectures.” An architecture
framework defines the architecture elements and their relationships to each other in the
context of various models or views, and further describes model to model relationships
(DOD, 2007a). Architecture frameworks are important because they provide for
consistency of model constructs and for interoperability between models from both a
syntactic and semantic point of view. Commonality of model syntax and semantics is
essential to information sharing. Semantics defines the elemental information sets and
their meanings. Syntax defines the relationship of elements to each other. DODAF is
used widely across the United States Department of Defense. It was one of the earliest
architecture frameworks to be developed and was originally designated the C4ISR
Framework. The C4ISR Framework drew heavily from both structured analysis and the

Zachman Framework (Zachman, 1999) with its focus on the interrogatives.



DODAF 2.0 (DOD, 2009) is the most recent version of DODAF. Apart from a
slightly different model organizational structure and the addition of some very useful
views, such as capability views, the main difference between it and DODAF 1.5 is the
point of view with respect to data and view. In DODAF 1.5, views drive data. In
DODAF 2.0 data drives views.

There are a number of other architecture frameworks, such as the Ministry of
Defense Architecture Framework (MODAF), which was developed in the United
Kingdom; the NATO Architecture Framework (NAF), which was developed to support
NATO; and the Department of National Defence (DNDAF), which is the Canadian
architecture framework. The TOGATF is a framework for enterprise architecture that was
developed and supported by the Open Group which is a global business standards
consortium.

Unified Profile for DODAF and MODAF is bilateral: a hybrid of both DODAF
and MODAF that is based on a UML modeling language implementation. Unified
Profile for DODAF and MODAF (UPDM) (OMG, 2009) was developed by the OMG in
partnership with the US Department of Defense (DOD) and the United Kingdom
Ministry of Defence (MOD). UPDM specifies a UML 2, and optional SysML, profile to
enable practitioners to express DODAF and MODAF model elements and to organize
them in a set of views that support the modeling needs of stakeholders. OMG asserts that
UPDM will significantly enhance the quality, productivity, and effectiveness of
enterprise and system of system models (OMG, 2009a).

In the development of architectures, various approaches are utilized. As DODAF
was developed and refined, it was demonstrated that UML implementations of the
architecture framework were possible (Bienvenu, Shin, & Levis, 2000). In spite of its
roots in structured analysis, DODAF is described as language and implementation
neutral. More recently, the OMG has developed specifications for SysML, which is an
extension of UML for the systems engineering domain (OMG, 2006). In addition, OMG
has developed Business Process Modeling Notation (BPMN) (OMG, 2009) as a modeling
language supporting B2B, SOA-based, system of systems modeling. The domain
experience of the author has shown that BPMN is increasingly viewed as a means to

develop architectures, although in a somewhat limited way. Because it is implemented



by various vendors as an executable process model (e.g., iGrafx), it provides a powerful

means for developing executable process models.

2.2 Modeling Languages
As stated in Chapter 1, modeling languages provide models with graphical,

symbolic, and standard notations designed to address various kinds of inquiry. An
architecture framework describes the models or views that are part of that given
framework. In the case of DODAF (DOD, 2007a), model language implementation
neutrality is asserted as a premise, such that models may be developed using Structured
(e.g., IDEF, Data Flow Diagrams, etc.) or Object Oriented language approaches (e.g.
UML and SysML). As will be discussed in the literature review, the viability of both
Structured and Object Oriented architecture implementations has been demonstrated. A
newer modeling language, Business Process Modeling Notation (BPMN)), is increasingly
used for partial implementation of DODAF views. Key language models of relevance to
executable architecture development are IDEF0, UML, SysML and BPMN. It is
apparent from the literature review that these languages are the standard languages used
to describe executable architectures and they are the primary languages used in practice

today.

2.2.1  Structured Analysis
Structured Analysis includes a loose collection of modeling and analysis

techniques that were developed in the 1960s, 70s, and 80s. Structured Analysis modeling
includes the Integrated Definition or IDEF (IDEF, 2010) models, e.g., IDEF 0, IDEF1X,
and IDEF 3, the Data Flow Diagram, and the Entity Relationship Diagrams. Volume Il
of DODAF 2.0 (DOD, 2009) is replete with examples. Of particular interest to process
modeling is IDEF 0, which is used extensively in process or behavior modeling. The
IDEF 0 models is described in terms of Input flows, Output flows, Control flows and
Mechanism flows, and the term ICOM was coined as an acronym to describe these flows.
The use of IDEF 0 in architecture development is well documented in the literature and in
practice; of note the work of Wagenhals is described later under Structured
Implementations. IDEF 1X (IDEF, 2010) is a data modeling technique that affords

generalization, composition, and association relationships; it is a powerful tool for
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describing data entities and their relationships. IDEF 3 (IDEF, 2010), a process model
that is less commonly used in practice today, provides a way to model activities, rule
constraints, and resource allocations; it is similar to UML Activity Diagrams and BPMN
(described in the following sections). Data Flow Diagrams (DfDs) (DeMarco, 1979) are a
simple but very powerful modeling technique for describing systems functions and

related data flows.

2.2.2  Object Oriented Languages
According to the object oriented perspective, the main building block of all

software systems is the object or the class (Booch, et al., 1999). Object oriented
modeling languages follow this perspective. UML is an Object Oriented language or
notation intended for analyzing, describing and documenting all aspects of a software
system. It supports modeling various structures using object oriented principles. The
current version is UML 2.2. It is comprised of seven Behavior and seven Structure
diagrams. The Structure Diagrams are used to depict the static structure of a system,
whereas the Behavior diagrams show the dynamic behavior of the objects in a system.
Figure 1 shows the UML diagram taxonomy (OMG, 2009). The UML Activity, State
Machine and Interaction Diagrams are key diagrams of relevance to process and behavior

modeling and for this reason will be discussed extensively in Chapter 4.

Dlagram
I 1
Stucre Behavior
Diagram Diagram
1 ¥ I H - i 1
Component Object Activity Use Case State Machine
Class Diagram Diagram Diagram Diageam Diagram Diagram
Composite Deployment Package Interaction
Structure Diagram Diagram Diagram
“‘“[ Diagram 9
I I
Profile Diagram interaction
S;gl;:xe Overview
Diagram
Communication Tuming
Diagram Oiagram

Figure 1 - Taxonomy of UML Structure and Behavior Diagrams
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SysML is a UML profile, which is a domain-specific systems engineering
modeling language that is used for specifying, analyzing, designing and verifying
complex systems, including hardware, software, information flow, people, processes, and
resources. SysML reuses seven of UML’s thirteen diagrams, augmenting 3 of them, and
adds two new diagrams (the Requirements and Parametric diagram) for a total of nine
diagram types (OMG, 2006). SysML also supports allocation tables which have a tabular
format that can be dynamically derived from SysML allocation relationships. Figure 2

shows SysML diagrams and the legend indicates relationships to UML2.

SysML Diagram
L I

Behavior I Requirement | Structure ‘}

Diagram 1 Diagram 1 Diagram |

e e e e - - ] F_J

t State Block Internal

Sg“r];% i Sgguegrcne Machine l]J)sle (r::: Definition Block Package
g I g Diagram a2 Diagram Diagram Dragram

o= -

| Parametric !

Same as UML 2 i

I Diagram

Modified from UML 2

I New diagram type

Figure 2 - SysML Diagrams

The significant changes to SysML from UML were described in Shuman (2010)
and are provided here as a point of reference. The key diagrams of relevance to
executable architectures are the Activity Diagram and the Block Diagram which will be
discussed further in Chapter 4. The Activity Diagram is a Behavior Diagram that

emphasizes inputs, outputs, sequences, and conditions for coordinating behaviors.
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Modifications of the UML Activity Diagram (to the SysML Activity Diagram) includes
the addition of data controls and edge extensions (having output parameter sets,
probabilities, or parameter value replacement and discarding), all of which were
investigated for relevance to executable architectures. Block Diagrams and Internal
Block Diagrams provide for blocks or modular units that are used to describe system
components and describe their relationships to each other.

Both the Requirements and Parametrics Diagrams add what is needed for Systems
Engineering in terms of requirements definition and hard systems performance
verification. The SysML Requirements Diagram is new. It supports system requirements
engineering and capability taxonomies; however, the focus of this study is soft systems
(Flood & Carson, 1993) or process and behavior modeling, which involves the human
element. SysML Parametric Diagrams are a new type of diagram which includes
constraint blocks for constraining the properties of other blocks; they provide a means to
precisely define performance and quantitative constraints such as maximum acceleration,
minimum curb weight, and total air conditioning capacity. The ability to define system
component attribute constraints is essential to the precise definition of hard system (i.e.,

physical systems) performance but has not been the focus of this investigation.

2.2.3  Business Process Modeling Language (BPMN)
BPMN was developed by the Business Process Management Initiative (BPMI) as

a standard for business process modeling. It provides a modeling method that is based on
flow charting principles, is similar to UML Activity Diagrams, and is generally described
as straightforward and useful for communication of business process descriptions to
business and management-oriented stakeholders (OMG, 2009). It is managed by the
Object Management Group (OMG), with version 1.1 released in February of 2008. It is
comprised of four basic categories of elements: flow objects, connecting objects, swim
lanes, and artifacts. Flow objects consist of Events, Activities, and Gateways. There are
three connecting objects: Sequence Flow, Message Flow, and Associations. Pools are
comprised of Swim Lanes, i.e., participants or entities in a process. Artifacts are
comprised of Data Objects required or produced by activities, Groups for documentation,

and Annotations providing additional text information (OMG, 2009).



Table 2, developed by Shuman (2010) in “Understanding Executable

Architectures Through An Examination of Language Model Elements,” provides a table
of comparisons between DODAF models and the four groups of modeling languages

previously described: Structured, UML, SysML, and BPMN. Horizontal alignment of

models indicates model similarity. The “Fishwick Category” column refers to a

taxonomy of model types developed by Fishwick (1995). Some of these similarities have

been investigated in this dissertation, as will be discussed in Chapter 4.

Table 2 - Modeling Language and DODAF Alignments

Data Conceptual DIV-2 (OV-7) [Logical Data Model IDEF 1X ERD|Class Diagram |Block Diagram
Viewpoint
Operational Conceptual ov-1 Concept Diagram Use Case Use Case
Viewpoint
ov-2 Operational Node Communication |Block Diagram BPMN
Connectiwty Diagram Diagram
OoV-3 Information Exchange Allocation Tables
Matrnx
Conceptual ov4 Operational Class Diagram |Block Diagram
Relationships Diagram Package Diagram
OV-5a Hierarchical Activity Biock Diagram
Diagram Package Diagram
OV-5b Activty Diagram IDEF O Actuty Diagram jActiuty Diagram |BPMN
EVRctional OV-6c Operational Event Sequence Sequence BPMN
Trace Diagram Diagram Diagram
Declarative OV-6b Operational State State Diagram | State Diagram
Transition Descnption
OV-6a Operational Rules IDEF 3 Activty Diagram |BPMN
Diagram
Systems / SV-1 System to System Commurication [Block Diagram
Services Node Connectiuty Diagram
. . Diagram
Viewpoints o
SV-4 Data Flow Diagram Data Flow Communication JActivty Diagram |BPMN
Digaram Diagram
SV-6 System Data Allocation Tables
Exchange Matnx
SV-7 Systems Measures IDEF3 Parametnc BPMN
Matnx Diagram
SV-10c Systems and Seruces Sequence Sequence BPMN
Ewent-Trace Diagram Diagram
Descnption
SV-10b Systems and Seruces State Diagram  [State Diagram
State Transition
Descnption
SV-10a System Rules Model [IDEF 3 Actiuty Diagram  [BPMN
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2.3 Modeling and Simulation Formalisms
A modeling formalism for executable architectures should holistically describe

the elements and the rules of an executable architecture using a standard mathematical
notation. In addition, a modeling formalism should tie the elements together in a
consistent and complete way and provide the mathematical framework to demonstrate
that all functions are provided and correctly interconnected. Similarly, the elements of an
executable architecture should be describable using a modeling formalism, which would
in turn provide validating evidence of executable architecture holism (Tolk, Garcia, &
Shuman, 2010). Colored Petri Nets (CP-net) and the DEVS formalism are two

extensively referenced and used Modeling and Simulation formalisms.

2.3.1  Coloured Petri Nets
Coloured Petri nets (CP-net) are in wide usage for many practical purposes. As

described by Jensen, the main reason for the success of CP-nets is their graphical
representation and well-defined semantics, which support formal analysis (Jensen,
1992a). The Coloured Petri net is an offshoot of Place Transition Nets, or “Petri nets.”
In his bibliographical remarks, Jensen (1992a) explains the foundation for the Petri net,
called the Condition/Event net (CE-net), which was first described by Carl Adam Petri in
his doctoral thesis (Petri, 1962). As stated by Jensen (1992a), “A Petri net is state and
action oriented at the same time.” States are indicated by ellipses, called places. Each
place may contain a dynamically varying number of tokens. The distribution of tokens
on the places is called the marking. Actions are indicated by rectangles, which are the
transitions. The places and transitions make up the nodes. Directed arrows or arcs are
connected between places and transitions. An arc may have an arc expression associated
with it.

The Coloured Petri Net (CP-net) is an elaboration on the Petri net, in that it
provides for the marking of tokens with associated data values, which are indicated by
the token colours. Colour sets determine the possible values of tokens. In Coloured
Petri-nets, arc expressions, which evaluate to multi-sets, specify the collection of tokens,
each with a well-defined token colour. In CP-nets, token marking of a given place is
indicated by a small circle with an integer for the number of tokens, and a text string that

specifies a multi-set which describes the token colors in terms of their coefficients
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(Jensen, 1992). Jensen (1992a) attributes the wide use and success of Petri nets to having

“a graphical representation and a well-defined semantics, allowing formal analysis.” He

lists twelve advantages to using CP-nets:

1.

CP-nets have a graphical representation.

2. CP-nets have a well-defined semantics which unambiguously defines the

11.

12.

behaviour of each CP-net.

CP-nets are very general and can be used to describe a large variety of different
systems.

CP-nets have very few, but powerful, primitives.

CP-nets have an explicit description of both states and actions.

CP-nets have a semantics which builds upon true concurrency, instead of
interleaving.

CP-nets offer hierarchical descriptions.

CP-nets integrate the description of control and synchronization with the
description of data manipulation.

CP-nets are stable towards minor changes of the modeled system.

. CP-nets offer interactive simulations where the results are presented directly on

the CP-net diagram.

CP-nets have a large number of formal analysis methods by which properties of
CP-nets can be proved.

CP-nets have computer tools supporting their drawing, simulation and formal
analysis (Jensen, 1992).

Table 3 provides CP-net elements, formal definitions and simple verbal descriptions. CP-

net elements will be further described and used as a validating source in Chapter 4.
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Table 3 - CP-net Elements

;1 I
Code. .: : . < 7, Formal Definition™ ﬁ%{’fx wiﬁ%?rgretation . :““
Transitory Objects Ephemeral objects (messages and
data)
Token colour Attributes associate with Tokens
Tokens Dynamically varying black dots
assoclated with a place
Global Declaration Defines all colour sets
node
CP-net Control Control functions and definitions
Elements
Colour Sets (z) % finite set of non-empty types Each token on a place p must
have a token colour that belongs
. - to type C(p) —
Intialization function Defined from P into closed Initial marking
69} expressions such that
vp € P [Type(I(@)) = C(0)ms
Arc expression (E) Va € A [Type(E(@))C(0(a))ms Maps each arc, a, to an expression
AType (Var(E(a))) of type C(p(a))
S Z]) where p(a) is the place of N(a)
Guard function (G) It 1s defined from T into Additional constraint (Boolean)
expressions such that enabling transition
vteT [Type(G(D)) =
B A [Type (Var(6(®)) € 5]
Node function (N) Defined from A into PxT v TxP (v) The node function maps source
and destination nodes
Color function © Defined from P into X C maps each place, p, to a colour
set C(p)
Fixed Objects — e | Fixed objects (nodes and links)
Places (P) P 1s a finite set of places State of a resource allocation, or
of process (circle)
Port Place Connections for communication
between Objects
Arcs (A) A is a finite set of arcs such Connects a place with a transttion
that PNT=PNA=TNA=9 or a transition with a place
Hierarchical structure Hierarchical structure i1s developed
for the CP-net
Transitions (T) T s a finite set of transitions Actions of resource allocation
R __|system (rectangle) __ ]

2.3.2  Discrete Event System Specification (DEV'S)
The Discrete Event System Specification (DEVS) (Zeigler, Prachofer, & Kim,

2000) is a formalism that provides a means for describing the components of discrete-
event simulation. In Classic DEVS, basic (atomic) models and their elements are
described; these elements include input and output ports for receiving and sending
information (messages), a set of state variables, internal and external transition functions
and a time advance function (Mittal, Zeigler, Risco Martin, Sahin, & Jamshidi, 2008).

Classic DEVS is mathematically represented as a tuple of seven elements
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M = (X,S,Y,8int, Oexe, A, ta). X is an input set, S is set of states, Y is set of outputs, §;y,;
is internal transition function, 8,,.is external transition function, A is the output function,
and ta is the time advance function. (Zeigler, et al., 2000). Table 4 provides a list of the
Classic DEVS elements with definitions.

Table 4 - Classic DEVS Elements

Code Definition

e time elapsed since last transition

ta S > R{, is the set positive reals with 0 and o
Q Q={(s,e) | s € S, 0<e<ta(s)} is the total state set
S Set of states

X Set of input values

Y Set of output values
Soxe | Qx X->S is the external transition function
Sine S — S is the internal transition function

A S = Y is the output function

The DEVS formalism now includes Classic DEVS, Parallel DEVS and Classic
Coupled DEVS, having been enlarged over time from Classic DEVS. Paralle]l DEVS
was introduced by Zeigler fifteen years after the Classic DEVS formalism. It removes
constraints that originated with the sequential operation of early computers and hindered
the exploitation of parallelism. Parallel DEVS differs from classic DEVS in allowing all
imminent components to be activated and to send their output to other components. The
receiver is responsible for examining this input and properly interpreting it. Messages,
basically lists of port-value pairs, are the basic exchange medium. According to Zeigler
(2000), a basic Parallel DEVS is a structure, DEVS = (x,., Y., S, 8ints exts 6con A t2).
Table 5 lists Parallel DEVS elements and their definitions. In comparison to Classic
DEVS, in Parallel DEVS, there is the addition of ports and the confluent transition

function for resolution of collisions between external and internal events.
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Table 5 - Parallel DEVS Elements

Code Definition

(ta) time advance function S -> R§  is the set positive reals with 0 and
o0

(Q) set of total states Q={(s,e) | s € S, 0<e<ta(s)} is the total
state set

(S) set of sequential states set of states

(X) set of input ports and set of input values and ports

values

(Y,,) set of output ports and set of output values and ports

values

(8.0n) confluent transition decides next state if collision between

function external and internal event

(6ext) external state transition | Q X X-> S i1s the external transition
function

(8,5:) nternal state transition S -> S is the internal transition function

(M) output function S -> Y 1s the output function

Parallel DEVS with a buffer is an elaboration on the Parallel DEVS with the
explicit inclusion of a buffer, V, which functions as a queue for holding an arbitrary input
set. “A processor that has a buffer is defined in Parallel DEVS as: DEVS,,4cessing time
= (Xoms Yo S, Sines Oexts 8com A, ta)” (Zeigler, et al., 2000). Table 6 shows the elements of
Parallel DEVS with a Buffer and their definitions.

Table 6 - Parallel DEVS Processor with a Buffer

(X,,) set of input ports and values et of input values and ports
(Y,,,) set of output ports and values set of output values and ports
(V) Queue V 1s a queue that holds an arbitrary
set or a bag
(ta) time advance function S -> R§ « is the set positive reals with
0 and o
(S) set of states Set of states
(A) output function S -> Y 1s the output function
(8,n¢) Internal state transition S -> S Is the internal transition
function
(‘Sext) external state transition Q x X-> S 1s the external transition
function
(8.on)confluent transition function Decides next state If collision
between external and internal even




19

In classic Coupled DEVS, the DEVS formalism includes elements for building
models from components. Under this construct, atomic models may be coupled together
to form coupled models. The specification includes the external interfaces, input and
output ports and values, the components (which are DEVS models), and the coupling
relations: N={X, Y, D, {m, |d € D}, EIC, EOC, IC, Select} (Zeigler, et al., 2000).
Table 7 shows the elements that make up Classic Coupled DEVS.

Table 7 - Classic Coupled DEVS Elements

(D) component names

Set of the component names

(IC) internal coupling

Connects component outputs to component
inputs

(EOC) external output coupling

Connects component outputs to external
outputs

(EIC) external input coupling

Connects external inputs to component inputs

(Xz) set of input ports and values

set of input values and ports

(Y;) set of output ports and values

set of output values and ports

(Y) output ports and values

Set of output ports and values Y={(p, v) | p €
OPorts, v € ¥,,}

(X) input ports and values

Set of input ports and values X={(p, v) | p €
IPorts, v € X,,}

(M, ) DEVS Model

Md =(Xdl ydl SI 6€xtl Sint)r )\'I ta) is a DEVS

| Xd xd =Up, V) | p € IPorts,, V € X,}
Yd Yd =[{p,v) | p € OPortsq,v €Y, }
Select Tie-breaking function (used in Classic DEVS

This introduction to the four DEVS model types provides a foundation for the
remainder of the literature review, for method discussions in Chapter 3, and for data

collection and analysis in Chapter 4.

2.4 Themes
Figure 3 is a thematic Map that shows the major research areas related to

executable architecture, divided into categories. The blue boxes show the topic area with
the principal researcher and date. The orange boxes show the focus of the research, and
the rose boxes show identified Gaps. The cloud overlay is suggestive of areas that this
study has addressed to some degree. These research areas, with their key topic areas and

related gaps, will be discussed in this section.
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2.41  Architecture Description Language (ADL)
Petty, McKenzie, and Qingwen (2002) simulated the data flows in a federation

using Rapide and ACME, which are proprietary tools that were introduced in the paper.
Using Acme, they estimated the number of entities that a federate could support. Both
Rapide and Acme are proprietary examples of Architecture Description Languages
(ADL). An ADL is a language that represents software designs at the architecture level,
in terms of components and interactions (some ADLs support simulation). They cite the
assertion (Shaw & Garlan, 1996) that six types of ADL language elemental types form a
sufficient vocabulary for expressing any software architecture: Component (performs
computation and retains state), Connector (represents relations or interactions between
components), Port (a component interaction point), Role (the interaction point of a
connector), Representation (a composite object — component or connector), and Binding
(mapping between composed object interfaces and external interfaces). The ADL topic
category is primarily focused on systems oriented architecture implementations, but it is
relevant to this work because the elemental types are similar to the elemental categories

described and used in this dissertation, to be discussed in Chapter 4.

2.42  Structured Architecture Development and Executable Architectures

This section covers two key structured analysis-oriented approaches to the
development of executable architectures depicted in Figure 3 as a topic: Structured

Analysis to Coloured Petri Nets and Structured Analysis to Agent Simulation.

2.4.2.1 Structured Analysis & Coloured Petri Nets:
In the Wagenhals and Levis (2000) paper, “C4ISR architectures. 1: Developing a

process for C4ISR architecture design,” the authors explored a process for creating the
essential and supporting products of the DOD C4ISR Architecture Framework (version
2.0) and asserted that using Structured Analysis it is possible to develop a process that
generates the necessary information for derivation of an executable model.

In a related paper, “C4ISR architectures: II. A structured analysis approach for
architecture design,” Wagenhals, Shin, Kim, and Levis (2000) provide a detailed
explanation of the development of a coherent set of architecture descriptions conforming
to the C4ISR Architecture Framework based on the Structured Analysis modeling

methods. In the words of the authors, they describe the “necessary and sufficient” sets of
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information for creating executable models from the architectures, using a Coloured Petri
Net simulation construct. In this study, the executable model was developed using the
Activity Model (developed in IDEF0), the Data Model (developed in IDEF1X), the Rule
Model and the State Transition Diagram. They describe elemental associations between
these four models and a Coloured Petri Net executable implementation. Associations
were described as follows: IDEF 0 Activities to CP-net Transitions, IDEF 0 arrows to
CP-net Arc-Place-Arc combination, and IDEF 0 arrow to CP-net Color Sets associated
with the CP-net Place. IDEF 1X entities are used to derive the names of color sets in the
CP-net Global Declaration Node, and each Color Set that is assigned to a place has the
same number and type of attributes as shown in the IDEF1X data model. Rules in the
Rule Model were used to specify the Arc Inscriptions and Guard Functions. The State
Transition Diagram was created by tracing a thread through the IDEFO model, and the

State Transition Diagram is used to verify that the model executes correctly.

2.4.2.2 Structured Analysis to Agent Simulation:
In his thesis, “The Use of Integrated Architectures to Support Agent Based

Simulation An Initial Investigation,” Zinn (2004) investigated the utility of using
DODAF architecture products for providing needed data for agent based simulations.
Zinn proposed a process of taking information from DODAF architectures and importing
it into an agent-based simulation. This was accomplished by means of a case study
where architecture data from a proposed Air Operations Center architecture was used in
the combat model System Effectiveness Analysis Simulation (SEAS). In his research, he
relied heavily on the DODAF Activity Diagram (OV-5) and the Rule diagram (OV-6a),
which was developed using IDEF3 (IDEF, 2010). It may be observed that IDEF3 is a
very robust modeling language in comparison to the simple DODAF meta-model for a
Rules Diagram (OV-6a) (addressed in Chapter 4). In the context of his case study, Zinn
made a general assertion that DODAF is sufficient for developing executable
architectures, but because there is no clear, elemental traceability in his thesis, the

validity of this assertion is more anecdotal than specific.
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2.43  Object Oriented Architecture Development
Object oriented implementations of both static and executable architecture

implementations are discussed in this section.

2.43.1 Object-Oriented Architecture Development
In their study, Bienvenu, Shin, and Levis (2000) investigated object-oriented

approaches to developing C4ISR architecture. They provided a UML-based process
using object-oriented methods for developing C4ISR architectures, and they provided a
table of correspondences between C4ISR views and UML products. This work was

foundational in the object-oriented language implementation of DODAF architectures.

2432 Object Oriented to Coloured Petri Nets (CP-net)
This study by Wagenhals, et al. (2002) provides a description of an architecting

process based on the object-oriented Unified Modeling Language (UML). It is one of the
seminal papers in the area of executable architectures. They describe a mapping between
the UML static implementations and an executable model based on Colored Petri Nets
(CP-net), and they examine DODAF product sufficiency in terms of the CP-net
simulation end state objective. Their model focus was on the UML Sequence Diagram
(OV6¢), the UML Collaboration Diagram, and the Class Diagram.

Using the Unified Modeling Language (UML) to describe the architecture, the
authors provided keen insight into the development of simulations from static, UML-
specified DODAF architectures and also showed the correspondence of UML elements to
the elements of a Coloured Petri Net (CP-net)-based simulation. The primary
justification for the development of executable architectures is validation and verification
of static models. The authors provided a step by step methodology for building CP-net
from UML, utilizing both structure and behavior UML diagrams. They used the Class
Diagram, a structure diagram type, as well as the Activity Diagram, the Sequence
Diagram, and the Collaboration Diagram: all behavior diagrams, emphasizing the
importance of concordance between diagrams. In their approach the sequence and
activity diagrams are used to facilitate the development of the class diagram, hence the
importance of diagrammatic concordance. Their method imposes two class

implementation style constraints:
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o The first constraint requires the partitioning of classes into those that represent
fixed structures (represented by non-association classes) and those that represent
transient structures (represented by association classes).

e The second style constraint requires that all non-association classes which
represent the fixed elements of the architecture be converted into classes that
contain either operations or attributes but not both.

As Wagenhals, Haider, and Levis point out (2002), the partitioning of classes into
association and non-association is based on the interoperability emphasis in DODAF, in
which transient structures (i.e., messages) are passed between fixed structures (i.e., nodes
and links). Having these two categories of objects facilitates a mapping between UML
and CP-net. Accordingly, non-association classes contain the operations and perform
actions that cause a change of state to a token or message, and it is the non-association
classes with their operations that form the basis for the CP-net transitions. Non
Association classes are structured into parent and aggregation classes. The Class
Diagram structure becomes the basis for the hierarchical CP-net structure. Association
classes have only attributes, which become the basis for the global declaration node and
the message tokens. This stylistic approach supports an unambiguous mapping from
UML to a CP-net. Table 8 provides a useful summary of UML to CP-net mappings
described by Wagenhals et al. (2002).
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Table 8§ - UML to CP-net Mapping

Step | UML CP-net
1 Attributes of all classes Global Declaration Node, Color sets
Class structure Hierarchical Structure
2 Each non-association class Transition
(parent classes with only
operations)
3 Association Class or Place (referred to as “port places™) with Color
Aggregated Class sets defined from attributes)
4 Arcs (placed between transitions & places)
5 Activity Diagram Place
6 Associations in Class Diagram | Place (one to one)
7 Sub-page (for each substitution transition)
8 Inputs, Outputs, I/O port places
9 Based on Activity Diagram Arcs
10 | Rules (each operation) Arc Inscriptions, guard functions, or code

segments

Consistent with their initial premise concerning the importance of executable

architecture, Wagenhals et al. devote considerable attention to the evaluation of

architectures. The authors divide this topic into logical and behavioral evaluation:

Logical evaluation is based on proper running of the CP-net simulation, e.g., does

it run without deadlocks and infinite cycles?

Behavioral evaluation of architecture focuses on correct sequencing and on

stimulus driven behavior. Stimulus based evaluation would assess the model in

steps using code stops to evaluate discrete sequences.

In their conclusion, Wagenhals et al. highlight the CP-net-based method as a

means for development and subsequent validation of architectures. They further suggest

the applicability of the method to future UML-oriented architecture tool implementations.

The discussion of the development of foundational use cases is weak but was not

the focus of their study. A table of correspondences between the UML elements and the

CP-net would have been useful. The authors did not address resourcing and the effects

on the CP-net model. Presumably this would add additional parallel transitions to the

CP-net accounting for multiple processing capabilities. Certainly any analysis of system

measures of performance (MOPs) would need to account for resourcing.
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2.44  Object Oriented to DEVS
This section covers Object Oriented to DEVS implementations. It includes DEVS

implementations, DODAF extensions supporting DEVS implementations, and DEVS
Unified Process (DUNIP).

2.4.4.1 DEVS-based Executable Architectures
In their paper entitled, “Enhancing DODAF with a DEVS-based System Lifecycle

Development Process,” Zeigler and Mittal (2005) suggested a method for transforming
DODAF descriptions of an architecture to a DEVS representation. In this paper the
authors provided some justification for the endeavor and also provided an introduction to
the “Bifurcated DEVS-to-DODAF Development Process.” In general, the paper is
written at a high level of abstraction and is lacking in specifics, but it does provide a table
of correspondences between DODAF models (Views) and related DEVS simulation
components. This is one of the more useful elements of the paper and has direct
relevance to the dissertation objectives. This paper led to Mittal’s dissertation.

Risco-Martin, De La Cruz, Mittal, and Zeigler (2009) in their paper entitled,
“eUDEVS: Executable UML with DEVS Theory of Modeling and Simulation,”
described the essential mappings between UML and DEVS modeling. Their work
focuses on the UML Structure and Behavior models that contribute to the development of
a DEVS-based system model. The UML Structure models are the Component, Package,
and Class Diagrams. The UML Behavior models are the State Machine, the Sequence
Diagram, the Timing Diagram, and Use Case. In this paper the authors propose a design
flow and set of transformations to generate a Discrete Event Specification (DEVS)
executable simulation model from a UML graphic specification. The authors describe
the UML state machine deficiency with respect to the DEVS state machine, in that UML
contains no provision for timeouts for each state, which is known as time advance in
DEVS. This problem is cited by Mittal (Mittal, 2006) in his paper “Extending DODAF
to Allow Integrated DEVS-Based Modeling and Simulation.” In this paper he coined the
term eUDEVS which stands for executable UML based on DEVS. His work builds upon
the elemental mapping described by Mittal (Mittal, 2006) by providing a detailed

implementation. The authors describe a 3 step method:
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1. Synthesis of a static structure defined using a UML model;
2. Specification of behavior using an XML-based finite deterministic DEVS state
machine;
3. Auto-generation of Platform Specific Models (PSM) from the Platform
Independent Models (PIMs), later described under DUNIP.
Additionally, the authors provide a DEVS hierarchical meta-model that is useful in
understanding the elemental components that make up DEVS, from a taxonomy point of
view. In Chapter 4, a similar approach to DEVS elemental description is taken in the
exploration of the relationships between DEVS and the Executable Architecture

Specification.

2.44.2 DODAF Extensions
Mittal (2006), in his journal article entitled, “Extending DODAF to allow

Integrated DEVS-Based Modeling and Simulation,” addressed the question of extending
DODATF to support integrated DEVS-based modeling. His work cited DODAF’s
shortcomings, including ill-defined information exchanges, the need for a linking of
entities, activities, and nodes, and a need to identify ports associated with activity-to-
activity communication (since DEVS is a port-based modeling construct). He defined
two new OV products, the OV-8 and the OV-9, as extensions of the DODAF: the OV-8
addresses activities and their logical interface information and the OV-9 maps nodes,
entities, and activities. This is similar conceptually to Activities-based methodology
(Ring, Nicholson, & S, 2008). Mittal asserted the need for the OV-8 and OV-9 as
intermediate precursor products in the development of the DEVS simulation. Mittal used
the OV-5 activity model, the OV-6¢ (Sequence Diagram), and the OV-6a (Rules
diagram — IDEF3), as a basis for generating a DEVS-based simulation.

In a second, related paper by Mittal, Mitra, Gupta, and Zeigler (2006) entitled
“Strengthening OV-6a Semantics with Rule-Based Meta-models in DEVS/DODAF based
Life-cycle Architectures Development,” the authors described a means for semantically
strengthening the critical OV-6a Rules Model through application of Units of Measure
(UOM), Domain Meaning, and formatting to domain specific rules, thereby removing

ambiguity and aiding in translation of static to dynamic architectures.
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2.4.4.3 DEVS Unified Process (DUNIP)
The DEVS Unified Process (DUNIP) (Mittal, 2007) is based on the Bifurcated

Model Continuity-based Life Cycle Process (Zeigler & Mittal, 2005), referred to
hereafter as the Bifurcated Model. In order to understand DUNIP, one must first
understand the Bifurcated Model, which is a process model that describes a simulation
supported method for developing and testing systems of systems and enterprise level
systems (Mittal, et al., 2008). The graph shown in Figure 4 depicts the steps that are

described below:

Figure 4 - Bifurcated Model

A. Develop behavior and systems requirements specifications: DODAF
descriptions of the operational, systems and technical views are created to
describe the system under test. These views are static DODAF models that are
mapped to a system simulation implementation (e.g., DEVS).

B. Model Structures at higher levels of system specification: A system
simulation is developed using platform independent model (PIM) concepts from
Model Driven Architecture (MDA) (OMG, 2003), in which the simulation model
is separate from the simulator. The model describes a branching from step (B) to
step (C) and step (B) to step (D), hence the term bifurcation.

C. Reference Master Model (Simulation Execution): This is a master simulation
model for any implementation of behavior requirements, and it can be run and

analyzed to study logical and performance attributes (step C connects to step E).
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D. Semi-automated test suite design: This is a test suite that provides models or
simulation interactions or stimulation behaviors for interaction with the live
system under test (step D connects to step E).
E. Verification and Validation (V&V): Both steps C and D come together to
support V&V, which leads to system optimization and fielding.
Mittal (Mittal, 2007) elaborated on the Bifurcated Model in the development of the
DEVS Unified process (DUNIP). The DUNIP process is comprised of the following four
components:
1. Automated DEVS model generation from requirement specification formats (e.g.,
DODAF);
2. Collaborative model development using DEVSML, which is a platform
independent, XML based specification language;
3. Automated generation of the test suite (from the Bifurcated Model);
4. Net-centric execution of the model and test suite over a Service Oriented

Architecture (SOA) (W3C, 2004).

2.4.5  Executable Extensions to Combat Simulations

A mixed approach utilizing elements of several methods described above was
applied by Pawlowski and Ring (2004) in their MITRE Technical Report entitled
“Executable Architecture Methodology for Analysis, FY04 Final Report.” They
described their method for converting static DODAF-based architecture products into an
executable architecture that supports the dynamic analysis of a system in terms of
performance and effectiveness and resource utilization. They created a three-fold
modeling construct in which executable architectures or process models serve as an
extension of combat simulation models. This coupling was further augmented with
communications timing data supplied by a supporting communications model. Their
approach leveraged the translation of static process models into a dynamic Bonaparte
Colored Petri Net executable. This executable process model, in concert with a
communications modeling tool and a combat simulation, were combined into an HLA
based federation. Essentially the object of the experimentation was to use executable

architectures as a vehicle for detailed process study and investigation, in the larger
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context of a combat simulation. A significant part of this research focused on integration
and alignment of models through the notion of operational model complementarity.
Garcia (2011) extended this work by developing a method for assessing a
system’s executable architecture in a larger operational or system of systems context
(addressing the why and how information interrogatives). His research describes a means
to assess the contribution and efficiency of the system before it is built. This research led
to the development of a method for synthesizing observations about executable
architectures, based on (1) the assessment recommendations provided by the North
Atlantic Treaty Organization (NATO) Code of Best Practice for Command and Control
(C2) Assessment (CCRP, 2002) and (2) metrics for operational efficiency from the
Military Missions and Means Framework (Sheehan, Deitz, Bray, Harris, & Wong, 2003).
These two approaches show that the methods can be successfully mixed delivering more
functionality as needed for executable architectures. However, both are based on
contributions to the extended applicability of executable architectures. As such, they
show that all three categories are useful and should be taken into consideration when

evaluating executable architectures in support of a common theory.

'

2.4.6  Literature Analysis, Synthesis and Conclusions

Table 9 provides a synopsis of the main literature review topics, findings, and
identified research gaps. The research spans a period of about ten years. Table 9 shows
the research categorized into five areas as follows:

e Architecture Description Languages,

¢ Structured Modeling and Transformations,

e Object Oriented (OO) Transformations,

e DUNIP,

e Executable Extensions to Combat Simulations.
Within each category, the primary research topics are shown with the principle author,
year, key findings, and research gaps that surface from the research.

In the literature review, it is apparent that Petty, Bienvenu, Garcia, Mittal,
Pawlowski, Wagenhals, Zeigler, Zinn, and their respective co-authors have investigated

various aspects of the transformation of static DODAF architectures into executable
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architectures. Each research effort proposed specific methods and approaches for making
these transformations. Petty and McKenzie used proprietary Architecture Description
Languages to describe simulation federation communications. Wagenhals and Zinn
initially focused on Structured implementations of DODAF and their transformations to
executable models. Bienvenu demonstrated the development of architecture models
developed in UML and Wagenhals led a team that demonstrated a method for their
translation into CP-net. Zeigler, Mittal, and Risco-Martin explored the transformation of
UML developed Architectures into DEVS-based executable implementations, and Mittal
described augmentations to address some of the deficiencies in the DODAF meta-model,
suggesting the addition of two new products to address issues associated with modularity,
to align DODATF to the DEVS construct. Mittal developed DUNIP, which was based on
the Bifurcated Model Continuity-based Life Cycle Process, which was described earlier
by Zeigler and Mittal. The focus of DUNIP was on platform XML-based independent
models (which is similar to the platform independent models in Model Driven
Architectures (MDA)) and SOA model interoperability. This was a leap forward that
focused on model portability and SOA communications. Additionally, it is suggested in
the DUNIP literature that the method has been extended to other modeling languages,
such as BPMN. The last major category is executable extensions to combat simulations,
in which process models are run in conjunction with combat simulations and
communications models. This approach calls to mind the Bifurcated Model Continuity-
based Life Cycle Model, with its notional capacity to support system subject-of-test, in
the context of a test suite. The contextual analysis by Garcia extends this work with its
focus on system of system executable architecture integration.

Each of these research efforts starts with some form of static DODAF or
DODAF-like model and enlarges the modeling perspective into simulations. Whether
through a structured language to a CP-net-based executable or through an object-oriented
(UML) language to DEVS, transformation to executable simulations is a common theme.
Use of DODAF views was the starting point, and most transformation approaches were
manual with the exception of Mittal and Risco-Martin, who proposed a semi-automated
implementation through the use of DUNIP. All addressed reasons for the development of

executable architectures, with process investigation and model V&V as the key drivers
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for all. Similarly, each approached the translation of static architecture views from an
elemental level perspective, where DODAF views were described in terms of their
constituent elemental components, which were subsequently translated into executable
models. In the case of Wagenhals the elemental transformations from OO to CP-net were
unambiguous. For the others, there was a spectrum of transparency in their
transformation explanations.

The gaps that were identified from the literature review are shown in Table 9 next
to associated research topics and topic category. The far right column in Table 9
indicates with a check mark that there is a relationship between one or more of the gaps
in the adjacent cell. After the gaps were identified, they were thematically mapped to the
Executable Architecture Concept Triangle components: Architecture Elements,
Modeling Languages, M&S Formalisms, and Executable Architecture Specifications.
This was facilitated using a concept mapping tool. A concept mapping tool is useful for
visually identifying thematic relationships, and MindManager 8 (MindManager, 2011) is
the tool that was chosen for this task. Figure 5 shows the mapping of gap themes to the
components of the Executable Architecture Concept Triangle: blue lines map to the
Architecture Elements, the green lines map to Modeling Languages, purple lines map to
Modeling and Simulation Formalisms, and red lines map to Executable Architecture
Specifications. The legend in Figure 5 identifies the meaning of the shapes: Categories,
Topics, Gaps (related), Gaps (not related), and Themes. Themes are interpretations of the
meaning of the gaps, and are shown in Figure 5 to the right of the gap. Based on the
assessment of the themes conveyed by the gaps, it becomes obvious which gaps are
related to the central concepts of the dissertation, and which are not. The shape
representing Gaps (not related) is present for those gaps not directly related to the
dissertation topic. Again, relationships between the gap themes and the components of
Executable Architecture Concept Triangles are shown with the relationships lines. Many
of the gaps have more than one theme, which can be shown to relate to more than one
concept in the triangle; for example, mapping other Languages (e.g., BPMN) to CP-net
suggests Modeling Language and M&S Formalism themes. This method allows for the

synthesis of gap themes into a coherent conceptual framework.
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To reiterate, the definition of executable architectures was addressed in Chapter 1,
and for the purposes of this dissertation, executable architecture refers to executable
models or simulations that are based on static models developed in the context of some
Architecture Framework (e.g., DODAF or MODAF). These simulations enable both
behavioral and performance analysis. They extend static architecture modeling into the
domain of executable process modeling.

2.47  Insight: Atthe Language Level No Common Concept for Executable
Architectures

As described in the literature review, various approaches to the topic of
executable architectures have been investigated. Levis and Wagenhals were pioneers in
architecture based development of Coloured Petri-Net-based simulation implementations.
They explored both structured (IDEF) and UML architecture implementations
(Wagenhals, et al., 2002). Mittal explored DODAF from the perspective of DEVS
simulation implementations. Mittal’s work was based on a UML architecture modeling
language implementation, and suggested various extensions to DODAF to accommodate
DEVS simulations implementations. Each approach contributed to our overall
understanding of the relationships between architecture frameworks and simulation.

In conclusion, executable architectures are both useful and used. However, it is
clear from a language implementation perspective that there is no common concept for
developing executable architectures. Rather, there are a variety of modeling language
implementation approaches that are possible, and similarly, from a simulation end-state
perspective, there are a number of possible approaches to simulation definition, to include
CP-net and DEVS implementations.

From examination of the literature, it becomes apparent that previous research has
produced much valuable information from a specifically focused, deconstructionist
perspective; that is, through a process that breaks down one or more particular models
into parts, for analysis and alignment of those component parts towards the objective of
building executable models. However, it also becomes apparent that a clear, holistic
picture for Executable Architecture Specifications has not yet emerged: that is, there is a
perceived need to develop Executable Architecture Specifications that include both a

static and dynamic perspective, within the context of related components.



Table 9 - Literature Topics, Findings and Gaps (1)

\ Gaps to
Category ! Gaps Topic
2002 |>Simulated the data flow in a federation using Rapide & ACME (proprietary} SSADL Elements to Executable Architecture Mapping v
Federation McKenzie, Xu >Estimated the number of entities that a federate could support
ADL Performance Petty, 2004 |>Apphecation of ADL to federate performance analysis
Analysts McKenzie, Xu >Predictive analysis {robustness, composabilty, knowledge transfer, and risk reduction)
Wagenhals & | 2000 [>Architectures are described & interpreted in the context of Structured Analysis
Lewis >Explores process for creating essential products of the Dol C4!SR Arch Framework
Structured to CPN >Assertion Structured Analysis bias in its representation of the products
Structured >Show products provide necessary info for the denvation of an executable mode!
Modelng and
Transfo:ms Zinn 2004 |>Case study on Air Force AOC architecture used to build Agent based simulation $$Suffimency of DODAF
Structured to >Investigated uthity of DoDAF architecture for providing basts for agent simulation
Agent >Rehance on OV 5 & OV 6a {IDEF3) v
>Conclusion DoDAF provides the needed information {not clearly demonstrated)
00 Arch D [Bienvenu, Shin| 2000 |>Provides A UML-based process for developing C4ISR archrtectures
" ev & levis >Dernonstrates the feasibilty of developing C4ISR architecture descriptions using UML
Wagenhals et | 2002 [>General descnption of an architecting process based on the UML SS5Resources and the effects on the CPN model
00 to CPN al. >Rationale for style constraints on Models for building DoD C4ISR architectures SSMapping other fanguages (e g, BPMN) &CPN v
>Describes a mapping between the UML & an executable model based on CPN
Zegler & 2005 |>Described method for transforming DoDAF architectures to a DEVS representation SSAbsence of integrated modeling and simulation support in DoDAF
Mittat >Table of correspondences between DoDAF models {Views) and DEVS components v
Q0 to DEVS
Slmu(!)anons Risco-Martin 2009 |>Described the essential mappings between UML and DEVS >Auto-generation of sequence diagrams from XFD-DEVS specs
etal >Propose a design flow and set of transformations to generate DEVS executable simulation S$Executable architectures based on DoDAF v
00 Transtorms from UML $SysML to DEVS mappings
Mittal 2006 {>Addressed DoDAF extensions to support DEVS based modeling SS$Personnel 1t and task at proper resolution of
>2new OVs OV 8 (activities and interfaces) & OV-9 {nodes, entities & actities mapping) architectural execution v
>Evaluation of muti resolutional architectures
DoDAF Extensions | Mittal et al. 2006 {>Described a means for semantically strengthening the OV 6a Rules Model >Quantifiability of terms in OV6A
& Modifications >Present the semantic structure for OV 6a to aid the dev of semi-automated models SSDODAF 1s missing a rule basd structure that would alfow different
>Apphication of Domain Meaning, Units of Measure (UOM) & domain speafic rules architectures to be used for muluple designs v
>Descnbe how OV 6a can be structured in @ more generalized meta model framework such
that every rule 1s reducible to meamingful code
Muttal et al 2007 |>DEVS Unrfied Pracess (DUNIP),uses DEVS for SE and testing (Bifurcated Model) >DODAF transformation to DUNIP
DEVS Unified >XML based DEVS Modeling Language (DEVSML} {mode! portability) $$QA i1ssues assocrated with DUNIP
DUNIP Process (DUNIP) >Supports distnbuted models deployment over SOA Middle ware >Study of nsk assoaated wath adopting DUNIP (cost / perf ) v
>Methodology for testing any proposed SOA based integration infrastructure
Combat Pawlowski & 2004 [>Process models in context of combat SIMS $3Develop the nextgen of combat sims 1aw data from stnd DODAF
Executable Slrr:nl ons & Ring >DoDAF-based architecture products to CPN based executable model >Investigation of message length representation associated 1ERs for v
Extensions to Ex ud? ons >Dynamic analysis of a system performance, effectiveness & resource uthization passing to the coms net model to determine time for sending
Combat Sims ar >Research integration of cost metncs for both static and exarch
Context Analysis  |Garaa 2010 [>Comtext based analysis of executable archtiectures $$Agent based process madel interaction with combat SIM v
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2.5 Theoretical Framework
Figure 6 is designed to illustrate the theoretical observations that I drew from the

literature on Executable Architectures, in which Levis, Mittal, Pawlowski, Wagenhals,
Zeigler, and Zinn and others investigated the transformation of static DODAF

architectures into dynamic executable architectures.

Architecture
Elements

4 _,//?—““N

Target
Executable

Architectures

. M&ES
Modeling 2) Formalisms

Figure 6 - Building Theory

The figure suggests that specific components used in the Development of Executable
Architecture can be generalized into the following conceptual categories: DODAF into

Architecture Elements, IDEF, UML, SysML, BPMN generalized into Modeling

Languages, and Coloured Petri Nets and DEVS are generalized into Modeling and
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Simulation Formalisms. These 3 conceptual categories are the foundational building

blocks leading to the next level of theory.
In general, the research followed three steps to come up with use case specific
target implementations:
1. Static Models based on DODAF were developed using specific modeling
language implementations (UML, IDEF, etc.).
2. These static models were then converted into dynamic implementations based on
CP-net or DEVS (M&S Formalisms).

3. This resulted in a target Executable Architecture.

In the context of these four concept categories, the question then arose as to

whether there were other relationships.

2.6 Executable Architecture Concept Triangle
Figure 7, the Executable Architecture Concept Triangle (EACT), represents a

theoretical framework or conceptual guide for inquiry into the dimensions of executable
architectures. A theoretical framework provides a conceptual guide for choosing
concepts to be investigated and for suggesting research questions (Corbin & Strauss,
2008). It is “not as common in qualitative research, but in some instances can be
useful.... if the researcher is building upon a program of research or wants to develop
middle-range theory, a previously identified theoretical framework can provide insight,
direction and a useful list of initial concepts” (Corbin & Strauss, 2008).

Initial results of this research were presented in (Shuman, 2010). The research,
derived from observations of current approaches (Levis & Wagenhals, 2000; S Mittal,
2006; B. P. Zeigler & Mittal, 2005), hypothesized that three component categories are
needed to define a set of potential elements for an executable architecture. These

categories are architecture elements, modeling languages and modeling and simulation

formalisms. A theory of executable architectures must ensure that the architecture can be
described completely and consistently through all three components. All elements
captured in the Architecture Elements need to be part of the formalism and should be the

subject or object of activities modeled with the Modeling Language.



38

Architecture
Elements

Target

Executable
Architecture

Modeling M&S
Language Formalisms
Descriptions

Figure 7 - Simplified Executable Architecture Concept Triangle

These component categories are further described as follows:

Architecture Elements: An architecture framework (AF) defines the
architecture elements and their relationships to each other in the context of
various models or views (DOD, 2007a). Architecture Elements are the building
blocks of architecture, and they define the WHO, WHAT, WHERE, HOW, WHY
and WHEN parts of an architecture.

Modeling Languages: Modeling Languages describe the dynamic, relational and
conditional aspects of systems. They utilize graphical, symbolic & standard
notations, and provide rich descriptions & specificity.

Modeling & Simulation Formalisms: Modeling & Simulation Formalisms
provide standard mathematical notations for elements & relationships with respect
to Dynamic modeling. They provide high level, abstract descriptions. M&S
Formalisms are useful for Validation & Verification (V&V).

Target Executable Architecture: The Target Executable Architecture is the
target or resulting specification that is defined through the other three

components.
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In the process of reviewing the literature, it was observed that in the Architecture

Frameworks the interrogative elements Who, What, and Where are sufficient for static

modeling; however, When, How, and Why are insufficient for dynamic modeling (i.e.,
simulation). Sage and Rouse (2009) described these elements in terms of Information
and Knowledge Interrogatives. As discussed in Chapter 1, the inclusion of simulation
capability in an architecture framework would provide an order of magnitude greater
capability in model verification, validation, plausibility analysis, and performance
analysis to include timing, resource, and cost constraint analysis. In order to achieve
integrated simulation capability in the context of an Architecture Framework, the
simulation components must be designed into the static modeling framework in a
complementary way — in a way that includes those dynamic elements related to time,
process, and rules that are necessary to specify process dynamics.

[t became apparent that many deficiencies could be addressed through modeling
languages, and one way to address these deficiencies would be through meta-model
development such that modeling language elements could be included into a meta-model
based on a source Architecture Framework. Such a meta-model could theoretically
support simulation in the context of an architecture framework. To this effect, the idea
for an Executable Architecture Specification (EAS) meta-model based on Architecture
Elements & Modeling Language Descriptions emerged. Figure 8 illustrates the thought
process that led to the idea for the development of the EAS, shown at the center. An
additional aspect of the process would be to conduct a plausibility analysis of the EAS by
comparing elements and relationships in M&S Formalisms (CP-net & DEVS) to the
EAS.
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!

Architecture
Elements

Executable
Architecture

Specification

Modeling 7 M&S

Language Formalisms
Descriptions

Figure 8 - Idea for Executable Architecture Specification

The Executable Architecture Specification is a meta-model. A meta-model is a

model that defines the components of a conceptual model, process, or system (Booch, et

al., 1999). A meta-model is a special kind of model that specifies the abstract syntax of a

modeling language (meta-model, 2011).

The following relationships were explored in the context of the study (Figure 9):
Architecture Elements form the baseline for the EAS;

Architecture Elements utilize Modeling Languages;

Modeling Languages are used to build Architecture models or views;

Modeling Languages inform Executable Architecture Specifications;

M&S Formalisms validate Executable Architecture Specification (EAS);

EAS conforms to M&S Formalisms.

Italics and dashed lines represent potential relationships (these are outside of study

scope). These relationships support the development of the Executable Architecture

Specifications (EAS).
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Figure 9 - Relationships Explored

All these components & relationships working together I call the Executable
Architecture Concept Triangle (EACT). Figure 10 shows the Executable Architecture
Concept Triangle (EACT). It is a UML Class Diagram showing the primary components
of Executable Architecture and their relationships. In the center, the EAS is shown with
elements categorized according to information interrogatives (semantics), in relationship
to each other (Syntax). Both the EACT and the method for developing an EAS were

developed, shaped, and refined in the course of the dissertation research.
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This dissertation addresses the development of executable architectures in a way
that can provide a holistic treatment of the problem space: that can delineate more fully
what is missing and what is needed, through examination of the problem space
holistically, from the perspective of the key components in the Executable Architecture
Concept Triangle: Architecture Elements, Modeling Languages, and Modeling and

Simulation Formalisms, and the Executable Architecture Specification.

Executable Architecture Concept Triangle
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Figure 10 - Executable Architecture Concept Triangle



2.7 Transition from Theory to Method

Figure 11 illustrates the transition from theory to method. It shows three
examples of the twenty meta-models that were developed in the course of this research
through interpretation of source meta-models, one from each of the three EACT
component categories. Elements were color coded according to the interrogatives, and
parent-child relationships were established. Source models were analyzed according to
type and aligned into groups (process, state, timing, node). Then the groups of models
were synthesized into group composite models. The four group composite models were

then combined into one composite: the EAS, a composite of composites.
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Figure 11 - Transition from Theory to Method
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CHAPTER 3
RESEARCH METHODS (QUALITATIVE RESEARCH)

Many researchers believe that all inquiry starts out in a qualitative form (Lauer &

Asher, 1988), (Leedy & Ormrod, 2010): “When little information exists on a topic, when
variables are unknown, when a relevant theory base is inadequate or missing, a
qualitative study can help define what is important” (Leedy & Ormrod, 2010). A
qualitative study is useful when a study is exploratory, a concept or phenomenon is under
investigation, or a concept is immature due to lack of theory (Creswell, 2009). The
characteristics of a qualitative study include:

e Multiple sources of data,

¢ Emergent design (plan of research cannot be tightly prescribed),

e Inductive data analysis (bottom up),

e Interpretive study,

e Holistic: multiple perspectives, complex picture.
This research study includes all of the above characteristics: multiple sources of data
such as source meta-model information from Architecture, Modeling Languages and
Modeling and Simulation Formalisms; emergent design, in that the method evolved from
conception to implementation; inductive data analysis, in that analysis started at the
elemental level and proceeded to higher levels of organization; interpretive study, in that,
the organization and categorization of elements was subject to interpretation and some
ambiguity, as inherent in ontological organizational schemes; holistic, in that the
analytical method sought to explore the problem space from more than one perspective to

create a unified, derived result set, which is the Executable Architecture Specification.

3.1 Type of Design and Underlying Assumptions
The qualitative research design in this dissertation study has been based on data

collection and coding techniques associated with elements of Grounded Theory (Glaser
& Strauss, 1967). Grounded Theory is rooted in the concept that human dynamics and
symbolism are intertwined. To provide a philosophical perspective on Grounded Theory,

classically, its domain of inquiry is socio-psychological, which tends to be fairly
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subjective, and anti-positivistic. To define: “anti-positivism: knowledge is soft, more
subjective, spiritual, or even transcendental — based on experience, insight, and
essentially of a personal nature.”(Flood & Carson, 1993); “positivism: knowledge is
hard, real and capable of being transmitted in a tangible form” (Flood & Carson, 1993).
On a research scale between positivism and anti-positivism, this study leans significantly
to the positivist side, yet as a qualitative exploratory study, interpretations must be
filtered through the interpretive lens of the author’s domain experience, which is
necessarily subjective, or anti-positivist. In this study, the author has leveraged elements
of Grounded Theory but has been cognizant of differences. To analyze the potential
elements of executable architectures, large volumes of raw data needed to be collected
and analyzed in a systematic way for patterns and relationships to emerge; hence, the data
collection and coding methods utilized in grounded theory have been very useful. The
focus of this study has been modeling language meta-models, which tend to be objective
or positivistic yet still vulnerable to the impreciseness of symbolic — linguistic, verbal

representation.

3.2 Grounded Theory Background
Grounded theory is a qualitative analysis methodology that gets its name from the

concept that theory is induced from the data rather than preceding it, an inductive rather
than deductive approach (Corbin & Strauss, 2008). It is rooted in Symbolic
Interactionism (Cutcliffe, 2000). “Symbolic Interactionists stress that people construct
their realities from the symbols around them through interaction, therefore individuals are
active participants in creating meaning in a situation” (Cutcliffe, 2000). Symbolic
Interactionism is rooted in Pragmatism, the maxim of which is “Consider what effects,

which might conceivably have practical bearings, we conceive the object of our

conception to have. Then, our conception of those effects is the whole of our conception
of the object” (Peirce, 1998).

Grounded theorists search for patterns and processes to understand how a group
of people define, via their social interactions, their reality (Cutcliffe, 2000). There are

three primary branches of Grounded Theory, as follows (Cutcliffe, 2000):
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o The Systematic Approach — (Corbin & Strauss, 2008) prescribes procedures in the

form of coding categories and subcategories and development of visual diagrams
to present the theory, concluding with explanations of relationships.

o The Emerging Approach - (Glaser, 1991) focuses on connecting categories and

the identification of emerging theories, and does not force theory into categories.

o The Constructivist Approach - (Charmaz, 2000)is more subjective, with the
emphasis on feelings, assumptions, and meaning making by study participants.
The approach taken in this research is consistent with the Systematic Approach, in that it
is heavily reliant on data coding, category and subcategory allocation of data, and visual
methods and mappings, for the development of theory and explanations.
There are a number of points of debate related to grounded theory. These
criticisms concern sampling, literature review, creativity and reflexivity, and precision in

method (Cutcliffe, 2000).

3.2.1  Sampling (theoretical versus purposeful)
There is some debate concerning the nature of sampling, whether it should be

driven by emerging theory, such that data sources are chosen based on the emerging
hypothesis and sample size is based on completeness of findings with respect to given
categories of investigation (saturation); or whether the data sampling should be based on
purposeful strategies (purposeful sampling). Some advocate for a compromise position
in which the initial sampling is purposeful (to delimit), then moving to theoretical
sampling as patterns emerge. This last method is closest to what has been used in this
study (Cutcliffe, 2000).

3.2.2  Creativity and Reflexivity (Interaction between the researcher and the world being
studied)

Some acknowledge that the experience the researcher brings to the field of inquiry
may be enriching to the end result, while others advocate for a more neutral mindset in
the approach. In other words, a certain degree of subjectivity on the part of the researcher
is unavoidable, and may increase creativity. In the case of this study, the experience of
the author in the field has been found to be essential to the navigation of the data sets in

question (Cutcliffe, 2000).
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3.2.3  Literature Review (beginning or end)

Some authors advocate for minimizing the literature review at the beginning, to
foster the possibility that emergent theory will be grounded in the data. Others argue that
literature review should precede data collection and analysis because the literature review
can help identify the current gaps in knowledge or help provide a rationale for the

proposed research (Cutcliffe, 2000).

3.2.4  Lack of Precision
One further criticism centers on “method slurring” or mixing of methods, such as

mixing with phenomenology, which also uses coding. There is another criticism directed
toward deficiencies of method, such as the absence of theoretical coding. Conversely,
there are those who advocate for method evolution, suggesting advantages such as a more
thorough, multi-dimensional analysis of phenomena. Cutcliffe (2000) cites Stern
(1994)), who advocates for clear, purposeful intent with respect to method mixing. In
other words, regardless of the methods chosen, there should be a clear and conscious

recognition and articulation of the nature of the methodology, whether mixed or classical.

3.2.5  Conclusions with respect to Grounded Theory Criticisms
In this study, sampling has been generally purposeful but has responded to

theoretical sampling concerns as patterns emerged. Sample size has been based on
completeness of findings with respect to given categories of investigation (saturation).
Again, the experience of the author in the field has been crucial to the navigation of the
data sets in question, and the literature reviews have preceded data collection. This has
been the basis for the determination by the author that there is a need for a common
theoretical framework and method, for development of that theoretical framework and
method, and has been the basis for the rational for this research. The method chosen
relied on Grounded Theory coding methods for traceability; but the method departed
from Grounded Theory in that it was not focused heavily on emergent symbolic meaning.
Furthermore, the object of this study is well defined, finite, and structurally known to the
author, setting the stage for the way Grounded Theory is used to populate the tool of

choice.
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3.3 Data Collection, Coding and Analysis, and Theory Development
Data collection and analysis was facilitated using data coding techniques

described in grounded theory coding, which is a qualitative analysis methodology,
developed by Corbin and Strauss (2008). Inductive knowledge was produced by
applying grounded theory to the elements of the components of the EACT (i.e.,
Architecture Frameworks, Modeling Languages, and Modeling and Simulation
Formalisms), which was then synthesized resulting in the final EAS model that comprises
all elements and relationships. 1t should be noted that systematic data collection and
analysis have been critical to this study for elemental traceability from authoritative data
source through each derived use in model synthesis.

A meta-model describes the constituent elements of a model and the relationships
between these elements in terms of semantics and syntax. The components of the
concept triangle are well described through authoritative meta-model descriptions. This
study has used the UPDM meta-model for architecture models (OMG, 2009a). Language
meta-models for UML and SysML and BPMN are available from OMG (OMG, 2006,
2009, 2009). DEVS (Zeigler, et al., 2000) and CP-net (Murata, 1989) are well
documented through formal descriptions. The objective of data collection has been to
organize elements and to learn as much as possible about them, finding any
disconfirming evidence that may suggest revisions in the categories identified or in
interrelationships among them. This study will leverage a constant comparative method,
moving back and forth between data collection and data analysis, with data analysis
driving later data collection. Theory development has been based on exploring data
categories and relationships. Data collection and analysis proceeds through the
following steps, as illustrated in Figure 12:

1) Collect Data.

2) Scrutinize data & search for patterns.

3) Code:
a. Open: Develop Categories or Themes. (Categories, Properties, Attributes)
b. Axial: Place data into categories or themes. (Binning)
c. Selective: Observe relationships revealed and how they combine to form a

story line to describe phenomenon. (Reduction)
4) Compare: Repeat steps 1, 2 and 3 as additional data are collected.
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5) Develop theory: Combine storylines to develop a theory -- in the form of a
verbal statement, visual model, or series of hypotheses -- to explain the
phenomenon in question (Corbin & Strauss, 2008).

-»- .»%%%%q "o m

Axial

Selectw c

__Feedback

Figure 12 - Data Collection and Analysis

Figure 12 shows a stylized depiction of data collection and analysis. It starts on
the left side with loosely organized data; proceeds through Open Coding, which is
categorization of the data; to Axial Coding, which entails organization of coded data; to
Selective Coding, in which relationships are established and duplications are eliminated.
The method involves constant comparisons, repeating steps 1, 2 and 3 as additional data
are collected. Theory is developed in the form of a verbal statement, visual model, or
series of hypotheses -- to explain the phenomenon in question (Corbin & Strauss, 2008).
The result is theory development, in which there is an emerging picture of categories,

meaning and relationships.

3.4 Data Collection and Analysis: Sources & Tools
Data was collected for each of the three main components of the EACT:

Architecture Elements, Modeling Language Descriptions, and M&S Formalisms. In this
research the data consists of elements (semantics) & their relationships (syntax) in meta-
models and formalisms. For Architecture Elements, data was collected from Process
Modeling Operational Views (OV) from Unified Profile for DODAF and MODAF
(UPDM). The source was the Object Management Group (OMG). For Modeling

Language Models, data was collected from process and structure models from IDEF,
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UML, SysML and BPMN. The source was OMG and Integrated Definition Methods
(IDEF). For Formalisms, data was collected from DEVS and CP-net specifications from
Zeigler, Jensen. The M&S formalism focus here is Discrete Event Simulation, not * not
Differential Equation System Specifications (DESS).
Data source selection was purposeful. Data elements and relationships were
collected from the following meta-model sources:
¢ Architecture views
o Focus: UPDM meta-models, Operational View (OV) Process Models.
o Source: Unified Profile for DODAF and MODAF (OMG, 2009a).
o Reasons chosen: representative sample, based on DODAF and MODAF &
similar to DNDAF and NAF; DODAF is used extensively across DOD.
¢ Modeling language models
o Focus: IDEF, UML, SysML and BPMN.
o Source: OMG (OMG, 2006, 2009, 2009) , & IDEF (IDEF, 2010) (DeMarco,
1979) descriptions.
o Reason chosen: Broad usage in modeling community, referenced extensively
in literature.
e MA&S Formalisms
o Focus: DEVS (Zeigler, et al., 2000) and CP-net.
o Source: “Theory of Modeling and Simulation™ (Zeigler, et al., 2000) and
“Coloured Petri nets basic concepts, analysis methods, and practical use”
(Jensen, 1992).
o Reason chosen: Broad usage, broadly representative.
In order to conduct Grounded Theory-based coding, several necessary principles

became apparent: element traceability from source, identification and building of

element relationships (i.e., generalization, composition, and association relationships),

and visualization of elements. In order to conduct Grounded Theory-based coding on the

large volume of data elements that comprise the EACT, it became apparent that a tool
would be needed that could also provide an integrated capability, enabling reproducibility

of results, and facilitating ease and speed of coding.
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Several tools were considered for data coding: MAXQDA, ATLASti5 and
NVivo7 (Lewins & Silver, 2007) provide a good synopsis of tools that are useful for data
coding, analysis and theory building. All these tools were designed to support grounded
theory coding. MAXQDA was chosen for two principle reasons: it provides good
support for code organization in terms of generalization, composition, and association
relationships; secondly it provides an integrated visualization tool. Theoretical and tool
feature considerations indicated MAXQDA (MAXDQAT10, 2011) for data collection and
visual coding.

Each authoritative meta-model data source was imported into the document
section of MAXQDA; subsequently, data elements for each of the process views were
harvested into the coding portion of the database, using in-vivo coding. Meta-data
elementals were collected from authoritative data sources. For example, UPDM 1.5 was
documented by the OMG (OMG, 2009a).

Figure 13 is a snapshot from MAXQDA that shows the 3 data collection
windows: the Document Browser window (right side), the Code System window

(lower left), and the Document System window (top left).
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The Document System window provides a means to organize imported
documents. It is a catalogue of source material that is subdivided into Text Groups. A
Text Group is a container or folder for grouping text information relevant to that group.
The Text Group is populated by files relevant to that Text Group. MAXQDA
accommodates .pdf, .rtf and .doc files.

The Document Browser provides a way to review documents and import key text
and pictures into the Code System through in-vivo data coding.

The Code System window is populated through in-vivo coding. Codes may then
be organized using hierarchical arrangements to support composition and generalization
relationships. Code memos can be associated with each code, which is useful for
providing amplifying information (e.g., definitions and snapshots of meta-models).

MAXQDA provides visual tools, one of which is called MAXMAPS which
supports insertion and traceability of elements (from the Code System to MAXMAPS),
insertion of sub-codes, depiction of code colors (for visual categorization),
synchronization between code objects in the MAXMAPS window and the Code System
(to include traceability back to the supporting Document in the Document Browser), and
the development of visual links between MAXMAPS objects.

Figure 14 shows a sample MAXMAPS window. It has three principle panes. The
left pane shows the names of visual maps in the system. The center frame shows the map
itself, in the case of Figure 14, the OV-5 meta-model. The right pane shows diagram
layers that can be associated with particular objects in the map. Layering provides the
ability to selectively view objects associated with different layers. This feature is
particularly useful in a complicated model, where simplification may be necessary as part

of model analysis. Each map is comprised of objects and links.
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3.5 Delimitations and Study Boundaries
This research study is focused on those architecture elements that are sufficient to

create executable process models, in the context of architecture. Based on the conducted
literature research, executable process modeling, process, state, and causality are
evaluated over time. Examination of the relationships between static architecture models,
having been expressed using a modeling language, has been the focus for this
investigation. This examination has included behavior or process, node (producing
activity), resources, state, timing, control logic, rules or behavior modifiers, information
exchanges, and relational elements.

As a further study delimitation, it is useful to winnow out certain classes of
models. To this end, (Fishwick, 1995) defined a taxonomy for Modeling that is useful for
eliminating certain classes of models. This taxonomy is divided into the following
categories (each of which could include static, dynamic, deterministic, and stochastic
sub-categories):

e Conceptual Modeling,
e Declarative Modeling,

¢ Functional Modeling,
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e Constraint-oriented Modeling,
e Spatial modeling.

According to Fishwick (1995), conceptual models embody entities and
relationships where entities have not been clearly identified in terms of state, event, and
function. A declarative model is comprised of states and events. This type of modeling
is good for modeling a system that has discrete states or events or where there are phases
of a process. Functional models are graphs that contain two key components: functions
and variables. Fishwick recommended the functional approach if the modeling problem
suggests description of the system in terms of objects with functions. Functional or
procedural modeling relies on functional elements as the building blocks for the
development of a dynamic model.

This research has been limited to executable process modeling and to the model

classifications of conceptual, declarative and functional categories. Constraint-oriented

and spatial modeling are outside of the scope of this investigation. This delimitation
reduces the scope of this study and is consistent with observations of the literature with
respect to Executable Architectures. Previous efforts have focused their studies on these
modeling areas but not explicitly by reference to Fishwick’s taxonomy (Mittal, 2006;
Mittal, et al., 2006; Pawlowski II1, et al., 2004; Risco-Martin, et al., 2009; Wagenhals, et
al., 2002; Zeigler & Mittal, 2005).

3.6 EACT Process Flow Chart
Figure 15, the EACT Process Flow Chart, shows the general pattern that was

followed for data collection and analysis. The EACT Process Flow Chart is based on the
EACT, which is shown as an insert, in the upper right of the figure. Data were collected
and analyzed for each EACT component, using MAXQDA. Meta-models were coded
using Open, Axial, and Selective Coding. First meta-models were coded for Architecture
Elements, then for Modeling Languages, then for Modeling and Simulation. Each of the
steps within the larger rectangles represents a stage of coding and analysis. The large
flow chart boxes are numbered showing the sequence of steps in data collection and

coding to build the EAS:
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I.  Architecture Elements,
II. Modeling Language Descriptions,
[II. M&S Formalisms,
IV. Executable Architecture Specification (EAS).
Steps I-111 contributed elements that were later selectively coded to build the EAS.
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Figure 15 - EACT Process Flow Chart

3.7 Data Collection and Analysis of Architecture Elements
Figure 16 provides a more detailed view of the coding process with MAXQDA

for Architecture Elements (light blue Architecture Elements box from Figure 15). A
table illustrating the first 3 steps of UPDM model identification and selection is shown on
the upper right. The last three steps appear along the lower half of Figure 16.
Step 1: Identify the target architecture framework set (i.e., UPDM) (Collect Data).
Step 2: Classify the Architecture Framework models according to types (Open
Coding).



56

Step 3: Delimit the target architecture set into relevant process models (Selective
Coding).

Step 4: Collect data using in-vivo coding in MAXQDA (Collect Data).

Step S: Identify the element categories in MAXQDA (i.e., interrogatives,
generalization and composition relationships, etc.) (Open Coding).

Step 6: Apply categories and attributes to the model elemental set (Axial Coding)
and establish relationships (Selective Coding), using MAXQDA.
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3.8 Validity

The research project addressed both internal and external validity concerns.

Internal validity means that there are sufficient controls to ensure that the conclusions

drawn are warranted (Leedy & Ormrod, 2010). External validity touches on our ability to

make generalizations about the world beyond the specifics of this study (Leedy &
Ormrod, 2010).

To ensure internal validity in this study, it has been the intent of the author to take

all precautions to ensure quality of process and result. The following validation

enhancing and mitigating strategies were pursued:

Data Triangulation supports internal validity — Collection of related data from
multiple sources should lead to data convergence, thereby substantiating the
conceptual framework and the data focus themselves (Leedy & Ormrod, 2010).
In this study, data was collected in accordance with the Executable Architecture
Concept Triangle, from the UPDM Architecture Framework, from a variety of
different Modeling Languages and from two representative and broadly used
Modeling and Simulation formalisms, in order to drive a convergence from
multiple sources towards the Executable Architecture Specification.

Thick description supports internal validity — The concept suggests an
approach where the situation is described in sufficiently rich detail that the readers
are able to form their own assessment of the data presented (Leedy & Ormrod,
2010). The detail provided in the data collection and analysis should provide
enough detail for the informed readers to form their own opinions.

Feedback from others supports internal validity — Here, the researcher has
sought the opinion of dissertation committee and other domain experts. (Leedy &
Ormrod, 2010). These persons have long standing expertise in modeling and
simulation, and are themselves published authors in the field of modeling and
simulation, to include specific expertise in DODAF, UPDM, UML, SysML and
BPMN.

Representative Sample supports external validity — The choice of UPDM,
which is an offshoot of DODAF and MODAF, is suggestive of the

generalizability to other Architecture Frameworks. The choice of a variety of
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modeling languages, from UML to BPMN, suggests that the method is

generalizable to other models, and the choice of DEVS and CP-net, each with a

slightly different perspective on modeling, yet representative of discrete event

simulation, suggests generalizability to other M&S Formalisms.

In summary, the method articulated in this chapter is qualitative and exploratory.
The research design in this dissertation study is based on data collection and coding
techniques associated with elements of Grounded Theory. The method will step through
data collection, coding, analysis and theory development leveraging MAXQDA, which is
a tool that conforms to the coding and visual representation needs of this dissertation.
The method will leverage the Executable Architecture Concept Triangle (EACT), and
each of the source components of the EACT: Architecture Elements, Modeling
Languages and Modeling and Simulation Formalisms to develop theory related to

Executable Architecture Specification development.
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CHAPTER 4
DATA COLLECTION AND ANALYSIS

The data collection and analysis process will be described at two levels: first, at
the higher level, which provides an overview of the entire process; secondly, at the lower
level, affording a more detailed discussion of the various parts of the process, and how
they link together to form the whole. The higher level can be described as more abstract;

the lower level as more concrete.

4.1 Data Analysis and Findings High Level
Figure 17 is a graph that depicts the major steps in the project associated with the

data collection and analysis of executable architecture elements. This section describes at
a high level the method used for investigation of both the semantics and syntax of

executable architectures.

Figure 17 - Data Collection and Analysis — High level

Step A: Selection of Baseline Models and Data Sets: In step A, the baseline
models and target data sets were selected. The starting point was selection of a bounding
and scoping architecture framework, as a point of departure. Unified Profile for DODAF
and MODAF (UPDM) is a hybrid architecture framework that provides excellent meta-



60

models for data collection and analysis, specifically UPDM 1.5 (OMG, 2009a). This
investigation leveraged and explored a focused set of UPDM operational process related
views (e.g., OV-2, OV-5, etc.), related modeling languages (i.e., IDEF 0, UML, SysML
and BPMN) and specific process-oriented model subsets (i.e., SysML Activity Diagram,
BPMN Process Model, etc.) within those languages. The motivation for selection of
these models is both extensive documented use in the literature and, in accordance with
the experience of the author, broad use in the modeling and architecture community.
Selected views from UPDM and modeling languages were analyzed in terms of both their
elemental meaning, and their relationships to other elementals. Lastly, two well
established and representative modeling and simulation formalisms (CP-net and DEVS)
were chosen as a basis for comparison and validation purposes. Each of these formalisms
is discussed in the literature review. Both are broadly discussed in the literature and have
broad acceptance and usage in the modeling and simulation community. Each of these
formalisms was explored through their respective descriptive meta-models.

Step B Open Coding: In Step B Open Coding was utilized, which was the
identification of systems descriptive attributes. Sage and Rouse introduced six
interrogatives into information and knowledge management, distinguishing between
those that relate to information and those that relate to knowledge: who, what, where, and
when refer to information while how and why deal with knowledge (Sage & Rouse,
2009). The six interrogatives are fundamental to defining knowledge management
attributes, and in this project were useful in the element comparison phase (described
later in Chapter 4). However, the interrogative set was subsequently expanded to 9
categories to accommodate some additional elemental types that did not fit nicely into the
other categories. The specifics and motivation for this expansion are explained later in
Chapter 4.

The following descriptive attributes were established:

e Interrogative: (i.e., who, what, where, when, why, how, etc.);

e Color: in parallel to interrogative attribute for visual reference;

e Model Origin: for tracking model source;

¢ Operational or System Element: to distinguish between elements coming from

UPDM Operational or Systems models;
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e Model Group: to distinguish between behavioral or structural models;
e Parent Code: to track parent child relationships for ontology building.

Step C Axial Coding: In step C, Axial Coding was utilized, which is essentially
placing data into categories by assigning attributes. In this step elements were identified
from specific models (e.g., UPDM OV-5, OV-2, UML Activity Diagram, Sequence
Diagram, etc.), and tagged with the attributes identified in Step B. MAXQDA supports
in-vivo coding, category development, object color coding and ontological relationships,
and code mapping. For this reason it was chosen to support the process.

Step D Selective Coding: In Step D Selective Coding was utilized, which is the
observation of relationships and how they combine to form a story line to describe
phenomena, described simply as alignment and reduction. In Step D elements were
organized, compared and aggregated through the use of visual maps of the elements,
organizational data views, and queries of the elements based on attributes. A detailed
data roadmap was then developed for guiding element organization, aggregation and
comparison to facilitate analysis of the data elements. This step supported categorization
by identification of identical elements, elements of the same equivalence class and
identification of individual elements and their extensions. Elements were then analyzed
in terms of interrogative attributes - first by model of origin, then with respect to other
interrogative attributes. Elements were next placed into group meta-model visual maps,
which eventually results in developing increasingly holistic composite UPDM-Language
meta-model maps. Redundant or duplicative elements were then eliminated through
visual inspection and through comparative queries of the elements, based on attributes.
This led to development of a composite UPDM-Language meta-model along with a
UPDM-composite meta-model, the comparison of which, revealed both the elements that
are shared in common, as well as those elements from the language meta-model that are
augments. As a result, the governing concepts of the Executable Architecture
Specification, which are the executable architecture elemental meanings (semantics) and
relationships (syntax), were derived and identified.

Figure 18 below was presented in Chapter 3 and is provided here again to

reinforce the explanation of steps A-D above.
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Figure 18 above shows a stylized depiction of data collection and analysis. It
starts on the left side with the loosely organized data or elements (from source
documents); proceeds through Open Coding, which is category or attribute development;
to Axial Coding, which entails organization of elements into categories through
application of attributes; to Selective Coding, which is alignment and reduction of
elements. The result is theory development, in which there is an emerging picture of
categories, meaning and relationships. The arrows indicate that data collection can, and
often does drive further data collection and analysis. In other words, once the pattern
emerges, the Selectively Coded data can then be re-analyzed through the same three
steps, Open, Axial and Selective Coding, leading to further refinements of the data.
Alternatively more data can be brought into the model to be analyzed through the same

process, confirming the pattern.

4.2 Data Analysis and Findings: Detail Level
The preceding section provided a high level view of findings. The following

section provides a low level, close-up view: a more detailed explanation of the data

collection and analysis process and the findings.

4.2.1  Identification of Descriptive Categories (Open Coding)
Architecture Elements are the building blocks of architecture, and they define the

who, what, where, how, why and when parts of an architecture. The Information
Interrogatives are as follows: What (i.e., entities), When (i.e., time), Where (i.e.,

location) and Who (i.e., people). The knowledge interrogatives are as follows: How
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(i.e., behavior), Why (i.e., purpose, motivation, or rule) (Sage & Rouse, 2009).
Additionally, Garcia (2011) showed in his dissertation that the How and the Why belong
to the context. In general, the Who, What, and Where address the static, structural
elements of architecture. The How, Why and When are process oriented, and tend to be
the dynamic elements in architecture. These six categories make a good starting place for
investigating the elementals needed in the development of executable architectures
because they address most of the key ontological perspectives. The data collection and
analysis was started with the six aforementioned interrogatives as the basis for element
classification; however, this list was almost immediately expanded because it became
apparent that three additional categories were needed: Who / What / How (Passive) (i.e.,
State, or condition), Relationship (i.e., linking objects), and Hybrid (i.e., objects that have
multiple category characteristics). The Who / What / How (Passive), hereafter simply
referred to as State, is a way of expressing State in terms of interrogatives; it is framed in
this way because a person or resource, a thing or product, and an activity can all have
State. The relationships category was added to account for linking objects such as the
IDEFO Input, Control, Output, Mechanism (ICOM) arrow. IDEFO0 is a key Modeling
Language process model. Similarly, the Activity Edge and Control Flow are linking
elements in the UML Activity Diagram, with is an Object Oriented process model.

The need for a relationship category became apparent when the color coded
elements were placed in an ontological arrangement in MAXQDA. State was understood
up front, but it did not fit nicely into the other ontological categories. Lastly there were
objects that did not fit well into any of the above; these were the hybrid objects which
have multiple interrogative characteristics. For example, the Capability element is
suggestive of behavior (how), function (how), time (when), Rule (why), and Node
(where).

Finding: The data collection and analysis was started with the six interrogatives
as the basis for element classification, however, this list was almost immediately
expanded because it became apparent that three additional categories were needed: State,
Relationship, and Hybrid.

Table 10 provides a list of all 9 interrogative categories with descriptions. Each

of the 9 interrogatives was associated with a color (as shown in Table 10) to support the
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grouping of objects based on visual observation of element types. The terms

“interrogative” and the associated color codes have been used interchangeably in this

document. There are, of course, other interrogatives, such as How Many, How Much

(COST), but it is arguable that these are attributes rather than fundamental categories.

For this reason they are not used in this study.

From a theoretical point of view, what was needed was an open tool that supports

in-vivo coding, category development, object color coding, relationship building, and

visual mapping; for this reason MAXQDA was chosen to facilitate data collection and

analysis.
Table 10 - Color and Interrogative Classifications
Number | Color Interrogative Meaning Description
Classification
1 Resource
Who (active) Identifier Person / or acting agent
Thing produced by or

2 Product / resulting from a process (e.g.,
What Information information)

3 Who/What/How

Bro (passive) State / Being Condition

4 A guE Where Node - Location | Operational Node

5 How Behavior Process or Activity

6 Modifier to Activity (e.g.,
Why Rule context, rule, etc.)

. Time descriptive or control
When Timing element

8 Yellow Relationship Relationship Linking or relational Element

Grouping of interrogative
9 Purple Hybrid Hybrid classifications
4.2.2  Selection of Baseline Architecture Framework

This section addresses the selection of an Architecture Framework for data
analysis. DODAF was described in detail in the literature review. DODAF 2.0 (DOD,
2009) is the most recent version of DODAF. The main difference between DODAF 2.0
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and DODAF 1.5 is the point of view with respect to data and views. In DODAF 1.5,
views drive data. In DODAF 2.0 data drives views. Because, the method articulated in
this dissertation is holistic, either DODAF framework could have been chosen. However,
UPDM was selected because it provides a more mature meta-model. It is likely that this
same method could be applied to DODAF 2.0 to facilitate its development in the
direction of executable architecture because it is similar to UPDM.

Figure 19 shows a sample UPDM meta-model for the OV-5 Activity Model
(OMG, 2009a), in which the meta-models for each view were inspected for elements and
relationships between them. The UPDM meta-model was chosen because it contains
DODAF 1.5 elements and because it provides a clear UML-based class diagram for each
view, and it clearly delineates views and provides clear definitions of the elements that
comprise those views.

UPDM use established executable architecture static problem boundaries, context
and perspective. It also provided a basis for comparison with Modeling Languages. As
stated in Chapter 3, research has been limited to executable process modeling, and to

conceptual, declarative, and functional model classifications.
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423 UPDM Target Set
After selection of the Architecture Framework, the first task was to select the

target architecture views for the study from the larger set. Architecture Frameworks
provide standardized modeling constructs, bringing under one umbrella many different
kinds of models. Different model views offer unique perspectives into a given system
problem space, but not all views within an Architecture Framework are directly relevant
to process focused executable architectures. UPDM, based on DODAF and MODAF,
describes 45 views, divided into 7 view categories (All Views, Acquisition Views,
Strategic Views, Operational Views, Standards Views, System Views, and Service
Views).

As introduced earlier, Fishwick (1995) provides a taxonomy for models that
classifies them as conceptual, declarative, functional, constraint-oriented and spatial
models. Conceptual models emphasize entities and relationships; declarative modeling is
focused on state and state change perspective. Functional modeling depends on
functional elements as constituent elements, useful for the development of a dynamic
model. This perspective is interesting but not very helpful here because all UPDM
Architecture models fall into declarative, functional and, to a lesser extent, conceptual
categories; constraint-oriented and spatial categories are out of scope. In the literature on
executable architectures, we see that Wagenhals et al. (Wagenhals, et al., 2002), and
Risco-Martin et al. (Risco-Martin, et al., 2009), and Levis (Levis & Wagenhals, 2000),
all focus on process models of the of the Declarative, Functional and Conceptual Types,
in development of Executable Architectures.

The focus of this study is Operational Process modeling. This eliminates system
function views, planning views, capability views and technical views, and descriptive
views, all shown as sub-types, in Table 11 (Planning, Descriptive, Process, Structural,
Function, Capability and Technical).

The remaining operational views are either Process, or structural by subtype.
Within the Operational views, the OV-1 was eliminated because it does not add any
elements to the other OVs. The OV-4 (Actual) was eliminated as a duplicate of the
OV-4. This left the OV-2, OV-3, OV-4, OV-5, OV-6a, OV-6b, and OV-6¢ and OV-7, all
shown in Table 12.
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LY £ < D F G H
Functional or

# | UPDM 15View | View Type |Name Declarative or Sub-type Assessment
; Conceptual
21 1 1Acv-i Acquisition  |Acquisition Organizational Perspective Conceptual Planning NA
3} 2 lAcY-2 Acquisition  |Acquisiion Timeline Conceptual Planning NA
4] 3 1AV All View Overview & Summary Informaton Conceptual Planning NA
5§ 4 1AV-2 All View  [Definiions and Terms Conceptual Descriptive NA
¢l 5 JAV3 All View Measurable properties in physical wortd Conceptual Descnptive NA
7| 6 1OV Operationai  [Operational Concepts Conceptual Process yes
gt 7
s{ 8
w] 9
11| 10 jOV {Actual) Operational jOrganizatonal Relationships Funchonal Structurat no
7 A
wnf 12
] 13 (@
=1 14
) 15
17 16 {SOV-1 Service Service Hierarchy Functional System Functon no
we} 17 {SOV-2 Service Service Interface Speciiication Functionat System Function no
9 18 {SOV-3 Service [Capabtiity to Service Mapping Functionat System Funcion no
»] 19 |SOV-4a Service Service Constraints Functional System Funchon no
~1} 20 {SOV-4B Service Service State Model Functional System Function no
»f 21 |SOV-S Service Service Funchonality View Functionat System Function no
) 22 {$tVA Strategic |Strategic Vision Functicnal System Functon no
24§ 23 [StV-2 Strateqic  |Capabitites Hierarchy Functicnal Capability no
=] 24 1StV Strategic  [Capabilihes Planning Timeline Functional Capability no
2] 25 |StV4 Strategic  |Capabtilities Dependencies Functonal Capability no
2] 26 |StVS Strategic  |Capabiliies to Organtzational Mapping Functonal Capability no
%] 27 |StV$ Strategic  |Capabilihy to Operational Mapping Functional Capability no
2a{ 28 |SV-1 System System to System Node Connechivity Diagram Functional Structural no
0] 29 |SV.-2 System Sysiems Communications Descnption Conceptual System Funciion no
211 30 |SV-3 System Resource interaction Matnx Funchonal System Function no
2] 31 |Sv4 System Functonality Description (Data Flow Diagram) Functional System Function no
»1] 32 |8V-8a System Operational Activity to Systems Functicn Mainx Funchonal System Functon no
<] 33 |SV-5b Systemn Operational Activity to Systems Services Matrix Funchonal System Functon no
sy 34 |SV-6 System System Data Exchange Matrix Functional System Functon no
] 35 |8V-7 System Resource Performance Parameters Mainx Funchonal System Function no
27| 36 |SV-8 System Capability Configuration Change Conceptual Capability na
33 37 |SV-9 System Technology & Skills Forecast Conceptual Planning no
2] 38 [SV-10a System System Rules Model Functonal System Funchion ne
w© 39 |SV-10b System Systems and Services State Transition Description Declarative System Function no
417 40 |{8V-10c System Systems and Services Event-Trace Description Functional System Funchon no
421 41 {SY-11 System Physical Data Model Declarative System Function no
o 42 |SV-12 System Service Provision View Funchonal System Function no
44§ 43 {TV-1 Techrucal  |Technical Standards Profile Conceptual Technical
4] 44 {TV-2 Technical  |Technical Standards Forecast Conceptual Technical
s 45 |TV3 Techmicel  |Standards Policy Conceptual Technical

Excluded Models
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Table 12 - UPDM Target Set

UPDM Baseline Process Views
Classification | Model | Name
OV-2 Operational Node Connectivity
Oov-4 Operational Relationships Diagram
OV-7 Logical Data Model
' OV-3 Information Exchange Matrix
i OV-5 Activity Diagram
| OV-6a | Operational Rules Diagram
OV-6b | Operational State Transition
OV-6¢ | Operational Event Trace Diagram

4.2.4  Modeling Languages
Table 13 shows four prominent modeling languages aligned to the target UPDM

views; this alignment indicates similar characteristics. The Modeling Languages are
Structured (IDEF), UML, SysML and BPMN. Process Models from the four Modeling
Languages have been coded for analysis as part of this study. The motivation for this
choice is that these process modeling Languages are widely used in the literature and,
based on the experience of the author, are broadly used in practice.

An earlier peer reviewed publication (Shuman, 2010) described the alignment of
these modeling languages to DODAF views. Table 13 shows models from DODAF and
the four Modeling Languages categorized according to the where, how, who (passive)
when and categories. This means that these model types predominately address the
interrogative in question; for example, the UML Activity Diagram is a process model that
is predominately oriented towards addressing process or behavior. For this reason it is
aligned to the How interrogative group. This alignment to the how interrogative type is
not to suggest that there are not elements of other interrogative types within this model,

as will be demonstrated later as the description of data collection proceeds.
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Table 13 - UPDM Views and Modeling Language Alignment

Interrogative Cotor UPDM Baseline Process Views Structured UML SysML BPMN
Classificaiton Modeling

Class Composite Structure Block

Class Composite Structure Block

Actiuty Diagram Actity Diagram |Process

Activty Diagram Activity Diagram |Process
@® © i Activity Diagram Activty Diagram |Process

Operational State Transition

- State Machine
Descnptgonr .

Who (passive) § State OVv-6bh

Sequence Diagram Timing
Communications Diagram

Class Composite Structure Class Block

When Timing OV-6c Operational Event Trace Diagram

4.3 Code Organization
A way was needed to organize code elements in term of categories, composition

and generalization associations MAXQDA supports this kind of information
management scheme. The top information categories were set up in accordance with the
vertex components of the Executable Architecture Concept Triangle. Architecture
Elements, Modeling Language Descriptions, and Executable Architecture Formalisms.
Within each category, composition relationships were established for the sub-categories,
i.e., models types, models and Modeling and Simulation Formalisms. Within each model
category composition and generalization relationships were established. This information
organization construct provided a way to bin the elements. Figure 20 shows the 1% tier
information layers (in MAXQDA) and their relationships to the Executable Architecture

Concept Triangle (Figure 10), which served as a framing guide.
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The complete organizational structure was set up as follows, from 1% tier through
4" tier:

a) Architecture Elements (1% tier)
a. Architecture Framework (UPDM) (2™ tier)
i. Behavior category (3™ tier):
1. Models (4th tier): OV-1, OV-2, OV-5, OV-6a, OV-6b,
OV-6c¢, SV-1, SV-4, SV-10a, SV-10b, SV-10c
ii. Structure category (3rd tier)
1. Models (4™ tier) OV-4, OV-7
iii. Tables category (3" tier)
1. Tables (4™ tier): OV-3, SV-6, SV-7
b) Modeling Language Descriptions (1% tier)
a. Structured Language (2" tier)
i. Behavior category (3" tier)
1. Models (4" tier): IDEF 0, DFD
ii. Structure category (3rd tier)
1. Models (4" tier): IDEF 1X
b. UML (2™ tier)
i. Behavior category (3rd tier)
1. Models (4th tier): Activity, Common Behaviors,
Communications, Interaction, Sequence, State, Timing, Use
Case
ii. Structure category (3rd tier)
1. Models (4th tier): Component, Composite Structure,
Package, Object, Class
c. SysML (2™ tier)
i. Behavior category (3rd tier)
1. Models (4th tier): SysML Activity
il. Structure category (3rd tier)
1. Models (4th tier): Block Definition, Internal Block,
Parametric
d. BPMN (2" tier)
i. Behavior category (3rd tier)
1. Models (4th tier) Process, Choreography, Collaboration,
Conversation
¢) M&S Formalisms (1st tier)
a. CP-net (2nd tier)
b. DEVS (3rd tier)

The behavior and structure categories shown above support the same pattern of
model organization used in UML (OMG, 2009), with a division between structure and

behavior models. In addition to this hierarchical organizational, structure code attributes

as described in section 4.3 were applied to the code elements. Figure 21 provides a



snapshot from MAXQDA that shows all four layers: (1) component, (2) Architecture
Framework or Modeling Language, (3) Type (behavior or structure), and (4) Model

Designation.
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Next, the elements were arranged according to composition (i.e., “has-a”) and
generalization (i.e., “is-a”) to support model association and ontological categorization,
respectively. Both kinds of relationships were important in elemental analysis. Figure 22
shows a snapshot of the Code Window in MAXQDA, with elements for the UPDM OV-2
organized into Composition and Generalization Relationships. Figure 22 is annotated to

show those distinctions.
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Figure 22 - Elemental Composition and Generalization Relationships (in MAXQDA Code System)

4.3.1  Population of Individual Data Structures (Ontologies and Compositions)
Table 14 contains OV-2 elements pulled from MAXQDA. MAXQDA interacts

with MS Excel to support easy export and import of data. The “Code” column contains
the names of the codes. The “Interrogatives +’ column contains the color and associated
interrogative category classifications of each OV-2 element. The “Model Origin” column

lists the model source. The “Parent Code” Category contains the hierarchical
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organizational code structure in MAXQDA and reflects the aggregations and
generalization relationships. For example, the Element “InformationExchange” is in a
generalization relationship to the parent element “OperationalExchange”, and “Needline”
is in an aggregation relationship to the OV-2 model element. The Model Group column
is for classifying each element as Behavior or Structure, and the last column is Ops or
Sys representing an Operational or Systems Classification. These codes were used for
code grouping, querying and set building (i.e., generation of a group of elements based on
specified attribute sets). Each element was color coded to visually reflect an interrogative
category consistent with Table 10.

Element color coding was based on interpretation of element definitions as
defined in the source documentation. As analysis progressed, elemental color coding was
refined to reflect generalization changes. This analysis usually came about in the context

of visual inspection of the code through MAXMAPS.

Table 14 - Sample Coding of OV-2 Elementals
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NodeRole S ebracnship yallow oV 2 arch ecture Elements (UPDM  J\UPDM Archi.ecture Framework\Behawor\QY 2 Behavicr [Ops
Operationalixchange  |Rebzlionshy yollow ov2  |archiecure Elements (UPDM  JWUSOM Anchuecture FramewsrkiBehavioriOV 2 Behavior ops
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Figure 23 is a sample MAXMAPS OV-2 visual model. As coding progressed,
some additional categories were added because there were elements that did not fit well
into the original six interrogatives. These additional categories included: relationships
(yellow), hybrids (purple), and a category for Who / What / How (Passive), for state

(explained in section 4.2.1).
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In Table 14, Logical Architecture is classified as Hybrid (Purple) because it has
children elements (generalization relationships) that fall into more than one main
category: having a node child classified as Where (Aqua) and a Resource child classified
as Who (Red). This method, based on ontologies and attribute coding reveals an
ambiguity that reflects the source UPDM meta-model relationships, and may be a case
where the source meta-model is incorrect or questionable.

Figure 23 shows an OV-2 drawn in MAXQDA MAX MAPS. MAXMAPS
supports the depiction of objects, links and annotations. Each Object is linked or
synchronized with a code in the MAXQDA database. Each code in the database was
defined based on authoritative source material definitions, using the code memo feature.
By touching the object on the map, the definition from the associated memo is displayed
on the map. This was useful in sorting out relationships.

Links show relationships between objects. The links in Figure 23 show
aggregation and generalization relationships annotated as “has” and “gen.” on the
relationship lines. This was the starting point for all elemental depictions. Other
relationships such as association relationships were added to complete the model. As an
example of the “has-a” and “is-a” relationship depiction, it may be seen in Figure 23 that
Resource “is a” Performer (generalization), while the OV-2 “has a” Performer element
(aggregation).

Finding: This method, based on ontologies and attribute coding reveals an
ambiguity in UPDM that reflects the source meta-model relationships, and may be a case

where the source meta-model is incorrect or questionable.
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Figure 23 - Sample OV-2 Composition and Generalization Relationships (in MAXQDA MAXMAPS)

4.3.2  Development of Meta-Models through Alignment of Code Database and Visual
Views

Initially, relational constructs between elements were developed using
composition and generalization hierarchical coding. Relational constructs were
subsequently developed, assessed and refined using visual representations. Both
organizational constructs prove to be very powerful and mutually supportive. The
development of visual meta-models was particularly useful in the analysis of
relationships, particularly in helping to disambiguate vague verbal descriptions from the
authoritative data sources. Furthermore, visual modeling was instrumental in the analysis
process, in that it helped to reveal generalization, aggregation and association
relationships. Although MAXQDA MAXMAPS was not designed as a UML class
diagramming tool, it may be used this way by observing a few conventions. Table 15

shows the equivalencies in the column entitled MAXQDA MAXMAP Depiction.
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Table 15 - UML Relationships and MAXMAPS Links Equivalences

Name Delinition UML Depicti T MAXQDA MAXMAP Depiction
Aggregation An aggregation relations hip depicts a T
classifier as a part of or as subordinate to, ‘ ‘ has
another clas s fier
Association An association 15 a structural rel hip
that describes asetofinks alnkis a Class & ‘ 4—‘ﬂ assoC
connection among objects Nangaves —
assoc.

-
Composition A compostion relationship represents a
whole-part refations hip and 5 atype of Composition e

aggregatlon
Dependency A dependency 15 a semantic relations hip Source  Targes ——— I -
between two things i which a change to ~ Dependency
one thing (the independent thing) may
affect the semantics of the other thing {the
dependent thing}
Generalization | A generahzation relationship mdicates that
aspecialized {chid) model element s faen. il

based on a general (parent) model r Super Clase Iq, ,{ Sub Class ]
element Although the parent model
element can have one or more chiidren,
and any chiid model element can have one
or mere parents typically a single parent
has multiple children

Generalization gen.
Specatizanion

4.3.2.1 Data Element Analysis Roadmap
Because of the number and variety of models and associated elements, it became

apparent not too far into the coding that a roadmap would be required to help guide the
data analysis. This kind of method evolution is typical of grounded theory investigations

(Corbin & Strauss, 2008).

4.3.2.2 Roadmap
With over 750 data elements in the database, a way was needed to organize the

data for analysis. A roadmap (Figure 24) based on the EACT was constructed to provide
a way to address this complexity. The purpose of the roadmap is to provide element by
element comparison for elimination of duplicates and redundancies, in order to build a
composite or merged meta-model. It aids in model identification, and it provides a
framework for comparative analysis, i.e., model alignment and grouping (based on
Process, State, Timing and Node).
Data Element Analysis Roadmap Steps 1-10:
1. Develop six UPDM meta-models (e.g., OV-2, OV-4, OV-5, etc.).
2. Build four Group UPDM meta-models, based on four types: Process, Timing,
State, and Node.
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Build Composite UPDM meta-model (by merging four group meta-models above
into one).

Build eleven Modeling Lang. meta-models (e.g., SysML Activity Diagram,
BPMN, etc.).

Build four Group UPDM-Language meta-models), by aligning Modeling
Language meta-models in step 4 to groups meta-models built in step two.

Build Composite UPDM-Language m-m (the foundational EAS) by merging the
four group m-m from step five.

Compare Composite UPDM from step three & EAS from step six.

Code & build m-m for M&S Formalisms.

Compare M&S Formalism meta-models to EAS.

Build EAS Ontologies; conduct element analysis and refine EAS. This step will

be described in detail later.

Table 16 lists the 10 roadmap steps depicted in Figure 24, the object of each

model step, and coding types. The coding principles were described in Chapter 3. To

recall, the coding principles are as follows:

a)

b)
c)

Open Coding. Develop Categories or Themes (Categories, Properties, and
Attributes).

Axial Coding. Place data into categories or themes (Binning).

Selective Coding. Observe relationships revealed and how they combine to form
a story line to describe phenomenon (Corbin & Strauss, 2008).



Table 16 - Data Element Analysis Roadmap Steps

Roadmap |Roadmap Step Description Object Coding and
Step Theory Building
1 Build 6+ UPDM m-m UPDM Views Axial Coding
{e g, OV-2, OV-4, OV-5, etc )
2 Build 4 Group UPDM m-m UPDM Groups Axial / Selective
Coding
3 Build Composite UPDM m-m (composed of 4 groups) {UPDM Axial / Selective
Coding
4 Build 11 Modeling Lang m-m (e g , SysML Activity Modeling Language Models [Axial / Selective
Diagram, BPMN, etc ) Coding
5 Build 4 Group UPDM-Lang m-m (merge 3&4) UPDM - Language Axial / Selective
Coding
6 Build Composite UPDM-Language m-m (the EAS), UPDM - Language Selective Coding
composed of 4 group m-m step 5 / Theory
Buidling
7 Compare Composite UPDM (step 3) & EAS UPDM & UPDM - Language |Selective Coding
8 Code & butld m-m for M&S Formalisms CP-net, DEVS Axial Coding
9 Comp Formalisms m-m to EAS CP-net, DEVS & UPDM-Langu|Selective Coding
10 Build EAS Ontologies (element analysis) UPDM-Language Theory Building

79
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4.4 Data Element Analysis Roadmap Execution
This section provides a detailed explanation of the ten steps of the Data Element

Analysis Roadmap.

4.4.1  Step 1: Code, Classify & Build UPDM Meta-models
Figure 25 shows the Executable Architecture Concept Triangle (EACT) with the

Architecture Elements component highlighted at the top, included here as a guidepost to
which Steps 1, 2 and 3 of the roadmap align. In other words, this section will focus on
the components within EACT that relate to Architecture Elements. To this end,
Modeling language model elementals were coded, categorized and aligned to UPDM
model groups. Again, the coloring scheme shown in Table 10 reflects interrogative

categories discussed in the following sections.

t Trangle

MES
Language =~ Could inform Formalisms

Descrniptions Could Conform 1o~

Figure 25 - Executable Architecture Triangle (Architecture Elements Guidepost)

Step 1 of the Roadmap is the development of Architecture meta-models for the

targets set from UPDM, and it begins with Open Coding. Although in most cases, Open
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Coding involves the actual naming of categories, in this study, Open Coding primarily
involves developing code categories or attributes for elements based on the
interrogatives, the model origin and on other categories that are already named, as
described in section 4.6. Both Open and Axial Coding principles were followed in the
development of data. Attributes were set for each element (i.e., Axial Coding), and
model elements were combined visually into models. Figure 26 is a compilation drawing
of all UPDM operational meta-model views identified in Table 12.

It was produced in MAXQDA, MAXMAPS from the data in the code database.
Each visual object is “live,” that is synchronized with the data source and the tool
supports mouse-over display of code memos (containing code definitions) from the maps,

as depicted in Figure 27.

E_Oper duon alact v ty

Figure 26 - Meta-Models
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Figure 27 shows an example. Each visual model object (element) was classified
and color coded to reflect the interrogatives categories discussed in paragraph 4.6. The
purple lines are suggestive of cross-model common elements. This will be addressed at

length later.
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Step 2: Build Group UPDM Meta-model Maps & Adjust coding

Roadmap Step 2 is the specification of four groups based on the interrogatives

and the development of group composite UPDM meta-models aligned to those groups.

The alignment of target UPDM models to the groups is shown in Table 17; this same

alignment may be seen in the Roadmap. This approach provides a manageable way to

break the problem down into workable pieces. Models were grouped together according

to four interrogative focus areas: How, State, When, and Where. It is evident that all
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models contain elements of more than one type (as may be seen from the many colored
objects in Figure 26), but they can be classified according to principle interrogative focus

area. For example, the UPDM OV-5 was placed into the behavior group.

Table 17 - Composite Groups

Composite Group UPDM Models Color
Behavior OV-5, OV-6a Green
State OV-6b Brown
Timing OV-6¢ Blue
Node OV-2,0V-4 Aqua

The research shows that models that are of the same interrogative type can be
compared in order to produce composite models. Nothing is lost by over-generalization
because each composite that is produced for the model group is compared against all
other groups in the further refining step 3.

Figure 28 is the UPDM function group composite (OV-5 and OV-6a). Thisisa
simple composite model that fuses the element “OperationalConstraint” and the element
“SubjectofOperationalContraint” into the Operational Activity Model (OV-5). This
UPDM functional group composite is the target for the next two composite fusions: the
first to the other UPDM groups, and the second to the modeling language composite.

Building composite group meta-models was an intermediate step in building a
foundational model set around which other UPDM elemental additions and language
model elements were added. Figure 28 shows the UPDM group composite for the
UPDM function group, with the source OV-6a and OV-5 in the top left and right corners
respectively. It is a very straightforward grouping in that it simply shows the
“OperationalConstraint”, “SubjectofOperationalConstraint” and Mission elements from
the OV-6a added to the OV-5. This addition, in turn, requires the addition of
generalization lines linking SubjectofOperationalConstraint to Node,

“Operational Activity”, “OperationalExchangeltem”, Operational Activity and

“PerformedActivity” (a suggestion which is not part of the original meta-model).
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Figure 28 - Building Composite UPDM Group Function Model

4.43  Step 3: Build Common UPDM Meta-model map & Adjust coding
Roadmap Step 3 is the building of a UPDM composite meta-model. Figure 29 is

a progression that is based on the previous composite group functional UPDM model. It
is considerably more complex because it combines all elements from the original seven
UPDM operational meta-models into one model. Key parent nodes have been annotated
with yellow circles to highlight them as central parent nodes. The observer can easily see
that while all interrogative categories are present in the Composite UPDM Behavior
meta-model, the time attribute is remarkably lacking because the only explicit time
element that is seen in the composite UPDM model is the sequence element. The
element “ActualMeasurementSet”, categorized as hybrid or purple, is associated in the
parent OV-3 meta-model with the “OperationalExchange” element. The

“ActualMeasurementSet” does contain “Measures” that have, among other attributes, two
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time attributes: periodicity and timeliness. However, this is not a very robust set of time
related attributes or elements. This is not particularly surprising given that DODAF and
MODAF were not designed as simulation modeling frameworks. Any simulation

modeling tool is necessarily going to have to address timing considerations much more

explicitly and broadly.

P Wy 3 P iy

LB, =

=] et
i

Figure 29 - UPDM Composite OV-5 & OV-6a & OV-6b & OV-2 & OV-6¢c & OV-4

Finding: It is of note that all interrogative categories are present in the Composite
UPDM Behavior meta-model; however, the time attribute appears to be remarkably
lacking. The only explicit time element that is seen in the composite UPDM model is the

sequence element.
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4.4.4  Step 4: Code, Classify & Build Language Meta-model Maps
Figure 30 shows the Executable Architecture Triangle with the Modeling

Language Descriptions component on the left vertex highlighted. It is included here as a
guidepost to which Steps 4 and 5 align; in other words, the focus of discussion regarding
interaction and relationship within EACT is now shifted to the Modeling Languages.
Roadmap Step 4 illustrates how modeling language meta-models are developed for each
of the modeling languages associated with the four analysis grouping: Behavior, State,
Timing, and Node. Meta-models were developed in step 4 for each of the Models shown
in Table 18, which are then aligned to the analysis groups. This alignment is also shown
in the Roadmap, Figure 24, where the UPDM Group Composites are color coded as

shown in Table 18.

Figure 30 - Executable Architecture Triangle (Modeling Language Guidepost)
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Table 18 - Group - Language Meta-model Alignment

Group Model Color

Behavior | IDEF0, SysML Activity Diagram, UML Activity Green
Diagram, BPMN Process Diagram

State UML State Brown

Timing | UML Sequence, UML Communication, UML Timing Blue

Node SysML Block, UML Class, UML Composite Aqua

Figure 31 depicts the meta-model for the SysML Activity Diagram; it is
representative of what was done for the other Language models shown in Table 18.

The SysML Activity Diagram is similar to the UML Activity Diagram, except for
the additions shown highlighted with aqua circles. As Dori (2002) pointed out, UML,
and by extension SysML, are both encumbered with implementation detail. This is a
drawback from a purely modeling language point of view. The large gray circles in
Figure 31 are examples of implementation detail that does not contribute to conceptual,
functional, or declarative modeling (See Table 17 Definition Column). Upon reflection,
it becomes apparent that in comparison to the UPDM OV-5, there are a number of
elements that are part of the SysML Activity Diagram (Figure 32) that could augment the
OV-5.

Finding: Comparison of the SysML Activity Diagram to the UPDM OV-5
reveals that are a number of SysML Activity Diagram elements that could augment the

UPDM OV-5 (e.g., time constraints, duration constraints and rate, and probability rules.)
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Figure 31 - SysML Activity Diagram

The ability to conduct queries against the data set based on attributes that have
been assigned to the data (through Axial Coding) is important because it can help to sort
through questions related to the data; for example, Table 19 contains elements from the
SysML Activity Diagram that have been marked as having Implementation Detail. Table
19 was used to verify that these elements could reasonably be classified as
implementation-level, enabling their exclusion from the process meta-model. Detailed
elemental inspection of SysML/UML confirms Dori’s (2002) assertion that from a
modeling perspective it is unwieldy, or heavily weighted with implementation-level
detail, thereby reducing efficiency for purposes of process modeling.

Finding: Detailed elemental inspection of SysML/UML shows that from a

modeling perspective it is laden with implementation-level detail.
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Table 19 - SysML Activity Diagram Implementation Detail Elements

Cod

[Interroqativy

ObjectNode Where SysML An object node Is an abstract activity node that is part of
(location) aqua |Activity defining object flow in an activity
CentralBufferNode Where SysML A central buffer node 1s an object node for managing flows
(location) agua |Activity from multiple sources and destinations
DataStore Where SysML A data store node I1s a central buffer node for non-
{location) aqua |Activity transient information
ExpansionNode Where SysML An expansion node is an object node used to indicate a
(location) aqua |Activity  [flow across the boundary of an expansion region
Activity Diagram Why (Rule) pink|SysML Grouping of Parameter Control Elements
Parameter Control Activity
Elements (Logical)
+Optional (Parameter  |Why (Rule) pink|SysML When the «optional» stereotype s applied to parameters,
control) Activity the lower multiplicity must be equal to zero. This means
the parameter is not required to have a value for the
activity or any behavior to begin execution Otherwise, the
lower multiphaity must be greater than zero, which1s
called “required “ The absence of this stereotype indicates
a constraint, see below
1sStream (Parameter Why (Rule) pink|SysML Parameters are extended in complete activities to add
controf) Activity support for streaming, exceptions, and parameter sets
ObjectNode Control Why (Rule) pinkiSysML Grouping of ObjectNode Control Elements
Elements Activity
+OverWrite (Object Why (Rule) pinkiSysML When the «overwrite» sterectype 1s applied to abject
Node control) Activity nodes, a token arnving at a full object node replaces the
ones already there (a full object node has as many tokens
as allowed by 1ts upper bound}
ExceptionHandler(Object |Why {Rule) pink{SysML An exception handler i1s an element that specifies a body
Node control) Activity to execute in case the specified exception occurs during
the execution of the protected node
+NoBuffer (ObjectNode [Why (Rule) pink|SysML When the «nobuffer» stereotype I1s applied to object
control) Activity nodes, tokens arriving at the node are discarded If they

are refused by outgoing edges, or refused by actions for
object nedes that are input pins
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Figure 32 - SysML Activity (-Implementation)

SysML is a system engineering extension of UML. That is, the Activity Diagram
in SysML contains elemental extensions beyond the Activity Diagram in UML. Table 20
shows the SysML Activity Diagram element augmentations to the UML Activity
Diagram. The augmentation elements fall into two interrogative categories: rule (pink)
and timing (blue). The timing elements include Time Constraint, Duration Constraint
and Rate as key elements, and the following elements from the timing diagram: x,y, z.
Timing diagram elements were included because the SysML Activity Diagram has a
loosely worded provision for the inclusion of timing diagram constraints, through
annotation. The Rule elements deal with the probability of an occurrence and the use of
data as control. The timing and rule classified elements are candidate augmentations for
a future UPDM (and by extension DODAF, since UPDM is based on DODAF), as well
as for an Executable Architecture Specification based on UPDM.

Finding: The timing and rule classified elements are candidate augmentations for

a future UPDM (and by extension DODAF, since UPDM.



Table 20 - SysML Non-Implementation Detail Element Augmentations (over UML)

When (Event- timing) blue

SyskL Activity

Behavior

Both

[when (Event- timing) blue

SysML Activity|

Behavior

Both

When the «rater stereotype is applied to an activity edge, it specifies the
expected value of the number of objects and values that traverse the edge
per time interval, that is, the expected value rate at which they leave the
source node and arnve at the taraet node.

Bl When (Event- timing) blue

SysML Activity|

Behavior

Both

Discrete rate is a special case of rate of flow (see Rate) where the increment
of time between items is non-zero. Examples include the production of
assemblies in a factory and signals set at periodic time intervals.

fwhen (Event- timing) blue

SysML Activity|

Behavior

Both

Continuous rate is a special case of rate of flow (see Rate) where the
increment of time between items approaches zero,

When (Event- timing) blue

SysML Activity

Behavior

Both

The simple time model in UML can be used to represent timing and duration
constraints on actions in an activity model. These constraints can be notated
as constraint notes in an activity diagram. Although the UML 2 timing diagram
was not included in this version of SysML, it can complement SysML behavior
diagrams to notate this information.

Il When (Event- timing) blue

SysML Activity

Behavior

Both

Timing Diagram Timing Diagrams are used to show interactions when a
primary purpose of the diagram is to reason about time. Timing diagrams
focus on conditions changing within and among Lifelines along a linear time
axis. Timing diagrams describe behavior of both individual classifiers and
interactions of classifiers, focusing attention on time of occurrence of events
causing changes in the modeled conditions of the Lifelines.

When (Event- timing) blue

UML Timing

Behavior

Both

A DurationCanstraint defines a Constraint that refers to a Durationinterval.

[ when (Event- timing) blue

UML Timing

Behavior

Both

A TimeConstraint defines a Constraint that refers to a Timelnterval.

flwhen (Event- timing) blue

UML Timing

Behavior

Soth

A DestructionEvent models the destruction of an object,

WWhy (Rule) pink

SysML Activity,

Behavior

Both

A control operator is @ behavior that is intended to represent an arbitrarily
complex logical operator that can be used to enable and disable other
actions. When the «controlOperator» stereotype is applied to behaviors, the
behavior takes control values as inputs or provides them as outputs, that is, #t
treats centrol as data

f why (Rule) pink

SysML Activity

Behavior

Soth

When the «probability» stereotype is applied to edges coming out of decision
nodes and object nodes, it provides an expression for the probability that the
edge will be traversed.

fwhy (Rule) pink

SysML Activity

Behavior

Both

A control operator 1s a behavior that is intended to represent an arbitrarily
complex logical operator that can be used to enable and disable other
actions. When the econtrolOperators stereotype is applied to behaviors, the
behavior takes control values as inputs or provides them as outputs, that s, it

treats control as data

v6
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4.4.5  Step 5: Building Group Meta-model Maps
Step 5 is the development of group UPDM-Language Composites. In this step

four group composites are constructed as shown in Table 21, and as indicated in Step 5 of

the Roadmap, Figure 24.

Table 21 - UPDM-Language Model Group Composites

Composite Group Group Member Models Roadmap Color
Behavior 0OV-5, OV-6a, IDEF0, UML Activity Green

Diagram, SysML Activity Diagram,
BPMN Process Model, UML Timing
State OV-6b, UML State Brown
Timing OV-6¢, UML Sequence, UML Blue

Communications, UML Timing

Node OV-2, OV-4, Class, Block, Composite Aqua

4.4.5.1 Set building with attribute queries
Figure 33 is representative of this step; it is a composite Behavior meta-model

that is composed of the group member models shown for the Behavior composite group,
shown above in Table 21. The elements for this meta-model were produced by running a
series of code queries against the code database, which resulted in data sets, each of
which was used to compare and analyze elements within that set. Four data sets were
created to support the Behavior group composite meta-model development; these are data
sets 1-4 shown in Table 22. The code queries were based upon the model source
attribute, which had been previously coded for each data element in the database. Data
sets 5-7 in Table 22 were used to support the development of the other model composite
groups (i.e., state, timing, and node). The result of each query was a data set that was
used for the assessment and comparison of elements. The descriptive attributes
(Interrogative, Color, Model Origin, Operational or System Element, Model Group,

Parent Code) described in Section 4.1 were used to create and populate selective data



sets. Traceability from data set to database to authoritative source is supported in the

tool, which was important to the data management of hundreds of objects.

Table 22 - Code Query Sets

Data Set

1

Query Source

OVS5, OV-6a & IDEFQ

OVS5, OV-6a & UML Activity Diagram

OV5, OV-6a & SysML Activity Diagram

OVS5, OV-6a & BPMN

UML State, OV-6b

UML Sequence, UML Timing, UML Simple Time, OV-6¢

NN |lwiN

UML Block, BPMN Process, UML Communications, UML Seq,
SysML Act.
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It was frequently necessary to look up the element definition in order to trace the element

back to the authoritative source, particularly where there was some ambiguity concerning

its meaning or its relationships to other elements.
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Figure 33 - Composite Functional Group UPDM-Language

4.45.2  Element Comparisons
Within each analysis group, Behavior, State, Timing and Node, elements were

compared to each other. To do this, each of the analysis groups was developed
incrementally by querying for model elements associated with those groups and cross-
comparing the findings. The basic principle observed is that similar elements have to be
compared to determine whether they are individual element, duplicate, equivalent or an
extension. The comparison was inclusive, meaning the bias was for inclusion rather than

elimination of elements, such that only duplicative elements were excluded. Elements

were classified according to one of four comparison classifications, as shown and defined
in Table 23. Table 24 shows the result of a query for BPMN elements; in this table,

element organization reflects the ontologies (composition and generalization
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relationships) that were created in the database, which resulted in groups (parent
elements) that have child or specialization elements associated with them.

The parent-child relationship is useful because it results in element groups that
can be compared to similar groups of elements from other model queries. For example,
in Table 24 there are a number of elements that fall under the Event element (i.e., Cancel,
Compensation, Conditional, etc.); these are child elements of the parent Event element
for BPMN. Next, the Event element is cross compared to other Event or Event-like

elements in Table 25, for other modeling languages.

Table 23 - Comparison Classifications

Comparison Definition Included
Classification (yes/no)
Individual Element | Unique yes
Duplicate Same as another element no
Equivalent Similar to another element no
Extension Extension of another element yes

Table 25 and Table 26 show comparison tables for the Event and Activities
element groups. Each code was assessed using the comparison classifications listed in
Table 23. If a code was a duplicate or the same equivalent class to another, it was not
added to the composite meta-model: if it was identical or an individual extension it was
retained. For example, Table 26 lists the activity elements from the languages associated
with the analysis group: BPMN, UML Activity Diagram, SysML Activity Diagram,
IDEF0, OV-5, and OV-6a in the table rows. The columns list the languages, and an x in
the intersection of row and column indicates that the element is found in the source
model.

Each element was analyzed within a comparison classification. The result was a
series of analyzed lists of elements (Process-Event, Process-Activity, Rule, Control Node

Flow and Gateway, Time, Product, and Nodes). The comparison tables and meta-models
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are included in the dissertation appendix. This step represents Selective Coding, in which
relationships are established and redundancies are removed. The “Behavior” group
composite meta-model (Figure 33) was then developed in MAXQDA MAXMAPS.
Figure 33 includes circles that annotate the comparison categories discussed above. The
method was very useful for making comparisons, but the weakness of it is that it is
subject to human interpretation. The results achieved from comparisons through tabular
methods and visual mapping of elements and was mutually reinforcing from a validation

point of view.



Table 24 - BPMN Elements

Code
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Activities

Task (Atomic)

Human Interaction

Sub Process

Nested/Embedded SubProcess

Expanded Sub-Process

Collapsed Sub Process

Transaction

Event - Type Dimension

Cancel (1,E)

Compensation (S,I,E)

Conditional (S,1,E)

Error (S,1,E)

Escalation (S,I,E)

Link (L,E)

Message (S,1E)

Multiple (S,1,E)

None (S,1,E)

Parallel Multiple (S I)

Signal (S,LE)

P Ll o Ll Dl Eo B e Ea T Bl B Eal B B Coll Eall Bl Lo B Lo e Ea ¥l B

Terminate (E)

Flow Element (Objects)

: fBPMN Process & Collab
fBPMN Process & Collab

B BPMN Process & Collab

Model Origin

BPMN Process & Collab

j BPMN Process & Collab
BPMN Process & Collab
|BPMN Process & Collab

BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
f BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
|BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
EBPMN Process & Collab

 BPMN Process & Collab |
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
iBPMN Process & Collab

Gateways _ Relationship yellow Gateway_ _. _iBPMN Process & Collab |
Complex Relationship yellow Gateway BPMN Process & Collab
Event-Based Relationship yellow Gateway BPMN Process & Collab
Exclusive Relationship yellow Gateway BPMN Process & Collab
Inclusive Relationship yellow Gateway BPMN Process & Collab
Parallel Relationship yellow Gateway BPMN Process & Collab
Parallel Eventbased Relationship yellow Gateway BPMN Process & Collab

Connecting Objects

Relationship yellow

Control Node or flow

BPMN Process & Collab

Sequence Flow (Control Flow)

Merging

Relationship yellow

Relationship vellow

Control Node or flow

BPMN Process & Collab |

Control Node or flow

BPMN Process & Collab

Looping

Fork

.|Relationship yellow

Control Node or flow

BPMN Process & Collab

Relationship yellow

Join

Control Node or flow

BPMN Process & Collab

Relationship yellow

Normal Flow

Control Node or flow

BPMN Process & Collab

Relationship yellow

Conditional flow

Control Node or flow

BPMN Process & Collab

Default flow

Relationship yellow

Exception Flow

Relationship yellow

Control Node or flow

BPMN Process & Collab

Control Node or flow

BPMN Process & Collab

Relationship yellow

Control Node or flow

BPMN Process & Collab

Compensation Assoclation

Relationship yellow

Contro} Node or flow

BPMN Process & Collab

Uncontrolled flow

Data Flow

Relationship yellow

Message Flow.

Relationship yeilow ]

Control Node or flow

BPMN Process & Collab

Control Node or flow

BPMN Process & Collab

Relationship yellow

Data Associations

Control Node or flow

BPMN Process & Collab

Relagonship yellow

Assoclations

Control Node or flow

BPMN Process & Collab

Relationship yellow

Message Flow Associations

BPMN Process & Collab

Relationship yellow

Correlations

BPMN Process & Collab

BPMN Process & Collab

ParticipantAssociation

Relationship yellow
1 h tl

Data Characteristics

Data Structure ( ItemDefinition )

DataState

Data

Data Objects

Data Object References

Data Stores

Message

Event Timer.

timeDate

timeCycle

PR EN B LR B LR L R P R D R A o ol DS Pl Pl P bl Pl o Pl bl Ll Pl Pl DB Pl Pl £ P Dl E P Pl Y

timeDuration

Resource

Resource Role

Performer
Participants
PartnerRole
PartnerEntity
X Rule .
X Scopes = -
X _ Expressions . =
Properties
X Swimlanes
X Pools _ _ _
X Lanes o _ .
Artifacts

Interaction Node

Participant Multiplicity.

Text Annotation

annotation
annotation
annotation

Group

annotation

BPMN_Process & Collab

When kEvent— timing) blue Time )
When (Event- timing) blue Time
When (Event- timing) blue Time

en (Event- timing) blue Time

BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
fBPMN Process & Collab
J BPMN Process & Collab
BPMN Process & Collab
[BPMN Process & Collab
BPMN Process & Collab
| BPMN Process & Collab
|BPMN Process & Collab
[ BPMN Process & Collab
|BPMN Process & Collab
[BPMN Process & Collab
IBPMN Process & Collab
|BPMN Process & Collab
BPMN Process

BPMN Process & Collab

BPMN Process & Collab

IBPMN Process & Collab

|BPMN Process & Collab
BPMN Process & Collab

BPMN Process & Collab

BPMN Process & Collab

BPMN Process & Collab




Table 25 - Functional Group Elemental Comparisons (Events)
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BPMN |UML Act | SysML Act | IDEFO | OV-5 |count |COmPparison Comment
Classification
Events (f3) x X x [+] IE
Cancel (LLE) X 1 IE
Compensation (S,IE) X 2 IE
Conditional (S,I,E) X 3 IE
Error (S,LE) x 4 IE
Escalation (S,LE) X 5 IE
Link (I,E) X 6 |IE
Message (S,I,E) X X X 7 IE
Multiple (S,1,E) X 8 IE
None (S,LE) x 9 IE
Parallel Multiple (S,I) X 10 [IE
Signal (S,1LE) X X X 11 |IE
Terminate (E) X 12 |IE
Event X X I(event)
ChangeEvent x X SEC {Conditional) |Implementation level
MessageEvent X X I(Message)
Trigger x X 13 {IX (Message)
CallEvent X X 14 [IX (Message)
SignalEvent x x I (Signal)
Send signal action x X 15 |[IX (Signal)
Recelwve signal action x x 16 [IX {Signal)
Elemental Comparative Classification
X Individuai Elements (IE)
X Identical (1)
X Same Equivalent Class (SEC)
X Individual Extension (IX)

Table 26 - Process Group Comparisons (Activities)

BPMN |UML Act | SysML Act| IDEFO | OV~5 | OV-6a | Count {Comparison Classification |Comment

Activities x 1 IE
Task (Atomic) X 2 IE
Human Interaction X SEC {Activity)
Sub-Process X 3 IE

Nested/Embedded SubProcess X 4 IE

Expanded Sub Process x 5 IE

Collapsed Sub Process x 6 IE

Transaction X 7 IE
IDEF O
Function X I (Activity)
Ov-5

Parent to
PerformedActivity x 8 IE OperationaiActivity and
OperationalActivityAction X SEC {OperationalActivity)
OperationalActivity X I (BPMN Activity)
StandardOperationalActivity X SEC {(OperationalActivity)
Ov-6a
OperationalActivity X I {OperationalActivity)
SysML & UML Activity
Action x x 1(lask}
StructuredActivityNode x X 9 IE
ConditionalNode X X 10 |IE
ExpansionRegion X X 11 |IE
LoopNode X x 12 |IE
SequenceNode X x 13 |IE
added here because of

ov-4 UPDM ref to function here
Function X X 14 JjIE

Elemental Comparative Cl

tion

Individual Elements (IE)

Identical (I)

*® % |x|x

Same Equivalent Class (SEC)

Individual Extension (IX)
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Three other composite meta-models were developed for the state, timing, and
node composite categories. The most complex of the four composite groups is the
process group. Relationships shown in the meta-model were derived from contributing
models. It may be observed that the relationships between the node, the process, the
information exchange, and the data exchange (specified in the source OV-5 Activity
diagram) are preserved. Similarly, relationships between gateways in BPMN and actions
are maintained. This method preserves relationships from component models in addition
to building new ones to reflect the new juxtaposition of elements in the composite meta-
model. Ontological relationships (composition and generalization relationships) initially
came directly from the data structure in MAXQDA, but were expanded to include similar
elements from other models. Aggregation relationships come from MAXQDA “has-a”
relationships. The result is Table 40 and Table 41, which contains the ontologically
organized elements (discussed later in this chapter). Building the group meta-model
required the allocation of related children elements to a common parent. An example
would be the allocation of control flow from different model sources to a common parent.
Association relationships are captured using MAXMAPS and are preserved across model
types through manual inspection and traceability from component to group composite
model.

In addition to these four main analysis groups, a validity check using data
triangulation principles was conducted (i.e., looking at the same data set from different
perspectives), whereby three additional queries were run using the interrogative attribute,
for What (i.e., product), Why (i.e., rule) and Relational. The result was a set of
composite group meta-models that were merged in step 6 of the roadmap, described

below.

4.4.6  Step 6: Build Common Meta-model Map & Adjusting codes
Step 6 is the development of a unified composite UPDM Language Composite

(i.e., the Executable Architecture Specification (EAS)). It was created by taking the four
group composite meta-models described in step 5, above, and merging them manually.
Each of the group meta-models was printed out and manually transferred to a whiteboard,
through which cross model elemental relationships became apparent when the models

were in juxtaposition because there were elements that were in common. Because the
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process group was the most complex, it was used as the model core; the others were
arrayed around it. The same thing was done in MAXQDA in order to produce a merged
model. After the model was initially merged, other relationships, such as parent child
became more apparent through iterative inspection.

The result is Figure 34, the EAS, showing the four functional groups together.
The diagram emphasizes the four functional groups: Process, State, Node and Timing. It
combines all models shown in Table 27, under column Member Models, into one

composite model.

Table 27 - Composite UPDM-Language Member Models

Composite Group Member Models Roadmap Color

Behavior OV-5, OV-6a, IDEF0, UML Activity Green
Diagram, SysML Activity Diagram,
BPMN Process Model, UML Timing

State OV-6b, UML State Brown

Timing OV-6¢, UML Sequence, UML Blue
Communications, UML Timing

Node 0OV-2, OV-4, Class, Block, Composite Aqua

The constituent groups are highlighted as four large color-coded circles in
Figure 34 to show the elements that are associated with the functional groups. The
largest functional group is the process group, followed by the timing group. There is
overlap between groups, but this is to be expected since some elements are shared
between the groups. This is indicative of cross-model integration, which is a desirable
trait. For example both the Event Timer and Control Elements (time) belong to both Time
and Process functional groups. For this reason, the large color-coded circles are shown
overlapping. Figure 34 also shows elements highlighted with small yellow, orange and
red circles, for element characterization. The yellow circles indicate generalizations
(foundational elements). These elements are higher level generalizations in the data
organizational structure, ontologically. The small orange circles represent first tier
specializations. They are specializations of the generalizations. The red circles indicate

candidate elemental augmentations to the UPDM data set. Table 10 - Color and
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Interrogative Classifications shows a synopsis of color coding for Figure 34. While
Figure 34 is very complicated; the visual depiction of it can be simplified for analysis
purposes because the objects on the map were constructed in layers (supported by the

tool), which supports hiding of any unwanted detail, as necessary.
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Figure 34 - EAS Meta-model
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4.4.7  Step 7: Compare Composite Maps (UPDM & Language)
Step 7 is a comparison step, in which the UPDM Composite and the EAS are

compared for differences. The purpose of this comparison is to determine candidate
element augmentation to an Executable Architecture Specification, based on detailed
inspection of the meta-models. By comparing the UPDM composite (Figure 29) to the
UPDM-Language composite (Figure 34), it is possible to determine those elements that
represent the difference set or the deltas. Figure 35 shows Figure 29 and Figure 34 side
by side. The deltas are highlighted with red circles in the right graphic, the UPDM-
Language Composite model (Figure 34).

Table 28 and Table 29 provide comparisons between the UPDM composite and
the UPDM-Language composite models, where elements are organized by color
category. The leftmost column entitled “Element” is the generalization or parent
element. The column entitled “Specification” contains subordinate elements. The
columns “Composite UPDM” and “Composite All”” are marked to show a side by side
comparison of elements. The Elements in the “Composite All” column that are
highlighted in yellow are the candidate additions to the Executable Architecture
Specification, augmented by adding language. The comments column has a synopsis of
each of the augmented elements.

Table 30 is a synopsis of the candidate element augments, by element
generalization, with descriptive comments and category classifications expressed in terms
of primary and secondary (where applicable) interrogatives. Table 30 also contains the
number of augmentations per element generalization. The majority of the elemental
augmentations fall into the functional category. The pink or rule category, which is
related to the functional, is second in terms of numbers, with time (blue) third.

A closer look at the kind of elements in Table 30 reveals some interesting
features. The Event Element, in row 1, addresses Logical Events stimulation or response.
This elemental category was derived from the BPMN process model, and theoretically, it
is similar to the concept of token flow control in Colored Petri-Nets. It is, in essence, the
token factory, and is an enabler for data flow stimulation, response, and flow control in

the context of state transition. The Event object is critical to dynamic process modeling,



106

because it provides a source of model stimulations, resulting in model subsequent state
change and activity response.

The Event Timer, listed in row 3, is similar in that it addresses data flow and flow
control from a time control perspective, providing a time-based mechanism for
stimulating the model through token generation. Activity Control Elements, in row 9,
were derived from SysML. Two features are of note: random occurrence probabilities
and the use of data as control. Random occurrence, i.e., stochastic behavior, is important
to dynamic process modeling because process modeling must support more than just
deterministic behavior modeling. Real word systems that are being modeled often exhibit
non-deterministic behavior, and as such the tools that are brought to bear to mimic or
simulate those non-deterministic processes must support these kinds of patterns. The use
of data as control is important because it allows for processes to control other processes,
through intermediate data that is generated by the process. This enables the processes to
generate change in the simulation model, as a result of both deterministic and stochastic
triggers in the model. The result is a model that can change and adapt in response to
random changes in the internal behavior of the model, or in response to external stimuli.

Control Elements Time, in row 4, addresses the ability to provide detailed, time-
based control over the model, which could be as simple as control of a one-time event, in
terms of occurrence and duration, or as complex as the control of a schedule of events. In
addition, the control features provided in the UML sequence diagram offer iterative
control of time-based behavior. Most of the other added elements are related to fine-
grained logical and temporal control.

In summation, addition of Logical Events, Time Events, Occurrence Probabilities
and fine-grained timing controls to the Executable Architecture Specification will
significantly improve the ability of UPDM to support simulation.

Finding: Addition of Logical Events, Time Events, Occurrence Probabilities and
fine-grained timing controls to the Executable Architecture Specification will

significantly improve the ability of UPDM to support simulation.
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Table 28 - Comparisons 1
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Element Specification Composite Composite Al Comments
UPDM
Performed Activity X X
Event {Logical} Process flow control or determinant (logical).
Control of token, data, message and signal
generation
None X
Signal X
Messape X
Multiple X
Conditional X
Cancel X
Terminate x
Escalation X
Parallel Multip} X
‘Compensation X
X
Stuctured ActivityNode Logical and ordering contro! of subordinate nodes
P or activity groups. Nesting is not new to UPDM, but
control is not specifified in detail
x Structured activity node that represents a loop
Loop Neode
X Structured activity node that represents an
| Node exclusive choice among alternatives
SequenceNode X Order specification of actions
x Nested region with explidt inputs and outputs
ExpansionRegion
Node X 3
QOrganizationalResource X X
Resource X X
ResourceRotle X X
Competence X X
Cperational Exchange X X
OperatonalExhangeltem X 3
informationElement X X
State
Data Characteristics Desaiptive information about data
 Properties / attributes Detailed description of data and characteristics
(e 8., cost, size, priority, X 3 supporting model analysis
etc.
[structure (Entity iter, Data Structure, semantics & syntax
attributes, X X
Lati onshine]
Data State X X State of the data or information element
Sequence X X  Time ordered events and messaging in a sequence
diagram
Event Timer Time based contsol of process flow
TimeDate X TimeDate Time trigger
TimeCycle X TimeCycle Time trigger
TimeDuration X TimeDuration Time trigger
Control Elements {Time) Time based control of elements {activities,
processes), rate, duration, time constraints, general
ordering and termination and creation event
Rate x Rate of object fiow across activity edge or rate or
Into or out of parameter
X Behavior or activity occurance at certaln time
Time Constraint interval os time
Duration Constraint X Duration of action
Destruction Event X End of event or action
GeneralOrdering X Sequencing of activities




Table 29 - Comparisons 2

Element

Composite
UPDM

Specification

Composite All

Comments

OperationalConstraint

p

Detalled specification of Operational Context

(viewpolnt, mission, scope] or Rule sets

Partial, more detalled elaberations

Operational Context

Fine grained logical control

Activity context

x| x

Functional Environment, context

Activity Control Elements

Behavior control
te carlo, prob

specification
).

control

frrobabiity (edge)

Stochastic behawor / Monte Carlo Simulations

ControlValue

Allows control values to be treated as data for

enabling and disabling behavior (actions}

f Constraint block

Delimiting property, similar to Rule or Expression
of Operational constraint

LocalPreandPostConditi
ons

Pre and post condition global constraints that
{apply to activity

fBehavioralfeature

Specification of aspect of behavior

Controls behavior of multiple nested activity

Communications Diagram Control

Annotations

regions {Expansion Regions)

Fined grained control of messaging in
Communications Diagram: Logical and time-based
control of communications diagrams

Procedural nesting

Sequence of messages at given nestin depth

Message execution dependent on truth of some
condition clause

J Condition Clause

x| % x|

Booiean predicate

Table 30 - Augmentation Synopsis and Categorization

Row Element N Primary | Secondary Nurmher
N Gener Mature of Elemental Augmentation Category | Category of
Element:
Process flow control or determinant {logicall. Control of token, data,
1 Events message and signal generation
togical and ordering control of subordinate nodes or activity groups.
Structured Activity Nesting is not new to UPDM, but control is not specifified in detail
2 Node Control
3 Event Timer Time based control of process flow
Control Efemeants {Time based control of elements {activities, processes), rate, duration,
4 {Time) time constraints, general ordenag and termination and creation event
Event Trace behavior description / control
Sequence of Event
5 Trace Control
6 Gateways Detailed logical control of process flows
Sequence Flow  [Detailed logical control of process flows and flow ordenng
7 Control . e I
Operational Detailed specification of Operational Context {viewpoini, mission,
g Contraints scope} or Rule sets
Behavior control: Stochastic benavior specification {monte carlo,
Activity Control  [probavilities, non-determinismi; execution specifications, execution
g £l t controt
Communication  Fined grained contro! of messaging in Communications Diagram: Logical
iag or and tima-based control of comm.nications diagrams
10 ing control
State Transition  logical control of state transitions
11 Control

109




110

4.48 Step 8: Coding Model Simulation Formalisms
Step 8 is the coding of the M&S formalism (i.e., CP-net and DEVS). Figure 36

shows the Executable Architecture Concept Triangle with the Modeling Formalisms
component highlighted on the right vertex. The focus of this section will be on how
Modeling and Simulation Formalisms can be leveraged to provide a plausibility check for

the composite meta-model.

Executable Arctutecture Concept Tnangle

Architecture
Elements

= OUNBSEY UlIOF
~ Expands Baseime

Modeling
Language - Could inform

Descriptions Couit Conform to~

Figure 36 - Executable Architecture Triangle (Modeling Formalisms Guidepost)

After modeling language analysis, the third major component of this investigation
was a validating step, during which composite meta-model findings were compared to
modeling formalisms that describe behavior modeling. This is a validation step that
includes both elemental and relational comparisons. Elemental comparison entails one-
to-one or one-to-many comparisons. The relational comparisons were done by
comparing relationships of elements in the formalism to relationships in the composite
UPDM-Language meta-model. The elements of the Executable Architecture

Specification were examined in the context of two prominent, well-established modeling
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formalisms: Coloured Petri Nets (CP-net) and the Discrete Event System Specification
(DEVS). As with language meta-models, both CP-net and DEVS were coded using in-
vivo coding in MAXQDA.

A modeling formalism for executable architectures should holistically describe
the elements of an executable architecture using a standard mathematical notation (Tolk,
et al., 2010). Comparisons of model formalisms and composite UPDM-Language
elements can provide a basis for determining the degree to which the composite UPDM —
Language meta-model supports simulation. From the opposite perspective, such
comparisons can provide a basis for determining whether there are any obvious gaps in
coverage. Two seminal references were used as the basis for formalism coding:
“Coloured Petri Nets Basic Concepts, Analysis Methods, and Practical Use” (Jensen,
1992) for CP-net coding, and “Theory of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems” (Zeigler, et al., 2000) for DEVS.

4.4.8.1 Coloured Petri Nets
The objective here is to provide a holistic, formalism-based comparison to the

derived meta-model, by showing traceability between the elements of CP-net and the
composite meta-model, thereby suggesting holism or well roundedness of the meta-
model construct. The purpose of identifying the elements in the CP-net was to ensure
that all CP-net elements were accounted for in the composite meta-model, and thereby to

ultimately ensure representation in the elements of executable architecture.

Table 31 is an elaboration on Table 3, presented in the literature review, in that it

provides an additional column for elemental interrogative interpretations.



Table 31 - CP-net Elements
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that PNT=PNnA=TnA=9

a transition or a
transition with a place

Code Formal Definition Intefpretation Int??%f% ves +
Transitory Objects Ephemeral objects e
(messages and data) 0 g
Token colour Attributes associate ge
with Tokens © g
Tokens Dynamically varying Proguet)
black dots associated © g
with a place
Global Declaration Defines all colour sets Rt (Rrociuct)
node 0 g
CP-net Control Control functions and
Elements definitions
Colour Sets (3) 3 finite set of non-empty types Each token on a place D
p must have a token
colour that belongs to
type C(p)
Initialization function Defined from P into closed Initial marking
) expressions such that
vp € P [Type(1(p)) = C(B)ms]
Arc expression (E) va € A [Type(E(a))C(P(a))ms Maps each arg, a, to an
AType (Var(E(a))) expression of type
C X])where p(a) s the place of N(a) C(p(a))
Guard function (G) It 1s defined from T into Additional constraint
expressions such that (Boolean) enabling
vt eT [Type(G(D)) = transition
B A [Type (Var(G(t))) c X
Node function (N) Defined from A into PxT U TxP (v) The node function
maps source and
destination nodes
Color function © Defined from P into X C maps each place, p,
to a colour set C(p)
Fixed Objects Fixed objects (nodes
_i and links)
Places (P) P 1s a finite set of places State of a resource 5 0
allocation, or of q
process (circle)
Port Place Connections for Relationship yellow
communication
L , | between Objects |
Arcs (A) As a finite set of arcs such Connects a place with Relationship yellow

Hierarchical structure

Hierarchical structure
Is developed for the
| CP-net

Relationship yellow

Transitions (T)

T 1s a fimite set of transitions

I Actions of resource
allocation system

_{ (rectangle) _

Figure 37 shows the same Colored Petri net elements depicted from a meta-

model, relational perspective, in which graphical relationships were derived from formal

definitions and through the verbal descriptions of these elements (Jensen, 1992)
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The interrogative color attributes are useful in helping to make visual
comparisons between elements. This comparison will be accomplished by using Figure
38, which shows a hierarchical, top-down depiction of the CP-net elements along with
Figure 34. The intermediate elements in Figure 38: Fixed, Transitory, and Control
Elements are categories suggested by Wagenhals, Haider and Levis (2002). The tags
extending from the leaf elements in Figure 38 show alignment of similar elemental,
derived from comparison of the CP-net top-down model and the composite UPDM-
Language meta-model. The elemental alignment described in the research of Wagenhals
et al. (2002) was leveraged for validation purposes. Both Figure 37 and Figure 38 are
used in Step 9.

@l

Aosl Oectar stion

(10) defines

(36 hava ) 0 %

=
tokern
g (S has1 *
"
Colour Sets,
g (2) evaluates & must yields mult set over. 10 oo of Calour Set to places
A6 exprassion (6) maps Colour Set (potential) to
(113 ev aluate instiabzation functien
1} av aluates
Colour functson
(3) enables
Guard function
{12) maps to & enables 18) mapping to
{1) maps to {14) irstial mapping of Place to Color Sets

Tranations
73 maps Place to Colow Set {paterfral)

7) rapsTransition to fec

(5] assor

Hode function

{15) rraps Arc to Plate | Transition (16) rmaps Place to Arc

J (6) aoc .

Ares

Figure 37 - Non-hierarchical CP-net
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ST
has "is has
g .8 e
Fiaod Chpecie 7/
/{\ / {\\ 3an \\\
gen nen gen en gen gen
ggn gen gen gen / gen 9
; NN = \\
; Hode huscbon
s..) J @ a e a @ 8.8
ey e ) comr wiscwon voamason mor arcoprosngy
Teven (nl:m S R S —
-States OperationalExchange
-Nodes / Performers -0 )ect Flows
g Y =] —
Needlmes Data .Data Rules -Events (Generators)
Ob;ect Flows ~Attributes -Attrbutes § -Gateways -States
Messages Edges -Operationat Constraints
Data Sequence Flow -Rules
-Gateways
u tnvmes/ Functions Data

“Edges -Atnbutes
-Sequence Flows

Figure 38 - CP-net Hierarchical Elements and Similar Composite Elements

4.4.9  Step 9: Compare Simulation Formalism Elementals to Composite Meta-model

Step 9 is a comparison step of the formalism elements with the composite UPDM-
Language meta-model. Figure 38 provides a flattened out model of CP-net elements.
The flattened version was useful in tracing between CP-net and the composite.
Comparison between the two is not entirely straight forward, because it depends on how
the CP-net model is conceptualized. Tokens can represent resources; they can also
represent information flow, as (Wagenhals, et al., 2002) documented in their elegant
description of CP-net-based modeling of executable architectures. Figure 38 provides
comparisons between CP-net elements and composite UPDM-Language composite
model elements. Additionally, resultant alignment comparisons are shown in Table 32.
All CP-net elements are addressed by one or more elements within the composite model,
lending credibility to the holism of the composite model. Referring back to Table 10, all
interrogative classifications (function, node, rule, relationship, product, state, resource)
are addressed by CP-net except time (reflected in Table 32). Apart from general
ordering, CP-net does not address timing. Candidates 1, 2 and 3 in Table 32 are similar

elements from the UPDM-Language Composite that are similar to the CP-net Elements.
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Table 32 - CP-net Cross Model Comparison

EAS Model Elements

CP-net Elements

Candidate 2 Candidate 3

Candidate 1

Initialization function
Colour function
Arc expression

| Object Flow
Gateway

Guard function
Node function
Transitory Objects
Tokens

Token colour

Colour Sets

Global Declaration node
Fixed Objects
Hierarchical structure

Operational
Exchange

Places
Arcs
Transitions

Figure 39 is a meta-model for CP-net. The relationships from this meta-model are
shown in Table 33; in addition, this table shows a comparison of relationships between
CP-net and the EAS meta-model. The basic elements in Table 33 were derived from
Table 32, but it also includes the relationships between the elements. The table shows the
relationship between the element (from) and element (to) for both CP-net and the EAS
meta-model.

This table serves two purposes. First, it looks at corresponding relationships
between CP-net and the Composite to see if the relationships from the CP-net meta-
model exist in the Composite meta-model. CP-net relationships were compared to the
corresponding EAS meta-model relationships, and it was determined that they were
roughly equivalent. The comparison of some relationships is straight forward. For
example, the Arch Expression enables the Transition element in CP-net is equivalent to a
Rule association to an Activity/Function. Other comparisons become understandable in
context. For example, the Colour Function and the Node Function in CP-net are
mathematical formalism functions or rules that map other elements together, and they do

not have direct equivalents in the EAS meta-model; however, there are equivalents to the
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results of the elemental mappings afforded by these rules. For example, the Node
function maps an Arc to a Place or an Arc to a Transition, and there are equivalents to
these mappings in the EAS meta-model. The equivalent relationships (shown in Table
33) in the EAS are associations between Node/Performer and Operational Exchange, and
Activity/Function and Operational ActivityEdge. Similarly, the result of the action of the
Color Function is the equivalent of mapping an association between

OperationalExchange and Node/Performer in EAS.

| token colour

(10) defines
(18) have } 0™

token
=] (33 has 1.0
a——"
Colour Sets,
g (2) evaluates & must yields ruit-sat over.. (121 imitial mepping of Colour Set to places
Arc expression (6) maps Celour Set (potential) to
Instialization function
{31) ev aluates
Colour function
(3) enables
—
Guard function
(12) raps to & enables (8) mapping 1o
{1) raaps to g {14) initial mapping of Place to Color Sats

Teapsiti
b 79 maps Plate to Colow Sat (psterfal)

7) maapsTransition te Arc

/(.’a)asso:.
Hode function
/ T———

(1S) maps Arc to Mace | Transition (16) maps Place to Arc
—

Arcs

{4) asgoc,

Figure 39 - CP-net Relationships

In regard to the Global Declaration Node in CP-net, in the closest analogous
element in EAS is all Information Elements. The Global Declaration Node (Jensen,

1992) is described in CP-net but is not part of the classic nine tuple. It is a definition
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found in CP-net formalism implementations that is used to describe a declaration of
Colour Sets, whereas the EAS meta-model operates at a process-modeling level of
abstraction that has no need for such definitions, per se. In other words, the Global
Declaration Node is used to describe variables found in code level implementations of
CP-net. The Composite meta-model describes processes at a higher level of abstraction.
Comparison of CP-net relationships to Composite relationships for validation can
be useful (as evidenced by the majority of relationships that do have equivalents), but
because of the markedly different levels of abstraction, this comparison does not always
produce results in every category. The utility in this approach is revealed by the non-
availability of disconfirming evidence. If there were obvious relational gaps in the
composite meta-model in comparison to the formalism this would provide evidence of

holes in the composite meta-model.



Table 33 - CP-net to Composite Relationship Comparisons

has

s

SeCondary -
Charac- Equivalent Similar
# |Cpuoet Element {from) Relationship Cpnet Element (to) EAS Element (from) i hip  |EASEI t (to) to#
1 meps to étcs (Gatewsy or Conkrol Mode Operational AcovityEdge
2 evaluates & must v elds mult set over Sateway or Control Node nronme o
3 enables
4 |Arcs BESOC OperationalExchenge i
5 OperationalExchangs
] | aps Colour Set (porental) to Place Oparationalfxchange 48
7 fimzns Place to Colour Set (potential) CraratonsiExchenge. [ ws S
8 Operationolixchange (0G0
9 S
sl S nie &
Gatewsy or Corbrol Moda
} maps ta and enables
iniea map of Colour Sets to Flaces OperanonalExchenge X o8
miga map of Places to Color Sets Opst atianslExshange #8
maps Arc to Place | Transiion Arcs OperationalExchange #5
Imaps Flace to Arc CperationalExchangs #S5
| epsTrananon o Arc OpersticnalAck /ity Bdge 85
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4.4.10 Discrete Event System Specification (DEVS)
Four basic types of DEVS models were described in the literature review. For

each type of DEVS model, a table of elements was developed (Tables 3-6). In this
section, a composite table was constructed based on tables 4-7, to reflect the largest
possible set of DEVS element configurations. In this section the DEVS variants were
represented with a brief description and a tabular synopsis of elements with interrogative
elemental descriptions. This set is used as a plausibility check against the composite

meta-model, similar to the process completed for CP-net.

4.4.10.1  Classic DEVS
A discrete event system specification (DEVS) is a tuple of seven elements:

M=(X,S,Y, in> Scxs» A, ta). Table 34 provides a list of the Classic DEVS elements with

definitions and interrogative or color classifications.

Table 34 - Classic DEVS Elements

Code Definition I Interrogatives +
e time elapsed since last transition When @ygﬁ;}j&il]gﬁ) blue
ta S -> R§, is the set positive reals with 0 and o When (Event- ftimir}g)ﬁue K
Q Q={(s,e) | s € S, 0<e<ta(s)} is the total state set [IEIACIEICIRIT Y T
S Set of states W
X Set of input values '
Y Set of output values

Sext Q x X-> 8§ is the external transition function
Sint S — S is the internal transition function
A S — Y is the output function

4.4.10.2 Parallel DEVS
Parallel DEVS was introduced by Zeigler fifteen years after the Classic DEVS

formalism. It removes constraints originating with the sequential operation of early

computers that hindered the exploitation of parallelism. A basic Parallel DEVS is

described mathematically in the following way: DEVS = (x,., Y., S, Sints Sext» Scon b t).
(Zeigler, et al., 2000). Table 35 lists the elements, their definitions and color

classifications. Through comparison of color classified elements between Table 34 and
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Table 35, it is evident that relationship elements now come into play with the addition of
ports. Another key difference is the addition of the Confluent Transition Function, for
resolution of collisions between external and internal events. [It may be observed that the
Confluent Transition Function is an implementation detail, that probably will not come

into play at the process modeling level of abstraction.]

Table 35 - Parallel DEVS Elements

Code Definition Interrogatives +
(ta) time advance function S -> R§ « is the set positive reals with 0 and
o0 - R
(Q) set of total states Q={(s,e) | s € S, 0<e<ta(s)} is the total What (State) brown
state set
(S) set of sequential states set of states What (State) brown
(X,») set of input ports and set of input values and ports
values
(Y,n) set of output ports and set of output values and ports
values
(8.0n) confluent transition decides next state if collision between
function external and internal even
(8.4t) external state transition | Q X X-> S is the external transition
function
(8,,¢) internal state transition | S -> S is the internal transition function
(A) output function S -> Y is the output function

4.4.10.3 Parallel DEVS with a buffer
An elaboration on the DEVS formalism is the explicit inclusion of a buffer, V,

which functions as a queue for holding an arbitrary input set. “A processor that has a
buffer is defined in Parallel DEVS as: DEV S, ocessing_time = (Xms Yms Ss Sines Sexts Seons by
ta) (Zeigler, et al., 2000). The Queue (V) was classified as a where interrogative.
Interestingly, there are no other explicit types that fall into this classification, although
this category is implied by virtue of object association to the functional and state
categories. Table 36 shows the elements of DEVS with a buffer. The V Queue is labeled

as a where, or node interrogative element.
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Table 36 - DEVS Processor with a Buffer

=0 s
(X,,) set of input ports and
values

ALV

elatlnshi ellow

set of input values and ports

(Y,.) set of output ports and
values

set of output values and ports

(V) Queue

V is a queue that holds an arbitrary set |
or a bag

(ta) time advance function

S -> R{ » is the set positive reals with 0
and oo

(S) set of states

Set of states

(M) output function

S -> Y is the output function

(8¢ internal state transition

S -> S is the internal transition function

(8.4¢) external state transition

Q x X-> S is the external transition
function

(6.0n)confluent transition function

Decides next state if collision between [JerE(RUnesorElpRdGeEn)

external and internal even |

4.4.10.4 Classic Coupled DEVS

Classic Coupled DEVS is an elaboration on the Classic DEVS, providing a means

to build complex models from component models. The specification for DEVS with

ports includes the external interface (input and output ports and values), the components

(which must be DEVS models), and the coupling relations: N={X, Y, D, {m,|d € D},

EIC, EOC, IC, Select) (Zeigler, et al., 2000). From an interrogative classification point

of view, in comparison to Classic DEVS, the addition of input and output ports and

values results in additional Relationship elements. Table 37 shows the Classic Coupled

DEVS Elements.



Table 37 - Classic Coupled DEVS Elements

(D) component names

e

Definition >

Set of the component names

B e
el U e TR
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errogatives

(IC) internal coupling

Connects component outputs to component
Inputs

Relationship yellow

(EOC) external output coupling

Connects component outputs to external
outputs

Relationship yellow

(EIC) external input coupling

Connects external inputs to component inputs

Relationship yellow

(X4) set of input ports and values

set of input values and ports

ellow

() set of output ports and values

set of output values and ports

(Y) output ports and values

Set of output ports and values Y={(p, v) | p €
OPorts, v € Y, }

Relationship yellow

(X) input ports and values

Set of input ports and values X={(p, v) | p €
IPorts, v € X, }

Relationship yellow

(M, ) DEVS Model

My =(Xa, Y4, S, Soxts Oune)r M, ta) 1s @ DEVS

Xd Xd =Up, v) | p € IPortsy, V € X, }
Yd Yd =[{p,v) | p € OPorts,,v € Y, }
Select o Tie-breaking function (used in Classic DEVS How (Functional)

Table 38 is a composite listing of all DEVS elements: Classic DEVS, Parallel

DEVS (with a buffer), and Classic Coupled DEVS. This represents a union set, which is

the broadest possible set of DEVS elemental possibilities. Elements in this table were

annotated with the interrogatives to support DEVS union set comparisons with the

composite UPDM-Language meta-model, as a plausibility check.

When this table was originally constructed, the going in argument was

agnosticism with respect to whether the DEVS element was a process modeling element

or implementation specific. Since DEVS was being used as a plausibility check, it made

sense to use the broadest possible set. It is now evident that some of the elements, such

as the Confluent Transition Function and the Time Advance Function are

implementation-level components.

Figure 40 provides a top-down depiction of the DEVS elements. Each element

has an annotated tag attached to it that lists the candidate composite UPDM-Language

elements. Each DEVS element was traced to the corresponding elements in the

composite model, and the result set is represented in Table 38. Figure 41 shows the

traces between the top-down DEVS model (from Figure 40) elements and the composite

UPDM-Language meta-model elements.



123

Table 38 - Composite DEVS Elements

Code

Model Origin

Interrogatives +

(D) Component names

Classic DEVS Coupled
Models

Other (diagram)

Transition

(6-on)confluent transition function Parallel DEVS
(6...) External Transition Function Classic DEVS
(6,5:) Internal Transition Function Classic DEVS
(e) Time Elapsed Since Last Classic DEVS

(EIC) external input coupling

Classic DEVS Coupled
Models

fone
'0n.| 0

Relationship yellow

(EOC) external output coupling

Classic DEVS Coupled
Models

Relationship yellow

(IC) internal coupling

Classic DEVS Coupled
Models

Relationship yellow

Models

(193 Tims aduance Ancion

(o1 T tiaored Sance tast Transtan o)
ve) Qume

Suec

[Fira Dbsorvaon | tLande} Output foncton
Torng Conptresm [;wm
(Fancuios 1 [Emmrenn]
[Actwvity

Tracs Pessape of Sowuimted Trrme
Caery out AR SE1on B Cucnent time }
Addvanice dock 0 1me of L sackest event |

g 19 i) tceran Transiton.

Funstion|

Paroilct Coupiad Clayzic DEVS (hytnd)

(¢ 2vt) Excheradf Tramsaon Furcion
Fuscton
Aaml‘l;
lacuon
Seate
AL,
> Exharge
. > Node
ACTIvRY -
Ackion

(@ ToaSsa’

(A) Output function Classic DEVS lo g
_(Q) TotalStateSet Classic DEVS a ate) b
(S) Set of States Classic DEVS a ate) b
(ta) Time advance function Classic DEVS e e g) blue
(V+) Queue DEVS Processor with Wihan ode)iNaua
Buffer
(X,) set of input ports and values Parallel DEVS Relationship yellow
Evll odue) ve o e
(Y,,) set of output ports and Parallel DEVS _Relationship yellow ]
values EW oduc T o
Select Classic DEVS Coupled ®

{%ﬁm\
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{10m a of ot p0cts ad vowes
) 9 f oot s B vaoes.

L™ gnter# mpl oy wng

(E0C) anterral outns coud) {Eh ekl cousl 29

Figure 40 - Composite DEVS

Table 39 shows the results of the traces between DEVS elements and composite

UPDM-Language meta-model elements. It lists candidate composite model associations
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in the columns entitled candidates 1-3. These columns actually represent populated
attributes in MAXQDA such that Table 39 was produced as a report set. The
“Interrogatives + column provides the interrogative or color classification of the DEVS
elements. This classification provided a basis for finding candidate elements in the
composite model. The only interrogative category not directly represented in the DEVS
composite table is the Rule category. Referring back to Table 10, that particular category
was defined as a process modifier, similar semantically to an adverb, which modifies a
verb (function or process). As such, the rule category may be viewed as subsumed by or
as part of the process category. None of the DEVS elements is without a composite
meta-model element association. However, there are many elements in the UPDM-
Language meta-model that go beyond the prima facie associations under DEVS. This is
to be expected, as the DEVS formalism is intentionally minimalistic and reductionist.

It was interesting that in Mittal’s (2006) research there were fewer direct
correspondences between UML (used to model DODAF) and DEVS elements than one
would expect, and this invited further exploration. The purpose of this investigation was
to develop a holistic specification for executable architectures, with sufficient depth and
richness of semantic and syntactic detail while exploring a method for doing so. As
such, the results could be used to define a future Architecture Framework that would
support executable architecture. One of the findings of this investigation is that the level
of granularity in DEVS is not sufficient for describing executable architectures. An
Architecture Framework requires both static and dynamic modeling along with sufficient
specificity, which goes beyond Discrete Event Simulation; it must also provide a
common frame of reference, so that as far as possible ambiguities are avoided. The end
state of an Architecture Framework is development of Models and Simulations that
support Systems Engineering in complex system of systems engineering spaces, which
by definition requires collaborative development of systems engineering products. This
is so because in system of systems engineering, the systems are not under the purview
of any one person or group, and therefore the modeling of those systems must be done
in partnership with others, requiring a common lingua franca, for sharing of these

views and simulations.
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th Formalism Traces
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Figure 41
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Table 39 - DEVS Element Comparisons

UPDM - Language Composite Model

Model Interrogatives Elements
Code Origin + S
Candidate 1 | Candidate 2 ;| Candidate 3
(D) Component names Classic DEVS | Other (diagram) Model
Coupled
Models
(6con)coOnfluent transition | Parallel DEVS
function
(8.5 ) External Transition Classic DEVS
Function
(8.ne) Internal Transition Classic DEVS
Function
(e) Time Elapsed Since Classic DEVS ! Time
Last Transition timing) blue | Observation
(EIC) external input Classic DEVS Relationship Operational
coupling Coupled yellow Exchange
Models
(EOC) external output Classic DEVS Relationship Operational
coupling Coupled yellow Exchange
Models o
(IC) internal coupling Classic DEVS Relationship Operational
Coupled yellow Exchange
Models
(A) Output function Classic DEVS RjelR(Elicdenal)
(Q) TotalStateSet Classic DEVS What (State)
_brown
(S) Set of States Classic DEVS What (State)

brown

(ta) Time advance
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Step 10: Define Elementals as Sets Based on Ontologies & Interrogatives

Step 10 is the further defining of the EAS meta-model as an ontology. This may

be seen in Figure 42, which starts with the How (i.e., process) interrogative element, as

the root node, and branches down in terms of parent-child relationships.

Figure 42 is the process category, organized ontologically. Parent-child

relationships were derived from the EAS meta-model, which is captured in a meta-model
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drawing. The original source of these relationships was both the authoritative source for
the contributing model (i.e., UML, SysML, BMNN, IDEF), and new relationships that
were discovered by creating the composite meta-model. The ontology influence the EAS
meta-model, and the development of the two were an iterative, complementary process.
Parent-child relationships in the meta-model are indicated with annotations on the
relationship lines between parent and child, with the arrow head pointing to the parent

and the line annotated with “gen.” for generalization (e.g., see Figure 34).
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Figure 42 - Parent-Child Depiction

Table 40 and 41 depict the same kind of elemental relationship in tabular form for
all 9 interrogative categories. The tables are organized from left to right with
Interrogative Category (e.g., How) in column A; Name and Designator in column B, e.g.,
Behavior (P); followed by the first Fork / Node with Designator and Name in column C,
e.g., pl Performed Activity; followed by the second Fork / Node, e.g., p1.1 Activity, and
so on. After the first Fork / Node, the alpha numeric dot designator is used, e.g., p.1.1 to
indicate Fork / Node levels.

A series of tree graphs could be generated for each interrogative by traversing the
table from root to leaf nodes. Additionally, the definition for each element was recorded

with coded elements in the MAXQDA database. A composite tree-view ontology was
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not constructed in a separate hierarchy in MAXQDA, because this is viewed as a further
practical implementation of the method.

There are nine interrogative classifications shown in Table 40, and 43: How
(Process), Why (Rule), Where (Node), Who (Resource), What (Product), Being (State),
When (Timing), Relationship, and Hybrid. As previously discussed, this investigation
started with the six interrogatives but expanded to the nine to address those categories
that did not fit into the six. Most elemental classifications were straightforward.
However, in some cases the classification is a bit messy and definitely not perfect; for
example, Gateways & Control Nodes have characteristics of both the relational category
and the functional category. For this study, the relational category was chosen for both,
to support elemental comparisons. Categorization may be viewed as a useful tool that
reflects the ontological nature of the element, and while useful, as it provides an
organizational mechanism for building a schema that accounts for elements. Some of the
elements have characteristics that could allow for classification according to more than

one type.
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Table 40 - Elements 1 (Executable Architecture Tree)
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Table 41 - Elements 2 (Executable Architecture Element Tree)
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The motivation for classification of an interrogative category as information or

knowledge is shown in the motivation column, such that if the interrogative is the result

of associations of information and is therefore complex, or not discrete, it is described as

knowledge; otherwise it is information. These interrogatives may be described as the
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essential information and knowledge descriptive categories. From a classification
perspective there is the suggestion here of holism with respect to elemental categories
and interrogative categories: if these interrogatives are the primary information and
knowledge ontological groups for the architecture, then from a category point of view,

they should contain all the useful elements for the architecture.

Table 42 - The Nine Information and Knowledge Interrogatives

Category Motivation Interrogative | Description
Information Discrete What Product
Information Discrete Who Resource
Information Discrete Where Node
Knowledge Complex How Process
Knowledge Complex Why Rule, Context

The result of this kind of elemental analysis and synthesis of the data is the
development of an organizational ontology of Executable Architecture Specification
Elements, based on nine interrogative classifications, where the elements can be
described in terms of information and knowledge categories, as shown in Table 42. This
categorization is an expansion of the information and knowledge elements describe by
Sage (2009).

Up to this point, the study has been conducted through inductive data analysis by
developing a composite UPDM-Language meta-model, called the EAS. In the process, it
was validated against formalism elements and compared to a UPDM composite meta-
model to see potential language contributions to executable architectures. Next, the study
will go into the deductive phase as the results are explored and synthesized through the

use of the EAS meta-model.
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4.5 EAS Intermediate-level Model

The previous section provided an organizational ontology of Executable

Architecture Specification Elements based on the nine interrogative classifications. As

stated previously, these interrogatives are the primary information and knowledge groups

for the architecture; from a category point of view, they contain all the useful elements
for the architecture.
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Figure 43 - EAS Intermediate (EASI)

Once a detailed EAS meta-model had been developed, it became apparent that by
reducing the detail down to the second fork in the tree structure of the ontology, it would
become possible to recognize the elements of highest potential; they became more visible

and observable as the less important details were removed. Figure 43 is the resulting
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intermediate-level meta-model, called the EAS Intermediate (EASI). The model contains
color coded elements and color coded relationships (legend).

The EAS-Intermediate level meta-model appears to be a holistic construct that
should support the development of integrated Executable Architectures. Holism here
means that both static elements, as defined by the Architecture Framework, are there --
and dynamic elements, as provided by Modeling Language contributions, assessed
against M&S Formalism are present -- in the context of the whole, thereby enabling a
dynamic modeling construct that is integrated into the reference Architecture Framework.

Tables 43 and 44 will help to validate the holism of this assertion, by comparing
the elements from the EASI in the context of the ontological interrogatives (which form
the basis for inquiry) against the requirements of the M&S Formalisms. We know from
comparisons of the EAS to CP-net (in Table 32) and DEVS (Table 39) that all formalism
elements are either present or there by virtue of end-state or effect. Now, we will look at
the EASI, which provides a more streamlined view of the EAS, to assess for holism in
this revised context.

Table 43 and Table 44 contain the Intermediate-level meta-model elements
derived from the EAS-I, from root interrogatives to second level Nodes, as rows. The
two tables divide the meta-model elements into static and dynamic elements. The tables

have the following principle columns: UPDM, Classic CP-net, DEVS, and EAS-I for

element comparison purposes. The colors in the stoplight show the level of element
availability in red, yellow, and green. For example, the Node element is present or green
in all four implementations: Architecture Frameworks, Classic CP-net, DEVS, and
EAS-IL.

These tables provide side-by-side comparisons of each element’s availability.
The comparison to CP-net and DEVS shows the degree to which the element is addressed
in the respective formalism. The table indicates that the element is present in green, and
not present in red; partial or non-specific availability is indicated by yellow. An
annotation of partial means some aspect of the element is not implemented. If it is
annotated as non-specific, this means that the element is present but is described in a less
specific way; in other words, the description is at a high level of abstraction and less

useful for building Executable Architectures.
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The EAS-I meta-model is designed to answer the question, which elements are
necessary or of high potential for the simulation of process models (i.e., Executable
Architectures)? All thirty EAS-Intermediate level elements listed in Table 43 and 44 are
considered high potential elements. These potential elements, then, are those which
effectively address the interrogative questions across the nine categories: where, who,

what, relationship, hybrid, why, when, how, and state.

Table 43 - EAS Intermediate Static Elements
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4.5.1 Static Elements
Table 43 contains the static elements: the Where, Who, What, Relationship, and

Hybrid elements. In general, these are the structural elements that do not deal with time.
Static elements are described as follows:

Pins, Port and Gates: In the static table, in the Node category, ports, pins, and
gateways and control nodes are of particular importance in terms of modular, structural
design. In the ontology, these elements are Node elements that are used for connecting
and are important for building both static and dynamic architectures. The lesser known
Gate is similar to a Port for a Sequence Diagram. UPDM does not include Gates, and
Classic CP-net does not include Pins, Ports or Gates. However, these constructs are of
particular importance in the modular construct of Coupled DEVS where they are referred
to as input and output ports and value. Pins, Ports, and Gates are also a part of EASI. It
should be noted that for these elements to be useful in the context of modular
composition, their semantics need greater specificity in order to support modular

coupling at the syntactic level.
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Table 44 - Intermediate Level Dynamic Elements
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Event Timer
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State

Queues: Queues provide both a receptacle and a way to manage token arrival.

Queues are important to the process modeler, not merely the simulation developer

engineer, because specification of queue behavior in terms of ordering (FIFO, LIFO) and

in terms of numbers of queues is fundamental to the control of Discrete Event

Simulation. Queues and Queue control are critical in process modeling.

Resource, ResourceRole, and Competence: In the Resource and Product

categories, all elements are represented across UPDM, CP-net, DEVS and EASI, with a

few partial or non-specific exceptions, as follows. Resource, ResourceRole, and

Competence are addressed by CP-net and DEVS in high level or non-specific ways.

Resource and Competence go hand in hand. Both are associated with activity measures

of performance. A Resource executes an Activity at a Node. This relationship is
described as a triplet (Node, Activity, Role) in DODAF Activities Based Methodology
(ABM) (Ring, et al., 2008). However, in this meta-model the relationship has five parts
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and is described as a Quintuplet (i.e., Node, Activity, Resource, Competence, and
Resource Role). Competence sets the level of performance of a resource. A Resource in
UPDM is similar to a Role in DODAF 1.5 (DOD, 2007b); however, it is not limited to
human performance in that it includes system actors as well. In BPMN, the Resource
Role “defines the resource that will perform or will be responsible for the Activity. The
resource, €.g., a performer, can be specified in the form of a specific individual, a group,
an organization role or position, or an organization.” (OMG, 2009, p. 154). The
following relationships are depicted in the intermediate-level meta-model: a Resource
has a Competence and a Resource Role; a Node has one or more Resources, a
Performed Activity is associated with a Resource; and a Performed Activity performs or

acts upon a Node. Because performance measures are critical to process modeling, the

Resource. Competence and Resource Role elements should be included with Activity and

Node (which are ontologically basic as the How and the Where, respectively) in

Executable Architecture Specifications.

Data Characteristics are annotated for CP-net and DEVS as partial because data
properties are specified but data structure is not. A Data Characteristic is a constituent
part of data. In and of itself, it is a vague term that encompasses the attributes of a data
entity or of data. Similarly, an “ActualMeasurementSet” is an attribute of a data entity
that specifies some measurement such as rate, size, or quantity. The ability to specify

attributes associated with data flow, i.e., tokens, is vital to Executable Architecture

Specifications.
Gateways & Control Nodes: Under the Relationships category, the Gateways &

Control Nodes are different for each of the four columns. From left to right, in UPDM,
Gateways and Control node functionality is partial in that it offers little control over flow
of data and tokens. Classic CP-net does not include control node and gateways. DEVS
refers to this capability non-specifically as input and output ports and values, and more
obliquely as internal transition functions. EASI, in comparison, has a variety of specific
Gateways and Control nodes from contributing languages. Gateways and control nodes
are glaringly absent from IDEF0, and very minimal in UML Activity Diagrams. They

provide low level logical control flow of tokens in process models. Gateways and
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Contro]l Nodes should be considered high potential elements for Executable Architecture

Specifications.

Operational Activity Edges and State Transitions are present in all categories.
Operational Exchanges and Needlines are by definition composite elements in UPDM
and EASI, comprised of Nodes, Products, Relationships, and Resources. Both
Operational Exchanges and Needlines are key components of most Architecture
Frameworks, such as UPDM, DODAF, MODAF, NAF, etc. because these frameworks
emphasize interoperability between systems or system of systems constructs, and these
elements support the specification and investigation of interoperability within and
between systems. In CP-net and DEVS the component parts are there (i.e., Nodes,
Products, Relationships, and Resources), but not specifically the composite structures.

Hybrid: Within the Hybrid category, Capability, which is a key systems
engineering descriptor of system need, is not part of CP-net or DEVS. Arguably, this
element could be considered out of scope, as a requirements-like element, but is
nevertheless included here as fundamental to Systems Engineering (Buede, 2009). Also,
there are a large number of elements in Tables 43 and 44 that have hybrid characteristics
but which have been classified under a particular interrogative according to their primary

characteristic.

4.5.2  Dynamic Elements
Table 44 contains the dynamic elements: the How, Why, When, and State

elements. In general, these are the behavior elements that deal with time. All of the
dynamic elements are very important to building Executable Architectures. Notable
deficiencies with respect to Executable Architecture are found in the Process, Rule, and
Timing categories, all of which require more specificity.

Reading Table 44 from a vertical perspective, it may be observed that UDPM has
deficiencies in the Process, Rule and Time categories. CP-net is deficient in three, and is
non-specific in most. DEVS is sufficient in all categories; however, it is non-specific in
most. EASI provides sufficient elements in all categories for Executable Architectures,

by virtue of the addition of Modeling Language elements.
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Reading Table 44 from a horizontal perspective, from left to right, specifics
follow: In the How or Process category, the key element Performed Activity is present
across the board. The Event or Token Generation element together with the similar
Event Timer element (from the Time category) are important in discrete event modeling
and to Executable Architectures, for the logical and timing control provided over data
flow. The Event element is not addressed in UPDM, and not specifically or fully
addressed in CP-net or DEVS. In CP-net, token flow and flow control is basic to the
formalism; however, it is predicated on an initial token state (defined by the Initialization
Function), and control over timing is not addressed beyond sequencing. In DEVS, the
control over data or token flow is addressed, but the notion of a token generator, although
inferred, is not specifically defined.

In the How / Process category, both the Performed Activity and the Event or
Token Generator can generate tokens or data flow. The Event element provides detailed
logical control over token, message, signal and data flow. The Event is defined by The
Object Modeling Group as:

something that ‘happens’ during the course of a Process. These Events
affect the flow of the Process and usually have a cause or an impact. The
term ‘event’ is general enough to cover many things in a Process. The
start of an Activity, the end of an Activity, the change of state of a
document, a Message that arrives, etc., all could be considered Events.
However, BPMN has restricted the use of Events to include only those
types of Events that will affect the sequence or timing of Activities of a
Process (OMG, 2011), p. 83.

It is suggested that “something that happens” be read as a state change. Each of the
underlined portions of text above describes a change in state of some kind. The event is a
key control element in BPMN. An event is used to define process flow in response to,
and in the context of, various stimuli (e.g., message, signal, error, escalation generation).
Each of these stimuli may be understood as the arrival of a foken, as understood and
articulated in a Colored Petri-net (Jensen, 1992) context, that is to say, as an attributed

object that facilitates process flow in the context of state change.
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OMG defines a token as follows:

Throughout this document, we discuss how Sequence Flows are used
within a Process. To facilitate this discussion, we employ the concept of a
token that will traverse the Sequence Flows and pass through the
elements in the Process. A token is a theoretical concept that is used as an
aid to define the behavior of a Process that is being performed. The
behavior of Process elements can be defined by describing how they
interact with a token as it “traverses” the structure of the Process (OMG,
2011), p. 27.

Discrete Event Simulation is a primary method for simulating processes. It is
based on the concept that the simulation responds to the arrival and processing of events
or tokens at various points in the simulations, from inputs queues, through processing, to
output queues, and that time intervals are dictated by the arrival of these events or tokens
(Law & Kelton, 2000). As such, event or token control is fundamental to defining
dynamic process modeling. For this reason, the Event elements must be included in the

Executable Architecture Specification. Finding: The “Event” element (both Logical

and Timer), taken from BPMN, should be included in Executable Architecture

Specifications.

In the Rule Category, the Communication Diagram Control and the Sequence
Diagram Control are logical control features derived from UML/SysML that are
specifically addressed in EASI but either not at all in UPDM or non-specifically in the
other categories. The Sequence Diagram and the related Communications Diagram are
vital because they support the sequential diagramming of processes. The UML
Communications Diagram, which provides a data or message oriented view of objects,
can be derived from the Sequence Diagram. Sequences or Event Traces are generated
from the operational nodes, which are represented as lifelines in the Sequence Diagram.
The Sequence Diagram is indispensable to modeling sequential processing and is part of
UPDM, but the fine grained logical control features that are described as Sequence
Diagram Control are not part of UPDM or DODAF. A sequence or event trace is a
hybrid element (as shown in Table 45) that includes activity, messaging and time (order).
It is nearly impossible to show time ordered sequencing of activities without an event
trace, and the ability to specify logical control over the event trace makes Sequence

Diagram Control highly desirable as a potential element for Executable Architectures.
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Operational Constraints also fall under the interrogative Why / Rule category.
Operational Constraints were addressed by Garcia (2011) in his dissertation. Operational
Constraints provide the operational context, i.e., critical environmental factors that
influence the behavior of activities in simulations. They are associated with Performed

Activity in the Meta-model. Operational Constraints should be included in Executable

Architecture Specifications.

Under the Rule category, Activity Control Elements (logical), is a parent or
generalization element for six behavioral controls (one of which is Probability; another is

Control Operator) that should be included in Executable Architecture Specifications.

This kind of logical control is vital to Executable Architecture specification, and is not
addressed in UPDM. The idea of control as data is addressed in CP-net and DEVS, but
control as a probability, while it may be inferred, is not directly addressed by either
formalism.

Probability is a type of Activity Control Element: From a holistic point of view,

the “probability stereotype” (in the parlance of UML/SysML). or a probability element or

attribute, should be included in an expanded UPDM meta-model, as its consideration

would support non-deterministic process controls and token generation. SysML
specifically addresses this consideration by introducing probability into activities as “the
probability stereotype” -- which may modify both edges and parameter sets, and by
extension own “behaviors or operations” (read actions, as part of activities). This
stereotype can govern the probability of a given path being taken as an output to a
decision node, or the likelihood that values will be output on a parameter set (OMG,
2006). A probability element should be able to support the specification of Probability
Distribution Functions (PDFs) across a variety of distribution types, such as Normal,
Logarithmic, Weibull, etc. (2001).

Control Operator is another type of Activity Control Element that was
introduced in SysML. A ControlOperator is a behavior that is intended to represent a
complex logical operator that can enable or disable other actions. This kind of control is
reminiscent of the mechanism ICOM arrow in IDEFO, and it affords greater specificity in

terms of functional control. The ControlOperator should be included in Executable

Architecture Specifications.
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Pseudostate - State Control provides a rich set of state transition control
elements and is part of the State Machine. State and State transition are parallel events to
activity execution. An activity causes a state transition, of either a product or another
activity, or node, or resource. Having a broad set of control options for state transition
enables the modeler to provide detailed descriptions of the conditions necessary for
making a transition from one state to another, which is vital for state oriented modeling.
UPDM and DODAF do not include this rich set of controls, and as a consequence lose
the ability to specify state transitions at other than a superficial level. State transition is
central to CP-net and DEVS formalisms; however, neither specification offers specific
control features such as those that are part of pseudo-state or state control. State

Transition Control should be included in Executable Architecture Specifications.

Control Elements Time: Under the Timing Category, and under the parent
element Control Elements Time, very specific timing controls are listed (i.e., Rate
Continuous, Rate Discrete, Time Constraint, Duration, Duration Interval, Interval
Constraint, Time Event, Time Expression, Duration-Constraint, and Time-Constraint).

Detailed, rule-based. and timing modifiers should be included in Executable Architecture

Specifications. Time factors are critical for process control, scheduled resource
allocation, and schedule development. These are only addressed in general under the
formalisms and not at all in UPDM.

Operational Event-Trace-Sequence (Time) provides variety of timing and other

logical controls (e.g., looping) for detailed control of sequencing. Event Traces or

Sequencing with logical and timing control should be included in Executable

Architecture Specifications.
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Observation 1 (Modifiers): A modifier influences or acts upon another element,
similar to the way an adverb modifies a verb, or an adjective modifies a noun in
language. As an example, the element “Pseudostate”, for state transition control,
modifies state transitions. Whereas, it is true that most of the elements are modifiers, one
of the observations from the intermediate level is that the elements that are not modifiers
are structural elements. For example Node, NodePort, Pins, Needline, Data
Characteristics, and Resource Role are structural elements that do not modify other
elements, per se; however, an Activity Control Element, a Performed Activity, a
Resource, an Event, and an “OperationalSequence” do modify, or act upon other
elements.

Observation 2 (Hybrids): Hybrid is an element that has primary characteristics
of more than one interrogative type. For example Event, which is classified under the
How interrogative (i.e., process) is an element that has process, state, rule and product
characteristics, and OperationalEventTrace — Sequence has process, and time
characteristics. Hybrids can result in ambiguities in ontological relationships, which can
lead to difficulties in building clear categories. The hybrid characteristics were
determined after the construction of the elemental ontology; although they were
subsequently annotated with hybrid characteristics, they are best left in the original
interrogative category, because that is their primary characteristic.

Observation 3 (Component Parts): Some elements are parts of other elements.
The Node Port, for example, is part of the element Node, and a Pin is part of an Activity.
The NodePort and Pin elements are useful in describing model compositions, which is a
key focus of the DEVS formalism. Both should be part of an Executable Architecture
Specification. It was observed that their structure needs detailed description and
specification, so that they can be used to support modular coupling at the syntactic level.
This would enable structural relationships to be parsed by a computer, so that dynamic
models could be automatically generated from static models. Mittal ((2006) addressed
this syntactic deficiency idea in his research, where he pointed out the deficiency of

DODAF 1.5, at the time; today, this deficiency remains in the newer UPDM.
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In summary, this list of elements has addressed the potential set based on an
operational or process modeling delimiting perspective. As a mitigating argument to the
question of sufficiency of operational process modeling elements, there is a reasonable
probability that, if there are other required elements, they are outside of the nine
information and knowledge interrogatives listed in Table 42. As for whether all required
elements within the categories are covered, it is suggested that on the basis of data
triangulation from numerous well established modeling languages, which included
comparison to the formalisms (albeit high level), it is likely that the principle elements
have been addressed; the possibility that there are others cannot be excluded. However,
because the methodology was holistic in addressing the information and knowledge set
interrogatives, and because the method used data triangulation to focus the target data
sets from a variety of well-established languages, it is likely that a complete set of
potential elements have been defined.

It is clear that the static and dynamic modeling elements that make up the minimal
set needed for simulation are present in the EAS-I, as validated by the formalisms.
Further, it is clear that there is greater specificity of element descriptions in the EAS-I,
than is described in the formalisms, which by comparison are minimalistic or
reductionist. That greater specificity is important to driving executable architecture
viability with sufficient detail of modeling control, with respect to process, rule, and
timing considerations. As such, it may be concluded that the EAS-I is holistic with

respect to the dynamic modeling constructs that can support the development of

integrated Executable Architectures. With respect to the other elemental constructs that

have their origins in the Architecture Framework, sufficiency should be considered

domain specific, and holism with respect to EA can be inferred based on an integrated
dynamic-static construct (represented in a semantically and syntactically correct meta-
model), in the context of the nine interrogatives: five of which are predominately static

constructs, and four of which are dynamic.
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4.6 Meta-model Use Case
Figure 44 is a meta-model Use-Case designed to provide semantic and syntactic

validation against the simple graphically depicted use case shown in the lower right hand
corner. The Use Case starts with the firing of a token from an Event Timer in a Node that
goes to an Action, which is subsequently processed in accordance with the sequence of
activities listed on the following page. For each event, the relevant element in the meta-

model is highlighted, and related element -to-element relationships are checked.

*Intermediate - UPDM & Language Models § M;

tegend
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<*Informaton v Action % Gateways
Element

«+Event Timer

Figure 44 - Meta-model Use Case
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The steps in the use case are shown in the following text:

—_—

Starting at Node 1

Event Timer Produces Token (IIR, Const., 10 Sec, for 10 minutes), w/
attributes “x”, Nodel

3. Token generated

4. Event Timer calls Control Elements Time

5. Token Traverses OperationalActivityEdge

6. Token arrives at Action
7
8

&

. Activity has a resource
. Activity governed by Rule, based resource
9. Activity Control Element directs Stochastic behavior
10. Normal Distribution PDF (2 minute mean)
11. Activity Fires
12. Token arrives at Gateway (Decision)
13. Token Traverses Edge
14. Token Arrives at Message Event (Message generated)
15. Message Traverses Edge
16. Node 2
17. Message arrives at Message Event (token generated)
18. Token passes along OperationalActivityEdge
19. Token processed by activity (Const. 30 sec.)
20. Token State changed to Processed
21. Token passes along OperationalActivityEdge
22. End Event (Token Consumed)

Follow-on work could include a series of Use Cases for meta-model validation purposes.

This kind of validation would ensure meta-model resiliency and utility.

4.7 EAS — Interrogative Meta-model
It is possible to define high level theoretical relationships for the nine

interrogatives, in terms of a meta-model, as shown in Figure 45. This model was
constructed by reducing the intermediate level meta-model down to the nine
interrogatives and accounting for child relationships by rolling them up into the parent
node. The hybrid category lacks specificity by definition because it is a combination of

interrogative types; it requires child nodes to have meaning.



147

( Information

| Knowledge

Figure 45 - Interrogative Meta-Model

Recalling the nine interrogatives and their classifications as information or
knowledge elements (from Table 41), the Interrogative Meta-model was color coded with
yellow and green circles to reflect information and knowledge element types (yellow for
knowledge, green for information). Like some of the formalisms, it does not afford the
precision needed to define Executable Architecture Specifications. However, it can be
useful at an abstract theoretical level, in regard to general relationships between
interrogatives.

At a high level, for example, it may be seen that there are time association
relationships with process, resource, and relationship. This makes sense, because time
can influence processing, resource allocation duration, and the flow or production of data
along relationship lines. Additionally, this meta-model could be used in some future

application as a basis for setting up high level EAS database design of tables and
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relationships, and understanding complex query design against such tables. For example,
a resource at a node, performing a process with certain measurable attributes using a rule
based on some timing criteria could be the basis for a query against the supporting data
structures. Similarly, an activity in a given state that produces a product could be a
logical association of data which would have meaning in terms of a query against the data

structures.

4.8 Chapter 4 Conclusions
In conclusion, the study has produced several meta-models with varying degrees

of specificity. There are tradeoffs between greater levels of detail in low level, high
specificity models such as the EAS, and the ability to see the key relationships and
elements in more simplified, high level models, such as the EAS-Interrogative.

For example, the simplicity of the EAS — Interrogative model conveys some
general information about how a rule can influence process behavior, but because of the
high level of abstraction, there is no visibility into the kinds of rules that could be used to
specify detailed process constraints. At a lower level of specificity, however, such as that
which is available in the EAS, we could explore the usefulness of this element more
fully. This suggests that a spectrum of meta-model specificity is useful in framing and

answering questions derived from theory.



149

CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

A review of the literature revealed that all researchers provided valuable solution-
specific demonstrations of translations from static to dynamic modeling and also showed
the value derived from such an endeavor. These investigations were valuable; however,
no common theory underlying these applications can be found in the literature. In
addition, no one has attempted to conduct a holistic investigation into the theoretical
elements of executable architectures (dynamic models). This is the gap in the body of
knowledge which was addressed in this dissertation study.

The purpose of the study was to conduct a holistic investigation into the elements
of executable architectures, by means of a qualitative investigative study, utilizing and
further exploring a theoretical framework for inquiry into the dimensions of executable
architectures. This research began by using inductive reasoning to drive development of
the Executable Architecture Concept Triangle (EACT), which is a conceptual framework
that was leveraged to design a method for development of the EAS. Use of the
framework and method led to deductive reasoning insights with regard to the potential
elements of Executable Architectures. The conceptual framework, the EACT, suggests --
and the derived method for building the EAS employs -- data triangulation and thick
description to drive elemental convergence in the EAS.

The method employs precision in coding, revealing language element potential
contributions to the reference Architecture Framework (UPDM) with respect to
Executable Architectures, in the context of validation against M&S Formalisms.
(Executable Architecture descriptions require lower level, modeling specific elemental
descriptions, whereas, in M&S Formalisms, elemental semantics and syntax are by
definition very high level and more general.)

This approach demonstrates that a coding-based, qualitative study is useful in
exploring modeling language areas where the data is complex and theory is not well
established. This approach further demonstrates that meta-model-based methods can
provide a context in which lower level, specific elemental descriptions and relationships

can be explored.
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The following main contributions have been realized: a refined theoretical

framework and method for analysis and development of architecture frameworks in

accordance with the objectives for Executable Architectures; the utilization of the

theoretical framework resulting in a description of the theoretical elements and their

relationships.

The investigation into the Elements of Executable Architectures has produced the

following five research results:

1.

5.1

A well-defined conceptual framework, the Executable Architecture Concept
Triangle (EACT), that lends itself to the exploration and development of a method
(described in Chapter 4) for derivation of an executable architecture meta-model;
The development of a richly detailed meta-model, Executable Architecture
Specification (EAS); the result is a composite meta-model for executable
architecture, based on architecture elements from the UPDM architecture
framework, and drawing from Modeling Language contributions from UML,
SysML, BPMN and IDEF, and validated in comparison to M&S formalisms;

The development of a detailed Executable Architecture Specification Ontology
leveraged to refine the EAS (above), which is an expansion of the six information
and knowledge interrogatives to nine;

An intermediate-level meta-model Executable Architecture Specification —
Intermediate (EAS-I), used to investigate the essential elements of Executable
Architecture, that incorporates the static and dynamic elements;

An interrogative meta-model that shows the relationships between the nine

interrogatives, potentially useful at the abstract, theoretical level.

Synopsis of Research Results

This section provides a brief discussion of the five main research results above:
The research produced the Executable Architecture Concept Triangle (EACT,
Figure 46), which was further refined over time to an extended version. This
extended version is more complete, revealing annotated relationship lines; it
better describes the Executable Architecture Specification (EAS) core component;

which more clearly reflects the structure based on 9 interrogatives and their
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syntactic relationships. The extended version of the EACT provided more clarity

in building the EAS, and for deriving a method for development of the EAS.

xecutable Architecture Conce)

Architecture
Elements

H » Expands Baseiine

£
R4 - ouijeseq wiiod

T WES
Formalisms

Modeling
Language
Descriptions

= Could Inform " _
Could Conform to~

Figure 46 - EACT Summary

The research produced a detailed meta-model for Executable Architectures,
referred to as an Executable Architecture Specification (EAS, Figure 47) Each
element in the meta-model is color coded to reflect the nine interrogative types. It
is further comprised of UML generalization, composition, and association
relationships between elements, shown as annotated lines and arrows. The meta-
model is based on architecture elements and relationships derived from two
sources -- the Unified Profile for DODAF and MODAF (UPDM) architecture
framework, and key Modeling Languages (UML, SysML, BPMN and IDEF) --
and validated against the M&S Formalisms (CP-net, DEVS).
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3. The research produced a detailed EAS ontology which was derived from the
foundational EAS meta-model, and which was used to refine the EAS meta-
model. The ontology is a taxonomy of elements that is based on the nine
interrogatives used throughout the investigation, and which contains composition
and generalization relationships from each interrogative root to child level
specifications (see Process Element Node Tree in Figure 48). The six information

and knowledge interrogatives, What, Who, Where, When, How, and Why,
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described by Sage (2009), were extended to nine interrogatives to include
Relationship, State, and Hybrid. The EAS Ontology was used in the analysis and
refinement of the EAS meta-model, in a way that was iterative between the model

and the ontology.
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Figure 48 - Process Element Node Tree Summary

4. An intermediate-level meta-model, the Executable Architecture Specification —
Intermediate (EAS-I, Figure 49), based on the EAS, was developed, which helped
to reveal the potential elements and relationships for executable architectures.
The EAS-I was developed from the EAS by trimming away tertiary level detail.
Each of the elements in the EAS-I was described and analyzed as a static or
dynamic element, in the context of a comparative stoplight chart against M&S
formalisms, in terms of its contribution and significance to executable

architectures.
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Figure 49 - EAS-I Summary

5. A meta-model based on the nine interrogative elements, the Executable
Architecture Specification — Interrogative (EAS — Interrogative, Figure 50), was
derived from the EAS Intermediate-level Meta-model. This meta-model was
developed by trimming secondary level detail from the EAS-I. It is highly
generalized, but shows key relationships between the interrogatives. High level
abstraction meta-models can be used as an aid to understanding generalized
relationships in real-world data model implementations without the distraction of

detail.
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5.2 Potential Elements of Executable Architectures (EA)

In Table 45 and Table 46, the set of 30 potential elements of Executable
Architecture are provided in alignment with their interrogative categories, with
descriptions and notes about why each is important. These elements were discussed in

depth in Chapter 4 and are part of the EAS-1 meta-model.



Static

" Root [Fork 1

Interrogative &

| Description

Table 45 - Static Elements of EA

Node / Fork 2

{EAS E!ement)

_ Description

[A Node is an element of the operamonal architecture that produ:es, consumes, or processes

Why Important

1 Node formation tocus of activity
. A pinis an el it and multipl { that provides values to actions and accepts result] . . -
2 Pins  alues from them. Activity Connection specificity
A portis a property of a Node that specifies a distinct interaction point between the node and . "
3 Node Port its enviconment or between the {behavior of the) node and its internal parts. Node Connection specifity
A Gate 1S 3 connection point for relating a Message outside an InteractionFragment with a . ey
4 Gate N inside the < ce Diagram Connecitivity Sequence Diagram Connecitivity
the begiani
Activity parameter nodes are obge(t nodes at ginning and end of flows that provide a Manage Token arrival. Queue
5 Queues means to accept inputs to an activity and provide outputs from the activity, through the
activity parameters. |ordering (FIFO, LIFO)
& Resource OrganisationalResource or functionalResource that can contribute towards fulfiliing a Resource executes activity ata
capability. The Resource 15 used to speafy resources that can be referenced by Activities. Node. Affects performance
Defines the resource that will perform or will be responsible for the
7 ResourceRole Activity. The resource, e.g., a performer, can be specified in the form of Describes resouce
a specific individual, a group, an organization role or position, or an orgarization.
8 Compeétence A speafic set of abilities defined by knowledge, skills and attitude. Performance es
9 o tional Exchange fem An abstract utihty elernent used as common ancestor for: InformationElement, Generalization f h t
perational Exchang ResourceArtiface, Energy, OrganuzationalResource en tzation for exchange types
Produced by activity or event, has
10 Informaticn £l t {Data) 1A relationship specifying the need to exch fi b nodes N V ty !
attributes, i.e., a token
teristies - Specifies properties, structure of
11 Data Characteristics Data propertes, structure P prop i
Attributes data/token
Gateways are usad to control how the Process flows (how Tokens flow) through Sequence
12 Gateways & Control Nodes Flows as they converse and diverae within a Progess. Logical Control, flow control
UPDM An extension of wActivityEdge» that is used to model the flow of control fobjects j
through n Gper y. AnOper ityEd Provides connectivity: Edge,
i3 Operational Activity Edge  [[MODAF::Operational ActvityFlow) 1§ a flow of information, energy or materiel from one connector, sequence and data
activity to another. Anactvity edge is an abstract dass for directed connections between twolfows
[a(ﬂ\llhes
. Abstract el Anabstract utility element used as  for: Data element produced by an
Relationship 14 Operational Exchange Infor hange, Org Exchange, EnergyExchange, MaterielExchange activity at de, by a resource;
{C} P 4 An operational exchange 1s formed when an activity of one operational node consumes items R yatanode, _V '
produced by another actwty of a different operationat node, hybrid characteristics
N A neediine documents the requirement to exchange information between nades. The N -
15 Needline needline does not indicate how the information transfer is implemented. Role-up of information exchanges
A transition is a directed relationship between a source vertex and a target vertex. It may be
part of a compound transition, which takes the state mactune from one state configuration to
16 State Transition ] the ¢ lete resp: of the state machine to an occurrence of an change of state
event af a particular type.
A set or collection of Ac {s): Measur Ac il
Interoperabitity tevel Achi evable, Cassification, Classification Caveat, Cntucaluty, Periodicity,
17 ActualMeasurement-Set |, Duration, Pr Calendar Date, Protection Type Namme measures
t T ion Type, P Duration Code, Rell Iity, Size, Thr
18 Capahility A Capability is a high-level specification of an ability or capacity which achieves specific High level system description: SE

objectives.

utility

9¢1
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Dynamic

" Root/Forkl |

| Interrogative & |

_ Description |

How
Process (P)

Timing (T}

Being
State (S}

#

Node [ Fork 2

{EAS Element)

Table 46 - Dynamic Elements EA

" [An abstract element that represents a behavior {i.e. a Function or OperationalActivity) that

19 Performed Activty canbe performed by Performer, Basic unit of hehavior
Events An Event is something that “happens” during the course of a Process. These Events [ Token Flow,sequence or timing of
pJi] Event (Token Generation) | . ven! " P 11§ e cours v o q &
affect the flow of the Process and usually have a cause or an impact. Activities of 2 Process
21 Commu n&a:::::lmagram Communications diagram control logical controls (e.g., sequence, guard, iteration, etc.) Message flow control
Sequence Diagram Logical
22 ® Contr:nts 6 Logical contro! over event traces / sequences {e.g., loop, sequence, parallel) Sequencing control
3 Operational Constraint  [Generafization element for rules, scope, contex, expressions Operatioanl Constraints
i | Elements -
4 Actiity iingit:l; lem togical control over biehavior/activites such as Probabilities & Control a5 Data Probabilities & Control as Data
25 Pseudostate - State Control  [State Transition Control State Transition Control
Operational-EventTrace - [Timing notations that may be appliedto describe time observation -
% Sequence (Time) and timing constraints, with respect to sequence diagrams Model for sequence depiction
Token Flow,sequence or timing of
27 Event Timer Tolen Flow,sequence or timing of Activities of 2 Process L 9 ¢
Activities of a Process
28 Contyol Elements (Time)  [Detailed Timing Control Detailed Timing Contraol
Sequence Diagram Timin o
29 q E ) € Detailed Timing Control, for the sequence diagram Detailed Timing Control
Constraints
A state models a situation during which some {usually implicit) invariant condition holds, The
invariant may represent a static situation such as an object waiting for some external event to
occur. However, it can also model dynamic conditions -
30 State Ven ! tmamic condy Condition

such as the process of performing some behavior (i.e., the modet element under
consideration enters the state when the behavior commences and leaves it as soon as the

|behavior is completed).

LS



158

5.3 Recommendations
For quality assurance (QA) purposes it is recommended as a follow-on activity to

develop a series of use cases, similar in method to the use case explained in section 4.6,
for model validation. Feasibility and usefulness of such an effort have been shown in this
thesis.

It is also recommended to allocate EAS elements back to a set of revised UPDM
models, from the UPDM-Language composite model. This could be facilitated by use of
data attributes and query sets in MAXQDA.

In addition, this method offers good traceability with support for detailed
composite model development and the ability to cross reference data elements. In
addition, the linkage between data objects and visual modeling methods is good.
However, because of tool limitations (in that MAXQDA does not support UML
compliant modeling), it would be better to implement these models in a UML compliant
modeling tool supporting XMI Metadata Interchange (XMI), in order to instantiate these
models as physical schemas. By putting these models into a UML Class Diagram, using
appropriate relational modeling constructs, it should be possible to produce an XML
Metadata Interchange (XMI) serialization of the models. Such a serialization could be
used in the generation of the Data Definition Language (DDL) needed for the
development of physical data models, data structures, and databases supporting the
instantiation of the executable architecture constructs into real database and tool
implementations.

Finally, there are tools (e.g., Torque) that could be used to support the
transformation of a UML / XMI compliant Class diagrams into DDL. As a practical,
follow-on research endeavor and engineering task, it would be valuable to explore the use
instantiation of the meta-model as a basis for executable architecture tool exploration and

development.

5.4 Over-specification Concerns
The Executable Architecture concept is designed to enable additional systems

engineering capability. The purpose of the EAS is to build Executable Architecture.

Inclusion of process simulation capability in the EAS and in subsequent Frameworks and
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tools based on these frameworks should be viewed generally as a multi-level
specification capability rather than narrowly as prescriptive. Systems engineering is
often approached on a number of levels of modeling specificity, depending on the
maturity and stage of the project at hand. Having a meta-model that enables simulation
capability should enable object re-use within a project database, as additional complexity
in modeling and simulation is required. Furthermore, the inclusion of simulation
capabilities in an architecture framework should not require a higher level of general
training for the modeling team. As is generally the case today, a variety of experience,
from novice architect to simulation engineer can be expected. One of the problems with
architecture today is that it is treated as a one size fits all endeavor, rather than as a multi-
faceted set of methods and tools and approaches which are the means to good systems
engineering. With this in mind, Executable Architecture should be viewed as an

additional enabler in a spectrum of integrated modeling and simulation capabilities.

5.5 Significance of Study
This method is extensible to other architecture frameworks, and other language

instantiations, as well as other formalisms. With this approach, the key would be to put
boundaries on the problem space up front so that the baseline draws from candidate
models and formalisms that are relevant to the problem space and desired outcome. In
this study, the upfront assumptions were that the focus of the research would be on
process modeling, both static and dynamic. Furthermore, the investigation was focused
on UPDM for both reasons of practicality (the strength of the starting meta-model) and
utility (UPDM is based on DODAF and MODAF, broadly used in the United States
Department of Defense and the UK Ministry of Defense). The method also allows for
comparisons of similar Architecture Frameworks, such as DODAF 1.5 and DODAF 2.0.

5.5.1  Practical Implementations and Significance

The study may be informative with respect to the design of future DODAF-like
meta-models that include dynamic modeling. Findings may have implications for the
development of future modeling tools. The conceptual framework and method may be

useful for the evaluation of other architecture frameworks in future studies. There are a
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number of potential practical applications for both the method and the results of this

investigation.

5,52 DODAF 3.0
The composite meta-model that was developed in the process of exploring this

methodology was focused on the operational architecture models. The next major
revision to DODAF (DODAF 3.0), MODAF, or UPDM could use both the resultant
meta-model of this study and the method. Other military frameworks such as the
Canadian Department of National Defence Architecture Framework (DNDAF) and
NATO Architecture Framework (NAF) could leverage the meta-model developed here
and / or the method. Beyond the military domain, this method should be extensible to
other architecture such as TOGAF (Open-Group, 2009), which is an industry standard
architecture framework. To build a new executable architecture framework, a holistically
derived series of model-centric meta-models should be developed to support the new
construct. If it were designed along executable architecture inclusive lines, the architects
of this new meta-model could take advantage of the composite operational meta-model
that was developed here. That meta-model could provide insights into the operational
models associated with that future architecture framework.

This investigation only partially explored the systems side of UPDM elements.
Systems level objects were coded using in-vivo coding methods, and arranged
ontologically based on a first cut assessment in MAXQDA. They were not subsequently
modeled graphically to provide that follow-on level of elemental relational investigation,
because it was not deemed necessary for the exploration of the method. Because of the
intentionally designed operational-systems dichotomy in DODAF (Ring, et al., 2008)
(and related frameworks such as UPDM), there is extensive parallelism between systems
and operational elemental constructs (e.g., an operational process or activity parallels a
system function, and so forth). As such, it stands to reason that with parallelism in
elements, it may be inferred that there would be not be obstacles to the application of this

method to systems elements and modeling constructs.
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553  SysML (Next Generation)
Another practical usage of the results and method discussed here could be in a

revision to SysML. SysML process models were explored extensively in this
investigation. SysML has several, but not all of the elements described in the composite
UPDM-Language meta-model. It might be interesting to explore the expansion of
SysML in ways that would support simulation modeling of processes through an
expanded SysML.

The inclusion of simulation capability could broadly include basic discrete event
modeling elements and constructs, which would apply to both general process modeling
and systems process modeling. Beyond that, the method could potentially be extended to
continuous modeling methods and physics-based modeling and simulation problem

domains.

554  Tool Mediation
Lastly, the EAS meta-model and the method for developing it could be used to

spin off holistic executable architecture-based Modeling and Simulation tool
development. There are tools in the market place that support some elements of dynamic
modeling such as iGrafx and System Architect. iGrafix supports modeling and
simulation of BPMN based models, and System Architect supports simulation of both
BPMN and process flow models. Neither, however, supports an integrated architecture-
based approach to modeling and simulation. This is probably because executable
architectures have not been defined from the meta-model perspective. Apart from that
kind of lead from an authoritative developing body, such as DOD or OMG, a specific
tool implementation could result in a practical proto-type implementation or proprietary

development effort.

5.6 Conclusion
In conclusion, this dissertation has successfully explored a method for holistically

developing Executable Architecture Specifications, using the Executable Architecture
Concept Triangle as a framework for guiding data triangulation. UPDM Architecture
Elements, Modeling Languages, and Modeling and Simulation Formalisms were used as
a basis for systematic development of a detailed Executable Architecture Specification

(EAS), containing detailed semantic and syntactic information. This study has explored
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and described the elements of architecture in terms of a set of nine information
interrogatives, using this set to build an executable architecture information ontology to
describe those elements. Lastly, the EAS meta-model and ontology were utilized to
investigate and describe a set of 30 potential elements for executable architecture

through the EAS-Intermediate meta-model.
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APPENDIXES

A. Element Comparison Tables
Element Comparison Tables

Table 47 - Activity Comparison Table

UML Act|SysML Act| IDEFO| OV-5 | OV-6a|Count g;’a'::;:c‘::‘;“ Comment
BPMN Proces:
Activities X 1 JIE
Task (Atomic) X 2 {IE
Human Interaction X SEC {PerformedActivity)
Sub-Process x 3 |IE
Nested/Embedded SubProcess x 4 |IE
Expanded Sub-Process X 5 |IE
Collapsed Sub-Process x 6 |IE
Transaction X 7__[IE
IDEF O
Function X SEC (PerformedActivity)
OV-5
Parent to
PerformedActivity x 8 |1E OperationalActivity and
OperationalActivityAction X SEC (PerformedActivity)
OperationalActivity x SEC (PerformedActivity)
StandardOperationalActivity X SEC {PerformedActivity)
OV-6a
OperationalActivity X D (OperationalActivity)
SysML & UML Activity
Action X x O (Task)
StructuredActivityNode X X 9  |IX (Sub-Process)
ConditionalNode x x 10 |iE
ExpansionRegion X b4 11 |XE
LoopNode X x 12 |1
SequenceNode X X 13 |1E
UPDM ref to function
ov-4 here
Function X X 14 |{TE
Elemental Comparative Classification
x |{Individual Elements {IE)
x |Dupficate {I>}
x__|Same Equivalent Class (SEC)
x |Individval Extension (IX)




Table 48 - Product Comparison Group
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Timing

BPMN UML Act | SysMi Act Diagram IDEFD OV-5 OV-6a Count Comment
X X 1 1€
X X 2 e
Data Objects x i3
Dala Object References X lﬁ
.....Data Sto-es. X, Fid
Message X iE
OV-5
OperationaiParameter % D (OperatisnalExchangeitem)
Operationai€xchangeltem x 1E
InformationElement X IX
OrgantzatlonaiResource ® X
Enej x 10 IX
ResourceArtifact % 11 X
oV-6a
|intormationElament X O (nformation Element)
ov-7
InformationElement X D (Information Element)
Entityltem % 13 1%
EntityAttribute * 12 1€
EntilyRelationship X 14 14
DataModet
BPMN Process & Collap
Data Characteristics
Data Structure {“ItemDefinition”) X 13 I
DataState k) 143 1f
Elemental Comparative Classification
x Individual Elements (XE)
x Duplicate {1}
X Same Equivalent Class (SEC)
X Tharviduat Ex

Table 49 - Rule Comparison Group

i e K peom e T
 Soomi o %;%{; b
uf Ak ﬁpﬁ%d% Vo5 kov e | ibint) _comp c ion C
|
BehavioralFeature X 1 1€ possible implementation
LocalPreandPostCond tions. X 2 IE possible implementation
|Expans onkind {(Expansien Reg on
control) X 3 1E possible tmplementation
BPMN Process & Collab
x a4 1E
X SEC (Context)
X 5 IE
X 6 |IE
X 7 i
I
x 8 [IE
X 9 i3
I
( +)ControlOperator X 10 [XIE possible implementation
LocalPreandPostConditions x D (LocalPreand PostCondstions)
Expansionkind (ExpansionRegion x D {LocalPreand PostConditions)
control)
X 11 J1E
X 12 l1E
TElemental Comparative
Classification
x  [Individual Elements (IE)
X Duphicate (D)
* ISame Faurvalent Class SEC
x [ E (IXy
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oup

Cade (B2MN)

Timing

Code (UML Act) Dinaram

Code (SysML Act)

SysML Activity

Code

(IDEFD)

Cade (OV]
3)

Code
OV-Ea

Count

P o

+Tirming constraint notes (ext |

Raty

x

+Discrats {ext |

Wl

S Continous (Bv

%

+Timing Diagram {ext )

Time Canstra nt

Duration Constraint

DestructionEvent

GeneraiOrdering

¢ B fx Ix

oo

BPMN Process & Collab,
Evant Timer

Event Timar Hmaebate

Event Timer timaCycle

X ix

Event Timer tmaDuration

o
alele|y

TimeE vent.

Elemental Comparative Classification

Individaal Elements (1E)

|Duphcate (D}

x| %

Same Equivatent Clags (SEC)
x_ |Indsvidusl Extension {IX}

Table 51 - Control Node Comparison Group

Subgroup: Relational: C

BPHN | UMUACt] Syseli |Ii0EFD | 0V-3 | Bu-eas rovs2-| ov-3 of count]

SysML 8 UML

Comparison Classification

ControlNode (Gatewny) ci

Deacigiontode

Forkiode:

[ni tad Mode

JoinNodr

HeygeMode

x

Finatiod

Howfinal

Activie Bral

[
o e Do [ e e e e ¢
¢ [ P [ o s fe e fx

BRFUN
Gateways

%

araliel Fventivsed

Activity Edge: c2

3

ConbiolFlow {Seqw nee Flow)

ObjectFlow

£33
30
¢ {x
% |

Sequence Flow (Control Flow)
erging

Looping

ek

o,

x %

Normil Tlovs

Condittonal flow

Default flow

Exception Row

Compersaton Assoddaton

Uncontiolied flov:

Data Flow

Messagn Flow

[IX to ObjectFlow -~ add

Data 1

i [ f¢ [ e fox Bt fox e o g3 [oe [ fc foe Ex o e Yo s e e [ e

1DEF

{IX to Objectriow - sag
1

{{Sequence) Hows

Ao {Flow)

Asrow Segrieit

2§ fx

Bounda) y Alvow

Branch

Fork

o
Bundiing/Untaindling

Control Arrow

gt Arow

Outpul Arrow.

iternal Arrow.

Sechanism ArTow

unneled At

o o [ox Joe I foe fe e e

Idential to Activity Edge

%

1 OperstonatExchaige (beiow)

1E

Needline <4

OperationaliExchange ¢4

i3

Elemental Comparative

El {IE)

Duplicate (D}

Same Eguwalent Class [SECT

dwidual Extension (IX)
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Table 52 - Node Comparison Group

SysML | Timing | Code . g - Comparison
UMLAct] “0 " I oiagram| ogro | OV-S | OV-Sa [ oveeb | oveec | count | Ll tL n |Comment
= 3 Swimianes
1
)
3
X
x a
Non node abstraction for
x
obfect class
X
PEa o Rl T
X 5 i€

Elemental Comparative Classification
X Individual Elements (IE)
x__|puplicate (D)
x

Same Equvalent Class {SEC)
X I!ndmdua! Extension (IX)
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B. Dissertation Electronic Files

This dissertation includes a CD (entitled Electronic Files for Understanding the Elements
of Executable Architectures) of various dissertation related files:

(1) the dissertation MAXQDQ database;
(2) MAXQDA-Reader;
(3) PDF files of the EAS and EAS-Intermediate meta-models.

To view the dissertation database, place the MAXQDA Reader on your computer and
install it. This will allow you read-only access of the dissertation database.
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