
Old Dominion University
ODU Digital Commons
Modeling, Simulation & Visualization Engineering
Theses & Dissertations Modeling, Simulation & Visualization Engineering

Winter 2011

Understanding the Elements of Executable
Architectures Through a Multi-Dimensional
Analysis Framework
Edwin A. Shuman IV
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Modeling, Simulation & Visualization Engineering at ODU Digital Commons. It has
been accepted for inclusion in Modeling, Simulation & Visualization Engineering Theses & Dissertations by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

Recommended Citation
Shuman, Edwin A.. "Understanding the Elements of Executable Architectures Through a Multi-Dimensional Analysis Framework"
(2011). Doctor of Philosophy (PhD), dissertation, Modeling Simul & Visual Engineering, Old Dominion University, DOI: 10.25777/
v5k3-0128
https://digitalcommons.odu.edu/msve_etds/40

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/40?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

UNDERSTANDING THE ELEMENTS OF EXECUTABLE ARCHITECTURES

THROUGH A MULTI-DIMENSIONAL ANALYSIS FRAMEWORK

by

Edwin A. Shuman IV
B.A. August 1980, University of Virginia

M.S. March 1990, Naval Postgraduate School

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

MODELING AND SIMULATION

OLD DOMINION UNIVERSITY
December 2011

Approved by:

UMI Number: 3492412

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI 3492412
Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

UNDERSTANDING THE ELEMENTS OF EXECUTABLE ARCHITECTURES
THROUGH A MULTI-DIMENSIONAL ANALYSIS FRAMEWORK

Edwin A. Shuman IV
Old Dominion University, 2011

Director: Andreas Tolk

The objective of this dissertation study is to conduct a holistic investigation into

the elements of executable architectures. Current research in the field of Executable

Architectures has provided valuable solution-specific demonstrations and has also shown

the value derived from such an endeavor. However, a common theory underlying their

applications has been missing.

This dissertation develops and explores a method for holistically developing an

Executable Architecture Specification (EAS), i.e., a meta-model containing both

semantic and syntactic information, using a conceptual framework for guiding data

coding, analysis, and validation. Utilization of this method resulted in the description of

the elements of executable architecture in terms of a set of nine information

interrogatives: an executable architecture information ontology. Once the detail-rich

EAS was constructed with this ontology, it became possible to define the potential

elements of executable architecture through an intermediate level meta-model. The

intermediate level meta-model was further refined into an interrogative level meta-model

using only the nine information interrogatives, at a very high level of abstraction.

Copyright, 2011, by Edwin A. Shuman, All Rights Reserved.

IV

I dedicate this dissertation to my beloved wife Nancy White Hammonds Shuman.

V

ACKNOWLEDGEMENTS

There are many persons who have contributed to the successful completion of this

dissertation. I extend many thanks to my parents Ned and Sue Shuman, for their hopeful

encouragement, and to my children: Michael, Renee and Robert, for their patience and

understanding over the past seven years as I have poured myself into my graduate

studies. I thank my committee members for their guidance and advice on this research. I

thank Dr. Chuck Keating and Dr. Rick McKenzie for serving on my committee and for

their support and guidance. I thank Dr. Kathleen Mayfield for her support and

encouragement. I thank the M&S Brown Bag members, especially Dr. Saikou Diallo and

Dr. Jose Padilla for their constructive critique of my work. Three persons deserve

particular recognition: my dissertation advisor, Dr. Andreas Tolk for his sense of humor

and his patient, careful, learned and generous guidance over the past two years;

committee member and colleague Dr. Tom Pawlowski for his careful technical review

and encouragement; and my wife Nancy Shuman, who provided indispensable support as

my editor, consultant and best friend.

VI

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1

1.1 Definitions 1

1.2 Definitions for Executable Architecture 2

1.3 Importance of Executable Architectures 4

1.4 Purpose of the Study (Gap in Body of Knowledge) and Proposal 6

2 LITERATURE REVIEW 7

2.1 Architecture Elements 7

2.2 Modeling Languages 9

2.2.1 Structured Analysis 9

2.2.2 Object Oriented Languages 10

2.2.3 Business Process Modeling Language (BPMN) 12

2.3 Modeling and Simulation Formalisms 14

2.3.1 Coloured Petri Nets 14

2.3.2 Discrete Event System Specification (DEVS) 16

2.4 Themes 19

2.4.1 Architecture Description Language (ADL) 21

2.4.2 Structured Architecture Development and Executable Architectures 21

2.4.3 Object Oriented Architecture Development 23

2.4.4 Object Oriented to DEVS 26

2.4.5 Executable Extensions to Combat Simulations 29

2.4.6 Literature Analysis, Synthesis and Conclusions 30

2.4.7 Insight: At the Language Level No Common Concept for Executable
Architectures 33

2.5 Theoretical Framework 36

2.6 Executable Architecture Concept Triangle 37

2.7 Transition from Theory to Method 43

3 RESEARCH METHODS (QUALITATIVE RESEARCH) 44

3.1 Type of Design and Underlying Assumptions 44

3.2 Grounded Theory Background 45

3.2.1 Sampling (theoretical versus purposeful) 46

3.2.2 Creativity and Reflexivity (Interaction between the researcher and the
world being studied) 46

vii

3.2.3 Literature Review (beginning or end) 47

3.2.4 Lack of Precision 47

3.2.5 Conclusions with respect to Grounded Theory Criticisms 47

3.3 Data Collection, Coding and Analysis, and Theory Development 48

3.4 Data Collection and Analysis: Sources & Tools 49

3.5 Delimitations and Study Boundaries 53

3.6 EACT Process Flow Chart 54

3.7 Data Collection and Analysis of Architecture Elements 55

3.8 Validity 57

4 DATA COLLECTION AND ANALYSIS 59

4.1 Data Analysis and Findings High Level 59

4.2 Data Analysis and Findings: Detail Level 62

4.2.1 Identification of Descriptive Categories (Open Coding) 62

4.2.2 Selection of Baseline Architecture Framework 64

4.2.3 UPDM Target Set 66

4.2.4 Modeling Languages 68

4.3 Code Organization 69

4.3.1 Population of Individual Data Structures (Ontologies and Compositions) 73

4.3.2 Development of Meta-Models through Alignment of Code Database and
Visual Views 76

4.4 Data Element Analysis Roadmap Execution 83

4.4.1 Step 1: Code, Classify & Build UPDM Meta-models 83

4.4.2 Step 2: Build Group UPDM Meta-model Maps & Adjust coding 85

4.4.3 Step 3: Build Common UPDM Meta-model map & Adjust coding 87

4.4.4 Step 4: Code, Classify & Build Language Meta-model Maps 89

4.4.5 Step 5: Building Group Meta-model Maps 95

4.4.6 Step 6: Build Common Meta-model Map & Adjusting codes 102

4.4.7 Step 7: Compare Composite Maps (UPDM & Language) 105

4.4.8 Step 8: Coding Model Simulation Formalisms 110

4.4.9 Step 9: Compare Simulation Formalism Elementals to Composite
Meta-model 114

4.4.10 Discrete Event System Specification (DEVS) 119

4.4.11 Step 10: Define Elementals as Sets Based on Ontologies &
Interrogatives 126

4.5 EAS Intermediate-level Model 132

viii

4.5.1 Static Elements 135

4.5.2 Dynamic Elements 138

4.6 Meta-model Use Case 145

4.7 EAS - Interrogative Meta-model 146

4.8 Chapter 4 Conclusions 148

5 CONCLUSIONS AND RECOMMENDATIONS 149

5.1 Synopsis of Research Results 150

5.2 Potential Elements of Executable Architectures (EA) 155

5.3 Recommendations 158

5.4 Over-specification Concerns 158

5.5 Significance of Study 159

5.5.1 Practical Implementations and Significance 159

5.5.2 DODAF3.0 160

5.5.3 SysML (Next Generation) 161

5.5.4 Tool Mediation 161

5.6 Conclusion 161

6 REFERENCES 163

APPENDIXES 167

A. Element Comparison Tables 167

B. Dissertation Electronic Files 171

VITA 172

ix

LIST OF FIGURES

Figure Page
1 - Taxonomy of UML Structure and Behavior Diagrams 10
2 - SysML Diagrams 11
3 - Executable Architecture Literature Thematic Map 20
4 - Bifurcated Model 28
5 - Literature Themes to Gaps to Architecture Framework Map 35
6 - Building Theory 36
7 - Simplified Executable Architecture Concept Triangle 38
8 - Idea for Executable Architecture Specification 40
9 - Relationships Explored 41
10 - Executable Architecture Concept Triangle 42
11 - Transition from Theory to Method 43
12 - Data Collection and Analysis 49
13 - MAXQDA Data Collection Windows 51
14 - MAXQDA MAXMAPS Window 53
15 - EACT Process Flow Chart 55
16 - Data Collection and Analysis of Architecture Elements 56
17 - Data Collection and Analysis - High level 59
18 - Data Collection and Analysis 62
19 - OV-5b Meta-Model (OMG, 2009a) 65
20 - Top Level of Code Organization in MAXQDA 70
21 - Code Categories 72
22 - Elemental Composition and Generalization Relationships (in MAXQDA

Code System) 73
23 - Sample OV-2 Composition and Generalization Relationships (in MAXQDA

MAXMAPS) 76
24 - Data Element Analysis Roadmap: across Similar Meta-model (m-m) Types 80
25 - Executable Architecture Triangle (Architecture Elements Guidepost) 83
26 - Meta-Models 84
27 - MAXMAPS with Mouse-Over Memo Display (Needline Definition) 85
28 - Building Composite UPDM Group Function Model 87
29 - UPDM Composite OV-5 & OV-6a & OV-6b & OV-2 & OV-6c & OV-4 88
30 - Executable Architecture Triangle (Modeling Language Guidepost) 89
31 - SysML Activity Diagram 91
32 - SysML Activity (-Implementation) 93
33 - Composite Functional Group UPDM-Language 97
34 - EAS Meta-model 104
35 - EAS and UPDM Comparison 107
36 - Executable Architecture Triangle (Modeling Formalisms Guidepost) 110
37 -Non-hierarchical CP-net 113
38 - CP-net Hierarchical Elements and Similar Composite Elements 114
39 - CP-net Relationships 116
40 - Composite DEVS 123

X

41 - EAS with Formalism Traces 125
42 - Parent-Child Depiction 127
43 - EAS Intermediate (EASI) 132
44 - Meta-model Use Case 145
45 - Interrogative Meta-Model 147
46 - EACT Summary 151
47 - EAS Summary 152
48 - Process Element Node Tree Summary 153
49 - EAS-I Summary 154
50 - EAS - Interrogative Summary 155

xi

LIST OF TABLES

Table Page
1 - Definitions of Executable Architectures 3
2 - Modeling Language and DODAF Alignments 13
3 - CP-net Elements 16
4 - Classic DEVS Elements 17
5 - Parallel DEVS Elements 18
6 - Parallel DEVS Processor with a Buffer 18
7 - Classic Coupled DEVS Elements 19
8 - UML to CP-net Mapping 25
9 - Literature Topics, Findings and Gaps (1) 34
10 - Color and Interrogative Classifications 64
11 - UPDM Views 67
12 - UPDM Target Set 68
13 - UPDM Views and Modeling Language Alignment 69
14 - Sample Coding of OV-2 Elemental 74
15 - UML Relationships and MAXMAPS Links Equivalences 77
16 - Data Element Analysis Roadmap Steps 79
17 - Composite Groups 86
18 - Group - Language Meta-model Alignment 90
19 - SysML Activity Diagram Implementation Detail Elements 92
20 - SysML Non-Implementation Detail Element Augmentations (over UML) 94
21 - UPDM-Language Model Group Composites 95
22 - Code Query Sets 96
23 - Comparison Classifications 98
24 - BPMN Elements 100
25 - Functional Group Elemental Comparisons (Events) 101
26 - Process Group Comparisons (Activities) 101
27 - Composite UPDM-Language Member Models 103
28 - Comparisons 1 108
29 - Comparisons 2 109
30 - Augmentation Synopsis and Categorization 109
31 - CP-net Elements 112
32 - CP-net Cross Model Comparison 115
33 - CP-net to Composite Relationship Comparisons 118
34 - Classic DEVS Elements 119
35 - Parallel DEVS Elements 120
36 - DEVS Processor with a Buffer 121
37 - Classic Coupled DEVS Elements 122
38 - Composite DEVS Elements 123
39 - DEVS Element Comparisons 126
40 - Elements 1 (Executable Architecture Tree) 129
41 - Elements 2 (Executable Architecture Element Tree) 130
42 - The Nine Information and Knowledge Interrogatives 131

xii

43 - EAS Intermediate Static Elements 134
44 - Intermediate Level Dynamic Elements 136
45 - Static Elements of EA 156
46 - Dynamic Elements EA 156
47 - Activity Comparison Table 167
48 - Product Comparison Group 168
49 - Rule Comparison Group 168
50 - Time Comparison Group 169
51 - Control Node Comparison Group 169
52 - Node Comparison Group 170

1

CHAPTER 1

INTRODUCTION

The objective of this dissertation study has been to conduct a holistic investigation

into the elements of executable architectures, in an effort to address a significant gap in

the literature, contributing to a theory of executable architectures.

This dissertation has explored a method for developing Executable Architecture

Specifications, using the Executable Architecture Concept Triangle (EACT) as a

framework for guiding data triangulation. The Executable Architecture Concept Triangle

was first described in "Understanding Executable Architectures Through an Examination

of Language Model Elements" (Shuman, 2010); it was developed based on observations

from the literature that suggest a method for data collection and analysis. The EACT was

explored and refined through a qualitative analysis study leading to the development of a

method for constructing meta-models for executable architecture, and to the development

of meta-models describing an Executable Architecture Specification. Application of this

method in the development of meta-models has enabled a holistic investigation into the

potential elements of executable architectures.

1.1 Definitions

There are a number of definitions that are presented in this section that are

foundational to the concepts presented in this paper.

1. Architecture: structure of components, their relationships, and the principles and

guidelines governing their design and evolution over time (DOD, 2007a);

2. Architecture Framework: guidance and rules for structuring, classifying, and

organizing architectures (DOD, 2007a);

3. Graphical modeling language: a language for visualizing, specifying,

constructing and documenting a system (definition derived from UML definition

(Booch, Rumbaugh, & Jacobson, 1999));

4. Holistic: looking at the system as a whole — a unifying approach to

methodological development, whereby approaches are linked or integrated into a

system; related to System Holism Principle; a System has holistic properties

2

possessed by none of its parts; each of the system parts has properties not

possessed by the system as a whole (Clemson, 1984);

5. Meta-Model: a model that defines the components of a conceptual model,

process, or system (Booch, et al., 1999); a special kind of model that specifies the

abstract syntax of a modeling language (meta-model, 2011);

6. Necessary: "adj. That which is needed, a. Indispensable, vital, essential;

requisite, citation from the Oxford English Dictionary (necessary, 2011);

7. Necessary condition: n. A fact, proposition, etc., on which another thing is

dependent or contingent; a prerequisite (necessary, 2011);

8. Potential: adj. possible as opposed to actual; having or showing the capacity to

develop into something in the future; latent; prospective; etymology: post-

classical Latin potentialis possible as opposed to actual (4th cent.), classical Latin

potential, potence n.+ -alis -al suffix; compare Middle French potential,

potenciel, Middle French, relating to power or ability (late 15th cent).

1.2 Definitions for Executable Architecture

Table 1 provides a snapshot of definitions of the term executable architecture

from the perspective of previous investigators. Levis drew attention to the need for

understanding relationships. Wagenhals emphasized behavioral analysis. Pawlowski

described it as a dynamic model of sequenced activities with organization, using

resources; in this context he focused on model composability in the context of a combat

simulation. Zeigler highlighted the importance of translation of models with sufficient

fidelity. Renzhong focused on the development of Colored Petri Nets (CP-NETs) from

general systems static UML models. Risco-Martin focused on executable UML models.

Mittal described an executable architecture as the use of dynamic simulation software to

evaluate architecture models.

All investigators cited in Table 1 described executable architectures as an

extension of static architecture modeling into the domain of executable process modeling.

Their focus was on what they could solve in the context of specific use cases. This study

starts with what they have in common. The perspective or definition used in this study is

as follows: executable architecture supports executable process modeling as a

component part of an integrated Architecture Framework (e.g., the US Department of

3

Defense Architecture Framework (DODAF) or UK Ministry of Defence Architecture

Framework (MODAF)) that enables behavioral and performance analysis and extends

static architecture modeling into the domain of executable process modeling. This

description is derived from Wagenhals, Haider and Levis (2002), Pawlowski (2004), and

Mittal (2006).

Table 1 - Definitions of Executable Architectures

Author
Levis (Levis &
Wagenhals,
2000)

Wagenhals et al
(Wagenhals, et
a l , 2002)

Pawlowski, T.
(Pawlowski III,
et al., 2004)

Zeigler and
Mittal
(Zeigler &
Mittal, 2005)

Mittal, S.,
Risco, J. &
Zeigler, B.,
(Mittal, Risco,
& Zeigler,
2007)
Renzhong, W.
(Renzhong &
Dagli, 2008)

Risco-Martin
(Risco-Martin,
De La Cruz,
Mittal, &
Zeigler, 2009)

Year
2000

2002

2004

2005

2007

2008

2009

Title
C4ISR Architectures: I.
Developing a Process for
C4ISR Architecture Design
(Levis & Wagenhals, 2000)
Synthesizing Executable
Models of Object Oriented
Architectures (Wagenhals,
et al., 2002)
Executable Architecture
Methodology for Analysis,
FY04 Final Report
(Pawlowski III, et al., 2004)
Enhancing DODAF with a
DEVS-Based System
Lifecycle Development
Process (Zeigler & Mittal,
2006)
DEVS-based simulation
web services for net-centric
T&E"
(Mittal, et al., 2007)

Executable System
Architecting Using SysML
in Conjunction with CP-net
(Renzhong & Dagli, 2008)
EuDEVS: Executable UML
with DEVS Theory of
Modeling and Simulation
(Risco-Martin, et al., 2009)

Executable Architecture Description
A Dynamic Model, used for
understanding relationships and to
analyze the properties of the architecture

An Executable model based on C4ISR
Framework that enables behavioral and
performance analysis

A dynamic model of sequenced
activities with organization, using
resources to produce and consume
information
Translation of DODAF compliant
architectures into models with sufficient
fidelity

Use of dynamic simulation software to
evaluate architecture models

Development of CP-net from general
systems static models

Executable UML models

This dissertation has examined those architecture elements that have potential to

produce executable process models, in the context of an integrated Architecture

4

Framework. The elements are used across the architecture artifacts. In executable

process modeling, processes, change, and causality are evaluated over time. In other

words, a static model, having been expressed using some modeling language, is further

explored and analyzed through modeling elaborations supported by simulation. From

this perspective, the static modeling perspective is expanded to include time, resources,

control logic, and behavior, such that there is an elaboration from the two dimensional to

the three, with the addition of time, resources, uncertainty and even the possibility of

emergent behavior patterns.

1.3 Importance of Executable Architectures

The utility of executable architectures has been addressed at length by Wagenhals

and Levis (2000), (2002), Zeigler and Mittal (2005), (2006), and Pawlowski (2004).

They cited the importance of executable architectures as a vehicle for providing a more

holistic, integrated solution for evaluation of designed architectures. Executable

architectures or models can provide a vehicle for evaluation of the logical, behavioral,

and performance characteristics of a dynamic system that has been described through

static models. Additionally, executable architectures can be used to support test and

evaluation of complex architectures, at the system of systems and enterprise system level.

From the perspective of the DOD, Modeling and Simulation is described as one of

the key usages of architecture data (DOD, 2007a) to enable evaluation of the logical,

behavioral, resource, and performance characteristics of systems; from a cost perspective

there is good reason to enable this capability up front rather than it being an afterthought

requiring re-work. Tremendous resources are invested in the development of static

architectures, which are later reconstructed or rebuilt as executables. DODAF is widely

used to build static architectures and models in support of systems analysis and design.

However, DODAF has not been explicitly designed with the perspective of extension into

the dynamic modeling domain (it will be shown that some simulation elements are

present, some are not). Defining the potential elements of executable architectures

should enable the development of future architecture frameworks to support a design that

could enable dynamic modeling. In addition, in this study, identifying the elements that

are useful, and deriving them in general, contributes to theory building by analyzing what

5

has been done specifically in practice, and then applying analysis methods to understand

what is generally theoretically possible.

The DOD Architecture Framework (DODAF) is widely used across the spectrum

of capability and systems development in the Department of Defense and is an integral

part of the DOD Joint Capabilities Integration and Development System (JCIDS) (CJCSI,

2009) codifies those operational and systems views that should be delivered as part of the

definition of systems capabilities and requirements.

Military experimentation (Alberts, 2002) is a critical and complex endeavor that is

made possible through model-based systems engineering. This involves system of

systems integration between both command and control (C2) and combat simulations.

This is similarly the case in training environments. Technical management for

engineering prototypical efforts such as Joint Capabilities Technology Demonstrations

(JCTD) is realizing the importance of developing Architecture views hand in hand with

systems integration in order to facilitate new capabilities exploration and development.

These products and views run the full spectrum of models and often have a very data

centric focus, thereby facilitating or enabling systems integration.

In order to assess the behavior and performance of complex architectures, static

architecture models must be extended into the domain of simulation. For simple process

models, the implications for performance and resource utilization can be intuitively

determined a priori. However, in more complex models where processing is non-

deterministic and where resources are not fixed, performance analysis requires the use of

simulation techniques to determine measures of performance.

Executable models or simulations serve a number of purposes. One basic

function is model logic verification. Is the model logically correct? Model validity is a

second purpose which addresses fidelity to the modeled domain and business processes,

and may be addressed through model inspection in both a static and dynamic

environment. Model process modification and what-if alternative analysis is a third

function of executable models. Model process may be altered or refined based on

insights gained as a result of dynamic model analysis, which provides an examination of

timing. In general, executable models provide measures of performance, but the

executable process itself helps in model validation, verification, and experimentation.

6

1.4 Purpose of the Study (Gap in Body of Knowledge) and Proposal

This dissertation has been built upon the current body of knowledge surrounding

executable architectures. Among the main contributors in this domain in particular Levis,

Mittal, Pawlowski, Wagenhals, Zeigler, and Zinn have investigated the transformation of

static DODAF architectures into executable architectures. Each researcher investigated

some dimension of executable architectures through a particular use case developmental

effort; each approached the development of executable architectures in a similar way,

starting with a particular static modeling language translated into some particular target

dynamic implementation; they all investigated the problem space at an elemental level of

translation, from static to dynamic. All researchers provided valuable solution-specific

demonstrations of translations from static to dynamic modeling and also showed the

value derived from such an endeavor. However, a common theory underlying their

applications is still missing. No one has attempted to conduct a holistic investigation into

the theoretical elements of executable architectures. This is the gap in the body of

knowledge which will be addressed in this dissertation study.

The proposal of this study was articulated as follows: to conduct a holistic

investigation into the possible elements of executable architectures by means of a

qualitative investigative study. This study will develop a theoretical framework for

inquiry into the dimensions of executable architectures. In the course of this study,

the theoretical framework for inquiry will be used to further investigate the

elements that have potential for executable architectures.

The following main contributions have been realized:

• A refined theoretical framework and method for analysis of architecture

frameworks in light of the foundational requirement for executable architectures

has been developed;

• Through the utilization of the theoretical framework, a description of the

theoretical elements and their relationships has been derived.

7

CHAPTER 2

LITERATURE REVIEW

An overview of Architecture Elements, Modeling Languages, and Modeling and

Simulation Formalisms is provided as a foundation for the literature review and to lay the

ground work for further discussion of these topics throughout this dissertation. The use

of these three main categories has been positively evaluated by peers and has been

successfully presented and discussed with experts in the community (Shuman, 2010;

Tolk, Garcia, Shuman, 2010):

• Architecture elements focus on static elements and concepts and their attributes;

• Modeling language describe the behavior of such elements;

• Formalisms ensure that the elements and their behavior are captured consistently.

All three categories contribute to the holistic understanding of executable architectures.

They will be described in detail in the following sections.

2.1 Architecture Elements

Architecture Elements are the components of and defined by architectures.

Architecture (DOD, 2007a) is defined as the structure of Architecture Elements, their

relationships, and the principles and guidelines governing their design and evolution over

time. An architecture framework, such as DODAF (DOD, 2007a) "provides the guidance

and rules for developing, representing, and understanding architectures." An architecture

framework defines the architecture elements and their relationships to each other in the

context of various models or views, and further describes model to model relationships

(DOD, 2007a). Architecture frameworks are important because they provide for

consistency of model constructs and for interoperability between models from both a

syntactic and semantic point of view. Commonality of model syntax and semantics is

essential to information sharing. Semantics defines the elemental information sets and

their meanings. Syntax defines the relationship of elements to each other. DODAF is

used widely across the United States Department of Defense. It was one of the earliest

architecture frameworks to be developed and was originally designated the C4ISR

Framework. The C4TSR Framework drew heavily from both structured analysis and the

Zachman Framework (Zachman, 1999) with its focus on the interrogatives.

8

DODAF 2.0 (DOD, 2009) is the most recent version of DODAF. Apart from a

slightly different model organizational structure and the addition of some very useful

views, such as capability views, the main difference between it and DODAF 1.5 is the

point of view with respect to data and view. In DODAF 1.5, views drive data. In

DODAF 2.0 data drives views.

There are a number of other architecture frameworks, such as the Ministry of

Defense Architecture Framework (MODAF), which was developed in the United

Kingdom; the NATO Architecture Framework (NAF), which was developed to support

NATO; and the Department of National Defence (DNDAF), which is the Canadian

architecture framework. The TOGAF is a framework for enterprise architecture that was

developed and supported by the Open Group which is a global business standards

consortium.

Unified Profile for DODAF and MODAF is bilateral: a hybrid of both DODAF

and MODAF that is based on a UML modeling language implementation. Unified

Profile for DODAF and MODAF (UPDM) (OMG, 2009) was developed by the OMG in

partnership with the US Department of Defense (DOD) and the United Kingdom

Ministry of Defence (MOD). UPDM specifies a UML 2, and optional SysML, profile to

enable practitioners to express DODAF and MODAF model elements and to organize

them in a set of views that support the modeling needs of stakeholders. OMG asserts that

UPDM will significantly enhance the quality, productivity, and effectiveness of

enterprise and system of system models (OMG, 2009a).

In the development of architectures, various approaches are utilized. As DODAF

was developed and refined, it was demonstrated that UML implementations of the

architecture framework were possible (Bienvenu, Shin, & Levis, 2000). In spite of its

roots in structured analysis, DODAF is described as language and implementation

neutral. More recently, the OMG has developed specifications for SysML, which is an

extension of UML for the systems engineering domain (OMG, 2006). In addition, OMG

has developed Business Process Modeling Notation (BPMN) (OMG, 2009) as a modeling

language supporting B2B, SOA-based, system of systems modeling. The domain

experience of the author has shown that BPMN is increasingly viewed as a means to

develop architectures, although in a somewhat limited way. Because it is implemented

9

by various vendors as an executable process model (e.g., iGrafx), it provides a powerful

means for developing executable process models.

2.2 Modeling Languages

As stated in Chapter 1, modeling languages provide models with graphical,

symbolic, and standard notations designed to address various kinds of inquiry. An

architecture framework describes the models or views that are part of that given

framework. In the case of DODAF (DOD, 2007a), model language implementation

neutrality is asserted as a premise, such that models may be developed using Structured

(e.g., IDEF, Data Flow Diagrams, etc.) or Object Oriented language approaches (e.g.

UML and SysML). As will be discussed in the literature review, the viability of both

Structured and Object Oriented architecture implementations has been demonstrated. A

newer modeling language, Business Process Modeling Notation (BPMN), is increasingly

used for partial implementation of DODAF views. Key language models of relevance to

executable architecture development are IDEFO, UML, SysML and BPMN. It is

apparent from the literature review that these languages are the standard languages used

to describe executable architectures and they are the primary languages used in practice

today.

2.2.1 Structured Analysis

Structured Analysis includes a loose collection of modeling and analysis

techniques that were developed in the 1960s, 70s, and 80s. Structured Analysis modeling

includes the Integrated Definition or IDEF (IDEF, 2010) models, e.g., IDEF 0, IDEF1X,

and IDEF 3, the Data Flow Diagram, and the Entity Relationship Diagrams. Volume II

of DODAF 2.0 (DOD, 2009) is replete with examples. Of particular interest to process

modeling is IDEF 0, which is used extensively in process or behavior modeling. The

IDEF 0 models is described in terms of Input flows, Output flows, Control flows and

Mechanism flows, and the term ICOM was coined as an acronym to describe these flows.

The use of IDEF 0 in architecture development is well documented in the literature and in

practice; of note the work of Wagenhals is described later under Structured

Implementations. IDEF IX (IDEF, 2010) is a data modeling technique that affords

generalization, composition, and association relationships; it is a powerful tool for

10

describing data entities and their relationships. IDEF 3 (IDEF, 2010), a process model

that is less commonly used in practice today, provides a way to model activities, rule

constraints, and resource allocations; it is similar to UML Activity Diagrams and BPMN

(described in the following sections). Data Flow Diagrams (DfDs) (DeMarco, 1979) are a

simple but very powerful modeling technique for describing systems functions and

related data flows.

2.2.2 Object Oriented Languages

According to the object oriented perspective, the main building block of all

software systems is the object or the class (Booch, et al., 1999). Object oriented

modeling languages follow this perspective. UML is an Object Oriented language or

notation intended for analyzing, describing and documenting all aspects of a software

system. It supports modeling various structures using object oriented principles. The

current version is UML 2.2. It is comprised of seven Behavior and seven Structure

diagrams. The Structure Diagrams are used to depict the static structure of a system,

whereas the Behavior diagrams show the dynamic behavior of the objects in a system.

Figure 1 shows the UML diagram taxonomy (OMG, 2009). The UML Activity, State

Machine and Interaction Diagrams are key diagrams of relevance to process and behavior

modeling and for this reason will be discussed extensively in Chapter 4.

' ' I

Class Diagram

Structure
Diagram

1

Ola§ram

Component
Diagram

Composite
Structure
Diagram

Profit* Diagram

t

Object
Diagram

Deployment
Diagram

r~
Activity
Diagram

Package
Oiagram

Behavior
Diagram

t
Use Case
Diagram

Interaction
Diagram

t
i

Sequence
Diagram

i

f
State Machine

Diagram

J
Interaction
Overview
Diagram

Communication
Diagram

Timing
Diagram

Figure 1 - Taxonomy of UML Structure and Behavior Diagrams

11

SysML is a UML profile, which is a domain-specific systems engineering

modeling language that is used for specifying, analyzing, designing and verifying

complex systems, including hardware, software, information flow, people, processes, and

resources. SysML reuses seven of UML's thirteen diagrams, augmenting 3 of them, and

adds two new diagrams (the Requirements and Parametric diagram) for a total of nine

diagram types (OMG, 2006). SysML also supports allocation tables which have a tabular

format that can be dynamically derived from SysML allocation relationships. Figure 2

shows SysML diagrams and the legend indicates relationships to UML2.

SysML Diagram

I
Behavior
Diagram

Activity
Diagram

5.

T I

I Requirement I
I Diagram I
I J

Structure
Diagram

Sequence
Diagram

State
Machine
Diagram

Use Case
Diagram

5
Block

Definition
Diagram

Internal
Block

Diagram

Package
Diagram

| I Same as UML 2

I I Modified from UML 2

i — 1

I i New diagram type

I Parametric
I Diagram

Figure 2 - SysML Diagrams

The significant changes to SysML from UML were described in Shuman (2010)

and are provided here as a point of reference. The key diagrams of relevance to

executable architectures are the Activity Diagram and the Block Diagram which will be

discussed further in Chapter 4. The Activity Diagram is a Behavior Diagram that

emphasizes inputs, outputs, sequences, and conditions for coordinating behaviors.

12

Modifications of the UML Activity Diagram (to the SysML Activity Diagram) includes

the addition of data controls and edge extensions (having output parameter sets,

probabilities, or parameter value replacement and discarding), all of which were

investigated for relevance to executable architectures. Block Diagrams and Internal

Block Diagrams provide for blocks or modular units that are used to describe system

components and describe their relationships to each other.

Both the Requirements and Parametrics Diagrams add what is needed for Systems

Engineering in terms of requirements definition and hard systems performance

verification. The SysML Requirements Diagram is new. It supports system requirements

engineering and capability taxonomies; however, the focus of this study is soft systems

(Flood & Carson, 1993) or process and behavior modeling, which involves the human

element. SysML Parametric Diagrams are a new type of diagram which includes

constraint blocks for constraining the properties of other blocks; they provide a means to

precisely define performance and quantitative constraints such as maximum acceleration,

minimum curb weight, and total air conditioning capacity. The ability to define system

component attribute constraints is essential to the precise definition of hard system (i.e.,

physical systems) performance but has not been the focus of this investigation.

2.2.3 Business Process Modeling Language (BPMN)

BPMN was developed by the Business Process Management Initiative (BPMI) as

a standard for business process modeling. It provides a modeling method that is based on

flow charting principles, is similar to UML Activity Diagrams, and is generally described

as straightforward and useful for communication of business process descriptions to

business and management-oriented stakeholders (OMG, 2009). It is managed by the

Object Management Group (OMG), with version 1.1 released in February of 2008. It is

comprised of four basic categories of elements: flow objects, connecting objects, swim

lanes, and artifacts. Flow objects consist of Events, Activities, and Gateways. There are

three connecting objects: Sequence Flow, Message Flow, and Associations. Pools are

comprised of Swim Lanes, i.e., participants or entities in a process. Artifacts are

comprised of Data Objects required or produced by activities, Groups for documentation,

and Annotations providing additional text information (OMG, 2009).

13

Table 2, developed by Shuman (2010) in "Understanding Executable

Architectures Through An Examination of Language Model Elements," provides a table

of comparisons between DODAF models and the four groups of modeling languages

previously described: Structured, UML, SysML, and BPMN. Horizontal alignment of

models indicates model similarity. The "Fishwick Category" column refers to a

taxonomy of model types developed by Fishwick (1995). Some of these similarities have

been investigated in this dissertation, as will be discussed in Chapter 4.

Table 2 - Modeling Language and DODAF Alignments

Viewpoint

Viewpoint

Operational
Viewpoint

Systems /
Services

Viewpoints

Fishwick
Category

v v n v B | n i » i

C o n c e p t u a l

^^Sj^gl^B

^^gj^n^H

C o n c e p t u a l

^^gi^gl^B

^^gj^gj^B

l^gn^ra^H

Declarative

I^B^SI^H

BjKi^g^H

•I
Declarative

j^^gj^g^H

DODAF
Model
N u m b e r .

DIV-2 (OV-7)

OV-1

OV-2

OV-3

OV-4

OV-5a

OV-5b

OV-6c

OV-6b

OV-6a

SV-1

SV-4

SV-6

SV-7

SV-10C

SV-1 Ob

SV-10a

Model Type

!__„•__ V.. K!

Concept Diagram

Operational Node
Connectivity Diagram

Information Exchange
Matnx

Operational
Relationships Diagram

Hierarchical Activity
Diagram

Activity Diagram

Operational Event
Trace Diagram

Operational State
Transition Descnption

Operational Rules
Diagram

System to System
Node Connectivity
Diagram

Data Flow Diagram

System Data
Exchange Matnx

Systems Measures
Matnx

Systems and Services
Event-Trace
Descnption

Systems and Services
State Transition
Descnption

System Rules Model

Structured
Modeling
Language

IDEF 0

IDEF3

Data Flow
Digaram

IDEF3

IDEF 3

UML

Use Case

Communication
Diagram

Class Diagram

Actu ty Diagram

Sequence
Diagram

State Diagram

Communication
Diagram

Communication
Diagram

Sequence
Diagram

State Diagram

SysML

Use Case

Block Diagram

Allocation Tables

Block Diagram
Package Diagram

Block Diagram
Package Diagram

Activity Diagram

Sequence
Diagram

State Diagram

Activity Diagram

Block Diagram

Activity Diagram

Allocation Tables

Parametnc
Diagram

Sequence
Diagram

State Diagram

Activity Diagram

BPMN

BPMN

BPMN

BPMN

BPMN

BPMN

BPMN

BPMN

BPMN

14

2.3 Modeling and Simulation Formalisms

A modeling formalism for executable architectures should holistically describe

the elements and the rules of an executable architecture using a standard mathematical

notation. In addition, a modeling formalism should tie the elements together in a

consistent and complete way and provide the mathematical framework to demonstrate

that all functions are provided and correctly interconnected. Similarly, the elements of an

executable architecture should be describable using a modeling formalism, which would

in turn provide validating evidence of executable architecture holism (Tolk, Garcia, &

Shuman, 2010). Colored Petri Nets (CP-net) and the DEVS formalism are two

extensively referenced and used Modeling and Simulation formalisms.

2.3.1 Coloured Petri Nets

Coloured Petri nets (CP-net) are in wide usage for many practical purposes. As

described by Jensen, the main reason for the success of CP-nets is their graphical

representation and well-defined semantics, which support formal analysis (Jensen,

1992a). The Coloured Petri net is an offshoot of Place Transition Nets, or "Petri nets."

In his bibliographical remarks, Jensen (1992a) explains the foundation for the Petri net,

called the Condition/Event net (CE-net), which was first described by Carl Adam Petri in

his doctoral thesis (Petri, 1962). As stated by Jensen (1992a), "A Petri net is state and

action oriented at the same time." States are indicated by ellipses, called places. Each

place may contain a dynamically varying number of tokens. The distribution of tokens

on the places is called the marking. Actions are indicated by rectangles, which are the

transitions. The places and transitions make up the nodes. Directed arrows or arcs are

connected between places and transitions. An arc may have an arc expression associated

with it.

The Coloured Petri Net (CP-net) is an elaboration on the Petri net, in that it

provides for the marking of tokens with associated data values, which are indicated by

the token colours. Colour sets determine the possible values of tokens. In Coloured

Petri-nets, arc expressions, which evaluate to multi-sets, specify the collection of tokens,

each with a well-defined token colour. In CP-nets, token marking of a given place is

indicated by a small circle with an integer for the number of tokens, and a text string that

specifies a multi-set which describes the token colors in terms of their coefficients

15

(Jensen, 1992). Jensen (1992a) attributes the wide use and success of Petri nets to having

"a graphical representation and a well-defined semantics, allowing formal analysis." He

lists twelve advantages to using CP-nets:

1. CP-nets have a graphical representation.
2. CP-nets have a well-defined semantics which unambiguously defines the

behaviour of each CP-net.
3. CP-nets are very general and can be used to describe a large variety of different

systems.
4. CP-nets have very few, but powerful, primitives.
5. CP-nets have an explicit description of both states and actions.
6. CP-nets have a semantics which builds upon true concurrency, instead of

interleaving.
7. CP-nets offer hierarchical descriptions.
8. CP-nets integrate the description of control and synchronization with the

description of data manipulation.
9. CP-nets are stable towards minor changes of the modeled system.
10. CP-nets offer interactive simulations where the results are presented directly on

the CP-net diagram.
11. CP-nets have a large number of formal analysis methods by which properties of

CP-nets can be proved.
12. CP-nets have computer tools supporting their drawing, simulation and formal

analysis (Jensen, 1992).

Table 3 provides CP-net elements, formal definitions and simple verbal descriptions. CP-

net elements will be further described and used as a validating source in Chapter 4.

16

Table 3 - CP-net Elements

Code , ^1 * 4» *-'

Transitory Objects

Token colour
Tokens

Global Declaration
node
CP-net Control
Elements
Colour Sets (I)

Initialization function
(I)

Arc expression (E)

Guard function (G)

Node function (N)

Color function ©

Fixed Objects
Places (P)

Port Place

Arcs (A)

Hierarchical structure

Transitions (T)

5 , Forpal Definition's Jf|, f^

I finite set of non-empty types

Defined from P into closed
expressions such that
VpEP [TypeQ(p)) = Cip)^]

VaeA [Type{E(aj)C{p(a))ms

AType (yar(E(a))^
E £] where p(a) is the place of N(a)
It is defined from T into
expressions such that
Vt e T [Type(G{t)) =

B A [Type (var(G(t))) = Z]

Defined from A into PxT u TxP

Defined from P into I

P is a finite set of places

A is a finite set of arcs such
that PnT = PnA = Tr\A = 0

T is a finite set of transitions

• Interpretation %«.,"'

Ephemeral objects (messages and
data)
Attributes associate with Tokens
Dynamically varying black dots
associated with a place
Defines all colour sets

Control functions and definitions

Each token on a place p must
have a token colour that belongs
to type C(p)
Initial marking

Maps each arc, a, to an expression
of typeC(p(a))

Additional constraint (Boolean)
enabling transition

(v) The node function maps source
and destination nodes
C maps each place, p, to a colour
set C(p)
Fixed objects (nodes and links)
State of a resource allocation, or
of process (circle)

Connections for communication
between Objects
Connects a place with a transition
or a transition with a place
Hierarchical structure is developed
for the CP-net
Actions of resource allocation
system (rectangle)

2.3.2 Discrete Event System Specification (DEVS)

The Discrete Event System Specification (DEVS) (Zeigler, Praehofer, & Kim,

2000) is a formalism that provides a means for describing the components of discrete-

event simulation. In Classic DEVS, basic (atomic) models and their elements are

described; these elements include input and output ports for receiving and sending

information (messages), a set of state variables, internal and external transition functions

and a time advance function (Mittal, Zeigler, Risco Martin, Sahin, & Jamshidi, 2008).

Classic DEVS is mathematically represented as a tuple of seven elements

17

M = (X, S, Y, Sint, Sext, X, ta). X is an input set, S is set of states, Y is set of outputs, 5int

is internal transition function, 8ext\s external transition function, A is the output function,

and ta is the time advance function. (Zeigler, et al., 2000). Table 4 provides a list of the

Classic DEVS elements with definitions.

Table 4 - Classic DEVS Elements

Code

e
ta

Q

s
X
Y

"ext

Sint.
X

Definition

time elapsed since last transition
S -> RJoo is the set positive reals with 0 and oo
Q={(s,e) | s e S, 0<e<ta(s)} is the total state set
Set of states
Set of input values
Set of output values
Q x X-> S is the external transition function
S -» S is the internal transition function
S -» Y is the output function

The DEVS formalism now includes Classic DEVS, Parallel DEVS and Classic

Coupled DEVS, having been enlarged over time from Classic DEVS. Parallel DEVS

was introduced by Zeigler fifteen years after the Classic DEVS formalism. It removes

constraints that originated with the sequential operation of early computers and hindered

the exploitation of parallelism. Parallel DEVS differs from classic DEVS in allowing all

imminent components to be activated and to send their output to other components. The

receiver is responsible for examining this input and properly interpreting it. Messages,

basically lists of port-value pairs, are the basic exchange medium. According to Zeigler

(2000), a basic Parallel DEVS is a structure, DEVS = (xm, Ym, S, Sint, Sext, scon,X, ta).

Table 5 lists Parallel DEVS elements and their definitions. In comparison to Classic

DEVS, in Parallel DEVS, there is the addition of ports and the confluent transition

function for resolution of collisions between external and internal events.

18

Table 5 - Parallel DEVS Elements

Code

(ta) time advance function

(Q) set of total states

(S) set of sequential states
(Xm) set of input ports and
values
(Ym) set of output ports and
values
(<5ctm) confluent transition
function
(8ext) external state transition

(5 m t) internal state transition
(k) output function

Definition

S -> /?o,«> is t n e s e t positive reals with 0 and
00

Q={(s,e) [s e S, 0<e<ta(s)} is the total
state set
set of states
set of input values and ports

set of output values and ports

decides next state if collision between
external and internal event
Q x X-> S is the external transition
function
S -> S is the internal transition function
S -> Y is the output function

Parallel DEVS with a buffer is an elaboration on the Parallel DEVS with the

explicit inclusion of a buffer, V, which functions as a queue for holding an arbitrary input

set. "A processor that has a buffer is defined in Parallel DEVS as: DEVSprocessing_time

= (xm, ym, S, Sint, Sext, 8conX ta)" (Zeigler, et al., 2000). Table 6 shows the elements of

Parallel DEVS with a Buffer and their definitions.

Table 6 - Parallel DEVS Processor with a Buffer

B I l M P l i l R I l M i S W ^
(Xm) set of input ports and values

(Vm) set of output ports and values

(V)Queue

(ta) time advance function

(S) set of states

(k) output function

(<5m£) internal state transition

{Sext) external state transition

(<5con)confluent transition function

WMm*®&&Mm&&%.
set of input values and ports

set of output values and ports

V is a queue that holds an arbitrary
set or a bag

S -> /?Joo is the set positive reals with
0 and oo
Set of states
S -> Y is the output function

S -> S is the internal transition
function
Q x X-> S is the external transition
function
Decides next state if collision
between external and internal even

19

In classic Coupled DEVS, the DEVS formalism includes elements for building

models from components. Under this construct, atomic models may be coupled together

to form coupled models. The specification includes the external interfaces, input and

output ports and values, the components (which are DEVS models), and the coupling

relations: N = {X, Y, D, {ud | d £ D}, EIC, EOC, IC, Select} (Zeigler, et al., 2000).

Table 7 shows the elements that make up Classic Coupled DEVS.

Table 7 - Classic Coupled DEVS Elements

(D) component names
(IC) internal coupling

Set of the component names
Connects component outputs to component
jnjxits

(EOC) external output coupling Connects component outputs to external
outputs

(EIC) external input coupling Connects external inputs to component inputs
(Xd) set of input ports and values set of input values and ports

(Yd) set of output ports and values set of output values and ports

(Y) output ports and values Set of output ports and values Y={(p, v) | p £
OPorts, v E y„}

(X) input ports and values Set of input ports and values X={(p , v) | p 6
IPorts, v e Xp}

(Md) DEVS Model Md =(Xd, Yd, S, Sext, Sint), X, ta) is a DEVS

Xd
Yd

Xd =Up, v) | p e IPortsd, v e Xp}
Yd =[{p,v) | p 6 OPortsd,v € Yp}

Select Tie-breaking function (used in Classic DEVS

This introduction to the four DEVS model types provides a foundation for the

remainder of the literature review, for method discussions in Chapter 3, and for data

collection and analysis in Chapter 4.

2.4 Themes

Figure 3 is a thematic Map that shows the major research areas related to

executable architecture, divided into categories. The blue boxes show the topic area with

the principal researcher and date. The orange boxes show the focus of the research, and

the rose boxes show identified Gaps. The cloud overlay is suggestive of areas that this

study has addressed to some degree. These research areas, with their key topic areas and

related gaps, will be discussed in this section.

Executable
Architectures

Are Hitt lure
Description

languages (ADLJ

mm-x:

Structured
Architecture
Develop men!

Biroetufed

SomponfentSftt
'MOdoltirjg

> —-,

OO Architecture
Development

,1 ."' *|

• : . v
; . - « • * •

. i
: i

1
M 1

• t ,

r1

r «.-:

• « .
* i

j _

. • ' .

* < # .

i < •

! f

I
• t
• 1

1 * .

asgsBHss • L-

PtttOftttyJHP
combat

Simulation
SfmS Context

t nterf
I i * Iment

E?P?

Figure 3 - Executable Architecture Literature Thematic Map

O

21

2.4.1 Architecture Description Language (ADL)

Petty, McKenzie, and Qingwen (2002) simulated the data flows in a federation

using Rapide and ACME, which are proprietary tools that were introduced in the paper.

Using Acme, they estimated the number of entities that a federate could support. Both

Rapide and Acme are proprietary examples of Architecture Description Languages

(ADL). An ADL is a language that represents software designs at the architecture level,

in terms of components and interactions (some ADLs support simulation). They cite the

assertion (Shaw & Garlan, 1996) that six types of ADL language elemental types form a

sufficient vocabulary for expressing any software architecture: Component (performs

computation and retains state), Connector (represents relations or interactions between

components), Port (a component interaction point), Role (the interaction point of a

connector), Representation (a composite object - component or connector), and Binding

(mapping between composed object interfaces and external interfaces). The ADL topic

category is primarily focused on systems oriented architecture implementations, but it is

relevant to this work because the elemental types are similar to the elemental categories

described and used in this dissertation, to be discussed in Chapter 4.

2.4.2 Structured Architecture Development and Executable Architectures

This section covers two key structured analysis-oriented approaches to the

development of executable architectures depicted in Figure 3 as a topic: Structured

Analysis to Coloured Petri Nets and Structured Analysis to Agent Simulation.

2.4.2.1 Structured Analysis & Coloured Petri Nets:

In the Wagenhals and Levis (2000) paper, "C4ISR architectures. I: Developing a

process for C4ISR architecture design," the authors explored a process for creating the

essential and supporting products of the DOD C4ISR Architecture Framework (version

2.0) and asserted that using Structured Analysis it is possible to develop a process that

generates the necessary information for derivation of an executable model.

In a related paper, "C4ISR architectures: II. A structured analysis approach for

architecture design," Wagenhals, Shin, Kim, and Levis (2000) provide a detailed

explanation of the development of a coherent set of architecture descriptions conforming

to the C4ISR Architecture Framework based on the Structured Analysis modeling

methods. In the words of the authors, they describe the "necessary and sufficient" sets of

22

information for creating executable models from the architectures, using a Coloured Petri

Net simulation construct. In this study, the executable model was developed using the

Activity Model (developed in IDEFO), the Data Model (developed in IDEF1X), the Rule

Model and the State Transition Diagram. They describe elemental associations between

these four models and a Coloured Petri Net executable implementation. Associations

were described as follows: IDEF 0 Activities to CP-net Transitions, IDEF 0 arrows to

CP-net Arc-Place-Arc combination, and IDEF 0 arrow to CP-net Color Sets associated

with the CP-net Place. IDEF IX entities are used to derive the names of color sets in the

CP-net Global Declaration Node, and each Color Set that is assigned to a place has the

same number and type of attributes as shown in the IDEF IX data model. Rules in the

Rule Model were used to specify the Arc Inscriptions and Guard Functions. The State

Transition Diagram was created by tracing a thread through the IDEFO model, and the

State Transition Diagram is used to verify that the model executes correctly.

2.4.2.2 Structured Analysis to Agent Simulation:

In his thesis, "The Use of Integrated Architectures to Support Agent Based

Simulation An Initial Investigation," Zinn (2004) investigated the utility of using

DODAF architecture products for providing needed data for agent based simulations.

Zinn proposed a process of taking information from DODAF architectures and importing

it into an agent-based simulation. This was accomplished by means of a case study

where architecture data from a proposed Air Operations Center architecture was used in

the combat model System Effectiveness Analysis Simulation (SEAS). In his research, he

relied heavily on the DODAF Activity Diagram (OV-5) and the Rule diagram (OV-6a),

which was developed using IDEF3 (IDEF, 2010). It may be observed that IDEF3 is a

very robust modeling language in comparison to the simple DODAF meta-model for a

Rules Diagram (OV-6a) (addressed in Chapter 4). In the context of his case study, Zinn

made a general assertion that DODAF is sufficient for developing executable

architectures, but because there is no clear, elemental traceability in his thesis, the

validity of this assertion is more anecdotal than specific.

23

2.4.3 Object Oriented Architecture Development

Object oriented implementations of both static and executable architecture

implementations are discussed in this section.

2.4.3.1 Object-Oriented Architecture Development

In their study, Bienvenu, Shin, and Levis (2000) investigated object-oriented

approaches to developing C4ISR architecture. They provided a UML-based process

using object-oriented methods for developing C4ISR architectures, and they provided a

table of correspondences between C4ISR views and UML products. This work was

foundational in the object-oriented language implementation of DODAF architectures.

2.4.3.2 Object Oriented to Coloured Petri Nets (CP-net)

This study by Wagenhals, et al. (2002) provides a description of an architecting

process based on the object-oriented Unified Modeling Language (UML). It is one of the

seminal papers in the area of executable architectures. They describe a mapping between

the UML static implementations and an executable model based on Colored Petri Nets

(CP-net), and they examine DODAF product sufficiency in terms of the CP-net

simulation end state objective. Their model focus was on the UML Sequence Diagram

(OV6c), the UML Collaboration Diagram, and the Class Diagram.

Using the Unified Modeling Language (UML) to describe the architecture, the

authors provided keen insight into the development of simulations from static, UML-

specified DODAF architectures and also showed the correspondence of UML elements to

the elements of a Coloured Petri Net (CP-net)-based simulation. The primary

justification for the development of executable architectures is validation and verification

of static models. The authors provided a step by step methodology for building CP-net

from UML, utilizing both structure and behavior UML diagrams. They used the Class

Diagram, a structure diagram type, as well as the Activity Diagram, the Sequence

Diagram, and the Collaboration Diagram: all behavior diagrams, emphasizing the

importance of concordance between diagrams. In their approach the sequence and

activity diagrams are used to facilitate the development of the class diagram, hence the

importance of diagrammatic concordance. Their method imposes two class

implementation style constraints:

24

• The first constraint requires the partitioning of classes into those that represent

fixed structures (represented by non-association classes) and those that represent

transient structures (represented by association classes).

• The second style constraint requires that all non-association classes which

represent the fixed elements of the architecture be converted into classes that

contain either operations or attributes but not both.

As Wagenhals, Haider, and Levis point out (2002), the partitioning of classes into

association and non-association is based on the interoperability emphasis in DODAF, in

which transient structures (i.e., messages) are passed between fixed structures (i.e., nodes

and links). Having these two categories of objects facilitates a mapping between UML

and CP-net. Accordingly, non-association classes contain the operations and perform

actions that cause a change of state to a token or message, and it is the non-association

classes with their operations that form the basis for the CP-net transitions. Non

Association classes are structured into parent and aggregation classes. The Class

Diagram structure becomes the basis for the hierarchical CP-net structure. Association

classes have only attributes, which become the basis for the global declaration node and

the message tokens. This stylistic approach supports an unambiguous mapping from

UML to a CP-net. Table 8 provides a useful summary of UML to CP-net mappings

described by Wagenhals et al. (2002).

25

Table 8 - UML to CP-net Mapping

Step
1

2

3

4
5
6
7
8
9
10

UML
Attributes of all classes
Class structure
Each non-association class
(parent classes with only
operations)
Association Class or
Aggregated Class

Activity Diagram
Associations in Class Diagram

Based on Activity Diagram
Rules (each operation)

CP-net
Global Declaration Node, Color sets
Hierarchical Structure
Transition

Place (referred to as "port places") with Color
sets defined from attributes)
Arcs (placed between transitions & places)
Place
Place (one to one)
Sub-page (for each substitution transition)
Inputs, Outputs, I/O port places
Arcs
Arc Inscriptions, guard functions, or code
segments

Consistent with their initial premise concerning the importance of executable

architecture, Wagenhals et al. devote considerable attention to the evaluation of

architectures. The authors divide this topic into logical and behavioral evaluation:

• Logical evaluation is based on proper running of the CP-net simulation, e.g., does

it run without deadlocks and infinite cycles?

• Behavioral evaluation of architecture focuses on correct sequencing and on

stimulus driven behavior. Stimulus based evaluation would assess the model in

steps using code stops to evaluate discrete sequences.

In their conclusion, Wagenhals et al. highlight the CP-net-based method as a

means for development and subsequent validation of architectures. They further suggest

the applicability of the method to future UML-oriented architecture tool implementations.

The discussion of the development of foundational use cases is weak but was not

the focus of their study. A table of correspondences between the UML elements and the

CP-net would have been useful. The authors did not address resourcing and the effects

on the CP-net model. Presumably this would add additional parallel transitions to the

CP-net accounting for multiple processing capabilities. Certainly any analysis of system

measures of performance (MOPs) would need to account for resourcing.

26

2.4.4 Object Oriented to DEVS

This section covers Object Oriented to DEVS implementations. It includes DEVS

implementations, DODAF extensions supporting DEVS implementations, and DEVS

Unified Process (DUNIP).

2.4.4.1 DEVS-based Executable Architectures

In their paper entitled, "Enhancing DODAF with a DEVS-based System Lifecycle

Development Process," Zeigler and Mittal (2005) suggested a method for transforming

DODAF descriptions of an architecture to a DEVS representation. In this paper the

authors provided some justification for the endeavor and also provided an introduction to

the "Bifurcated DEVS-to-DODAF Development Process." In general, the paper is

written at a high level of abstraction and is lacking in specifics, but it does provide a table

of correspondences between DODAF models (Views) and related DEVS simulation

components. This is one of the more useful elements of the paper and has direct

relevance to the dissertation objectives. This paper led to MittaPs dissertation.

Risco-Martin, De La Cruz, Mittal, and Zeigler (2009) in their paper entitled,

"eUDEVS: Executable UML with DEVS Theory of Modeling and Simulation,"

described the essential mappings between UML and DEVS modeling. Their work

focuses on the UML Structure and Behavior models that contribute to the development of

a DEVS-based system model. The UML Structure models are the Component, Package,

and Class Diagrams. The UML Behavior models are the State Machine, the Sequence

Diagram, the Timing Diagram, and Use Case. In this paper the authors propose a design

flow and set of transformations to generate a Discrete Event Specification (DEVS)

executable simulation model from a UML graphic specification. The authors describe

the UML state machine deficiency with respect to the DEVS state machine, in that UML

contains no provision for timeouts for each state, which is known as time advance in

DEVS. This problem is cited by Mittal (Mittal, 2006) in his paper "Extending DODAF

to Allow Integrated DEVS-Based Modeling and Simulation." In this paper he coined the

term eUDEVS which stands for executable UML based on DEVS. His work builds upon

the elemental mapping described by Mittal (Mittal, 2006) by providing a detailed

implementation. The authors describe a 3 step method:

27

1. Synthesis of a static structure defined using a UML model;

2. Specification of behavior using an XML-based finite deterministic DEVS state

machine;

3. Auto-generation of Platform Specific Models (PSM) from the Platform

Independent Models (PIMs), later described under DUMP.

Additionally, the authors provide a DEVS hierarchical meta-model that is useful in

understanding the elemental components that make up DEVS, from a taxonomy point of

view. In Chapter 4, a similar approach to DEVS elemental description is taken in the

exploration of the relationships between DEVS and the Executable Architecture

Specification.

2.4.4.2 DODAF Extensions

Mittal (2006), in his journal article entitled, "Extending DODAF to allow

Integrated DEVS-Based Modeling and Simulation," addressed the question of extending

DODAF to support integrated DEVS-based modeling. His work cited DODAF's

shortcomings, including ill-defined information exchanges, the need for a linking of

entities, activities, and nodes, and a need to identify ports associated with activity-to-

activity communication (since DEVS is a port-based modeling construct). He defined

two new OV products, the OV-8 and the OV-9, as extensions of the DODAF: the OV-8

addresses activities and their logical interface information and the OV-9 maps nodes,

entities, and activities. This is similar conceptually to Activities-based methodology

(Ring, Nicholson, & S, 2008). Mittal asserted the need for the OV-8 and OV-9 as

intermediate precursor products in the development of the DEVS simulation. Mittal used

the OV-5 activity model, the OV-6c (Sequence Diagram), and the OV-6a (Rules

diagram - IDEF3), as a basis for generating a DEVS-based simulation.

In a second, related paper by Mittal, Mitra, Gupta, and Zeigler (2006) entitled

"Strengthening OV-6a Semantics with Rule-Based Meta-models in DEVS/DODAF based

Life-cycle Architectures Development," the authors described a means for semantically

strengthening the critical OV-6a Rules Model through application of Units of Measure

(UOM), Domain Meaning, and formatting to domain specific rules, thereby removing

ambiguity and aiding in translation of static to dynamic architectures.

28

2.4.4.3 DEVS Unified Process (DUMP)

The DEVS Unified Process (DUNTP) (Mittal, 2007) is based on the Bifurcated

Model Continuity-based Life Cycle Process (Zeigler & Mittal, 2005), referred to

hereafter as the Bifurcated Model. In order to understand DUMP, one must first

understand the Bifurcated Model, which is a process model that describes a simulation

supported method for developing and testing systems of systems and enterprise level

systems (Mittal, et al., 2008). The graph shown in Figure 4 depicts the steps that are

described below:

Figure 4 - Bifurcated Model

A. Develop behavior and systems requirements specifications: DODAF

descriptions of the operational, systems and technical views are created to

describe the system under test. These views are static DODAF models that are

mapped to a system simulation implementation (e.g., DEVS).

B. Model Structures at higher levels of system specification: A system

simulation is developed using platform independent model (P1M) concepts from

Model Driven Architecture (MDA) (OMG, 2003), in which the simulation model

is separate from the simulator. The model describes a branching from step (B) to

step (C) and step (B) to step (D), hence the term bifurcation.

C. Reference Master Model (Simulation Execution): This is a master simulation

model for any implementation of behavior requirements, and it can be run and

analyzed to study logical and performance attributes (step C connects to step E).

29

D. Semi-automated test suite design: This is a test suite that provides models or

simulation interactions or stimulation behaviors for interaction with the live

system under test (step D connects to step E).

E. Verification and Validation (V&V): Both steps C and D come together to

support V&V, which leads to system optimization and fielding.

Mittal (Mittal, 2007) elaborated on the Bifurcated Model in the development of the

DEVS Unified process (DUNIP). The DUNIP process is comprised of the following four

components:

1. Automated DEVS model generation from requirement specification formats (e.g.,

DODAF);

2. Collaborative model development using DEVSML, which is a platform

independent, XML based specification language;

3. Automated generation of the test suite (from the Bifurcated Model);

4. Net-centric execution of the model and test suite over a Service Oriented

Architecture (SOA) (W3C, 2004).

2.4.5 Executable Extensions to Combat Simulations

A mixed approach utilizing elements of several methods described above was

applied by Pawlowski and Ring (2004) in their MITRE Technical Report entitled

"Executable Architecture Methodology for Analysis, FY04 Final Report." They

described their method for converting static DODAF-based architecture products into an

executable architecture that supports the dynamic analysis of a system in terms of

performance and effectiveness and resource utilization. They created a three-fold

modeling construct in which executable architectures or process models serve as an

extension of combat simulation models. This coupling was further augmented with

communications timing data supplied by a supporting communications model. Their

approach leveraged the translation of static process models into a dynamic Bonaparte

Colored Petri Net executable. This executable process model, in concert with a

communications modeling tool and a combat simulation, were combined into an HLA

based federation. Essentially the object of the experimentation was to use executable

architectures as a vehicle for detailed process study and investigation, in the larger

30

context of a combat simulation. A significant part of this research focused on integration

and alignment of models through the notion of operational model complementarity.

Garcia (2011) extended this work by developing a method for assessing a

system's executable architecture in a larger operational or system of systems context

(addressing the why and how information interrogatives). His research describes a means

to assess the contribution and efficiency of the system before it is built. This research led

to the development of a method for synthesizing observations about executable

architectures, based on (1) the assessment recommendations provided by the North

Atlantic Treaty Organization (NATO) Code of Best Practice for Command and Control

(C2) Assessment (CCRP, 2002) and (2) metrics for operational efficiency from the

Military Missions and Means Framework (Sheehan, Deitz, Bray, Harris, & Wong, 2003).

These two approaches show that the methods can be successfully mixed delivering more

functionality as needed for executable architectures. However, both are based on

contributions to the extended applicability of executable architectures. As such, they

show that all three categories are useful and should be taken into consideration when

evaluating executable architectures in support of a common theory.

2.4.6 Literature Analysis, Synthesis and Conclusions

Table 9 provides a synopsis of the main literature review topics, findings, and

identified research gaps. The research spans a period of about ten years. Table 9 shows

the research categorized into five areas as follows:

• Architecture Description Languages,

• Structured Modeling and Transformations,

• Object Oriented (OO) Transformations,

• DUNIP,

• Executable Extensions to Combat Simulations.

Within each category, the primary research topics are shown with the principle author,

year, key findings, and research gaps that surface from the research.

In the literature review, it is apparent that Petty, Bienvenu, Garcia, Mittal,

Pawlowski, Wagenhals, Zeigler, Zinn, and their respective co-authors have investigated

various aspects of the transformation of static DODAF architectures into executable

31

architectures. Each research effort proposed specific methods and approaches for making

these transformations. Petty and McKenzie used proprietary Architecture Description

Languages to describe simulation federation communications. Wagenhals and Zinn

initially focused on Structured implementations of DODAF and their transformations to

executable models. Bienvenu demonstrated the development of architecture models

developed in UML and Wagenhals led a team that demonstrated a method for their

translation into CP-net. Zeigler, Mittal, and Risco-Martin explored the transformation of

UML developed Architectures into DEVS-based executable implementations, and Mittal

described augmentations to address some of the deficiencies in the DODAF meta-model,

suggesting the addition of two new products to address issues associated with modularity,

to align DODAF to the DEVS construct. Mittal developed DUNIP, which was based on

the Bifurcated Model Continuity-based Life Cycle Process, which was described earlier

by Zeigler and Mittal. The focus of DUNIP was on platform XML-based independent

models (which is similar to the platform independent models in Model Driven

Architectures (MDA)) and SOA model interoperability. This was a leap forward that

focused on model portability and SOA communications. Additionally, it is suggested in

the DUNIP literature that the method has been extended to other modeling languages,

such as BPMN. The last major category is executable extensions to combat simulations,

in which process models are run in conjunction with combat simulations and

communications models. This approach calls to mind the Bifurcated Model Continuity-

based Life Cycle Model, with its notional capacity to support system subject-of-test, in

the context of a test suite. The contextual analysis by Garcia extends this work with its

focus on system of system executable architecture integration.

Each of these research efforts starts with some form of static DODAF or

DODAF-like model and enlarges the modeling perspective into simulations. Whether

through a structured language to a CP-net-based executable or through an object-oriented

(UML) language to DEVS, transformation to executable simulations is a common theme.

Use of DODAF views was the starting point, and most transformation approaches were

manual with the exception of Mittal and Risco-Martin, who proposed a semi-automated

implementation through the use of DUNIP. All addressed reasons for the development of

executable architectures, with process investigation and model V&V as the key drivers

32

for all. Similarly, each approached the translation of static architecture views from an

elemental level perspective, where DODAF views were described in terms of their

constituent elemental components, which were subsequently translated into executable

models. In the case of Wagenhals the elemental transformations from 0 0 to CP-net were

unambiguous. For the others, there was a spectrum of transparency in their

transformation explanations.

The gaps that were identified from the literature review are shown in Table 9 next

to associated research topics and topic category. The far right column in Table 9

indicates with a check mark that there is a relationship between one or more of the gaps

in the adjacent cell. After the gaps were identified, they were thematically mapped to the

Executable Architecture Concept Triangle components: Architecture Elements,

Modeling Languages, M&S Formalisms, and Executable Architecture Specifications.

This was facilitated using a concept mapping tool. A concept mapping tool is useful for

visually identifying thematic relationships, and MindManager 8 (MindManager, 2011) is

the tool that was chosen for this task. Figure 5 shows the mapping of gap themes to the

components of the Executable Architecture Concept Triangle: blue lines map to the

Architecture Elements, the green lines map to Modeling Languages, purple lines map to

Modeling and Simulation Formalisms, and red lines map to Executable Architecture

Specifications. The legend in Figure 5 identifies the meaning of the shapes: Categories,

Topics, Gaps (related), Gaps (not related), and Themes. Themes are interpretations of the

meaning of the gaps, and are shown in Figure 5 to the right of the gap. Based on the

assessment of the themes conveyed by the gaps, it becomes obvious which gaps are

related to the central concepts of the dissertation, and which are not. The shape

representing Gaps (not related) is present for those gaps not directly related to the

dissertation topic. Again, relationships between the gap themes and the components of

Executable Architecture Concept Triangles are shown with the relationships lines. Many

of the gaps have more than one theme, which can be shown to relate to more than one

concept in the triangle; for example, mapping other Languages (e.g., BPMN) to CP-net

suggests Modeling Language and M&S Formalism themes. This method allows for the

synthesis of gap themes into a coherent conceptual framework.

33

To reiterate, the definition of executable architectures was addressed in Chapter 1,

and for the purposes of this dissertation, executable architecture refers to executable

models or simulations that are based on static models developed in the context of some

Architecture Framework (e.g., DODAF or MODAF). These simulations enable both

behavioral and performance analysis. They extend static architecture modeling into the

domain of executable process modeling.

2.4.7 Insight: At the Language Level No Common Concept for Executable
Architectures

As described in the literature review, various approaches to the topic of

executable architectures have been investigated. Levis and Wagenhals were pioneers in

architecture based development of Coloured Petri-Net-based simulation implementations.

They explored both structured (IDEF) and UML architecture implementations

(Wagenhals, et al., 2002). Mittal explored DODAF from the perspective of DEVS

simulation implementations. Mittal's work was based on a UML architecture modeling

language implementation, and suggested various extensions to DODAF to accommodate

DEVS simulations implementations. Each approach contributed to our overall

understanding of the relationships between architecture frameworks and simulation.

In conclusion, executable architectures are both useful and used. However, it is

clear from a language implementation perspective that there is no common concept for

developing executable architectures. Rather, there are a variety of modeling language

implementation approaches that are possible, and similarly, from a simulation end-state

perspective, there are a number of possible approaches to simulation definition, to include

CP-net and DEVS implementations.

From examination of the literature, it becomes apparent that previous research has

produced much valuable information from a specifically focused, deconstructionist

perspective; that is, through a process that breaks down one or more particular models

into parts, for analysis and alignment of those component parts towards the objective of

building executable models. However, it also becomes apparent that a clear, holistic

picture for Executable Architecture Specifications has not yet emerged: that is, there is a

perceived need to develop Executable Architecture Specifications that include both a

static and dynamic perspective, within the context of related components.

Table 9 - Literature Topics, Findings and Gaps (1)

Category

ADL

Structured

Modeling and

Transforms

0 0 Transforms

DUMP

Executable

Extensions to

Combat Sims

Federation

Performance

Analysis

Structured to CPN

Structured to

Agent

0 0 Arch Dev

0 0 to CPN

0 0 to DEVS

Simulations

DoDAF Extensions

& Modifications

DEVS Unified

Process (DUMP)

Combat

Simulations &

Exarch

Context Analysis

Author

Petty,
McKenzie, Xu

Petty,

McKenzie, Xu

Wagenhals &

Levis

Zinn

Bienvenu, Shin

& Levis

Wagenhals et

al.

Zeigler &

Mittal

Ri sco-Martm

etal

Mittal

Mittal et al.

Mittal et al

Pawlowski &

Ring

Garcia

Year

2002

2004

2000

2004

2000

2002

2005

2009

2006

2006

2007

2004

2010

t^:^;l*M;!filMji:iS?i*il!»«.i.!. ..L. ?'.Z\
>Simulated the data flow in a federation using Rapide & ACM E (proprietary)

>Estimated the number of entities that a federate could support

Application of ADL to federate performance analysis

>Predictive analysis (robustness, composabiltiy, knowledge transfer, and risk reduction)

Architectures are described & interpreted in the context of Structured Analysis

>Explores process for creating essential products of the DoD C4ISR Arch Framework

>Assertion Structured Analysis bias in its representation of the products

>Show products provide necessary info for the derivation of an executable model

>Case study on Air Force AOC architecture used to build Agent based simulation

>lnvestigated utility of DoDAF architecture for providing basis for agent simulation

>Reliance on OV 5 & OV 6a (IDEF3)

>Conclusion DoDAF provides the needed information (not clearly demonstrated)

>Provides A UML-based processfordevelopmgC4ISR architectures

demonstrates the feasibility of developing C4ISR architecture descriptions using UML

>General description of an architecting process based on the UML

>Rationale for style constraints on Models for building DoD C4ISR architectures

>Desmbes a mapping between the UML & an executable model based on CPN

>Described method for transforming DoDAF architectures to a DEVS representation

>Table of correspondences between DoDAF models (Views) and DEVS components

>Described the essential mappings between UML and DEVS

>Proposea design flow and set of transformations to generate DEVS executable simulation

from UML

>Addressed DoDAF extensions to support DEVS based modeling

>2 new OVs OV 8 (activities and interfaces) & OV-9 (nodes, entities & activities mapping)

>Descnbed a means for semantically strengthening the OV 6a Rules Model

>Present the semantic structure for OV 6a to aid the dev of semi-automated models

Application of Domain Meaning, Units of Measure (UOM) & domain specific rules

>Descnbe how OV 6a can be structured in a more generalized meta model framework such

that every rule is reducible to meaningful code

>DEVS Unified Process (DUNIP),uses DEVS for SE and testing (Bifurcated Model)

>XML based DEVS Modeling Language (DEVSML) (model portability)

>Supports distributed models deployment over SOA Middle ware

> Methodology for testing any proposed SOA based integration infrastructure

>Process models in context of combat SIMS

>DoDAF-based architecture products to CPN based executable model

>Dynamic analysis of a system performance, effectiveness & resource utilization

>Context based analysis of executable arehtiectures

Gaps

SSADL Elements to Executable Architecture Mapping

$$Sufficiencyof DODAF

$$Resources and the effects on the CPN model

$$Mappmg other languages (e g , BPMN) &CPIM

$$Absence of integrated modeling and simulation support m DoDAF

>Auto-generation of sequence diagrams from XFD-DEVS specs

S^Executable architectures based on DoDAF

$SysML to DEVS mappings

$$Personnel management and task assignment at proper resolution of

architectural execution

Evaluation of multi resolutional architectures

>0JJantif lability of terms in OV6A

SSDoDAF IS missing a rule basd structure that would allow different

architectures to be used for multiple designs

>DODAF transformation to DUN 1P

$$QA issues associated with DUNIP

>Study of risk associated with adopting DUNIP (cost / perf)

$$Develop the nextgen of combat sims law data from stnd DODAF

investigation of message length representation associated lERsfor

passing to the corns net model to determine time for sending

>Research integration of cost metrics for both static and exarch

$$Agent based process modd interaction with combat SIM

Gaps to

Topic

V

V

V

V

V

V

V

V

V

V

Structured Modttins and Trittsform atlons

S t e S I ^ ^ W " * (,t̂ >̂ , ̂ ̂ a,̂ ,'*̂ aq\|r*Bf.f-f fj>^ft»ti tf*r Jw.̂ , JE w^^a'^^y^TiiJi qa y^t» cofe^ ̂ ^u, i^>--^**^I!l^l.?...Ji*K*,?*».»

c atatf with both static and -4Theme CostMetrici

—|ThMn« Languagi

(***i$pZ~Z>

Figure 5 - Literature Themes to Gaps to Architecture Framework Map

36

2.5 Theoretical Framework

Figure 6 is designed to illustrate the theoretical observations that I drew from the

literature on Executable Architectures, in which Levis, Mittal, Pawlowski, Wagenhals,

Zeigler, and Zinn and others investigated the transformation of static DODAF

architectures into dynamic executable architectures.

Figure 6 - Building Theory

The figure suggests that specific components used in the Development of Executable

Architecture can be generalized into the following conceptual categories: DODAF into

Architecture Elements, IDEF, UML, SysML, BPMN generalized into Modeling

Languages, and Coloured Petri Nets and DEVS are generalized into Modeling and

37

Simulation Formalisms. These 3 conceptual categories are the foundational building

blocks leading to the next level of theory.

In general, the research followed three steps to come up with use case specific

target implementations:

1. Static Models based on DODAF were developed using specific modeling

language implementations (UML, IDEF, etc.).

2. These static models were then converted into dynamic implementations based on

CP-net or DEVS (M&S Formalisms).

3. This resulted in a target Executable Architecture.

In the context of these four concept categories, the question then arose as to

whether there were other relationships.

2.6 Executable Architecture Concept Triangle

Figure 7, the Executable Architecture Concept Triangle (EACT), represents a

theoretical framework or conceptual guide for inquiry into the dimensions of executable

architectures. A theoretical framework provides a conceptual guide for choosing

concepts to be investigated and for suggesting research questions (Corbin & Strauss,

2008). It is "not as common in qualitative research, but in some instances can be

useful.... if the researcher is building upon a program of research or wants to develop

middle-range theory, a previously identified theoretical framework can provide insight,

direction and a useful list of initial concepts" (Corbin & Strauss, 2008).

Initial results of this research were presented in (Shuman, 2010). The research,

derived from observations of current approaches (Levis & Wagenhals, 2000; S Mittal,

2006; B. P. Zeigler & Mittal, 2005), hypothesized that three component categories are

needed to define a set of potential elements for an executable architecture. These

categories are architecture elements, modeling languages and modeling and simulation

formalisms. A theory of executable architectures must ensure that the architecture can be

described completely and consistently through all three components. All elements

captured in the Architecture Elements need to be part of the formalism and should be the

subject or object of activities modeled with the Modeling Language.

Architecture
Elements

38

Target
Executable

Architecture

M&S
; Formalisms

Modeling
Language

Descriptions

Figure 7 - Simplified Executable Architecture Concept Triangle

These component categories are further described as follows:

Architecture Elements: An architecture framework (AF) defines the

architecture elements and their relationships to each other in the context of

various models or views (DOD, 2007a). Architecture Elements are the building

blocks of architecture, and they define the WHO, WHAT, WHERE, HOW, WHY

and WHEN parts of an architecture.

Modeling Languages: Modeling Languages describe the dynamic, relational and

conditional aspects of systems. They utilize graphical, symbolic & standard

notations, and provide rich descriptions & specificity.

Modeling & Simulation Formalisms: Modeling & Simulation Formalisms

provide standard mathematical notations for elements & relationships with respect

to Dynamic modeling. They provide high level, abstract descriptions. M&S

Formalisms are useful for Validation &Verification (V&V).

Target Executable Architecture: The Target Executable Architecture is the

target or resulting specification that is defined through the other three

components.

39

In the process of reviewing the literature, it was observed that in the Architecture

Frameworks the interrogative elements Who, What, and Where are sufficient for static

modeling; however, When, How, and Why are insufficient for dynamic modeling (i.e.,

simulation). Sage and Rouse (2009) described these elements in terms of Information

and Knowledge Interrogatives. As discussed in Chapter 1, the inclusion of simulation

capability in an architecture framework would provide an order of magnitude greater

capability in model verification, validation, plausibility analysis, and performance

analysis to include timing, resource, and cost constraint analysis. In order to achieve

integrated simulation capability in the context of an Architecture Framework, the

simulation components must be designed into the static modeling framework in a

complementary way - in a way that includes those dynamic elements related to time,

process, and rules that are necessary to specify process dynamics.

It became apparent that many deficiencies could be addressed through modeling

languages, and one way to address these deficiencies would be through meta-model

development such that modeling language elements could be included into a meta-model

based on a source Architecture Framework. Such a meta-model could theoretically

support simulation in the context of an architecture framework. To this effect, the idea

for an Executable Architecture Specification (EAS) meta-model based on Architecture

Elements & Modeling Language Descriptions emerged. Figure 8 illustrates the thought

process that led to the idea for the development of the EAS, shown at the center. An

additional aspect of the process would be to conduct a plausibility analysis of the EAS by

comparing elements and relationships in M&S Formalisms (CP-net & DEVS) to the

EAS.

Architecture
Elements

Executable
Architecture
Specification

Modeling f I M&S
Language " | Formalisms

Descriptions If

Figure 8 - Idea for Executable Architecture Specification

The Executable Architecture Specification is a meta-model. A meta-model is a

model that defines the components of a conceptual model, process, or system (Booch, et

al., 1999). A meta-model is a special kind of model that specifies the abstract syntax of a

modeling language (meta-model, 2011).

The following relationships were explored in the context of the study (Figure 9):

• Architecture Elements form the baseline for the EAS;

• Architecture Elements utilize Modeling Languages;

• Modeling Languages are used to build Architecture models or views;

• Modeling Languages inform Executable Architecture Specifications;

• M&S Formalisms validate Executable Architecture Specification (EAS);

• EAS conforms to M&S Formalisms.

Italics and dashed lines represent potential relationships (these are outside of study

scope). These relationships support the development of the Executable Architecture

Specifications (EAS).

41

Architecture
Elements

| Modeling < Could Worm I M & s

I Language CoddCojonnto J Formalisms
', Descriptions I

Figure 9 - Relationships Explored

All these components & relationships working together I call the Executable

Architecture Concept Triangle (EACT). Figure 10 shows the Executable Architecture

Concept Triangle (EACT). It is a UML Class Diagram showing the primary components

of Executable Architecture and their relationships. In the center, the EAS is shown with

elements categorized according to information interrogatives (semantics), in relationship

to each other (Syntax). Both the EACT and the method for developing an EAS were

developed, shaped, and refined in the course of the dissertation research.

42

This dissertation addresses the development of executable architectures in a way

that can provide a holistic treatment of the problem space: that can delineate more fully

what is missing and what is needed, through examination of the problem space

holistically, from the perspective of the key components in the Executable Architecture

Concept Triangle: Architecture Elements, Modeling Languages, and Modeling and

Simulation Formalisms, and the Executable Architecture Specification.

Figure 10 - Executable Architecture Concept Triangle

43

2.7 Transition from Theory to Method

Figure 11 illustrates the transition from theory to method. It shows three

examples of the twenty meta-models that were developed in the course of this research

through interpretation of source meta-models, one from each of the three EACT

component categories. Elements were color coded according to the interrogatives, and

parent-child relationships were established. Source models were analyzed according to

type and aligned into groups (process, state, timing, node). Then the groups of models

were synthesized into group composite models. The four group composite models were

then combined into one composite: the EAS, a composite of composites.

Figure 11 - Transition from Theory to Method

44

CHAPTER 3

RESEARCH METHODS (QUALITATIVE RESEARCH)

Many researchers believe that all inquiry starts out in a qualitative form (Lauer &

Asher, 1988), (Leedy & Ormrod, 2010): "When little information exists on a topic, when

variables are unknown, when a relevant theory base is inadequate or missing, a

qualitative study can help define what is important" (Leedy & Ormrod, 2010). A

qualitative study is useful when a study is exploratory, a concept or phenomenon is under

investigation, or a concept is immature due to lack of theory (Creswell, 2009). The

characteristics of a qualitative study include:

• Multiple sources of data,

• Emergent design (plan of research cannot be tightly prescribed),

• Inductive data analysis (bottom up),

• Interpretive study,

• Holistic: multiple perspectives, complex picture.

This research study includes all of the above characteristics: multiple sources of data

such as source meta-model information from Architecture, Modeling Languages and

Modeling and Simulation Formalisms; emergent design, in that the method evolved from

conception to implementation; inductive data analysis, in that analysis started at the

elemental level and proceeded to higher levels of organization; interpretive study, in that,

the organization and categorization of elements was subject to interpretation and some

ambiguity, as inherent in ontological organizational schemes; holistic, in that the

analytical method sought to explore the problem space from more than one perspective to

create a unified, derived result set, which is the Executable Architecture Specification.

3.1 Type of Design and Underlying Assumptions

The qualitative research design in this dissertation study has been based on data

collection and coding techniques associated with elements of Grounded Theory (Glaser

& Strauss, 1967). Grounded Theory is rooted in the concept that human dynamics and

symbolism are intertwined. To provide a philosophical perspective on Grounded Theory,

classically, its domain of inquiry is socio-psychological, which tends to be fairly

45

subjective, and anti-positivistic. To define: "anti-positivism: knowledge is soft, more

subjective, spiritual, or even transcendental - based on experience, insight, and

essentially of a personal nature."(Flood & Carson, 1993); "positivism: knowledge is

hard, real and capable of being transmitted in a tangible form" (Flood & Carson, 1993).

On a research scale between positivism and anti-positivism, this study leans significantly

to the positivist side, yet as a qualitative exploratory study, interpretations must be

filtered through the interpretive lens of the author's domain experience, which is

necessarily subjective, or anti-positivist. In this study, the author has leveraged elements

of Grounded Theory but has been cognizant of differences. To analyze the potential

elements of executable architectures, large volumes of raw data needed to be collected

and analyzed in a systematic way for patterns and relationships to emerge; hence, the data

collection and coding methods utilized in grounded theory have been very useful. The

focus of this study has been modeling language meta-models, which tend to be objective

or positivistic yet still vulnerable to the impreciseness of symbolic - linguistic, verbal

representation.

3.2 Grounded Theory Background

Grounded theory is a qualitative analysis methodology that gets its name from the

concept that theory is induced from the data rather than preceding it, an inductive rather

than deductive approach (Corbin & Strauss, 2008). It is rooted in Symbolic

Interactionism (Cutcliffe, 2000). "Symbolic Interactionists stress that people construct

their realities from the symbols around them through interaction, therefore individuals are

active participants in creating meaning in a situation" (Cutcliffe, 2000). Symbolic

Interactionism is rooted in Pragmatism, the maxim of which is "Consider what effects,

which might conceivably have practical bearinRS, we conceive the object of our

conception to have. Then, our conception of those effects is the whole of our conception

of the object" (Peirce, 1998).

Grounded theorists search for patterns and processes to understand how a group

of people define, via their social interactions, their reality (Cutcliffe, 2000). There are

three primary branches of Grounded Theory, as follows (Cutcliffe, 2000):

46

• The Systematic Approach - (Corbin & Strauss, 2008) prescribes procedures in the

form of coding categories and subcategories and development of visual diagrams

to present the theory, concluding with explanations of relationships.

• The Emerging Approach - (Glaser, 1991) focuses on connecting categories and

the identification of emerging theories, and does not force theory into categories.

• The Constructivist Approach - (Charmaz, 2000)is more subjective, with the

emphasis on feelings, assumptions, and meaning making by study participants.

The approach taken in this research is consistent with the Systematic Approach, in that it

is heavily reliant on data coding, category and subcategory allocation of data, and visual

methods and mappings, for the development of theory and explanations.

There are a number of points of debate related to grounded theory. These

criticisms concern sampling, literature review, creativity and reflexivity, and precision in

method (Cutcliffe, 2000).

3.2.1 Sampling (theoretical versus purposeful)

There is some debate concerning the nature of sampling, whether it should be

driven by emerging theory, such that data sources are chosen based on the emerging

hypothesis and sample size is based on completeness of findings with respect to given

categories of investigation (saturation); or whether the data sampling should be based on

purposeful strategies (purposeful sampling). Some advocate for a compromise position

in which the initial sampling is purposeful (to delimit), then moving to theoretical

sampling as patterns emerge. This last method is closest to what has been used in this

study (Cutcliffe, 2000).

3.2.2 Creativity and Reflexivity (Interaction between the researcher and the world being
studied)

Some acknowledge that the experience the researcher brings to the field of inquiry

may be enriching to the end result, while others advocate for a more neutral mindset in

the approach. In other words, a certain degree of subjectivity on the part of the researcher

is unavoidable, and may increase creativity. In the case of this study, the experience of

the author in the field has been found to be essential to the navigation of the data sets in

question (Cutcliffe, 2000).

47

3.2.3 Literature Review (beginning or end)

Some authors advocate for minimizing the literature review at the beginning, to

foster the possibility that emergent theory will be grounded in the data. Others argue that

literature review should precede data collection and analysis because the literature review

can help identify the current gaps in knowledge or help provide a rationale for the

proposed research (Cutcliffe, 2000).

3.2.4 Lack of Precision

One further criticism centers on "method slurring" or mixing of methods, such as

mixing with phenomenology, which also uses coding. There is another criticism directed

toward deficiencies of method, such as the absence of theoretical coding. Conversely,

there are those who advocate for method evolution, suggesting advantages such as a more

thorough, multi-dimensional analysis of phenomena. Cutcliffe (2000) cites Stern

(1994)), who advocates for clear, purposeful intent with respect to method mixing. In

other words, regardless of the methods chosen, there should be a clear and conscious

recognition and articulation of the nature of the methodology, whether mixed or classical.

3.2.5 Conclusions with respect to Grounded Theory Criticisms

In this study, sampling has been generally purposeful but has responded to

theoretical sampling concerns as patterns emerged. Sample size has been based on

completeness of findings with respect to given categories of investigation (saturation).

Again, the experience of the author in the field has been crucial to the navigation of the

data sets in question, and the literature reviews have preceded data collection. This has

been the basis for the determination by the author that there is a need for a common

theoretical framework and method, for development of that theoretical framework and

method, and has been the basis for the rational for this research. The method chosen

relied on Grounded Theory coding methods for traceability; but the method departed

from Grounded Theory in that it was not focused heavily on emergent symbolic meaning.

Furthermore, the object of this study is well defined, finite, and structurally known to the

author, setting the stage for the way Grounded Theory is used to populate the tool of

choice.

48

3.3 Data Collection, Coding and Analysis, and Theory Development

Data collection and analysis was facilitated using data coding techniques

described in grounded theory coding, which is a qualitative analysis methodology,

developed by Corbin and Strauss (2008). Inductive knowledge was produced by

applying grounded theory to the elements of the components of the EACT (i.e.,

Architecture Frameworks, Modeling Languages, and Modeling and Simulation

Formalisms), which was then synthesized resulting in the final EAS model that comprises

all elements and relationships. It should be noted that systematic data collection and

analysis have been critical to this study for elemental traceability from authoritative data

source through each derived use in model synthesis.

A meta-model describes the constituent elements of a model and the relationships

between these elements in terms of semantics and syntax. The components of the

concept triangle are well described through authoritative meta-model descriptions. This

study has used the UPDM meta-model for architecture models (OMG, 2009a). Language

meta-models for UML and SysML and BPMN are available from OMG (OMG, 2006,

2009, 2009). DEVS (Zeigler, et al., 2000) and CP-net (Murata, 1989) are well

documented through formal descriptions. The objective of data collection has been to

organize elements and to learn as much as possible about them, finding any

disconfirming evidence that may suggest revisions in the categories identified or in

interrelationships among them. This study will leverage a constant comparative method,

moving back and forth between data collection and data analysis, with data analysis

driving later data collection. Theory development has been based on exploring data

categories and relationships. Data collection and analysis proceeds through the

following steps, as illustrated in Figure 12:

1) Collect Data.
2) Scrutinize data & search for patterns.
3) Code:

a. Open: Develop Categories or Themes. (Categories, Properties, Attributes)
b. Axial: Place data into categories or themes. (Binning)
c. Selective: Observe relationships revealed and how they combine to form a

story line to describe phenomenon. (Reduction)
4) Compare: Repeat steps 1, 2 and 3 as additional data are collected.

49

5) Develop theory: Combine storylines to develop a theory ~ in the form of a
verbal statement, visual model, or series of hypotheses — to explain the
phenomenon in question (Corbin & Strauss, 2008).

Figure 12 shows a stylized depiction of data collection and analysis. It starts on

the left side with loosely organized data; proceeds through Open Coding, which is

categorization of the data; to Axial Coding, which entails organization of coded data; to

Selective Coding, in which relationships are established and duplications are eliminated.

The method involves constant comparisons, repeating steps 1, 2 and 3 as additional data

are collected. Theory is developed in the form of a verbal statement, visual model, or

series of hypotheses ~ to explain the phenomenon in question (Corbin & Strauss, 2008).

The result is theory development, in which there is an emerging picture of categories,

meaning and relationships.

3.4 Data Collection and Analysis: Sources & Tools

Data was collected for each of the three main components of the EACT:

Architecture Elements, Modeling Language Descriptions, and M&S Formalisms. In this

research the data consists of elements (semantics) & their relationships (syntax) in meta-

models and formalisms. For Architecture Elements, data was collected from Process

Modeling Operational Views (OV) from Unified Profile for DODAF and MODAF

(UPDM). The source was the Object Management Group (OMG). For Modeling

Language Models, data was collected from process and structure models from IDEF,

50

UML, SysML and BPMN. The source was OMG and Integrated Definition Methods

(IDEF). For Formalisms, data was collected from DEVS and CP-net specifications from

Zeigler, Jensen. The M&S formalism focus here is Discrete Event Simulation, not * not

Differential Equation System Specifications (DESS).

Data source selection was purposeful. Data elements and relationships were

collected from the following meta-model sources:

• Architecture views

o Focus: UPDM meta-models, Operational View (OV) Process Models.

o Source: Unified Profile for DODAF and MODAF (OMG, 2009a).

o Reasons chosen: representative sample, based on DODAF and MODAF &

similar to DNDAF and NAF; DODAF is used extensively across DOD.

• Modeling language models

o Focus: IDEF, UML, SysML and BPMN.

o Source: OMG (OMG, 2006, 2009, 2009) ,& IDEF (IDEF, 2010) (DeMarco,

1979) descriptions.

o Reason chosen: Broad usage in modeling community, referenced extensively

in literature.

• M&S Formalisms

o Focus: DEVS (Zeigler, et a l , 2000) and CP-net.

o Source: "Theory of Modeling and Simulation" (Zeigler, et al., 2000) and

"Coloured Petri nets basic concepts, analysis methods, and practical use"

(Jensen, 1992).

o Reason chosen: Broad usage, broadly representative.

In order to conduct Grounded Theory-based coding, several necessary principles

became apparent: element traceability from source, identification and building of

element relationships (i.e., generalization, composition, and association relationships),

and visualization of elements. In order to conduct Grounded Theory-based coding on the

large volume of data elements that comprise the EACT, it became apparent that a tool

would be needed that could also provide an integrated capability, enabling reproducibility

of results, and facilitating ease and speed of coding.

51

Several tools were considered for data coding: MAXQDA, ATLASti5 and

NVivo7 (Lewins & Silver, 2007) provide a good synopsis of tools that are useful for data

coding, analysis and theory building. All these tools were designed to support grounded

theory coding. MAXQDA was chosen for two principle reasons: it provides good

support for code organization in terms of generalization, composition, and association

relationships; secondly it provides an integrated visualization tool. Theoretical and tool

feature considerations indicated MAXQDA (MAXDQAIO, 2011) for data collection and

visual coding.

Each authoritative meta-model data source was imported into the document

section of MAXQDA; subsequently, data elements for each of the process views were

harvested into the coding portion of the database, using in-vivo coding. Meta-data

elementals were collected from authoritative data sources. For example, UPDM 1.5 was

documented by the OMG (OMG, 2009a).

Figure 13 is a snapshot from MAXQDA that shows the 3 data collection

windows: the Document Browser window (right side), the Code System window

(lower left), and the Document System window (top left).

£«aot El* 0 B « H > s>«* (**» K««M &*!** V > » M VMftNb «¥•»« ««W> l"»»w !«fe" I

J — « « A » » J . . . , n . » — . . . ^ . . . ^ ^ . ^ a a ^ . - — - J . ^ . J . . j , . " " Y , " 'T°"~Zy~—•""•*•"'-*•"•'"'•*-

•jjfta-midifc*** i ^ n - i

&<=***<- x *& qm-s>> - -

. « § 11 1 4 AcMi iM •:

11 < S nroMnts

11 2 OiagfBm Elements

H i t AelMfyDtsjirtm

\ki^m^m^^»m^$S6m^^imi£mmmQmmm

r*. «n.h«. «#~

twntict *«•> llmi*. tvism tMH-mit

\ I V *m VI W?V f t*a-4lS**

(™«V*-H I W .

^

Figure 13 - MAXQDA Data Collection Windows

52

The Document System window provides a means to organize imported

documents. It is a catalogue of source material that is subdivided into Text Groups. A

Text Group is a container or folder for grouping text information relevant to that group.

The Text Group is populated by files relevant to that Text Group. MAXQDA

accommodates .pdf, .rtf and .doc files.

The Document Browser provides a way to review documents and import key text

and pictures into the Code System through in-vivo data coding.

The Code System window is populated through in-vivo coding. Codes may then

be organized using hierarchical arrangements to support composition and generalization

relationships. Code memos can be associated with each code, which is useful for

providing amplifying information (e.g., definitions and snapshots of meta-models).

MAXQDA provides visual tools, one of which is called MAXMAPS which

supports insertion and traceability of elements (from the Code System to MAXMAPS),

insertion of sub-codes, depiction of code colors (for visual categorization),

synchronization between code objects in the MAXMAPS window and the Code System

(to include traceability back to the supporting Document in the Document Browser), and

the development of visual links between MAXMAPS objects.

Figure 14 shows a sample MAXMAPS window. It has three principle panes. The

left pane shows the names of visual maps in the system. The center frame shows the map

itself, in the case of Figure 14, the OV-5 meta-model. The right pane shows diagram

layers that can be associated with particular objects in the map. Layering provides the

ability to selectively view objects associated with different layers. This feature is

particularly useful in a complicated model, where simplification may be necessary as part

of model analysis. Each map is comprised of objects and links.

53

Figure 14 - MAXQDA MAXMAPS Window

3.5 Delimitations and Study Boundaries

This research study is focused on those architecture elements that are sufficient to

create executable process models, in the context of architecture. Based on the conducted

literature research, executable process modeling, process, state, and causality are

evaluated over time. Examination of the relationships between static architecture models,

having been expressed using a modeling language, has been the focus for this

investigation. This examination has included behavior or process, node (producing

activity), resources, state, timing, control logic, rules or behavior modifiers, information

exchanges, and relational elements.

As a further study delimitation, it is useful to winnow out certain classes of

models. To this end, (Fishwick, 1995) defined a taxonomy for Modeling that is useful for

eliminating certain classes of models. This taxonomy is divided into the following

categories (each of which could include static, dynamic, deterministic, and stochastic

sub-categories):

• Conceptual Modeling,

• Declarative Modeling,

• Functional Modeling,

54

• Constraint-oriented Modeling,

• Spatial modeling.

According to Fishwick (1995), conceptual models embody entities and

relationships where entities have not been clearly identified in terms of state, event, and

function. A declarative model is comprised of states and events. This type of modeling

is good for modeling a system that has discrete states or events or where there are phases

of a process. Functional models are graphs that contain two key components: functions

and variables. Fishwick recommended the functional approach if the modeling problem

suggests description of the system in terms of objects with functions. Functional or

procedural modeling relies on functional elements as the building blocks for the

development of a dynamic model.

This research has been limited to executable process modeling and to the model

classifications of conceptual, declarative and functional categories. Constraint-oriented

and spatial modeling are outside of the scope of this investigation. This delimitation

reduces the scope of this study and is consistent with observations of the literature with

respect to Executable Architectures. Previous efforts have focused their studies on these

modeling areas but not explicitly by reference to Fishwick's taxonomy (Mittal, 2006;

Mittal, et al., 2006; Pawlowski III, et al., 2004; Risco-Martin, et al., 2009; Wagenhals, et

al., 2002; Zeigler & Mittal, 2005).

3.6 EACT Process Flow Chart

Figure 15, the EACT Process Flow Chart, shows the general pattern that was

followed for data collection and analysis. The EACT Process Flow Chart is based on the

EACT, which is shown as an insert, in the upper right of the figure. Data were collected

and analyzed for each EACT component, using MAXQDA. Meta-models were coded

using Open, Axial, and Selective Coding. First meta-models were coded for Architecture

Elements, then for Modeling Languages, then for Modeling and Simulation. Each of the

steps within the larger rectangles represents a stage of coding and analysis. The large

flow chart boxes are numbered showing the sequence of steps in data collection and

coding to build the EAS:

55

I. Architecture Elements,

II. Modeling Language Descriptions,

III. M&S Formalisms,

IV. Executable Architecture Specification (EAS).

Steps I-II1 contributed elements that were later selectively coded to build the EAS.

aU
I. Architecture Elements

K^m^y-

IV. Executable Architecture Specification

legend

Data
Collection

mMiMM

Axial
Coding

II. Modeling Languages IH. M&S Formalisms

Code
Formalism
Elements

Alio^rFoTrtv
Hernents,"

Models

Figure 15 - EACT Process Flow Chart

3.7 Data Collection and Analysis of Architecture Elements

Figure 16 provides a more detailed view of the coding process with MAXQDA

for Architecture Elements (light blue Architecture Elements box from Figure 15). A

table illustrating the first 3 steps of UPDM model identification and selection is shown on

the upper right. The last three steps appear along the lower half of Figure 16.

Step 1: Identify the target architecture framework set (i.e., UPDM) (Collect Data).

Step 2: Classify the Architecture Framework models according to types (Open

Coding).

56

Step 3: Delimit the target architecture set into relevant process models (Selective

Coding).

Step 4: Collect data using in-vivo coding in MAXQDA (Collect Data).

Step 5: Identify the element categories in MAXQDA (i.e., interrogatives,

generalization and composition relationships, etc.) (Open Coding).

Step 6: Apply categories and attributes to the model elemental set (Axial Coding)

and establish relationships (Selective Coding), using MAXQDA.

Data Collection and Analysis of Architecture Elements TJPDM Models
(1) ID Models
(2) Classify Models
(3) Delimit Models

Architecture Elements (Uaci Collection and Analysis

(4)

«. .. — ** _ ~~ ~ ~ _ .J Mj Code Meta model in vivo

i :

»•)« fist s*™*i ;•**
(5)< Classify Elements \ (6) Apply Categories ^Attributes

Hir.V'.»l..n....,»...r», .r.ii.iiin'ili.r.T.i^it

fliiHwil i \»nT.»^* Composiriai

irrv— i sv! % j" H

Tool Use: MAXQDA
used for data collection,
coding, and analysis or
elements and relationships

aifca^-aBityfinMimft^" <fr|ragmi fcf7„afto.fitt.i

Figure 16 - Data Collection and Analysis of Architecture Elements

57

3.8 Validity

The research project addressed both internal and external validity concerns.

Internal validity means that there are sufficient controls to ensure that the conclusions

drawn are warranted (Leedy & Ormrod, 2010). External validity touches on our ability to

make generalizations about the world beyond the specifics of this study (Leedy &

Ormrod, 2010).

To ensure internal validity in this study, it has been the intent of the author to take

all precautions to ensure quality of process and result. The following validation

enhancing and mitigating strategies were pursued:

• Data Triangulation supports internal validity - Collection of related data from

multiple sources should lead to data convergence, thereby substantiating the

conceptual framework and the data focus themselves (Leedy & Ormrod, 2010).

In this study, data was collected in accordance with the Executable Architecture

Concept Triangle, from the UPDM Architecture Framework, from a variety of

different Modeling Languages and from two representative and broadly used

Modeling and Simulation formalisms, in order to drive a convergence from

multiple sources towards the Executable Architecture Specification.

• Thick description supports internal validity - The concept suggests an

approach where the situation is described in sufficiently rich detail that the readers

are able to form their own assessment of the data presented (Leedy & Ormrod,

2010). The detail provided in the data collection and analysis should provide

enough detail for the informed readers to form their own opinions.

• Feedback from others supports internal validity - Here, the researcher has

sought the opinion of dissertation committee and other domain experts. (Leedy &

Ormrod, 2010). These persons have long standing expertise in modeling and

simulation, and are themselves published authors in the field of modeling and

simulation, to include specific expertise in DODAF, UPDM, UML, SysML and

BPMN.

• Representative Sample supports external validity - The choice of UPDM,

which is an offshoot of DODAF and MODAF, is suggestive of the

generalizability to other Architecture Frameworks. The choice of a variety of

58

modeling languages, from UML to BPMN, suggests that the method is

generalizable to other models, and the choice of DEVS and CP-net, each with a

slightly different perspective on modeling, yet representative of discrete event

simulation, suggests generalizability to other M&S Formalisms.

In summary, the method articulated in this chapter is qualitative and exploratory.

The research design in this dissertation study is based on data collection and coding

techniques associated with elements of Grounded Theory. The method will step through

data collection, coding, analysis and theory development leveraging MAXQDA, which is

a tool that conforms to the coding and visual representation needs of this dissertation.

The method will leverage the Executable Architecture Concept Triangle (EACT), and

each of the source components of the EACT: Architecture Elements, Modeling

Languages and Modeling and Simulation Formalisms to develop theory related to

Executable Architecture Specification development.

59

CHAPTER 4

DATA COLLECTION AND ANALYSIS

The data collection and analysis process will be described at two levels: first, at

the higher level, which provides an overview of the entire process; secondly, at the lower

level, affording a more detailed discussion of the various parts of the process, and how

they link together to form the whole. The higher level can be described as more abstract;

the lower level as more concrete.

4.1 Data Analysis and Findings High Level

Figure 17 is a graph that depicts the major steps in the project associated with the

data collection and analysis of executable architecture elements. This section describes at

a high level the method used for investigation of both the semantics and syntax of

executable architectures.

0
Figure 17 - Data Collection and Analysis - High level

Step A: Selection of Baseline Models and Data Sets: In step A, the baseline

models and target data sets were selected. The starting point was selection of a bounding

and scoping architecture framework, as a point of departure. Unified Profile for DODAF

and MODAF (UPDM) is a hybrid architecture framework that provides excellent meta-

0

60

models for data collection and analysis, specifically UPDM 1.5 (OMG, 2009a). This

investigation leveraged and explored a focused set of UPDM operational process related

views (e.g., OV-2, OV-5, etc.), related modeling languages (i.e., 1DEF 0, UML, SysML

and BPMN) and specific process-oriented model subsets (i.e., SysML Activity Diagram,

BPMN Process Model, etc.) within those languages. The motivation for selection of

these models is both extensive documented use in the literature and, in accordance with

the experience of the author, broad use in the modeling and architecture community.

Selected views from UPDM and modeling languages were analyzed in terms of both their

elemental meaning, and their relationships to other elementals. Lastly, two well

established and representative modeling and simulation formalisms (CP-net and DEVS)

were chosen as a basis for comparison and validation purposes. Each of these formalisms

is discussed in the literature review. Both are broadly discussed in the literature and have

broad acceptance and usage in the modeling and simulation community. Each of these

formalisms was explored through their respective descriptive meta-models.

Step B Open Coding: In Step B Open Coding was utilized, which was the

identification of systems descriptive attributes. Sage and Rouse introduced six

interrogatives into information and knowledge management, distinguishing between

those that relate to information and those that relate to knowledge: who, what, where, and

when refer to information while how and why deal with knowledge (Sage & Rouse,

2009). The six interrogatives are fundamental to defining knowledge management

attributes, and in this project were useful in the element comparison phase (described

later in Chapter 4). However, the interrogative set was subsequently expanded to 9

categories to accommodate some additional elemental types that did not fit nicely into the

other categories. The specifics and motivation for this expansion are explained later in

Chapter 4.

The following descriptive attributes were established:

• Interrogative: (i.e., who, what, where, when, why, how, etc.);

• Color: in parallel to interrogative attribute for visual reference;

• Model Origin: for tracking model source;

• Operational or System Element: to distinguish between elements coming from

UPDM Operational or Systems models;

61

• Model Group: to distinguish between behavioral or structural models;

• Parent Code: to track parent child relationships for ontology building.

Step C Axial Coding: In step C, Axial Coding was utilized, which is essentially

placing data into categories by assigning attributes. In this step elements were identified

from specific models (e.g., UPDM OV-5, OV-2, UML Activity Diagram, Sequence

Diagram, etc.), and tagged with the attributes identified in Step B. MAXQDA supports

in-vivo coding, category development, object color coding and ontological relationships,

and code mapping. For this reason it was chosen to support the process.

Step D Selective Coding: In Step D Selective Coding was utilized, which is the

observation of relationships and how they combine to form a story line to describe

phenomena, described simply as alignment and reduction. In Step D elements were

organized, compared and aggregated through the use of visual maps of the elements,

organizational data views, and queries of the elements based on attributes. A detailed

data roadmap was then developed for guiding element organization, aggregation and

comparison to facilitate analysis of the data elements. This step supported categorization

by identification of identical elements, elements of the same equivalence class and

identification of individual elements and their extensions. Elements were then analyzed

in terms of interrogative attributes - first by model of origin, then with respect to other

interrogative attributes. Elements were next placed into group meta-model visual maps,

which eventually results in developing increasingly holistic composite UPDM-Language

meta-model maps. Redundant or duplicative elements were then eliminated through

visual inspection and through comparative queries of the elements, based on attributes.

This led to development of a composite UPDM-Language meta-model along with a

UPDM-composite meta-model, the comparison of which, revealed both the elements that

are shared in common, as well as those elements from the language meta-model that are

augments. As a result, the governing concepts of the Executable Architecture

Specification, which are the executable architecture elemental meanings (semantics) and

relationships (syntax), were derived and identified.

Figure 18 below was presented in Chapter 3 and is provided here again to

reinforce the explanation of steps A-D above.

62

Figure 18 above shows a stylized depiction of data collection and analysis. It

starts on the left side with the loosely organized data or elements (from source

documents); proceeds through Open Coding, which is category or attribute development;

to Axial Coding, which entails organization of elements into categories through

application of attributes; to Selective Coding, which is alignment and reduction of

elements. The result is theory development, in which there is an emerging picture of

categories, meaning and relationships. The arrows indicate that data collection can, and

often does drive further data collection and analysis. In other words, once the pattern

emerges, the Selectively Coded data can then be re-analyzed through the same three

steps, Open, Axial and Selective Coding, leading to further refinements of the data.

Alternatively more data can be brought into the model to be analyzed through the same

process, confirming the pattern.

4.2 Data Analysis and Findings: Detail Level

The preceding section provided a high level view of findings. The following

section provides a low level, close-up view: a more detailed explanation of the data

collection and analysis process and the findings.

4.2.1 Identification of Descriptive Categories (Open Coding)

Architecture Elements are the building blocks of architecture, and they define the

who, what, where, how, why and when parts of an architecture. The Information

Interrogatives are as follows: What (i.e., entities), When (i.e., time), Where (i.e.,

location) and Who (i.e., people). The knowledge interrogatives are as follows: How

63

(i.e., behavior), Why (i.e., purpose, motivation, or rule) (Sage & Rouse, 2009).

Additionally, Garcia (2011) showed in his dissertation that the How and the Why belong

to the context. In general, the Who, What, and Where address the static, structural

elements of architecture. The How, Why and When are process oriented, and tend to be

the dynamic elements in architecture. These six categories make a good starting place for

investigating the elementals needed in the development of executable architectures

because they address most of the key ontological perspectives. The data collection and

analysis was started with the six aforementioned interrogatives as the basis for element

classification; however, this list was almost immediately expanded because it became

apparent that three additional categories were needed: Who / What / How (Passive) (i.e.,

State, or condition), Relationship (i.e., linking objects), and Hybrid (i.e., objects that have

multiple category characteristics). The Who / What / How (Passive), hereafter simply

referred to as State, is a way of expressing State in terms of interrogatives; it is framed in

this way because a person or resource, a thing or product, and an activity can all have

State. The relationships category was added to account for linking objects such as the

IDEFO Input, Control, Output, Mechanism (ICOM) arrow. IDEFO is a key Modeling

Language process model. Similarly, the Activity Edge and Control Flow are linking

elements in the UML Activity Diagram, with is an Object Oriented process model.

The need for a relationship category became apparent when the color coded

elements were placed in an ontological arrangement in MAXQDA. State was understood

up front, but it did not fit nicely into the other ontological categories. Lastly there were

objects that did not fit well into any of the above; these were the hybrid objects which

have multiple interrogative characteristics. For example, the Capability element is

suggestive of behavior (how), function (how), time (when), Rule (why), and Node

(where).

Finding: The data collection and analysis was started with the six interrogatives

as the basis for element classification, however, this list was almost immediately

expanded because it became apparent that three additional categories were needed: State,

Relationship, and Hybrid.

Table 10 provides a list of all 9 interrogative categories with descriptions. Each

of the 9 interrogatives was associated with a color (as shown in Table 10) to support the

64

grouping of objects based on visual observation of element types. The terms

"interrogative" and the associated color codes have been used interchangeably in this

document. There are, of course, other interrogatives, such as How Many, How Much

(COST), but it is arguable that these are attributes rather than fundamental categories.

For this reason they are not used in this study.

From a theoretical point of view, what was needed was an open tool that supports

in-vivo coding, category development, object color coding, relationship building, and

visual mapping; for this reason MAXQDA was chosen to facilitate data collection and

analysis.

Table 10 - Color and Interrogative Classifications

Number

1

2

3

4

Color

Brown

5 — 1

6

7

8

9

Yellow

Purple

Interrogative
Classification

Who (active)

What
Who/What/How

(passive)

Where

How

Why

When

Relationship

Hybrid

Meaning

Resource
Identifier

Product /
Information

State / Being

Node - Location

Behavior

Rule

Timing

Relationship

Hybrid

Description

Person / or acting agent
Thing produced by or
resulting from a process (e.g.,
information)

Condition

Operational Node

Process or Activity

Modifier to Activity (e.g.,
context, rule, etc.)
Time descriptive or control
element

Linking or relational Element
Grouping of interrogative
classifications

4.2.2 Selection of Baseline Architecture Framework

This section addresses the selection of an Architecture Framework for data

analysis. DODAF was described in detail in the literature review. DODAF 2.0 (DOD,

2009) is the most recent version of DODAF. The main difference between DODAF 2.0

65

and DODAF 1.5 is the point of view with respect to data and views. In DODAF 1.5,

views drive data. In DODAF 2.0 data drives views. Because, the method articulated in

this dissertation is holistic, either DODAF framework could have been chosen. However,

UPDM was selected because it provides a more mature meta-model. It is likely that this

same method could be applied to DODAF 2.0 to facilitate its development in the

direction of executable architecture because it is similar to UPDM.

Figure 19 shows a sample UPDM meta-model for the OV-5 Activity Model

(OMG, 2009a), in which the meta-models for each view were inspected for elements and

relationships between them. The UPDM meta-model was chosen because it contains

DODAF 1.5 elements and because it provides a clear UML-based class diagram for each

view, and it clearly delineates views and provides clear definitions of the elements that

comprise those views.

UPDM use established executable architecture static problem boundaries, context

and perspective. It also provided a basis for comparison with Modeling Languages. As

stated in Chapter 3, research has been limited to executable process modeling, and to

conceptual, declarative, and functional model classifications.

«ro« l8cons t r»n i»
«sSere«ype»

PeitofiaetlActivity $ — — — — -J-
< stereotypes

Performs

«<metaconstrairt»
{urn! Rale » 'client"}

<esiereo!ype>;

« s e « e o t y p 8 »

QperiiEtioiMiJActrvfty

ft<^wrt.-At.!J^g..
Actin'tySi/tjeet

i {urn!Re1eK*behjv ior) l {umlRsl*»"aci iwV1

t<«nw»eofWSi«rt»>

s{umlR«1t • "'ownnIPxamsttf'l

SUndtrdOperat ionf t lAct iv f ty

«stereotyi>e» {umiRof* • "typt") «8terectype»

Op*t*&o**iBetk*mt*lt*m

«<metscona& s w * »

- Qperat'umailftctwttyEdge .

« s t s e o t y p e »
ftesourc e Ar t i fact

<stereotype>:
Mode

{wnlRel* • "'realizing Ac&vityE4pt"H
«£«*er«Jtype»

Otg»mizatSon»tRt*C¥rct tnfofrrwUonSement

icrarjge

Figure 19 - OV-5b Meta-Model (OMG, 2009a)

66

4.2.3 VPDM Target Set

After selection of the Architecture Framework, the first task was to select the

target architecture views for the study from the larger set. Architecture Frameworks

provide standardized modeling constructs, bringing under one umbrella many different

kinds of models. Different model views offer unique perspectives into a given system

problem space, but not all views within an Architecture Framework are directly relevant

to process focused executable architectures. UPDM, based on DODAF and MODAF,

describes 45 views, divided into 7 view categories (All Views, Acquisition Views,

Strategic Views, Operational Views, Standards Views, System Views, and Service

Views).

As introduced earlier, Fishwick (1995) provides a taxonomy for models that

classifies them as conceptual, declarative, functional, constraint-oriented and spatial

models. Conceptual models emphasize entities and relationships; declarative modeling is

focused on state and state change perspective. Functional modeling depends on

functional elements as constituent elements, useful for the development of a dynamic

model. This perspective is interesting but not very helpful here because all UPDM

Architecture models fall into declarative, functional and, to a lesser extent, conceptual

categories; constraint-oriented and spatial categories are out of scope. In the literature on

executable architectures, we see that Wagenhals et al. (Wagenhals, et al., 2002), and

Risco-Martin et al. (Risco-Martin, et a l , 2009), and Levis (Levis & Wagenhals, 2000),

all focus on process models of the of the Declarative, Functional and Conceptual Types,

in development of Executable Architectures.

The focus of this study is Operational Process modeling. This eliminates system

function views, planning views, capability views and technical views, and descriptive

views, all shown as sub-types, in Table 11 (Planning, Descriptive, Process, Structural,

Function, Capability and Technical).

The remaining operational views are either Process, or structural by subtype.

Within the Operational views, the OV-1 was eliminated because it does not add any

elements to the other OVs. The OV-4 (Actual) was eliminated as a duplicate of the

OV-4. This left the OV-2, OV-3, OV-4, OV-5, OV-6a, OV-6b, and OV-6c and OV-7, all

shown in Table 12.

67

Table 11 - UPDM Views

1

2

3

4

5

f

7

S

9

10

11

u
13

14

i f t

If.

17

18

19

20

' 1

?7

23

24

lc

2C

D7

2?

29

30

31

*2

n

M

V

*e

3 !

38

3Q

40

42

43

44

4*

4£

46

*.

*

1

2

3

4

5

6

7

8

9

10

B

UPDM 1 S V i e w

AcV-1

AcV-2

AV-1

AV-2

AV-3

OV-1

"m4
<s>ms

OV-4 (Actual)

11 H M H M B H

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

-

m-4&

a w *
m4"
SOV-1

SOV-2

SOV-3

SOV-4a

SOV-4B

SOV-5

StV-1

StV-2

StV-3

StV-4

StV-5

stv-s
SV-1

SV-2

SV-3

SV-4

SV-5a

SV-5b

SV-6

SV-7

SV-8

SV-9

SV-10a

SV-10b

SV-10c

SV-11

SV-12

TV-1

TV-2

TV-3

c

V iew Type

Acquisition
Acquisition

All View

All View

All View

Operational

Operational

K i . . , i , M
O p ^ K e »

Service

Service

Service

Service

Strategic

Strategic

Strategic

Strategic

Strategic

Strategic

System

System

System

System

System

System

System

System

System

System

System

System

System

System

System

Technical

Technical

Technical

r

D

Name

Acquisition Organizational Perspective

Acquisition Timeline

Oven/tew & Summary Information

Definitions and Terms

Measurable properties in physical world

Operational Concepts

^ © I ' S f H®$& 'Q&^:&c<l-m? L&^£!f«j

:rf@ : 'T!$K^ ' U ^ n ^ Wii&v

Organizational Relationships

rr
is

j. 1 I . I C T ^ ^ M ^ M ^ ^ M ^ ^ M

&tei-sii twctf'-* 'hmgif U-'<^rrm)

Capability to Service Mapping

Service Constraints

Service State Model

Service Functionality View

Strategic Vision

Capabilities Hierarchy

Capabilities Planning Timeline

Capabilities Dependencies

Capabilities to Organizational Mapping

CapaMitiy to Operational Mapping

System to System Node Connectivity Diagram

Systems Communications Descnption

Resource Interaction Matnx

Functionality Descnption (Data Flow Diagram)

Operational Activity to Systems Function Matnx

Operational Activity to Systems Services Matrix

System Data Exchange Matnx

Resource Performance Parameters Matnx

Capability Configuration Change

Technology & Skills Forecast

System Rules ivlodel

Systems and Services State Transition Descnption

Systems and Services Event-Trace Description

Physical Data Model

Service Provision View

Technical Standards Profile

Technical Standards Forecast

Standards Policy

_
-

F

Funct iona l o r
Declarat ive o r

Conceptua l

Conceptual

Conceptual

Conceptual

Conceptu al

Conceptual

Conceptual

G

Sub- type

Planning

Planning

Planning

Descnptive

Descnptive

Process

H

Assessment

NA

NA

NA

NA

NA

yes

!rt^:©'^g ,; _ _ . . f ^ i ^ t ^ L x,_., aS^—-

Functional
lrt-yr"'.gii!@TnS

^tr<$'8m&

Functional

Functional

Functional

Functional

Functjona!

Functional

Functional

Functonal

Functional

Functional

Functional

Functional

Functional

Conceptual

Functional

Functional

Functional

Functional

Functional

Functional

Conceptual

Conceptual

Functonal

Declarative

Functional

Declarative

Functional

Conceptual

Conceptual

Conceptual

Structural

p« mm®

System Function
System Function
System Function
System Function
System Function
System Function
System Function

Capability

Capability

Capability

Capability

Capability

Structural

System Function

System Function

System Function

System Function

System Function

System Function

System Function

Capability

Planning

System Function

System Function

System Function

System Function

System Function

Technical

Technical

Technical

no

„Jg*. ___.

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

Target Model Set

Exc luded Models

68

Table 12 - UPDM Target Set

UPDM Baseline Process Views
Classification Model

OV-2
OV-4
OV-7
OV-3
OV-5
OV-6a
OV-6b
OV-6c

Name
Operational Node Connectivity
Operational Relationships Diagram
Logical Data Model
Information Exchange Matrix
Activity Diagram
Operational Rules Diagram
Operational State Transition
Operational Event Trace Diagram

4.2.4 Modeling Languages

Table 13 shows four prominent modeling languages aligned to the target UPDM

views; this alignment indicates similar characteristics. The Modeling Languages are

Structured (IDEF), UML, SysML and BPMN. Process Models from the four Modeling

Languages have been coded for analysis as part of this study. The motivation for this

choice is that these process modeling Languages are widely used in the literature and,

based on the experience of the author, are broadly used in practice.

An earlier peer reviewed publication (Shuman, 2010) described the alignment of

these modeling languages to DODAF views. Table 13 shows models from DODAF and

the four Modeling Languages categorized according to the where, how, who (passive)

when and categories. This means that these model types predominately address the

interrogative in question; for example, the UML Activity Diagram is a process model that

is predominately oriented towards addressing process or behavior. For this reason it is

aligned to the How interrogative group. This alignment to the how interrogative type is

not to suggest that there are not elements of other interrogative types within this model,

as will be demonstrated later as the description of data collection proceeds.

69

Table 13 - UPDM Views and Modeling Language Alignment

Interrogat ive
Color

Classif icat ion
UPDM Basel ine Process V iews

Structured

Model ing
SysML

*$

Who (passive)

V o d c '
4 umbr i

0 V 2
O p n r i t i r n i l Nodn (. m in i (t i i t ,

D u g i a m

O V - 4 O p L r i t i c m l Relat ionship^ D n c j n m

(gW=S OnflaaiaaiJaa B j s teB igs fSsfMs

Bft?=S |fe@wa» mmmra

@W«©a fejetsfciMiO fetes Btegrara

- . , _. Operat ional State Transit ion
0 V " 6 b Descript ion

0 V - 6 C Operat ional Event Trace Diagram

I EFO

I EFO

EFO

P n M B l t " © v : 7 . | B a . i ^ j C E j t j VTWi."

Class Composite Structure

Class Composite Structure

Activity Diagram

Activity Diagram

Activity Diagram

State Machine

Sequence Diagram Timing
Communications Diagram

Class Composite Structure

Activity Diagram

Activity Diagram

Activity Diagram

Class Block

4.3 Code Organization

A way was needed to organize code elements in term of categories, composition

and generalization associations MAXQDA supports this kind of information

management scheme. The top information categories were set up in accordance with the

vertex components of the Executable Architecture Concept Triangle. Architecture

Elements, Modeling Language Descriptions, and Executable Architecture Formalisms.

Within each category, composition relationships were established for the sub-categories,

i.e., models types, models and Modeling and Simulation Formalisms. Within each model

category composition and generalization relationships were established. This information

organization construct provided a way to bin the elements. Figure 20 shows the 1st tier

information layers (in MAXQDA) and their relationships to the Executable Architecture

Concept Triangle (Figure 10), which served as a framing guide.

^KecLilati|e|i\id1nWi;m-?CQiTf6^Tf'n"'q l?

iXJL C:\Dixuments and Se&ings\a5human\My Docum... -i ' - X

Project Edit: Docunrfents Codes Memos Variables

Analysis Mixed methods Vteualtoote Windows &AXDtctio

Language IJiofbars : £ :

Q C o d e System^,
+ Q Arctotecturelilements (UPDM...)
+ £2 Modeling Language Descriptions

Q «»bE>.ecutable Architecture Formal
jfrSets

[&KgH^gttmjj in!!gg^|g^|

ure 20 - Top Level of Code Organization in MAXQDA

file://C:/Dixuments

71

The complete organizational structure was set up as follows, from 1st tier through

4th tier:

a) Architecture Elements (1st tier)
a. Architecture Framework (UPDM) (2nd tier)

i. Behavior category (3rd tier):
1. Models (4th tier): OV-1, OV-2, OV-5, OV-6a, OV-6b,

OV-6c, SV-1, SV-4, SV-lOa, SV-lOb, SV-lOc
ii. Structure category (3rd tier)

1. Models (4th tier) OV-4, OV-7
iii. Tables category (3rd tier)

1. Tables (4th tier): OV-3, SV-6, SV-7
b) Modeling Language Descriptions (1st tier)

a. Structured Language (2nd tier)
i. Behavior category (3rd tier)

1. Models (4th tier): IDEF 0, DFD
ii. Structure category (3rd tier)

1. Models (4th tier): IDEF IX
b. UML (2nd tier)

i. Behavior category (3rd tier)
1. Models (4th tier): Activity, Common Behaviors,

Communications, Interaction, Sequence, State, Timing, Use
Case

ii. Structure category (3rd tier)
1. Models (4th tier): Component, Composite Structure,

Package, Object, Class
c. SysML (2nd tier)

i. Behavior category (3rd tier)
1. Models (4th tier): SysML Activity

ii. Structure category (3rd tier)
1. Models (4th tier): Block Definition, Internal Block,

Parametric
d. BPMN (2nd tier)

i. Behavior category (3rd tier)
1. Models (4th tier) Process, Choreography, Collaboration,

Conversation
c) M&S Formalisms (1st tier)

a. CP-net (2nd tier)
b. DEVS (3rd tier)

The behavior and structure categories shown above support the same pattern of

model organization used in UML (OMG, 2009), with a division between structure and

behavior models. In addition to this hierarchical organizational, structure code attributes

as described in section 4.3 were applied to the code elements. Figure 21 provides a

72

snapshot from MAXQDA that shows all four layers: (1) component, (2) Architecture

Framework or Modeling Language, (3) Type (behavior or structure), and (4) Model

Designation.

A& C-\DocumentsandSettmg\ahuman\My 0c<uments\eckK4tic*ADi$$ertation\ .. - ~" X

Project gdft documents Q»des fifemos VarJaUes Analysis Mixed methods

vjsualtoois Windows MAJCDtetto lanauao* Toolbars I

1 _ _ „ „ _ . „ _ „ _ , _ _ _ ,
- Q Code System

- 0 UPOM Metamodel
- a Behavior

+ G OV-1

__..___^"___^ ,;.:: t j tm, :
786

0
0

11
• a • « ov-2 2 •

0 <IMA6E> OV-2 -1
O <IWw3E> OV-2 -2
C5 Capability

- Q LogicalArdntecture
+ G Node / Performer
+ GSE_Resource
C NeedSne

+ t ? NodePort
+ CT'NodeRote
• C? OperationalExchange
• CSPwformsdActivity
• G Ref erredtocation

C RequestPotnt
C ServcePoint

- QOV-5
- GJOV-5 Elements

+ C • Performer
+ C 1 OperationalExchange
- CJ OperationalParameter

- Ci OperationalExchangeltem
i_» InfornnatronElement
C i OrganizationalResource
Cm Energy
Ci ResourceArtif act

J
J
J
J

J
J

J
J
J

J
J
J
J
J
J
J
J

1
1
1
1
8
3
1
2
2
6
2
3
1
1
1
0
6
2
1
2
1
1
1
I

Figure 21 - Code Categories

73

Next, the elements were arranged according to composition (i.e., "has-a") and

generalization (i.e., "is-a") to support model association and ontological categorization,

respectively. Both kinds of relationships were important in elemental analysis. Figure 22

shows a snapshot of the Code Window in MAXQDA, with elements for the UPDM OV-2

organized into Composition and Generalization Relationships. Figure 22 is annotated to

show those distinctions.

"lias-a'
Composition

ftojeet £0V (5oe<#riei%l5 Codes Mamas variabks dialysis M£&d methods Visual tools

Windows MAXOfctto Language Toolbars ?

^ mmm
Q O V 2

Q<;IMftGE>0V2 1
Q<SMftGE>OV2 2

C&psb&y
LogicalArcMtetture

* Q raotfc

C3 <lMAGE>Perfcrmef
•* O NtodeParer*
C i Resource

C3 <IMwGE>Resource

NeetKne
NodePort
C 1 <IMAGE>Wod«PiXt
htodeftei*1

QperetiorKflExcharsge
C 1 Org-OTzabondExtriange

C IrtfoimetranExcliarige
C7 ConftcorationExdisn^s

t j PerforiKftdAeBvlty
CS OperaCtonalAcbp/ity
Referrsdloeatar.
O location

ReqjjftstPDtnt

is-a
Generalization

i '̂ fllfiMllMitS ':fi'iii3B̂ SHMiBfl ̂ S»i8teMMMMim flfUlBlttrll iHftWi^tiiWlfl^^iff^[jT)li^lilL^# tfe^fitot

Figure 22 - Elemental Composition and Generalization Relationships (in MAXQDA Code System)

4.3.1 Population of Individual Data Structures (Ontologies and Compositions)

Table 14 contains OV-2 elements pulled from MAXQDA. MAXQDA interacts

with MS Excel to support easy export and import of data. The "Code" column contains

the names of the codes. The "Tnterrogatives +" column contains the color and associated

interrogative category classifications of each OV-2 element. The "Model Origin" column

lists the model source. The "Parent Code" Category contains the hierarchical

74

organizational code structure in MAXQDA and reflects the aggregations and

generalization relationships. For example, the Element "InformationExchange" is in a

generalization relationship to the parent element "OperationalExchange", and "Needline"

is in an aggregation relationship to the OV-2 model element. The Model Group column

is for classifying each element as Behavior or Structure, and the last column is Ops or

Sys representing an Operational or Systems Classification. These codes were used for

code grouping, querying and set building (i.e., generation of a group of elements based on

specified attribute sets). Each element was color coded to visually reflect an interrogative

category consistent with Table 10.

Element color coding was based on interpretation of element definitions as

defined in the source documentation. As analysis progressed, elemental color coding was

refined to reflect generalization changes. This analysis usually came about in the context

of visual inspection of the code through MAXMAPS.

Table 14 - Sample Coding of OV-2 Elemental

Capability ^ ^ B ^ ^ ^ ^ ^ ^ ^ ^ ^ H

IdflicalArcfctiecture

deedline

ModePort

NodeaoJe

Ope rationalExcha rtge

0 rganrea tiona iExdiartge

MaienalSxchange

Energy Exchange

I nfcrma 'io n£y chang e

Confi eu rattonExeha nge

Performed" act™ !v

RequestPoint

ServieePoinS

N«)e Performer

ftdtevKfiship y e l o *

ftelaijonship yaitow

^^f f^s ish© ysffew

S.etet»ooship ysJfow

ftefat»eGrii»£ yellow

£eJaM©nshi|B yeBow

Retefaeosbip yellow

Refeftfeeehip y&im

fcetrooBghip *fefew

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ |
H£m&X2&$Mft ^SfcHW

aefcftiOAshwa y * te«

Resource ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H
Node W B K B W B B B B J I

NodetMd H S E N S K S S S N f l
Node^aren'

OaSoiji

OV 2

OV 2

OV2

OV2

OV2

OV2

OV 2

OV 2

OV2

OV 2

OV 2

OV 2

OV 2

OV 2

OV2

OV 2

OV 2

OV2

OV 2

parent c£de *>/ f , * *

Archiiectu'e Element (UPDM)\UPOW Architecture Framework1 Sebavior,tOy 2

Architecture Semens (UPDM }\UPDM Architecture Framework^BehaviodQv 2

Architecture Elements (UPDM)\UPOW Archrtecare F rameworlrtBetaviortOV 2

Architecture Elements (UPOM)\UPDM Architecture Framework\3ehavK>.\OV 2

Arch eeture Elements (UPDM)\UPDH Architecture Fran«w<wk\Behavior\OV 2

Archi'ecture Elements (UPOM)\UPCM Architecture Ffamework\3ehavt(iriiOV 2

Architecture Elements (UPDM)*UPDH Architecture Framework'5ehsvior\oy 2\OrerawmalEschange

ArdDtecture Elements (UPDM }\UPDM Architecture Framework BehavtoAOV 2\OperaBG(ialEy change

Ardweeture Elements (UPDM }\UPDN Architecture Framework' 3ehavior\OV 2\OperBb»nalcxehange

Architecture Elements (UPDM)\UPOM Architecture framework 3ehaviartoV 2\0per8tkCf)alExchBnge

Arch tecture Elements (UPDM)\UPO#4 Archi'eaure framework BelwvrorvOV 2kOpe"strcnal£xthange

Arehftecure Elemf nts (uPOM j UPOM Arrhi'eaure Framework SehavioriOV J

Architecture Elements (UPOM j U*>DM Architecture Fr«me*ork Sehavspr 0 . 2

Architecture Elements (UPON JttJfOM Architecture framework SehavioriOV 2

AreMectura Elements (UPDM } UPOWAreMeaur*Memewo'^ i3ehaviCrtQV 2\U>S*WlArcru tectum

Architecture Elements (UPOM) up DM Architecture framework aehavioriOV 2\Losiea!Archite«ure

A'ct" etture Elements (UPDM) UPDM Architecture Frame*crk BehaviortOV 2 iogicalArchitectu'e J*ode Performer

Architecture Elements (UPDM)'UPOM Architecture Frameworki3ehavtoriOV ^sLogscaiArchiteetus-e'JJode ^ PerfoTner

Architecture Elements (UPDM ĵ UPOM Architecture crame«orkbehavioriQV 2ILogicalA'chiteetu-eyjQdeii °erformer

Hod^l 'Group

Behavior

Behavior

Behavior

Behavior

&shavior

Behavior

B«havtor

Beha«or

Be"i3wor

Behawor

Behawier

Behavior

Beha-fto-

&ehsvior

Behavior

Bshavio*

Behavior

Behavior

Behavior

OpporSfrt

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Ops

Figure 23 is a sample MAXMAPS OV-2 visual model. As coding progressed,

some additional categories were added because there were elements that did not fit well

into the original six interrogatives. These additional categories included: relationships

(yellow), hybrids (purple), and a category for Who / What / How (Passive), for state

(explained in section 4.2.1).

75

In Table 14, Logical Architecture is classified as Hybrid (Purple) because it has

children elements (generalization relationships) that fall into more than one main

category: having a node child classified as Where (Aqua) and a Resource child classified

as Who (Red). This method, based on ontologies and attribute coding reveals an

ambiguity that reflects the source UPDM meta-model relationships, and may be a case

where the source meta-model is incorrect or questionable.

Figure 23 shows an OV-2 drawn in MAXQDA MAX MAPS. MAXMAPS

supports the depiction of objects, links and annotations. Each Object is linked or

synchronized with a code in the MAXQDA database. Each code in the database was

defined based on authoritative source material definitions, using the code memo feature.

By touching the object on the map, the definition from the associated memo is displayed

on the map. This was useful in sorting out relationships.

Links show relationships between objects. The links in Figure 23 show

aggregation and generalization relationships annotated as "has" and "gen." on the

relationship lines. This was the starting point for all elemental depictions. Other

relationships such as association relationships were added to complete the model. As an

example of the "has-a" and "is-a" relationship depiction, it may be seen in Figure 23 that

Resource "is a" Performer (generalization), while the OV-2 "has a" Performer element

(aggregation).

Finding: This method, based on ontologies and attribute coding reveals an

ambiguity in UPDM that reflects the source meta-model relationships, and may be a case

where the source meta-model is incorrect or questionable.

76

~ ,^ L —aen —ConfigurationExchange
Ope ratio rial Exchange y e "

Figure 23 - Sample OV-2 Composition and Generalization Relationships (in MAXQDA MAXMAPS)

4.3.2 Development of Meta-Models through Alignment of Code Database and Visual
Views

Initially, relational constructs between elements were developed using

composition and generalization hierarchical coding. Relational constructs were

subsequently developed, assessed and refined using visual representations. Both

organizational constructs prove to be very powerful and mutually supportive. The

development of visual meta-models was particularly useful in the analysis of

relationships, particularly in helping to disambiguate vague verbal descriptions from the

authoritative data sources. Furthermore, visual modeling was instrumental in the analysis

process, in that it helped to reveal generalization, aggregation and association

relationships. Although MAXQDA MAXMAPS was not designed as a UML class

diagramming tool, it may be used this way by observing a few conventions. Table 15

shows the equivalencies in the column entitled MAXQDA MAXMAP Depiction.

77

Table 15 - UML Relationships and MAXMAPS Links Equivalences

N a a e

A g g r e g a t i o n

A s s o c i a t i o n

C o m p o s i t i o n

Dependency

Genera l i za t ion

Definit ion

An aggregation relationship depicts a
class rfier as apart of or as subordinate to,
another classifier

An association is a structural relationship
that describes a set of links a link is a
connection among objects

A composition relationship represents a
vrfiole-part relationship and is a type of
agqreqation
A dependency is a semantic relationship
between two things in which a change to
one thing (the independent thing) may
affect the semantics of the other thing (the
dependent thmal
A generalization relationship indicates that
a specialized (child) model element is
based on a general (parent) model
element Although the parent model
element can have one or more children,
and any child model element can have one
or more parents typically a single parent
has multiple children

U M L Depiction | UAXQDA U AX M A P Depict ion

Agp«fM* f^^~ P u 5 Aggreiai ian

VavijBvnn

CISSSA [>| ClaSsB Awocialion

j tompo*™ | 4 ^ [Put 1 CompoMltoB

Sauic< Taijti

j Dqxsideat P*rt j - * l Reruns! Pjrt 1 DfpCinJrilC*

fucii Child

i —< Kh -\ — i - = - r

' has

assoc.

assoc

has

gen.

4.3.2.1 Data Element Analysis Roadmap

Because of the number and variety of models and associated elements, it became

apparent not too far into the coding that a roadmap would be required to help guide the

data analysis. This kind of method evolution is typical of grounded theory investigations

(Corbin & Strauss, 2008).

4.3.2.2 Roadmap

With over 750 data elements in the database, a way was needed to organize the

data for analysis. A roadmap (Figure 24) based on the EACT was constructed to provide

a way to address this complexity. The purpose of the roadmap is to provide element by

element comparison for elimination of duplicates and redundancies, in order to build a

composite or merged meta-model. It aids in model identification, and it provides a

framework for comparative analysis, i.e., model alignment and grouping (based on

Process, State, Timing and Node).

Data Element Analysis Roadmap Steps 1-10:

1. Develop six UPDM meta-models (e.g., OV-2, OV-4, OV-5, etc.).

2. Build four Group UPDM meta-models, based on four types: Process, Timing,

State, and Node.

78

3. Build Composite UPDM meta-model (by merging four group meta-models above

into one).

4. Build eleven Modeling Lang, meta-models (e.g., SysML Activity Diagram,

BPMN, etc.).

5. Build four Group UPDM-Language meta-models), by aligning Modeling

Language meta-models in step 4 to groups meta-models built in step two.

6. Build Composite UPDM-Language m-m (the foundational EAS) by merging the

four group m-m from step five.

7. Compare Composite UPDM from step three & EAS from step six.

8. Code & build m-m for M&S Formalisms.

9. Compare M&S Formalism meta-models to EAS.

10. Build EAS Ontologies; conduct element analysis and refine EAS. This step will

be described in detail later.

Table 16 lists the 10 roadmap steps depicted in Figure 24, the object of each

model step, and coding types. The coding principles were described in Chapter 3. To

recall, the coding principles are as follows:

a) Open Coding. Develop Categories or Themes (Categories, Properties, and
Attributes).

b) Axial Coding. Place data into categories or themes (Binning).
c) Selective Coding. Observe relationships revealed and how they combine to form

a story line to describe phenomenon (Corbin & Strauss, 2008).

79

Table 16 - Data Element Analysis Roadmap Steps

Roadmap

Step

1

2

3

4

5

6

7

8

9

10

Roadmap Step Description

Build 6+ UPDM m-m

(e g , OV-2, OV-4, OV-5, etc)

Build 4 Group UPDM m-m

Build Composite UPDM m-m (composed of 4 groups)

Build 11 Modeling Lang m-m (e g , SysML Activity

Diagram, BPMN, etc)

Build 4 Group UPDM-Lang m-m (merge 3&4)

Build Composite UPDM-Language m-m (the EAS),

composed of 4 group m-m step 5

Compare Composite UPDM (step 3) & EAS

Code & build m-m for M&S Formalisms

Comp Formalisms m-m to EAS

Build EAS Ontologies (element analysis)

Object

UPDM Views

UPDM Groups

UPDM

Modeling Language Models

UPDM - Language

UPDM - Language

UPDM & UPDM- Language

CP-net, DEVS

CP-net, DEVS & UPDM-Langu

UPDM-Language

Coding and

Theory Building

Axial Coding

Axial /Selective

Coding

Axial /Selective

Coding

Axial / Selective

Coding

Axial /Selective

Coding

Selective Coding

/ Theory

Buidhng

Selective Coding

Axial Coding

Selective Coding

Theory Building

(1) Build 6+ UPDM m-m—
(e g, OV-2, OV-4, OV-5, etc)

(2) Build 4 Group UPDM m-m

(3) Build Composite UPDM m-m ^-frr* ****&
(composed of 4 groups) / " P ^ \ ffjgfc,

_J
Slock Oefin tjon Diagran

Language structure (Node) Group

S V S . UML Sequence uh*. V "9 0 an
t \ \ . 0 agram >

•"omposts Siructur* 0 agfam 1UML) I

(4) Build 11 Modeling Lang, m-m
(e g , SysML Activity Diagram, BPMN, e t e ^ ^ ^ , , , „,,,,,,

(5) Build 4 Group UPDM-Lang. m-m
(merge 3&4)

(6) Build Composite UPDM-Language
m-m (the EAS) , composed of 4 group m-m step 5

(7) Compare Composite UPDM"(step 3f& EAS

(8) Code & build m-m for M&S Formalisms

(9) Comp Formalisms m-m to EAS

(10) Build EAS Ontologies (element analysis)

21

Figure 24 - Data Element Analysis Roadmap: across Similar Meta-model (m-m) Types

83

4.4 Data Element Analysis Roadmap Execution
This section provides a detailed explanation of the ten steps of the Data Element

Analysis Roadmap.

4.4.1 Step 1: Code, Classify & Build UPDM Meta-models

Figure 25 shows the Executable Architecture Concept Triangle (EACT) with the

Architecture Elements component highlighted at the top, included here as a guidepost to

which Steps 1, 2 and 3 of the roadmap align. In other words, this section will focus on

the components within EACT that relate to Architecture Elements. To this end,

Modeling language model elementals were coded, categorized and aligned to UPDM

model groups. Again, the coloring scheme shown in Table 10 reflects interrogative

categories discussed in the following sections.

Figure 25 - Executable Architecture Triangle (Architecture Elements Guidepost)

Step 1 of the Roadmap is the development of Architecture meta-models for the

targets set from UPDM, and it begins with Open Coding. Although in most cases, Open

84

Coding involves the actual naming of categories, in this study, Open Coding primarily

involves developing code categories or attributes for elements based on the

interrogatives, the model origin and on other categories that are already named, as

described in section 4.6. Both Open and Axial Coding principles were followed in the

development of data. Attributes were set for each element (i.e., Axial Coding), and

model elements were combined visually into models. Figure 26 is a compilation drawing

of all UPDM operational meta-model views identified in Table 12.

It was produced in MAXQDA, MAXMAPS from the data in the code database.

Each visual object is "live," that is synchronized with the data source and the tool

supports mouse-over display of code memos (containing code definitions) from the maps,

as depicted in Figure 27.

i T > e^ t @ e _^_h _ , . . = £

Figure 26 - Meta-Models

85

Figure 27 shows an example. Each visual model object (element) was classified

and color coded to reflect the interrogatives categories discussed in paragraph 4.6. The

purple lines are suggestive of cross-model common elements. This will be addressed at

length later.

i MAXMaps - JPDH All

Map Mode Edit Link Zoom ?

©Miffi a r B ® ; J ; ^ ; [

tjbBPMN -

qbco...

%Co. . .

ft Co ..

% C o . . .

<&CPN

•ilDEVS

•ilnt...

tiov,..

<hon...

%ov .

>&ov...

' f tRo. . .

t&Sbr...

RbSy...

"&Sy...

•&UM. ,

l l U M .

BUP...

<&UP...

S i UP...

tup...
'hue...

=

•J) UP...

(=j
>=>=ra Ire - s t&rftv rty

s5&:>fv(iy \

=_rftr=E«r (Systsn F L I - S K - I

\
\

\ 'N

A
\ x -

Competence N
N |

i

I ^ V ^ - J G o fipn a d ul Q O

&*...-> -J

81 1 1 4411 Needlme
MODAF NA
DoDAF A needlme documents the requirement
to exchange information between nodes The
needlme does not indicate how the information
transfer is implemented

1

\ 1

D
Figure 27 - MAXMAPS with Mouse-Over Memo Display (Needline Definition)

4.4.2 Step 2: Build Group UPDMMeta-model Maps & Adjust coding

Roadmap Step 2 is the specification of four groups based on the interrogatives

and the development of group composite UPDM meta-models aligned to those groups.

The alignment of target UPDM models to the groups is shown in Table 17; this same

alignment may be seen in the Roadmap. This approach provides a manageable way to

break the problem down into workable pieces. Models were grouped together according

to four interrogative focus areas: How, State, When, and Where. It is evident that all

86

models contain elements of more than one type (as may be seen from the many colored

objects in Figure 26), but they can be classified according to principle interrogative focus

area. For example, the UPDM OV-5 was placed into the behavior group.

Table 17 - Composite Groups

Composite Group

Behavior

State

Timing

Node

UPDM Models

OV-5, OV-6a

OV-6b

OV-6c

OV-2, OV-4

Color

Green

Brown

Blue

Aqua

The research shows that models that are of the same interrogative type can be

compared in order to produce composite models. Nothing is lost by over-generalization

because each composite that is produced for the model group is compared against all

other groups in the further refining step 3.

Figure 28 is the UPDM function group composite (OV-5 and OV-6a). This is a

simple composite model that fuses the element "OperationalConstraint" and the element

"SubjectofOperationalContraint" into the Operational Activity Model (OV-5). This

UPDM functional group composite is the target for the next two composite fusions: the

first to the other UPDM groups, and the second to the modeling language composite.

Building composite group meta-models was an intermediate step in building a

foundational model set around which other UPDM elemental additions and language

model elements were added. Figure 28 shows the UPDM group composite for the

UPDM function group, with the source OV-6a and OV-5 in the top left and right corners

respectively. It is a very straightforward grouping in that it simply shows the

"OperationalConstraint", "SubjectofOperationalConstraint" and Mission elements from

the OV-6a added to the OV-5. This addition, in turn, requires the addition of

generalization lines linking SubjectofOperationalConstraint to Node,

"OperationalActivity", "OperationalExchangeltem", Operational Activity and

"PerformedActivity" (a suggestion which is not part of the original meta-model).

87

Figure 28 - Building Composite UPDM Group Function Model

4.4.3 Step 3: Build Common UPDM Meta-model map & Adjust coding

Roadmap Step 3 is the building of a UPDM composite meta-model. Figure 29 is

a progression that is based on the previous composite group functional UPDM model. It

is considerably more complex because it combines all elements from the original seven

UPDM operational meta-models into one model. Key parent nodes have been annotated

with yellow circles to highlight them as central parent nodes. The observer can easily see

that while all interrogative categories are present in the Composite UPDM Behavior

meta-model, the time attribute is remarkably lacking because the only explicit time

element that is seen in the composite UPDM model is the sequence element. The

element "ActualMeasurementSet", categorized as hybrid or purple, is associated in the

parent OV-3 meta-model with the "OperationalExchange" element. The

"ActualMeasurementSet" does contain "Measures" that have, among other attributes, two

88

time attributes: periodicity and timeliness. However, this is not a very robust set of time

related attributes or elements. This is not particularly surprising given that DODAF and

MODAF were not designed as simulation modeling frameworks. Any simulation

modeling tool is necessarily going to have to address timing considerations much more

explicitly and broadly.

Figure 29 - UPDM Composite OV-5 & OV-6a & OV-6b & OV-2 & OV-6c & OV-4

Finding: It is of note that all interrogative categories are present in the Composite

UPDM Behavior meta-model; however, the time attribute appears to be remarkably

lacking. The only explicit time element that is seen in the composite UPDM model is the

sequence element.

89

4.4.4 Step 4: Code, Classify & Build Language Meta-model Maps

Figure 30 shows the Executable Architecture Triangle with the Modeling

Language Descriptions component on the left vertex highlighted. It is included here as a

guidepost to which Steps 4 and 5 align; in other words, the focus of discussion regarding

interaction and relationship within EACT is now shifted to the Modeling Languages.

Roadmap Step 4 illustrates how modeling language meta-models are developed for each

of the modeling languages associated with the four analysis grouping: Behavior, State,

Timing, and Node. Meta-models were developed in step 4 for each of the Models shown

in Table 18, which are then aligned to the analysis groups. This alignment is also shown

in the Roadmap, Figure 24, where the UPDM Group Composites are color coded as

shown in Table 18.

Figure 30 - Executable Architecture Triangle (Modeling Language Guidepost)

90

Table 18 - Group - Language Meta-model Alignment

Group

Behavior

State

Timing

Node

Model

1DEF0, SysML Activity Diagram, UML Activity

Diagram, BPMN Process Diagram

UML State

UML Sequence, UML Communication, UML Timing

SysML Block, UML Class, UML Composite

Color

Green

Brown

Blue

Aqua

Figure 31 depicts the meta-model for the SysML Activity Diagram; it is

representative of what was done for the other Language models shown in Table 18.

The SysML Activity Diagram is similar to the UML Activity Diagram, except for

the additions shown highlighted with aqua circles. As Dori (2002) pointed out, UML,

and by extension SysML, are both encumbered with implementation detail. This is a

drawback from a purely modeling language point of view. The large gray circles in

Figure 31 are examples of implementation detail that does not contribute to conceptual,

functional, or declarative modeling (See Table 17 Definition Column). Upon reflection,

it becomes apparent that in comparison to the UPDM OV-5, there are a number of

elements that are part of the SysML Activity Diagram (Figure 32) that could augment the

OV-5.

Finding: Comparison of the SysML Activity Diagram to the UPDM OV-5

reveals that are a number of SysML Activity Diagram elements that could augment the

UPDM OV-5 (e.g., time constraints, duration constraints and rate, and probability rules.)

91

Figure 31 - SysML Activity Diagram

The ability to conduct queries against the data set based on attributes that have

been assigned to the data (through Axial Coding) is important because it can help to sort

through questions related to the data; for example, Table 19 contains elements from the

SysML Activity Diagram that have been marked as having Implementation Detail. Table

19 was used to verify that these elements could reasonably be classified as

implementation-level, enabling their exclusion from the process meta-model. Detailed

elemental inspection of SysML/UML confirms Dori's (2002) assertion that from a

modeling perspective it is unwieldy, or heavily weighted with implementation-level

detail, thereby reducing efficiency for purposes of process modeling.

Finding: Detailed elemental inspection of SysML/UML shows that from a

modeling perspective it is laden with implementation-level detail.

92

Table 19 - SysML Activity Diagram Implementation Detail Elements

©oassssKsssiifr-
Object Node

CentralBufferNode

DataStore

ExpansionNode

Activity Diagram
Parameter Control
Elements (Loqicat)
+Optional (Parameter
control)

isStream (Parameter
control)

Object Node Control
Elements
+OverWnte (Object
Node control)

ExceptionHandler(Object
Node control)

+NoBuffer (ObjectNode
control)

InterrodatW
Where
(location) aqua
Where
(location) aqua

Where
(location) aqua
Where
(location) aqua
Why (Rule) pink

Why (Rule) pink

Why (Rule) pink

Why (Rule) pink

Why (Rule) pink

Why (Rule) pink

Why (Rule) pink

Model
SysML
Activity
SysML
Activity

SysML
Activity
SysML
Activity
SysML
Activity

SysML
Activity

SysML
Activity

SysML
Activity
SysML
Activity

SysML
Activity

SysML
Activity

MmtitamMmmmmmmmfr&miw.:::--**
An object node is an abstract activity node that is part of
defininq obiect flow in an activity
A central buffer node is an object node for managing flows
from multiple sources and destinations

A data store node is a central buffer node for non-
transient information
An expansion node is an object node used to indicate a
flow across the boundary of an expansion reqion
Grouping of Parameter Control Elements

When the «optional» stereotype is applied to parameters,
the lower multiplicity must be equal to zero. This means
the parameter is not required to have a value for the
activity or any behavior to begin execution Otherwise, the
lower multiplicity must be greater than zero, which is
called "required " The absence of this stereotype indicates
a constraint, see below

Parameters are extended in complete activities to add
support for streaming, exceptions, and parameter sets

Grouping of ObjectNode Control Elements

When the «overwnte» stereotype is applied to object
nodes, a token arriving at a full object node replaces the
ones already there (a full object node has as many tokens
as allowed by its upper bound)
An exception handler is an element that specifies a body
to execute in case the specified exception occurs during
the execution of the protected node
When the «nobuffer» stereotype is applied to object
nodes, tokens arriving at the node are discarded if they
are refused by outgoing edges, or refused by actions for
obiect nodes that are input pins

93

Figure 32 - SysML Activity (-Implementation)

SysML is a system engineering extension of UML. That is, the Activity Diagram

in SysML contains elemental extensions beyond the Activity Diagram in UML. Table 20

shows the SysML Activity Diagram element augmentations to the UML Activity

Diagram. The augmentation elements fall into two interrogative categories: rule (pink)

and timing (blue). The timing elements include Time Constraint, Duration Constraint

and Rate as key elements, and the following elements from the timing diagram: x, y, z.

Timing diagram elements were included because the SysML Activity Diagram has a

loosely worded provision for the inclusion of timing diagram constraints, through

annotation. The Rule elements deal with the probability of an occurrence and the use of

data as control. The timing and rule classified elements are candidate augmentations for

a future UPDM (and by extension DODAF, since UPDM is based on DODAF), as well

as for an Executable Architecture Specification based on UPDM.

Finding: The timing and rule classified elements are candidate augmentations for

a future UPDM (and by extension DODAF, since UPDM.

Table 20 - SysML Non-Implementation Detail Element Augmentations (over UML)

^ H H i g M ^ ^ t . ' ,

i w h e n (Event- timinq) blue
[When (Event- timing) blue

[When (Event- timing) blue

[When (Event- timing) blue

I w h e n (Event- timing) blue

[When (Event- timing) blue

i w h e n (Event- timing) blue

[When (Event- timing) blue

[w h e n (Event- timing) blue

[w h y (Rule) pink

[w h y (Rule) pink

[w h y (Rule) pink

ModqfqjTjjBgj,

SysML Activity
SysML Activity

SysML Activity

SysML Activity

SysML Activity

SysML Activity

UML Timing

UML Timing

UML Timing

SysML Activity

SysML Activity

SysML Activity

mm
Behavior
Behavior

Behavior

Behavior

Behavior

Behavior

Behavior

Behavior

Behavior

Behavior

Behavior

Behavior

-Ops -.

Both
Both

Both

Both

Both

Both

Both

Both

Both

Both

Both

Both

Awjuvieju

l
1

1

1

l

l

1

1

i

1

l

l

'Ii.nipleine.rjj->
: l i t s a W n M

0
0

0

0

0

0

0

0

0

0

0

0

„ ' , ,- De f i n i t i on

When the «rate» stereotype is applied to an activity edge, it specifies the
expected value of the number of objects and values that traverse the edge
per time interval, that is, the expected value rate at which they leave the
source node and arrive at the taraet node.
Discrete rate is a special case of rate of flow (see Rate) where the increment
of t ime between items is non-zero. Examples include the production of
assemblies in a factory and signals set at periodic time intervals.

Continuous rate is a special case of rate of flow (see Rate) where the
increment of time between items approaches zero.
The simple time model in UML can be used to represent timing and duration
constraints on actions in an activity model. These constraints can be notated
as constraint notes in an activity diagram. Although the UML 2 timing diagram
was not included in this version of SysML, it can complement SysML behavior
diagrams to notate this information.
Timing Diagram Timing Diagrams are used to show interactions when a
primary purpose of the diagram is to reason about t ime. Timing diagrams
focus on conditions changing within and among Lifelines along a linear time
axis. Timing diagrams describe behavior of both individual classifiers and
interactions of classifiers, focusing attention on time of occurrence of events
causinq chanqes in the modeled conditions of the Lifelines.
A DurationConstraint defines a Constraint that refers to a Durationlnterval.

A TimeConstraint defines a Constraint that refers to a Timelnterval.

A DestructionEvent models the destruction of an object.

A control operator is a behavior that is intended to represent an arbitrarily
complex logical operator that can be used to enable and disable other
actions. When the «controlOperator» stereotype is applied to behaviors, the
behavior takes control values as inputs or provides them as outputs, that is, it
treats control as data
When the «probability» stereotype is applied to edges coming out of decision
nodes and object nodes, it provides an expression for the probability that the
edae will be traversed.
A control operator is a behavior that is intended to represent an arbitrarily
complex logical operator that can be used to enable and disable other
actions. When the «controlOperator* stereotype is applied to behaviors, the
behavior takes control values as inputs or provides them as outputs, that is, it
treats control as data

http://'Ii.nipleine.rjj

95

4.4.5 Step 5: Building Group Meta-model Maps

Step 5 is the development of group UPDM-Language Composites. In this step

four group composites are constructed as shown in Table 21, and as indicated in Step 5 of

the Roadmap, Figure 24.

Table 21 - UPDM-Language Model Group Composites

Composite Group

Behavior

State

Timing

Node

Group Member Models

OV-5, OV-6a, TDEFO, UML Activity

Diagram, SysML Activity Diagram,

BPMN Process Model, UML Timing

OV-6b, UML State

OV-6c, UML Sequence, UML

Communications, UML Timing

OV-2, OV-4, Class, Block, Composite

Roadmap Color

Green

Brown

Blue

Aqua

4.4.5.1 Set building with attribute queries

Figure 33 is representative of this step; it is a composite Behavior meta-model

that is composed of the group member models shown for the Behavior composite group,

shown above in Table 21. The elements for this meta-model were produced by running a

series of code queries against the code database, which resulted in data sets, each of

which was used to compare and analyze elements within that set. Four data sets were

created to support the Behavior group composite meta-model development; these are data

sets 1-4 shown in Table 22. The code queries were based upon the model source

attribute, which had been previously coded for each data element in the database. Data

sets 5-7 in Table 22 were used to support the development of the other model composite

groups (i.e., state, timing, and node). The result of each query was a data set that was

used for the assessment and comparison of elements. The descriptive attributes

(Interrogative, Color, Model Origin, Operational or System Element, Model Group,

Parent Code) described in Section 4.1 were used to create and populate selective data

96

sets. Traceability from data set to database to authoritative source is supported in the

tool, which was important to the data management of hundreds of objects.

Table 22 - Code Query Sets

Data Set
1
2
3
4
5
6
7

Group

feymtt
iMHIB
a — i
Bynm
iB_ HffifflTS

itss

Query Source

OV5, OV-6a & IDEFO
OV5, OV-6a & UML Activity Diagram
OV5, OV-6a & SysML Activity Diagram
OV5, OV-6a & BPMN
UML State, OV-6b
UML Sequence, UML Timing, UML Simple Time, OV-6c

UML Block, BPMN Process, UML Communications, UML Seq,
SysML Act.

It was frequently necessary to look up the element definition in order to trace the element

back to the authoritative source, particularly where there was some ambiguity concerning

its meaning or its relationships to other elements.

97

Figure 33 - Composite Functional Group UPDM-Language

4.4.5.2 Element Comparisons

Within each analysis group, Behavior, State, Timing and Node, elements were

compared to each other. To do this, each of the analysis groups was developed

incrementally by querying for model elements associated with those groups and cross-

comparing the findings. The basic principle observed is that similar elements have to be

compared to determine whether they are individual element, duplicate, equivalent or an

extension. The comparison was inclusive, meaning the bias was for inclusion rather than

elimination of elements, such that only duplicative elements were excluded. Elements

were classified according to one of four comparison classifications, as shown and defined

in Table 23. Table 24 shows the result of a query for BPMN elements; in this table,

element organization reflects the ontologies (composition and generalization

98

relationships) that were created in the database, which resulted in groups (parent

elements) that have child or specialization elements associated with them.

The parent-child relationship is useful because it results in element groups that

can be compared to similar groups of elements from other model queries. For example,

in Table 24 there are a number of elements that fall under the Event element (i.e., Cancel,

Compensation, Conditional, etc.); these are child elements of the parent Event element

for BPMN. Next, the Event element is cross compared to other Event or Event-like

elements in Table 25, for other modeling languages.

Table 23 - Comparison Classifications

Comparison

Classification

Individual Element

Duplicate

Equivalent

Extension

Definition

Unique

Same as another element

Similar to another element

Extension of another element

Included

(yes/no)

yes

no

no

yes

Table 25 and Table 26 show comparison tables for the Event and Activities

element groups. Each code was assessed using the comparison classifications listed in

Table 23. If a code was a duplicate or the same equivalent class to another, it was not

added to the composite meta-model: if it was identical or an individual extension it was

retained. For example, Table 26 lists the activity elements from the languages associated

with the analysis group: BPMN, UML Activity Diagram, SysML Activity Diagram,

IDEFO, OV-5, and OV-6a in the table rows. The columns list the languages, and an x in

the intersection of row and column indicates that the element is found in the source

model.

Each element was analyzed within a comparison classification. The result was a

series of analyzed lists of elements (Process-Event, Process-Activity, Rule, Control Node

Flow and Gateway, Time, Product, and Nodes). The comparison tables and meta-models

99

are included in the dissertation appendix. This step represents Selective Coding, in which

relationships are established and redundancies are removed. The "Behavior" group

composite meta-model (Figure 33) was then developed in MAXQDA MAXMAPS.

Figure 33 includes circles that annotate the comparison categories discussed above. The

method was very useful for making comparisons, but the weakness of it is that it is

subject to human interpretation. The results achieved from comparisons through tabular

methods and visual mapping of elements and was mutually reinforcing from a validation

point of view.

100

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X

X
X
X

Table.
Code
Activities

Task (Atomic)
Human Interaction

Sub Process
Nested/Embedded SubProcess
Expanded Sub-Process
Collapsed Sub Process
Transaction

Event - Type Dimension
Cancel (I,E)
Compensation (S,I,E)
Conditional (S (I,E)
Error (S,I,E)
Escalation (S,I,E)
Link (I,E)
Messaqe (S,I,E)
Multiple (S,I,E)
None (S,I,E)
Parallel Multiple (S,I)
Siqnal (S,I,E)
Terminate (E)

Flow Element (Objects)
Gateways

Complex
Event-Based
Exclusive
Inclusive
Parallel
Parallel Eventbased

Connectmq Objects
Sequence Flow (Control Flow)

Merqinq
Looping
Fork
Join
Normal Flow
Conditional flow
Default flow
Exception Flow
Compensation Association
Uncontrolled flow

Data Flow
Messaqe Flow
Data Associations

Associations
Message Flow Associations

24 - BPAIN Elements
Intcroqatives + ^ J t JJkwiLiModei Or ig in
i-imm (tMM'i!§>mt)) sinsjn FiaEiieSsm
f * w Ifyraf i toiMl) ,@rS!W! rMBMtorm
KioM fFandSSBfllj <a(T(§@IB F««JSs« I
Ktew GlfMueaBiwO (Strawm FsumeStoB
Ftew (Faneaerj®!)) ®njigH! Faneite'S
IKew CFuwesfemiai) @r»«ss FaBiOteB
KiBM jFanaasnii i j gfium Fwes^n
M@w? CFt£B@§i@B§jE;) <s)[r<§©B FyBefeui)
rffew (Fuegisfen®!! tjirum iwOTt :

SHteM {FtJttSBsniit)) g tmsst ' i w j c *
Hew (Fs»iSBs>rai)lj grasss .. - ! « ((* 1
H®w {FumiSBisnalj waam -Iwiims i
Oswi {RjreSiteiiral} ®s*m/s> IW«BS |
H®w CFMiiaB®mlJ.jirf@[B .B»ismt .. _ _ . j

H®M JRuBstarasl) §rt<§p Iwt r t t :

How IfujiifiitooiBl j gfiisra - I w s i * _ I
tn@w |FMB83©B§)Q g re f m .Iwamt i
(nteW fFMPifilteMf 1} g r e w . , 'pWgflf 1
[fteM IWamSSmimti} gns&m i'fwgist J
(;%/l'D)fi4l iM .mfe I B @ B ©

1 II- l| • . I'

r.^LLlu,.^, , I M T ^ , , U . . J U I L M J)
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow
Relationship yellow

Gateway
Gateway__
Gateway
Gateway
Gateway
Control Node or flow
Control Node or flow
Control Node or flow
Control Node or flow
Control Node or flow
Control Node or flow
Control Node or flow
Control Node or flow
Control Node or flow
Control Node or flow
Control Node or flow
Control Node or flow
Control Node or flow
Control Node or flow
Control Node or flow

Correlations
ParticipantAssociation

Data Characteristics
Data Structure (ItemDefinition)
Data State

Data
Data Obiects
Data Object References
Data Stores
Messaqe

Event Timer
time Date
timeCycle
timeDuration

Resource
Resource Role

Performer
Participants

PartnerRole
PartnerEntity

Rule
Scopes
J=xp_ressions

Properties
Swimlanes

Pools
Lanes

Artifacts
Interaction Node
Participant Multiplicity
Text Annotation
Group

vu^ i . ' - . * . * * - • t .~ .~__ i

Jl'iAX —" fc-i - ,

, i u . - . . L ' J l . i — . t

s.iUif^Al' i

U i ' «u •• !
"- - - • i

" —» I
K**"- ' I
V—A- - I
•̂ "V"*"1 1

When (Event- timing) blue Time
When (Event- timing) blue Time
When (Event- timing) blue Time
When (Event- timing) blue Time

Why CR<yP@)) ipJmh m^t*
What- rqtafpi hrnwn ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

ua
ua
wa
.^I^I^I^HIHHII^I^H

annotation
annotation
annotation
annotation

BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab

[BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab
BPMN Process & Collab

101

Table 25 - Functional Group Elemental Comparisons (Events)

Events (f3)
Cancel (I,E)
Compensation fS,I,E)
Conditional (S,I,E)
Error (S,I,E)
Escalation (S,I,E)
Link (I,E)
Message (S,I,E)
Multiple (S,I,E)
None (S,I,E)
Parallel Multiple (S,I)
Signal (S,I,E)
Terminate (E)
Event

ChangeEvent
MessageEvent

Trigger
CallEvent
SignalEvent

Send signal action
Receive signal action

BPMN

X

X

X

X

X

X

X

X

X

X

X

X

X

UMLAct

X

X

X

X

X

X

X

X

X

X

X

SysML Act

X

X

X

X

X

X

X

X

X

X

X

IDEFO

X

X
X
X

OV-5 count

0
1
2
3
4
5
6
7
8
9

10
11
12

13
14

15
16

Comparison
Classification
IE
IE
IE
IE
IE
IE
IE
IE
IE
IE
IE
IE
IE
I (event)
SEC (Conditional)
I (M e s s a g e)
IX (Message)
IX (Message)
I (Signal)
IX (Signal)
IX (Signal)

Comment

Implementation level

Elemental Comparat ive Classification

Individual Elements (IE)
Identical (I)
Same Equivalent Class (SEC)
Individual Extension (I X)

Table 26 - Process Group Comparisons (Activities)

BPMN Process & Collab
Activities
Task (Atomic)
Human Interaction
Sub-Process

Nested/Embedded SubProcess
Expanded Sub Process
Collapsed Sub Process
Transaction

IDEFO
Function
OV-5

PerformedActivity

OperationalActivityAction
OperationalActivity

StandardOperationalActivity
OV-6a
OperationalActivity
SysML &UML Activity

Action
StructuredActivityNode
Conditional Node
ExpansionReqion
LoopNode

SequenceNode

OV-4
Function

BPMN

X

X

X

X

X

X

X

X

UML Act

x

X

X

X

X

X

X

SysML Act

X

X

X

X

X

X

X

IDEFO

X

OV-5

X

X

X

X

OV-6a

X

X

X

X

X

Count

1
2

3
4
5
6
7

8

9
10
11
12
13

14

Comparison Classification

IE
IE
SEC (Activity)

IE
IE
IE
IE
IE

I (Activity)

IE

SEC (OperationalActivity)
I (BPMN Activity)

SEC (OperationalActivity)

I (OperationalActivity)

1 (1 a&k)
IE
IE
IE
IE
IE

IE

Comment

Parent to
OperationalActivity and

added here because of
UPDM ref to function here

Elemental Comparative Classification

Individual Elements (IE)
Identical (I)
Same Equiva lent Class (SEC)
Individual Extension (DC)

102

Three other composite meta-models were developed for the state, timing, and

node composite categories. The most complex of the four composite groups is the

process group. Relationships shown in the meta-model were derived from contributing

models. It may be observed that the relationships between the node, the process, the

information exchange, and the data exchange (specified in the source OV-5 Activity

diagram) are preserved. Similarly, relationships between gateways in BPMN and actions

are maintained. This method preserves relationships from component models in addition

to building new ones to reflect the new juxtaposition of elements in the composite meta-

model. Ontological relationships (composition and generalization relationships) initially

came directly from the data structure in MAXQDA, but were expanded to include similar

elements from other models. Aggregation relationships come from MAXQDA "has-a"

relationships. The result is Table 40 and Table 41, which contains the ontologically

organized elements (discussed later in this chapter). Building the group meta-model

required the allocation of related children elements to a common parent. An example

would be the allocation of control flow from different model sources to a common parent.

Association relationships are captured using MAXMAPS and are preserved across model

types through manual inspection and traceability from component to group composite

model.

In addition to these four main analysis groups, a validity check using data

triangulation principles was conducted (i.e., looking at the same data set from different

perspectives), whereby three additional queries were run using the interrogative attribute,

for What (i.e., product), Why (i.e., rule) and Relational. The result was a set of

composite group meta-models that were merged in step 6 of the roadmap, described

below.

4.4.6 Step 6: Build Common Meta-model Map & Adjusting codes

Step 6 is the development of a unified composite UPDM Language Composite

(i.e., the Executable Architecture Specification (EAS)). It was created by taking the four

group composite meta-models described in step 5, above, and merging them manually.

Each of the group meta-models was printed out and manually transferred to a whiteboard,

through which cross model elemental relationships became apparent when the models

were in juxtaposition because there were elements that were in common. Because the

103

process group was the most complex, it was used as the model core; the others were

arrayed around it. The same thing was done in MAXQDA in order to produce a merged

model. After the model was initially merged, other relationships, such as parent child

became more apparent through iterative inspection.

The result is Figure 34, the EAS, showing the four functional groups together.

The diagram emphasizes the four functional groups: Process, State, Node and Timing. It

combines all models shown in Table 27, under column Member Models, into one

composite model.

Table 27 - Composite UPDM-Language Member Models

Composite Group

Behavior

State
Timing

Node

Member Models

OV-5, OV-6a, IDEFO, UML Activity
Diagram, SysML Activity Diagram,
BPMN Process Model, UML Timing
OV-6b, UML State
OV-6c, UML Sequence, UML
Communications, UML Timing
OV-2, OV-4, Class, Block, Composite

Roadmap Color

Green

Brown
Blue

Aqua

The constituent groups are highlighted as four large color-coded circles in

Figure 34 to show the elements that are associated with the functional groups. The

largest functional group is the process group, followed by the timing group. There is

overlap between groups, but this is to be expected since some elements are shared

between the groups. This is indicative of cross-model integration, which is a desirable

trait. For example both the Event Timer and Control Elements (time) belong to both Time

and Process functional groups. For this reason, the large color-coded circles are shown

overlapping. Figure 34 also shows elements highlighted with small yellow, orange and

red circles, for element characterization. The yellow circles indicate generalizations

(foundational elements). These elements are higher level generalizations in the data

organizational structure, ontologically. The small orange circles represent first tier

specializations. They are specializations of the generalizations. The red circles indicate

candidate elemental augmentations to the UPDM data set. Table 10 - Color and

Interrogative Classifications shows a synopsis of color coding for Figure 34. While

Figure 34 is very complicated; the visual depiction of it can be simplified for analysis

purposes because the objects on the map were constructed in layers (supported by the

tool), which supports hiding of any unwanted detail, as necessary.

'»!

xy

- / ' ^ Vv
j 4 t --, .. - v/r,

Liv **•- •€T ^T-^SN^-' v»- v J<k-

W -:jr-'i-

Figure 34 - EAS Meta-model

105

4.4.7 Step 7: Compare Composite Maps (UPDM & Language)

Step 7 is a comparison step, in which the UPDM Composite and the EAS are

compared for differences. The purpose of this comparison is to determine candidate

element augmentation to an Executable Architecture Specification, based on detailed

inspection of the meta-models. By comparing the UPDM composite (Figure 29) to the

UPDM-Language composite (Figure 34), it is possible to determine those elements that

represent the difference set or the deltas. Figure 35 shows Figure 29 and Figure 34 side

by side. The deltas are highlighted with red circles in the right graphic, the UPDM-

Language Composite model (Figure 34).

Table 28 and Table 29 provide comparisons between the UPDM composite and

the UPDM-Language composite models, where elements are organized by color

category. The leftmost column entitled "Element" is the generalization or parent

element. The column entitled "Specification" contains subordinate elements. The

columns "Composite UPDM" and "Composite All" are marked to show a side by side

comparison of elements. The Elements in the "Composite All" column that are

highlighted in yellow are the candidate additions to the Executable Architecture

Specification, augmented by adding language. The comments column has a synopsis of

each of the augmented elements.

Table 30 is a synopsis of the candidate element augments, by element

generalization, with descriptive comments and category classifications expressed in terms

of primary and secondary (where applicable) interrogatives. Table 30 also contains the

number of augmentations per element generalization. The majority of the elemental

augmentations fall into the functional category. The pink or rule category, which is

related to the functional, is second in terms of numbers, with time (blue) third.

A closer look at the kind of elements in Table 30 reveals some interesting

features. The Event Element, in row 1, addresses Logical Events stimulation or response.

This elemental category was derived from the BPMN process model, and theoretically, it

is similar to the concept of token flow control in Colored Petri-Nets. It is, in essence, the

token factory, and is an enabler for data flow stimulation, response, and flow control in

the context of state transition. The Event object is critical to dynamic process modeling,

106

because it provides a source of model stimulations, resulting in model subsequent state

change and activity response.

The Event Timer, listed in row 3, is similar in that it addresses data flow and flow

control from a time control perspective, providing a time-based mechanism for

stimulating the model through token generation. Activity Control Elements, in row 9,

were derived from SysML. Two features are of note: random occurrence probabilities

and the use of data as control. Random occurrence, i.e., stochastic behavior, is important

to dynamic process modeling because process modeling must support more than just

deterministic behavior modeling. Real word systems that are being modeled often exhibit

non-deterministic behavior, and as such the tools that are brought to bear to mimic or

simulate those non-deterministic processes must support these kinds of patterns. The use

of data as control is important because it allows for processes to control other processes,

through intermediate data that is generated by the process. This enables the processes to

generate change in the simulation model, as a result of both deterministic and stochastic

triggers in the model. The result is a model that can change and adapt in response to

random changes in the internal behavior of the model, or in response to external stimuli.

Control Elements Time, in row 4, addresses the ability to provide detailed, time-

based control over the model, which could be as simple as control of a one-time event, in

terms of occurrence and duration, or as complex as the control of a schedule of events. In

addition, the control features provided in the UML sequence diagram offer iterative

control of time-based behavior. Most of the other added elements are related to fine

grained logical and temporal control.

In summation, addition of Logical Events, Time Events, Occurrence Probabilities

and fine-grained timing controls to the Executable Architecture Specification will

significantly improve the ability of UPDM to support simulation.

Finding: Addition of Logical Events, Time Events, Occurrence Probabilities and

fine-grained timing controls to the Executable Architecture Specification will

significantly improve the ability of UPDM to support simulation.

107

o
U

Q
0,
P
•a
e

<

I f)

WD

I fi ' "i

108

Table 28 - Comparisons 1

Element

Performed Activity

Event (Logical)

Color

Stuctured ActivityNode

Node JaHH
OrganizationalResource

Resource

ResourceRote

Competence

Operational Exchange

OperatonalExhangeltem

Inform at ionElement

State

SMBI
^^^H

.SSI

.S'.S
nata rharartori<tir< l ^ ^ ^ l

Sequence

Event Timer

Control Elements (Time)

; ^ |

Specification

None
Signal

Message
Multiple
Conditional

Cancel
Terminate
Escalation

Parallel Multiple
Compensation
Link

Loop Node

Conditional Node
SequenceNode

ExpanstonReglon

Properties / attributes

(e g., cost, size, priority,

etc.
Structure (Entity Item,

attributes,

relationships)
Data State

TimeDate

TimeCycle
TimeDuratton

Rate

Time Constraint
Duration Constraint
Destruction Event

GeneralOrdering

Composite

UPDM

X

P

X

X

X

X

X

X

X

X

X

X

X

X

Composite All

X

X
X
X
X

X
X
X

X
X
X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X
X

X

Comments

Process flow control or determinant (logical).

Control of token, data, message and signal

generation

Logical and ordering control of subordinate nodes

or activity groups. Nesting is not new to UPDM, but

control Is not specifified in detail

Structured activity node that represents a loop

Structured activity node that represents an

exclusive choice among alternatives
Order specification of actions
Nested region with explicit Inputs and outputs

Descriptive information about data
Detailed description of data and characteristics

supporting model analysis

Data Structure, semantics & syntax

State of the data or information element
Time ordered events and messaging in a sequence

diagram
Time based control of process flow
TimeDate Time trigger
TimeCvcle Tlmetrigger
TimeDuratlon Time trigger
Time based control of elements (activities,

processes), rate, duration, time constraints, general

ordering and termination and creation event

Rate of object flow across activity edge or rate or

into or out of parameter
Behavior or activity occurance at certain time

interval or time
Duration of action
End of event or action
Sequencing of activities

109

Table 29 - Comparisons 2

Element Color

Oofirat ion a [Constraint ^ ^ ^ |

Activity Control Elements

Communications Diagram Control
Annotations

Specification

Viewpoint
Mission
Rule (expression)
Scope
Context

Probability (edge)

ControIValue

Constraint block
Local PreandPostConditi
ons
SehavioralFeatute

Expansion Kind

Sequence Expression
Iteration
Guard

Condition Clause

Composite
UPDM

P

Composite All

X
X
X
X
X

X

X

X

X

X

X

X
X

X

X

Comments

Detailed specification of Operational Context
(viewpoint, mission, scope) or Rule sets
Partial, more detailed elaborations
Operational Context
Fine grained logical control
Activity context
Functional Environment, context
Behavior control Stochastic behavior specification
(monte carlo, probabilities, non-determinism);
execution specifications, execution control

Stochastic behavior / Monte Carlo Simulations

Allows control values to be treated as data for
enabling and disabling behavior (actions)
Delimiting property, similar to Rule or Expression
of Operational constraint
Pre and post condition global constraints that
apply to activity
Specification of aspect of behavior
Controls behavior of multiple nested activity
regions (Expansion Regions)
Fined grained control of messaging In
Communications Diagram: Logical and time-based
control of communications diagrams
Procedural nesting
Sequence of messages at given nestin depth
Message execution dependent on truth of some
condition clause
Boolean predicate

Table 30 - Augmentation Synopsis and Categorization

Row
Number

1

2

3

4

5

6

7

8

9

10

11

Element
Generalization

Events

Structured Activity
Node Control

Event Timer

Control Elements
(Time)

Sequence or Event
Trace Control

Gateways
Sequence Flow
Control

Operational
Contra ints

Activity £ ontrot
Elements
Communication
Diagram or
messaging control
State Transition
fnniml

Nature of Elemental Augmentation

Process flow control or determinant (logical). Control o f token, data,

message and signal generation

Logical and ordering control of subordinate nodes or activity groups.

Nesting is not new to UPDM, but control is not specif ied in detail

Time based control of process flow
Time based control of elements (activities, processes), rate, duration,

time constraints, general ordering and termination and creation event

Event Trace behavior description / control

Detailed logical control of process flows

Detailed logical control of process flows and flow ordenng

Detailed specification of Operational Context (viewpoint, mission,

scope} or Rule sets

Behavior control: Stochastic behavior specification {monte carlo,

probaD'lities, non-deteimmtsmi; execution specifications, execution

control
Fined grained control of messaging in Communications Diagram: Logical

and time-based control of comm jnkattons diagrams

logical control of state transitions

Primary

Category

Secondary

Category

Number
of

Element;

11

110

4.4.8 Step 8: Coding Model Simulation Formalisms

Step 8 is the coding of the M&S formalism (i.e., CP-net and DEVS). Figure 36

shows the Executable Architecture Concept Triangle with the Modeling Formalisms

component highlighted on the right vertex. The focus of this section will be on how

Modeling and Simulation Formalisms can be leveraged to provide a plausibility check for

the composite meta-model.

Figure 36 - Executable Architecture Triangle (Modeling Formalisms Guidepost)

After modeling language analysis, the third major component of this investigation

was a validating step, during which composite meta-model findings were compared to

modeling formalisms that describe behavior modeling. This is a validation step that

includes both elemental and relational comparisons. Elemental comparison entails one-

to-one or one-to-many comparisons. The relational comparisons were done by

comparing relationships of elements in the formalism to relationships in the composite

UPDM-Language meta-model. The elements of the Executable Architecture

Specification were examined in the context of two prominent, well-established modeling

I l l

formalisms: Coloured Petri Nets (CP-net) and the Discrete Event System Specification

(DEVS). As with language meta-models, both CP-net and DEVS were coded using in-

vivo coding in MAXQDA.

A modeling formalism for executable architectures should holistically describe

the elements of an executable architecture using a standard mathematical notation (Tolk,

et al., 2010). Comparisons of model formalisms and composite UPDM-Language

elements can provide a basis for determining the degree to which the composite UPDM -

Language meta-model supports simulation. From the opposite perspective, such

comparisons can provide a basis for determining whether there are any obvious gaps in

coverage. Two seminal references were used as the basis for formalism coding:

"Coloured Petri Nets Basic Concepts, Analysis Methods, and Practical Use" (Jensen,

1992) for CP-net coding, and "Theory of Modeling and Simulation: Integrating Discrete

Event and Continuous Complex Dynamic Systems" (Zeigler, et al., 2000) for DEVS.

4.4.8.1 Coloured Petri Nets

The objective here is to provide a holistic, formalism-based comparison to the

derived meta-model, by showing traceability between the elements of CP-net and the

composite meta-model, thereby suggesting holism or well roundedness of the meta-

model construct. The purpose of identifying the elements in the CP-net was to ensure

that all CP-net elements were accounted for in the composite meta-model, and thereby to

ultimately ensure representation in the elements of executable architecture.

Table 31 is an elaboration on Table 3, presented in the literature review, in that it

provides an additional column for elemental interrogative interpretations.

112

Table 31 - CP-net Elements

Code Formal Definition Interpretation I n t e r r o g a t e s -

Transitory Objects Ephemeral objects
(messages and data)

Token colour Attributes associate
with Tokens

Tokens Dynamically varying
black dots associated
with a place

Global Declaration
node

Defines all colour sets

CP-net Control
Elements

Control functions and
definitions

Colour Sets (Z) X finite set of non-empty types Each token on a place
p must have a token
colour that belongs to
type C(p)

Initialization function
(I)

Defined from P into closed
expressions such that
VpEP [7>pe(/(p)) = Cjp)^]

Initial marking

Arc expression (E) Va £ A [Type(E(a))C(p(a-))ms

AType (]/ar(E(a)))

Q £] where p(a) is the place of N(a)

Maps each arc, a, to an
expression of type
C(p(a))

Guard function (G) It is defined from T into
expressions such that
Vt eT [Type(G(t)) =
B A [Type (yar{G{f))) <= I]

Additional constraint
(Boolean) enabling
transition

Node function (N) Defined from A into PxT u TxP

Color function © Defined from P into I

(v) The node function
maps source and
destination nodes
C maps each place, p,
to a colour set C(p) __

Fixed Objects

Places (P) P is a finite set of places

Fixed objects (nodes
and links)
State of a resource
allocation, or of
process (circle)

Port Place

Arcs (A) A is a finite set of arcs such
that PnT =pnA=TnA=0

Connections for
communication
between Objects
Connects a place with
a transition or a
transition with a place

Hierarchical structure Hierarchical structure
is developed for the
CP-net

Relationship yellow

Relationship yellow

Relationship yellow

Transitions (T) T is a finite set of transitions Actions of resource
allocation system
(rectangle)

Figure 37 shows the same Colored Petri net elements depicted from a meta-

model, relational perspective, in which graphical relationships were derived from formal

definitions and through the verbal descriptions of these elements (Jensen, 1992)

113

The interrogative color attributes are useful in helping to make visual

comparisons between elements. This comparison will be accomplished by using Figure

38, which shows a hierarchical, top-down depiction of the CP-net elements along with

Figure 34. The intermediate elements in Figure 38: Fixed, Transitory, and Control

Elements are categories suggested by Wagenhals, Haider and Levis (2002). The tags

extending from the leaf elements in Figure 38 show alignment of similar elemental,

derived from comparison of the CP-net top-down model and the composite UPDM-

Language meta-model. The elemental alignment described in the research of Wagenhals

et al. (2002) was leveraged for validation purposes. Both Figure 37 and Figure 38 are

used in Step 9.

Figure 37 - Non-hierarchical CP-net

114

m
hi

isilnry Object „ r ... Transitory Object

g e n gen geng«,„ g e n

^ _J a 1 * ©,
Rases A.-« T . ^ S) ^ 5 (^ J C r '™'" i"

States
Nodes / Performers X

-Messages
•Data
•Attributes

Messages
Data i

A :tivities/ Functions j

•Edges
•Sequence Rows

SetsStouatO»d3fa!

• Messages j
'Data j
•Attributes j

CFN Cvfiffo- EleiYients

/ 9 e n gen 9 e n gen

I I \ \ \~^^^

-Messages
-Data
•Attributes

OaerattonalEx change
-O: ')eet_Fjows

•Rules
•Gateways

-Events (Generators)
-States

Edges
Sequence Row

•Operational Constraints
•Rules
•Gateways

Figure 38 - CP-net Hierarchical Elements and Similar Composite Elements

4.4.9 Step 9: Compare Simulation Formalism Elementals to Composite Meta-model

Step 9 is a comparison step of the formalism elements with the composite UPDM-

Language meta-model. Figure 38 provides a flattened out model of CP-net elements.

The flattened version was useful in tracing between CP-net and the composite.

Comparison between the two is not entirely straight forward, because it depends on how

the CP-net model is conceptualized. Tokens can represent resources; they can also

represent information flow, as (Wagenhals, et al., 2002) documented in their elegant

description of CP-net-based modeling of executable architectures. Figure 38 provides

comparisons between CP-net elements and composite UPDM-Language composite

model elements. Additionally, resultant alignment comparisons are shown in Table 32.

All CP-net elements are addressed by one or more elements within the composite model,

lending credibility to the holism of the composite model. Referring back to Table 10, all

interrogative classifications (function, node, rule, relationship, product, state, resource)

are addressed by CP-net except time (reflected in Table 32). Apart from general

ordering, CP-net does not address timing. Candidates 1, 2 and 3 in Table 32 are similar

elements from the UPDM-Language Composite that are similar to the CP-net Elements.

115

Table 32 - CP-net Cross Model Comparison

CP-net Elements

Initialization function
Colour function
Arc expression

Guard function
Node function
Transitory Objects
Tokens

Token colour
Colour Sets
Global Declaration node
Fixed Objects
Hierarchical structure

Places
Arcs
Transitions

EAS Model Elements

Candidate 1

OperationalExchange

m^^^^^^i
Edges

flesstiiif

Messoyi
' Veldt oiuilExf h in i<
Mt ss igc .

Operational
Exchange

l[»!^aBWlHlTTyflBfflli
Edge

BOMHll^lHS!MW§r^T|T^TnTi^^^B

Candidate 2

Object Flow
Gateway

Gateway
Sequence Flow

Data
Don
Dat i

Sequence Flow

Candidate 3

BBBBHHI
Attribute
AUiil ute
A,rri it ute

Figure 39 is a meta-model for CP-net. The relationships from this meta-model are

shown in Table 33; in addition, this table shows a comparison of relationships between

CP-net and the EAS meta-model. The basic elements in Table 33 were derived from

Table 32, but it also includes the relationships between the elements. The table shows the

relationship between the element (from) and element (to) for both CP-net and the EAS

meta-model.

This table serves two purposes. First, it looks at corresponding relationships

between CP-net and the Composite to see if the relationships from the CP-net meta-

model exist in the Composite meta-model. CP-net relationships were compared to the

corresponding EAS meta-model relationships, and it was determined that they were

roughly equivalent. The comparison of some relationships is straight forward. For

example, the Arch Expression enables the Transition element in CP-net is equivalent to a

Rule association to an Activity/Function. Other comparisons become understandable in

context. For example, the Colour Function and the Node Function in CP-net are

mathematical formalism functions or rules that map other elements together, and they do

not have direct equivalents in the EAS meta-model; however, there are equivalents to the

116

results of the elemental mappings afforded by these rules. For example, the Node

function maps an Arc to a Place or an Arc to a Transition, and there are equivalents to

these mappings in the EAS meta-model. The equivalent relationships (shown in Table

33) in the EAS are associations between Node/Performer and Operational Exchange, and

Activity /Function and OperationalActivityEdge. Similarly, the result of the action of the

Color Function is the equivalent of mapping an association between

OperationalExchange and Node/Performer in EAS.

Figure 39 - CP-net Relationships

In regard to the Global Declaration Node in CP-net, in the closest analogous

element in EAS is all Information Elements. The Global Declaration Node (Jensen,

1992) is described in CP-net but is not part of the classic nine tuple. It is a definition

117

found in CP-net formalism implementations that is used to describe a declaration of

Colour Sets, whereas the EAS meta-model operates at a process-modeling level of

abstraction that has no need for such definitions, per se. In other words, the Global

Declaration Node is used to describe variables found in code level implementations of

CP-net. The Composite meta-model describes processes at a higher level of abstraction.

Comparison of CP-net relationships to Composite relationships for validation can

be useful (as evidenced by the majority of relationships that do have equivalents), but

because of the markedly different levels of abstraction, this comparison does not always

produce results in every category. The utility in this approach is revealed by the non

availability of discontinuing evidence. If there were obvious relational gaps in the

composite meta-model in comparison to the formalism this would provide evidence of

holes in the composite meta-model.

Table 33 - CP-net to Composite Relationship Comparisons

119

4.4.10 Discrete Event System Specification (DEVS)

Four basic types of DEVS models were described in the literature review. For

each type of DEVS model, a table of elements was developed (Tables 3-6). In this

section, a composite table was constructed based on tables 4-7, to reflect the largest

possible set of DEVS element configurations. In this section the DEVS variants were

represented with a brief description and a tabular synopsis of elements with interrogative

elemental descriptions. This set is used as a plausibility check against the composite

meta-model, similar to the process completed for CP-net.

4.4.10.1 Classic DEVS

A discrete event system specification (DEVS) is a tuple of seven elements:

M = (X, S, Y, Sint, Sext, l, ta). Table 34 provides a list of the Classic DEVS elements with

definitions and interrogative or color classifications.

Table 34 - Classic DEVS Elements

Code

e
ta

Q

s
X
Y

"ext

Sint
I

Definition

time elapsed since last transition
S -> RQOO is the set positive reals with 0 and oo
Q={(s,e) | s e S, 0<e<ta(s)} is the total state set
Set of states
Set of input values
Set of output values
Q x X-> S is the external transition function
S -» S is the internal transition function
S -> Y is the output function

Interrogatives +

When (Event- timing) blue
When (Event- timing) blue
What (State) brown
What (State) brown

^Ll)1jJiil>l'li3i2!llIsiUl|--1'iJ''-'-'

ha«i '̂u;esES3:ss;!! greed

4.4.10.2 Parallel DEVS

Parallel DEVS was introduced by Zeigler fifteen years after the Classic DEVS

formalism. It removes constraints originating with the sequential operation of early

computers that hindered the exploitation of parallelism. A basic Parallel DEVS is

described mathematically in the following way: DEVS = (xm, Ym, S, Sint, 8ext, sconX ta).

(Zeigler, et al., 2000). Table 35 lists the elements, their definitions and color

classifications. Through comparison of color classified elements between Table 34 and

120

Table 35, it is evident that relationship elements now come into play with the addition of

ports. Another key difference is the addition of the Confluent Transition Function, for

resolution of collisions between external and internal events. [It may be observed that the

Confluent Transition Function is an implementation detail, that probably will not come

into play at the process modeling level of abstraction.]

Table 35 - Parallel DEVS Elements

Code

(ta) time advance function

(Q) set of total states

(S) set of sequential states
(xm) set of input ports and
values

(Ym) set of output ports and
values

(Scon) confluent transition
function
(8ext) external state transition

(5 [n t) internal state transition
(k) output function

Definition

S -> fljoo is the set positive reals with 0 and
oo

Q={(s,e) | s E S, 0<e<ta(s)} is the total
state set
set of states
set of input values and ports

set of output values and ports

decides next state if collision between
external and internal even
Q x X-> S is the external transition
function
S -> S is the internal transition function
S -> Y is the output function

Interrogatives +

Wbmn ((Ewdnt-tamtngl
(ate :

What (State) brown

What (State) brown
Relationship yellow
WKaifflrodtiil&alfg
R^'.itirn^hip vello>.

\ \ h. i jJhmliM.) OIJIIL-L

B=i©w CFimetaiuB) gpsim

•j^^^^jj^Hm^^w

usiasga^iinsi
•IK'MSMliaLlJfll'i.'iilWlMlklKillll^'eilllB

4.4.10.3 Parallel DEVS with a buffer

An elaboration on the DEVS formalism is the explicit inclusion of a buffer, V,

which functions as a queue for holding an arbitrary input set. "A processor that has a

buffer is defined in Parallel DEVS as: DEVSprocessing_time = (xm, Ym, S, Sint, 8ext, scon,X,

ta) (Zeigler, et al., 2000). The Queue (V) was classified as a where interrogative.

Interestingly, there are no other explicit types that fall into this classification, although

this category is implied by virtue of object association to the functional and state

categories. Table 36 shows the elements of DEVS with a buffer. The V Queue is labeled

as a where, or node interrogative element.

121

Table 36 - DEVS Processor with a Buffer

H i MflfiBS1?
(Xm) set of input ports and
values

(ym) set of output ports and
values

(V) Queue V is a queue that holds an arbitrary set ^"TSUJ^M&K'- l iJd i
or a bag - - * S M * « « « ' *S8

(ta) time advance function

(S) set of states

(k) output function

(8int) internal state transition

(8ext) external state transition

(5con)confluent transition function

Def in i t ion In te r roga t i ves +
set of input values and ports

set of output values and ports

' RHr i t io ' i^ lnp yello1

\ \ hjj'l (JfllUl'lMlSjM MKWL'L

KelcllK'li '-hip y l l o . .

\ \ l-iyfj*!?} ii'eki£lj|) i»"i-.'iifei.

S -> i?o K, is the set positive reals with <>
and oo
Set of states
S -> Y is the output function

S -> S is the internal transition function

Q x X-> S is the external transition
function

H@w fFMf»g£fafi)filfi) (

H@w C^WSStofflSfl gP»(i(n)

Decides next state if collision between E'WBPIWJWBBISI i iWi l
external and internal even

4.4.10.4 Classic Coupled DEVS

Classic Coupled DEVS is an elaboration on the Classic DEVS, providing a means

to build complex models from component models. The specification for DEVS with

ports includes the external interface (input and output ports and values), the components

(which must be DEVS models), and the coupling relations: N = {X, Y, D, { Md | d E D},

ETC, EOC, IC, Select) (Zeigler, et al., 2000). From an interrogative classification point

of view, in comparison to Classic DEVS, the addition of input and output ports and

values results in additional Relationship elements. Table 37 shows the Classic Coupled

DEVS Elements.

122

Table 37 - Classic Coupled DEVS Elements

Code

(D) component names
(IC) internal coupling

(EOC) external output coupling

(EIC) external input coupling
(Xd) set of input ports and values

{Yd) set of output ports and values

(Y) output ports and values

(X) input ports and values

(Md) DEVS Model

Xd
Yd

Select

Definition

Set of the component names
Connects component outputs to component
inputs
Connects component outputs to external
outputs
Connects external inputs to component inputs
set of input values and ports

set of output values and ports

Set of output ports and values Y={(p , v) | p e
OPorts, v e Yp}
Set of input ports and values X={ (p , v) | p e
IPorts, v e Xp}

Md =(Xdl Yd, S, Sext, Smt), K ta) is a DEVS

Xd =Up, v) | p 6 lPortsd, v 6 Xp}
Yd =[{p,v) | p 6 OPortsd,\l e Yp}

Tie-breaking function (used in Classic DEVS

Intel rog.itives +

Relationship yellow

Relationship yellow

Relationship yellow
Relationship yellow

^^^^^tt^^^^H
Relationship yellow

^^l^tfl^^^^^ygi*
Relationship yellow

Relationship yellow

grasira

Table 38 is a composite listing of all DEVS elements: Classic DEVS, Parallel

DEVS (with a buffer), and Classic Coupled DEVS. This represents a union set, which is

the broadest possible set of DEVS elemental possibilities. Elements in this table were

annotated with the interrogatives to support DEVS union set comparisons with the

composite UPDM-Language meta-model, as a plausibility check.

When this table was originally constructed, the going in argument was

agnosticism with respect to whether the DEVS element was a process modeling element

or implementation specific. Since DEVS was being used as a plausibility check, it made

sense to use the broadest possible set. It is now evident that some of the elements, such

as the Confluent Transition Function and the Time Advance Function are

implementation-level components.

Figure 40 provides a top-down depiction of the DEVS elements. Each element

has an annotated tag attached to it that lists the candidate composite UPDM-Language

elements. Each DEVS element was traced to the corresponding elements in the

composite model, and the result set is represented in Table 38. Figure 41 shows the

traces between the top-down DEVS model (from Figure 40) elements and the composite

UPDM-Language meta-model elements.

123

Table 38 - Composite DEVS Elements

Code

(D) Component names

(5ro/v)confluent transition function
(5exc) External Transition Function
(8mt) Internal Transition Function
(e) Time Elapsed Since Last
Transition
(EIC) external input coupling

(EOC) external output coupling

(IC) internal coupling

(A) Output function
(Q) TotalStateSet
(S) Set of States
(ta) Time advance function
(V+) Queue

{Xm) set of input ports and values

(Km) set of output ports and
values
Select

Model Origin

Classic DEVS Coupled
Models
Parallel DEVS
Classic DEVS
Classic DEVS
Classic DEVS

Classic DEVS Coupled
Models
Classic DEVS Coupled
Models
Classic DEVS Coupled
Models
Classic DEVS
Classic DEVS
Classic DEVS
Classic DEVS

Interrogatives +

Other (diagram)

(Rtow (FunS'toMi)!]) §pgm

When (Event- timing) blue

Relationship yellow

Relationship yellow

Relationship yellow

What (State) brown
What (State) brown
When (Event- timing) blue

DEVS Processor with H B S M H S B M f i f l T ' r S : "
Buffer ____ ____ l i l i S ^ S ^ M £&, *;„-, -
Parallel DEVS

Parallel DEVS

Classic DEVS Coupled
Models

Relationship yell > .

Relationship yello..

H@w CFHSKftBoBUl) §<t<mn

m
Panailrt Couptsd Class* OEVS (hjfcJMl)

Figure 40 - Composite DEVS

Table 39 shows the results of the traces between DEVS elements and composite

UPDM-Language meta-model elements. It lists candidate composite model associations

124

in the columns entitled candidates 1-3. These columns actually represent populated

attributes in MAXQDA such that Table 39 was produced as a report set. The

"Interrogatives +" column provides the interrogative or color classification of the DEVS

elements. This classification provided a basis for finding candidate elements in the

composite model. The only interrogative category not directly represented in the DEVS

composite table is the Rule category. Referring back to Table 10, that particular category

was defined as a process modifier, similar semantically to an adverb, which modifies a

verb (function or process). As such, the rule category may be viewed as subsumed by or

as part of the process category. None of the DEVS elements is without a composite

meta-model element association. However, there are many elements in the UPDM-

Language meta-model that go beyond the prima facie associations under DEVS. This is

to be expected, as the DEVS formalism is intentionally minimalistic and reductionist.

It was interesting that in Mittal's (2006) research there were fewer direct

correspondences between UML (used to model DODAF) and DEVS elements than one

would expect, and this invited further exploration. The purpose of this investigation was

to develop a holistic specification for executable architectures, with sufficient depth and

richness of semantic and syntactic detail while exploring a method for doing so. As

such, the results could be used to define a future Architecture Framework that would

support executable architecture. One of the findings of this investigation is that the level

of granularity in DEVS is not sufficient for describing executable architectures. An

Architecture Framework requires both static and dynamic modeling along with sufficient

specificity, which goes beyond Discrete Event Simulation; it must also provide a

common frame of reference, so that as far as possible ambiguities are avoided. The end

state of an Architecture Framework is development of Models and Simulations that

support Systems Engineering in complex system of systems engineering spaces, which

by definition requires collaborative development of systems engineering products. This

is so because in system of systems engineering, the systems are not under the purview

of any one person or group, and therefore the modeling of those systems must be done

in partnership with others, requiring a common lingua franca, for sharing of these

views and simulations.

125

St

>x r
r , '

\L

Figure 41 - EAS with Formalism Traces

126

Table 39 - DEVS Element Comparisons

Code Model
Origin

Interrogatives
+

UPDM Language Composite Model
Elements

Candidate 1 Candidate 2 Candidate 3

(D) Component names Classic DEVS
Coupled
Models

Other (diagram) Model

(5cow)confluent transition
function

Parallel DEVS

(Sext) External Transition
Function

Classic DEVS

(5mt) Internal Transition
Function

Classic DEVS

(e) Time Elapsed Since
Last Transition

Classic DEVS

(EIC) external input
coupling

Classic DEVS
Coupled
Models

(EOC) external output
coupling

Classic DEVS
Coupled
Models

(IC) internal coupling Classic DEVS
Coupled
Models

.Jgfiira „
When (Event-
timing) blue
Relationship
yellow

I Sequence

j Sequence

Relationship
yellow

Relationship
yellow

Time ; Time
Observation i Constraint
Operational
Exchange

Operational
Exchange

Operational
Exchange

(A) Output function Classic DEVS

(Q) TotalStateSet Classic DEVS

(S) Set of States Classic DEVS

(ta) Time advance
function
(V+) Queue

(Xm) set of input ports
and values

(Fm) set of output ports
and values

Classic DEVS

DEVS
Processor
with Buffer
Parallel DEVS

Parallel DEVS

Ri l.]licnshi(-
V'll'H-,
V.'liiit (Pcjt l i i ' t)
OMiige
Relationship
Vi'll(iV
What (Pi' t l i i ' 11
orange

OpHfltli 'llill
Exf h'irup

' ipei.itii.ndl
Exiiidny><

Select Classic DEVS
Coupled
Models

©| rMdJtltlllri'
. EJv litrtnje

Ttem

I Opp,r.itioi.ii)J
j Ofchangt*

Itr-m

Notle Ports

^r3S!dePJ)its

4.4.11 Step 10: Define Elementals as Sets Based on Ontologies & Interrogatives

Step 10 is the further defining of the EAS meta-model as an ontology. This may

be seen in Figure 42, which starts with the How (i.e., process) interrogative element, as

the root node, and branches down in terms of parent-child relationships.

Figure 42 is the process category, organized ontologically. Parent-child

relationships were derived from the EAS meta-model, which is captured in a meta-model

127

drawing. The original source of these relationships was both the authoritative source for

the contributing model (i.e., UML, SysML, BMNN, IDEF), and new relationships that

were discovered by creating the composite meta-model. The ontology influence the EAS

meta-model, and the development of the two were an iterative, complementary process.

Parent-child relationships in the meta-model are indicated with annotations on the

relationship lines between parent and child, with the arrow head pointing to the parent

and the line annotated with "gen." for generalization (e.g., see Figure 34).

Figure 42 - Parent-Child Depiction

Table 40 and 41 depict the same kind of elemental relationship in tabular form for

all 9 interrogative categories. The tables are organized from left to right with

Interrogative Category (e.g., How) in column A; Name and Designator in column B, e.g.,

Behavior (P); followed by the first Fork / Node with Designator and Name in column C,

e.g., pi Performed Activity; followed by the second Fork / Node, e.g., pi .1 Activity, and

so on. After the first Fork / Node, the alphanumeric dot designator is used, e.g., p. 1.1 to

indicate Fork / Node levels.

A series of tree graphs could be generated for each interrogative by traversing the

table from root to leaf nodes. Additionally, the definition for each element was recorded

with coded elements in the MAXQDA database. A composite tree-view ontology was

128

not constructed in a separate hierarchy in MAXQDA, because this is viewed as a further

practical implementation of the method.

There are nine interrogative classifications shown in Table 40, and 43: How

(Process), Why (Rule), Where (Node), Who (Resource), What (Product), Being (State),

When (Timing), Relationship, and Hybrid. As previously discussed, this investigation

started with the six interrogatives but expanded to the nine to address those categories

that did not fit into the six. Most elemental classifications were straightforward.

However, in some cases the classification is a bit messy and definitely not perfect; for

example, Gateways & Control Nodes have characteristics of both the relational category

and the functional category. For this study, the relational category was chosen for both,

to support elemental comparisons. Categorization may be viewed as a useful tool that

reflects the ontological nature of the element, and while useful, as it provides an

organizational mechanism for building a schema that accounts for elements. Some of the

elements have characteristics that could allow for classification according to more than

one type.

Table 40 - Elements 1 (Executable Architecture Tree)
Root Node

(Fork 1)

Interrogative

Category

Fork 2/Node

Designator & Name

p2 Event(Taken

Generation)

m l Communication

Diagram Control

mZ Sequence Diagram

Logkal Contra ints

m3 Operational

Constraint

m4 ActivHy Control

Elements (logical)

mS Pseudostate - State

Control

XX OperatlonalEventTtace •

Sequence

t2 Event Timer

t3 Control Elements

^^^^^^ •̂* '

t4 Sequence Diagram

Timing Constraints

s i State

fork 3/Node

Designator & Name

Dt lA^ f^ tv

p l 2 Function

p i l & n r e l

p 2.2 Com p ensat ion

p2 3 Conditional

pT. A Error

p i 5 Escalation

p2.fi Link

o2,7 M ^ f f l

pZB Mul t ip le

pLSNona

p2.10PBralle3 Mul t ip le

o l . l l ^ g p ^

p2-12Termnate

m i l Sequence Expression
m l 2 .tewtfon
m l J Guard

mi A Condition Clause
m i l Sequence

m 12 Pare Hoi

m l J i o c p
m ! 4 Option

rnlEfl uptime

m3 1 Viewpoint

m i 2 Context

m3.3 Mi i i tw i

m4,* 1 PfcbaWKty (edge)

m M 2toiHro1Dperatar

m4,4 3

Loca 1 Prea n d Pcjl Con d rtions

m4AA s«ih svfors tfestuic

m4-4,5 EKpon s ion Kin 4

m^-Slmifl ion

m&^Suitfy Point

nth Enit Poant

m 5,7 Tciroi note

m5.8SSwBoi» History

mSSOeeprltstOry

mi lOini j ia ip ie i i t tosta ie

a 2 a TimeDate

tJ I21 imeCyde

t2 2 31inielDur«ii>9
13 3,1 F^tg

L4 4 1 duration Gost/atnL

t4.4 21»«i«Comtr;wrt

t4.4 31iraeDbie»vauon

t 4 4 4 Ou'S'tonOtijeruatton

t44 SGsnaralOrdBrlrtg

14 4 6 Destruction Even I

t44 7GensralValuHlrfeana

E4J4.8 treationEwent

Foik 4/No do

Designator & Name

p2 7A Trigger

p2 7 2 CailEvent

p2 13 1 SendSignalEvent

p2 21J ReeetveSignalEvent

L3 3 3-1 Continuous

t3 3 3 2 Discrete

1.3 3 2.1 Destruction Event
1.3 3 12 GeneralOrderInx

L3 3 3.1 l ime Constraint

133 1.2 Ourjitnon

13 3 3.3 DuratNooiintavsl

(.33 3 4 jnte»val Coflitraint

L3 3 3.S Observation

L3 3 3-i>l!mBEvgm

13 3 3.7 l ime Expression

Fork 5/Nodc

Designator & Name

p i 1 1 1 Send-SEgnalActlon

p i L I 2 Receive-SJgnflfAction

p i 1.2.1 Nested/Embedded SubProcess

p i 1.2 2 Expanded Sub-Process

p i 1 2 3 Collapsed Sub-Process

s i 1.2.4 Transaction

L3 3 3 1 I Dura tlan-Conttf aim

1 3 J 3 1 Jlime-Constraint

Node

Designator & Name

p i 1.1,31 Loop Node

Dl 11.3 2 Conditional Node

p i 11.3 3 SequenceNode

a l 1 1 . 3 4 ExpansionRegion

http://p2.fi

130

Table 41 - Elements 2 (Executable Architecture Element Tree)
Root Node

(Fork 3 J

Interrogative

i . i M

-
Relation whip

"HH
«^HM^H

Fork 2/Node

Designator & Name

n l Node /Performer

iV Pfn

n ; Node Port

n" Gate

n" Queue

11 Resource

rL ResourceRote

q j Operational Exchange

I t -m

q " 4 information Element

(Data)

qs Data Characteristics -

Attributes

CI Gateways St Control

Nodes

C2 Operational Activity

Edge

c3 Operational-Exchange

c4Needlfne

c5 State Transition

h i Actual -

M easur em en tSet

h2 Capability

Fork3/Mode

Designator & Name

n l 1 UlcSine

n l 3 rtodechild

q3 1 Energy
q l j Organ liatIan J1 Resource

ql-d Wesourrc AriiTatt
q l a (Information Element

a3 4 ^ Message
q2 4 2 Data Object

r|2 & 3 OataQbjetf Releienees
q? 4 a Paidineta
cp 4S PaametaSel
q?4j6 DataStwe

q3 ! Ptopectiei
q3.2 Structure
q3 3 Data Slate

t l 1 Inilia!
c l J Signal
c l 3 ExduMite
cJ-a Derision
e lS Complex
cl.fi Merge
c l 7 Join

e U tntlusfae
c l 10 Parallel
c l I t Evenib^eri
c l 12 COdtioa Operator

FlM»l

Fork4/Node

Designator & Name

ni3 iPoo)

n l 2.2 SwImlanG

ni.2.3 Region

N 4 l Post

N 4 2 Organization

q? 4 1 1 found Messages
q2 4 1 2 lost Message

q3.4 J 3 Object treallon Messagi-
q2 4 1 4 Reply message
qZ 4 1 SSyftcnronousMes^agef
q7 4 1 6 Asynchronous Message

t iLlUett joKo l td Flow
cX3.2Ccn>IS(on»lFi1mhi
f i t J M-IglB|
cZWRufc
cZ1-5Joitt

c 2.1.7 looping
aX8Metto»ura
cZl.5 Control

tZJ-llCompcnsilKKiAtHKatbn
cZ3.12£k(.eptbn Flow

C2.1M Deraitt
cZL15li#EiialAr*rw
c21.1£ Sou id»y Arrow

Fork 5/Node

Designator & Name

(3 2 1 Message Flow
(2 7 2 Data Auooat ion
(2 t 3 Operational tuentTfate Sequence)

Node

Designator & Name

The motivation for classification of an interrogative category as information or

knowledge is shown in the motivation column, such that if the interrogative is the result

of associations of information and is therefore complex, or not discrete, it is described as

knowledge; otherwise it is information. These interrogatives may be described as the

http://cl.fi

131

essential information and knowledge descriptive categories. From a classification

perspective there is the suggestion here of holism with respect to elemental categories

and interrogative categories: if these interrogatives are the primary information and

knowledge ontological groups for the architecture, then from a category point of view,

they should contain all the useful elements for the architecture.

Table 42 - The Nine Information and Knowledge Interrogatives

Category
Information
Information
Information

IBlJilJlijjj^^H
Knowledge
Knowledge

H I M ^ ^ ^ H
H S m ^ ^ ^ l
iĵ fBUĴ ^^^H

Motivation
Discrete
Discrete
Discrete

nm^^^^i Complex
Complex

Interrogative
What
Who
Where

Hi^^l
How
\\l

ISii^^^^HIi!EQ]^^^|
iiiaii^^^MisEnniEiM
MBSS^^^^^mWsT-^timT^m

Description
Product
Resource
Node

s^^^i Process
Rule, Context

wmmmmfflSSit^^M
BlHUBHMB!HB§lSKB81[^^il^^B

The result of this kind of elemental analysis and synthesis of the data is the

development of an organizational ontology of Executable Architecture Specification

Elements, based on nine interrogative classifications, where the elements can be

described in terms of information and knowledge categories, as shown in Table 42. This

categorization is an expansion of the information and knowledge elements describe by

Sage (2009).

Up to this point, the study has been conducted through inductive data analysis by

developing a composite UPDM-Language meta-model, called the EAS. In the process, it

was validated against formalism elements and compared to a UPDM composite meta-

model to see potential language contributions to executable architectures. Next, the study

will go into the deductive phase as the results are explored and synthesized through the

use of the EAS meta-model.

132

4.5 EAS Intermediate-level Model

The previous section provided an organizational ontology of Executable

Architecture Specification Elements based on the nine interrogative classifications. As

stated previously, these interrogatives are the primary information and knowledge groups

for the architecture; from a category point of view, they contain all the useful elements

for the architecture.

Figure 43 - EAS Intermediate (EASI)

Once a detailed EAS meta-model had been developed, it became apparent that by

reducing the detail down to the second fork in the tree structure of the ontology, it would

become possible to recognize the elements of highest potential; they became more visible

and observable as the less important details were removed. Figure 43 is the resulting

133

intermediate-level meta-model, called the EAS Intermediate (EASI). The model contains

color coded elements and color coded relationships (legend).

The EAS-Intermediate level meta-model appears to be a holistic construct that

should support the development of integrated Executable Architectures. Holism here

means that both static elements, as defined by the Architecture Framework, are there —

and dynamic elements, as provided by Modeling Language contributions, assessed

against M&S Formalism are present ~ in the context of the whole, thereby enabling a

dynamic modeling construct that is integrated into the reference Architecture Framework.

Tables 43 and 44 will help to validate the holism of this assertion, by comparing

the elements from the EASI in the context of the ontological interrogatives (which form

the basis for inquiry) against the requirements of the M&S Formalisms. We know from

comparisons of the EAS to CP-net (in Table 32) and DEVS (Table 39) that all formalism

elements are either present or there by virtue of end-state or effect. Now, we will look at

the EASI, which provides a more streamlined view of the EAS, to assess for holism in

this revised context.

Table 43 and Table 44 contain the Intermediate-level meta-model elements

derived from the EAS-I, from root interrogatives to second level Nodes, as rows. The

two tables divide the meta-model elements into static and dynamic elements. The tables

have the following principle columns: UPDM, Classic CP-net, DEVS, and EAS-I for

element comparison purposes. The colors in the stoplight show the level of element

availability in red, yellow, and green. For example, the Node element is present or green

in all four implementations: Architecture Frameworks, Classic CP-net, DEVS, and

EAS-I.

These tables provide side-by-side comparisons of each element's availability.

The comparison to CP-net and DEVS shows the degree to which the element is addressed

in the respective formalism. The table indicates that the element is present in green, and

not present in red; partial or non-specific availability is indicated by yellow. An

annotation of partial means some aspect of the element is not implemented. If it is

annotated as non-specific, this means that the element is present but is described in a less

specific way; in other words, the description is at a high level of abstraction and less

useful for building Executable Architectures.

The EAS-I meta-model is designed to answer the question, which elements are

necessary or of high potential for the simulation of process models (i.e., Executable

Architectures)? All thirty EAS-Intermediate level elements listed in Table 43 and 44 are

considered high potential elements. These potential elements, then, are those which

effectively address the interrogative questions across the nine categories: where, who,

what, relationship, hybrid, why, when, how, and state.

Table 43 - EAS Intermediate Static Elements

Root/Fork 1

Interrogative &
Description

What

Product (Qi

Relationship

(H)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

"

"

Node/Fork 2
(EAS Element)

Node

Pins

Node Port

Gate

Queues

Resource

ResourceRole

Competence

Operational Exchange
Item
Information Element

(Data)

Data Characteristics -

Attributes

Gateways & Control

Nodes
Operational Activity
Edge

Operational Exchange

Need line

State Transition
ActualMeasurement-

Set

Capability

, , „ „ . , , Classic
UPDM „ „

CPnet

p s <fg

'«GS I KCS

L _... ;

^ ^ B ^ ^ ^ H I non-specific

^̂ ^̂ ^̂ H non s P e c | f i c

^ ^ ^ ^ ^ ^ ^ H non-specific

^ ^ ^ ^ ^ ^ ^ H partis]

^ ^ ^ ^ ^ ^ H now-specific

^ ^ ^ ^ ^ ^ H j fKMi-spedfi*

^ ^ ^ ^ ^ ^ ^ H non-specific

DEVS EAS. r h " ° f ' *
Characteristics

non-specific

non-specific

non-specific

ym

<gaa

?HS

VfSS

Activity Connection

specificity

Clear syntax

important
Sequence Diagram

Connecitivrtv

Queue control

IjSS

%<ss

partial ^ ^ ^ ^ ^ H

nonspecific ^ ^ ^ ^ ^ H

non-specific

non-specie

' «<?S. f W(!-f

non -specific \;<F6

Performance

measures

properties, structure

Logical Control, flow

control

High level system

description

135

4.5.1 Static Elements

Table 43 contains the static elements: the Where, Who, What, Relationship, and

Hybrid elements. In general, these are the structural elements that do not deal with time.

Static elements are described as follows:

Pins, Port and Gates: In the static table, in the Node category, ports, pins, and

gateways and control nodes are of particular importance in terms of modular, structural

design. In the ontology, these elements are Node elements that are used for connecting

and are important for building both static and dynamic architectures. The lesser known

Gate is similar to a Port for a Sequence Diagram. UPDM does not include Gates, and

Classic CP-net does not include Pins, Ports or Gates. However, these constructs are of

particular importance in the modular construct of Coupled DEVS where they are referred

to as input and output ports and value. Pins, Ports, and Gates are also a part of EASI. It

should be noted that for these elements to be useful in the context of modular

composition, their semantics need greater specificity in order to support modular

coupling at the syntactic level.

136

Table 44 - Intermediate Level Dynamic Elements

Queues: Queues provide both a receptacle and a way to manage token arrival.

Queues are important to the process modeler, not merely the simulation developer

engineer, because specification of queue behavior in terms of ordering (FIFO, LIFO) and

in terms of numbers of queues is fundamental to the control of Discrete Event

Simulation. Queues and Queue control are critical in process modeling.

Resource, ResourceRole, and Competence: In the Resource and Product

categories, all elements are represented across UPDM, CP-net, DEVS and EASI, with a

few partial or non-specific exceptions, as follows. Resource, ResourceRole, and

Competence are addressed by CP-net and DEVS in high level or non-specific ways.

Resource and Competence go hand in hand. Both are associated with activity measures

of performance. A Resource executes an Activity at a Node. This relationship is

described as a triplet (Node, Activity, Role) in DODAF Activities Based Methodology

(ABM) (Ring, et al., 2008). However, in this meta-model the relationship has five parts

137

and is described as a Quintuplet (i.e., Node, Activity, Resource, Competence, and

Resource Role). Competence sets the level of performance of a resource. A Resource in

UPDM is similar to a Role in DODAF 1.5 (DOD, 2007b); however, it is not limited to

human performance in that it includes system actors as well. In BPMN, the Resource

Role "defines the resource that will perform or will be responsible for the Activity. The

resource, e.g., a performer, can be specified in the form of a specific individual, a group,

an organization role or position, or an organization." (OMG, 2009, p. 154). The

following relationships are depicted in the intermediate-level meta-model: a Resource

has a Competence and a Resource Role; a Node has one or more Resources; a

Performed Activity is associated with a Resource; and a Performed Activity performs or

acts upon a Node. Because performance measures are critical to process modeling, the

Resource, Competence and Resource Role elements should be included with Activity and

Node (which are ontologically basic as the How and the Where, respectively) in

Executable Architecture Specifications.

Data Characteristics are annotated for CP-net and DEVS as partial because data

properties are specified but data structure is not. A Data Characteristic is a constituent

part of data. In and of itself, it is a vague term that encompasses the attributes of a data

entity or of data. Similarly, an "ActualMeasurementSet" is an attribute of a data entity

that specifies some measurement such as rate, size, or quantity. The ability to specify

attributes associated with data flow, i.e., tokens, is vital to Executable Architecture

Specifications.

Gateways & Control Nodes: Under the Relationships category, the Gateways &

Control Nodes are different for each of the four columns. From left to right, in UPDM,

Gateways and Control node functionality is partial in that it offers little control over flow

of data and tokens. Classic CP-net does not include control node and gateways. DEVS

refers to this capability non-specifically as input and output ports and values, and more

obliquely as internal transition functions. EASI, in comparison, has a variety of specific

Gateways and Control nodes from contributing languages. Gateways and control nodes

are glaringly absent from IDEFO, and very minimal in UML Activity Diagrams. They

provide low level logical control flow of tokens in process models. Gateways and

138

Control Nodes should be considered high potential elements for Executable Architecture

Specifications.

Operational Activity Edges and State Transitions are present in all categories.

Operational Exchanges and Needlines are by definition composite elements in UPDM

and EASI, comprised of Nodes, Products, Relationships, and Resources. Both

Operational Exchanges and Needlines are key components of most Architecture

Frameworks, such as UPDM, DODAF, MODAF, NAF, etc. because these frameworks

emphasize interoperability between systems or system of systems constructs, and these

elements support the specification and investigation of interoperability within and

between systems. In CP-net and DEVS the component parts are there (i.e., Nodes,

Products, Relationships, and Resources), but not specifically the composite structures.

Hybrid: Within the Hybrid category, Capability, which is a key systems

engineering descriptor of system need, is not part of CP-net or DEVS. Arguably, this

element could be considered out of scope, as a requirements-like element, but is

nevertheless included here as fundamental to Systems Engineering (Buede, 2009). Also,

there are a large number of elements in Tables 43 and 44 that have hybrid characteristics

but which have been classified under a particular interrogative according to their primary

characteristic.

4.5.2 Dynamic Elements

Table 44 contains the dynamic elements: the How, Why, When, and State

elements. In general, these are the behavior elements that deal with time. All of the

dynamic elements are very important to building Executable Architectures. Notable

deficiencies with respect to Executable Architecture are found in the Process, Rule, and

Timing categories, all of which require more specificity.

Reading Table 44 from a vertical perspective, it may be observed that UDPM has

deficiencies in the Process, Rule and Time categories. CP-net is deficient in three, and is

non-specific in most. DEVS is sufficient in all categories; however, it is non-specific in

most. EASI provides sufficient elements in all categories for Executable Architectures,

by virtue of the addition of Modeling Language elements.

139

Reading Table 44 from a horizontal perspective, from left to right, specifics

follow: In the How or Process category, the key element Performed Activity is present

across the board. The Event or Token Generation element together with the similar

Event Timer element (from the Time category) are important in discrete event modeling

and to Executable Architectures, for the logical and timing control provided over data

flow. The Event element is not addressed in UPDM, and not specifically or fully

addressed in CP-net or DEVS. In CP-net, token flow and flow control is basic to the

formalism; however, it is predicated on an initial token state (defined by the Initialization

Function), and control over timing is not addressed beyond sequencing. In DEVS, the

control over data or token flow is addressed, but the notion of a token generator, although

inferred, is not specifically defined.

In the How / Process category, both the Performed Activity and the Event or

Token Generator can generate tokens or data flow. The Event element provides detailed

logical control over token, message, signal and data flow. The Event is defined by The

Object Modeling Group as:

something that 'happens' during the course of a Process. These Events
affect the flow of the Process and usually have a cause or an impact. The
term 'event' is general enough to cover many things in a Process. The
start of an Activity, the end of an Activity, the change of state of a
document a Message that arrives, etc., all could be considered Events.
However, BPMN has restricted the use of Events to include only those
types of Events that will affect the sequence or timing of Activities of a
Process (OMG, 2011), p. 83.

It is suggested that "something that happens" be read as a state change. Each of the

underlined portions of text above describes a change in state of some kind. The event is a

key control element in BPMN. An event is used to define process flow in response to,

and in the context of, various stimuli (e.g., message, signal, error, escalation generation).

Each of these stimuli may be understood as the arrival of a token, as understood and

articulated in a Colored Petri-net (Jensen, 1992) context, that is to say, as an attributed

object that facilitates process flow in the context of state change.

140

OMG defines a token as follows:

Throughout this document, we discuss how Sequence Flows are used
within a Process. To facilitate this discussion, we employ the concept of a
token that will traverse the Sequence Flows and pass through the
elements in the Process. A token is a theoretical concept that is used as an
aid to define the behavior of a Process that is being performed. The
behavior of Process elements can be defined by describing how they
interact with a token as it "traverses" the structure of the Process (OMG,
2011), p. 27.

Discrete Event Simulation is a primary method for simulating processes. It is

based on the concept that the simulation responds to the arrival and processing of events

or tokens at various points in the simulations, from inputs queues, through processing, to

output queues, and that time intervals are dictated by the arrival of these events or tokens

(Law & Kelton, 2000). As such, event or token control is fundamental to defining

dynamic process modeling. For this reason, the Event elements must be included in the

Executable Architecture Specification. Finding: The "Event" element (both Logical

and Tinier), taken from BPMN, should be included in Executable Architecture

Specifications.

In the Rule Category, the Communication Diagram Control and the Sequence

Diagram Control are logical control features derived from UML/SysML that are

specifically addressed in EAS1 but either not at all in UPDM or non-specifically in the

other categories. The Sequence Diagram and the related Communications Diagram are

vital because they support the sequential diagramming of processes. The UML

Communications Diagram, which provides a data or message oriented view of objects,

can be derived from the Sequence Diagram. Sequences or Event Traces are generated

from the operational nodes, which are represented as lifelines in the Sequence Diagram.

The Sequence Diagram is indispensable to modeling sequential processing and is part of

UPDM, but the fine grained logical control features that are described as Sequence

Diagram Control are not part of UPDM or DODAF. A sequence or event trace is a

hybrid element (as shown in Table 45) that includes activity, messaging and time (order).

It is nearly impossible to show time ordered sequencing of activities without an event

trace, and the ability to specify logical control over the event trace makes Sequence

Diagram Control highly desirable as a potential element for Executable Architectures.

141

Operational Constraints also fall under the interrogative Why /Rule category.

Operational Constraints were addressed by Garcia (2011) in his dissertation. Operational

Constraints provide the operational context, i.e., critical environmental factors that

influence the behavior of activities in simulations. They are associated with Performed

Activity in the Meta-model. Operational Constraints should be included in Executable

Architecture Specifications.

Under the Rule category, Activity Control Elements (logical), is a parent or

generalization element for six behavioral controls (one of which is Probability; another is

Control Operator) that should be included in Executable Architecture Specifications.

This kind of logical control is vital to Executable Architecture specification, and is not

addressed in UPDM. The idea of control as data is addressed in CP-net and DEVS, but

control as a probability, while it may be inferred, is not directly addressed by either

formalism.

Probability is a type of Activity Control Element: From a holistic point of view,

the "probability stereotype" (in the parlance of UML/SysML), or a probability element or

attribute, should be included in an expanded UPDM meta-model, as its consideration

would support non-deterministic process controls and token generation. SysML

specifically addresses this consideration by introducing probability into activities as "the

probability stereotype" ~ which may modify both edges and parameter sets, and by

extension own "behaviors or operations" (read actions, as part of activities). This

stereotype can govern the probability of a given path being taken as an output to a

decision node, or the likelihood that values will be output on a parameter set (OMG,

2006). A probability element should be able to support the specification of Probability

Distribution Functions (PDFs) across a variety of distribution types, such as Normal,

Logarithmic, Weibull, etc. (2001).

Control Operator is another type of Activity Control Element that was

introduced in SysML. A ControlOperator is a behavior that is intended to represent a

complex logical operator that can enable or disable other actions. This kind of control is

reminiscent of the mechanism ICOM arrow in IDEFO, and it affords greater specificity in

terms of functional control. The ControlOperator should be included in Executable

Architecture Specifications.

142

Pseudostate - State Control provides a rich set of state transition control

elements and is part of the State Machine. State and State transition are parallel events to

activity execution. An activity causes a state transition, of either a product or another

activity, or node, or resource. Having a broad set of control options for state transition

enables the modeler to provide detailed descriptions of the conditions necessary for

making a transition from one state to another, which is vital for state oriented modeling.

UPDM and DODAF do not include this rich set of controls, and as a consequence lose

the ability to specify state transitions at other than a superficial level. State transition is

central to CP-net and DEVS formalisms; however, neither specification offers specific

control features such as those that are part of pseudo-state or state control. State

Transition Control should be included in Executable Architecture Specifications.

Control Elements Time: Under the Timing Category, and under the parent

element Control Elements Time, very specific timing controls are listed (i.e., Rate

Continuous, Rate Discrete, Time Constraint, Duration, Duration Interval, Interval

Constraint, Time Event, Time Expression, Duration-Constraint, and Time-Constraint).

Detailed, rule-based, and timing modifiers should be included in Executable Architecture

Specifications. Time factors are critical for process control, scheduled resource

allocation, and schedule development. These are only addressed in general under the

formalisms and not at all in UPDM.

Operational Event-Trace-Sequence (Time) provides variety of timing and other

logical controls (e.g., looping) for detailed control of sequencing. Event Traces or

Sequencing with logical and timing control should be included in Executable

Architecture Specifications.

143

Observation 1 (Modifiers): A modifier influences or acts upon another element,

similar to the way an adverb modifies a verb, or an adjective modifies a noun in

language. As an example, the element "Pseudostate", for state transition control,

modifies state transitions. Whereas, it is true that most of the elements are modifiers, one

of the observations from the intermediate level is that the elements that are not modifiers

are structural elements. For example Node, NodePort, Pins, Needline, Data

Characteristics, and Resource Role are structural elements that do not modify other

elements, per se; however, an Activity Control Element, a Performed Activity, a

Resource, an Event, and an "OperationalSequence" do modify, or act upon other

elements.

Observation 2 (Hybrids): Hybrid is an element that has primary characteristics

of more than one interrogative type. For example Event, which is classified under the

How interrogative (i.e., process) is an element that has process, state, rule and product

characteristics, and OperationalEventTrace - Sequence has process, and time

characteristics. Hybrids can result in ambiguities in ontological relationships, which can

lead to difficulties in building clear categories. The hybrid characteristics were

determined after the construction of the elemental ontology; although they were

subsequently annotated with hybrid characteristics, they are best left in the original

interrogative category, because that is their primary characteristic.

Observation 3 (Component Parts): Some elements are parts of other elements.

The Node Port, for example, is part of the element Node, and a Pin is part of an Activity.

The NodePort and Pin elements are useful in describing model compositions, which is a

key focus of the DEVS formalism. Both should be part of an Executable Architecture

Specification. It was observed that their structure needs detailed description and

specification, so that they can be used to support modular coupling at the syntactic level.

This would enable structural relationships to be parsed by a computer, so that dynamic

models could be automatically generated from static models. Mittal ((2006) addressed

this syntactic deficiency idea in his research, where he pointed out the deficiency of

DODAF 1.5, at the time; today, this deficiency remains in the newer UPDM.

144

In summary, this list of elements has addressed the potential set based on an

operational or process modeling delimiting perspective. As a mitigating argument to the

question of sufficiency of operational process modeling elements, there is a reasonable

probability that, if there are other required elements, they are outside of the nine

information and knowledge interrogatives listed in Table 42. As for whether all required

elements within the categories are covered, it is suggested that on the basis of data

triangulation from numerous well established modeling languages, which included

comparison to the formalisms (albeit high level), it is likely that the principle elements

have been addressed; the possibility that there are others cannot be excluded. However,

because the methodology was holistic in addressing the information and knowledge set

interrogatives, and because the method used data triangulation to focus the target data

sets from a variety of well-established languages, it is likely that a complete set of

potential elements have been defined.

It is clear that the static and dynamic modeling elements that make up the minimal

set needed for simulation are present in the EAS-I, as validated by the formalisms.

Further, it is clear that there is greater specificity of element descriptions in the EAS-I,

than is described in the formalisms, which by comparison are minimalistic or

reductionist. That greater specificity is important to driving executable architecture

viability with sufficient detail of modeling control, with respect to process, rule, and

timing considerations. As such, it may be concluded that the EAS-I is holistic with

respect to the dynamic modeling constructs that can support the development of

integrated Executable Architectures. With respect to the other elemental constructs that

have their origins in the Architecture Framework, sufficiency should be considered

domain specific, and holism with respect to EA can be inferred based on an integrated

dynamic-static construct (represented in a semantically and syntactically correct meta-

model), in the context of the nine interrogatives: five of which are predominately static

constructs, and four of which are dynamic.

145

4.6 Meta-model Use Case

Figure 44 is a meta-model Use-Case designed to provide semantic and syntactic

validation against the simple graphically depicted use case shown in the lower right hand

corner. The Use Case starts with the firing of a token from an Event Timer in a Node that

goes to an Action, which is subsequently processed in accordance with the sequence of

activities listed on the following page. For each event, the relevant element in the meta-

model is highlighted, and related element -to-element relationships are checked.

intermediate - UPDM & Language Models

.stace Tianerot

• 4S

ZrBQuri CDni&witi'tnvns)

Nude

'̂Information
Element

S Action

9r~
•Event Timer

Gateways

< > O
jQ. -o

Figure 44 - Meta-model Use Case

The steps in the use case are shown in the following text:

1. Starting at Node 1
2. Event Tinier Produces Token (IIR, Const., 10 Sec, for 10 minutes), w/

attributes "x", Nodel
3. Token generated
4. Event Timer calls Control Elements Time
5. Token Traverses OperationalActivityEdge
6. Token arrives at Action
7. Activity has a resource
8. Activity governed by Rule, based resource
9. Activity Control Element directs Stochastic behavior
10. Normal Distribution PDF (2 minute mean)
11. Activity Fires
12. Token arrives at Gateway (Decision)
13. Token Traverses Edge
14. Token Arrives at Message Event (Message generated)
15. Message Traverses Edge
16. Node 2
17. Message arrives at Message Event (token generated)
18. Token passes along OperationalActivityEdge
19. Token processed by activity (Const. 30 sec.)
20. Token State changed to Processed
21. Token passes along OperationalActivityEdge
22. End Event (Token Consumed)

Follow-on work could include a series of Use Cases for meta-model validation purposes.

This kind of validation would ensure meta-model resiliency and utility.

4.7 EAS - Interrogative Meta-model

It is possible to define high level theoretical relationships for the nine

interrogatives, in terms of a meta-model, as shown in Figure 45. This model was

constructed by reducing the intermediate level meta-model down to the nine

interrogatives and accounting for child relationships by rolling them up into the parent

node. The hybrid category lacks specificity by definition because it is a combination of

interrogative types; it requires child nodes to have meaning.

147

r^

Knowledge

Figure 45 - Interrogative Meta-Model

Recalling the nine interrogatives and their classifications as information or

knowledge elements (from Table 41), the Interrogative Meta-model was color coded with

yellow and green circles to reflect information and knowledge element types (yellow for

knowledge, green for information). Like some of the formalisms, it does not afford the

precision needed to define Executable Architecture Specifications. However, it can be

useful at an abstract theoretical level, in regard to general relationships between

interrogatives.

At a high level, for example, it may be seen that there are time association

relationships with process, resource, and relationship. This makes sense, because time

can influence processing, resource allocation duration, and the flow or production of data

along relationship lines. Additionally, this meta-model could be used in some future

application as a basis for setting up high level EAS database design of tables and

148

relationships, and understanding complex query design against such tables. For example,

a resource at a node, performing a process with certain measurable attributes using a rule

based on some timing criteria could be the basis for a query against the supporting data

structures. Similarly, an activity in a given state that produces a product could be a

logical association of data which would have meaning in terms of a query against the data

structures.

4.8 Chapter 4 Conclusions

In conclusion, the study has produced several meta-models with varying degrees

of specificity. There are tradeoffs between greater levels of detail in low level, high

specificity models such as the EAS, and the ability to see the key relationships and

elements in more simplified, high level models, such as the EAS-Interrogative.

For example, the simplicity of the EAS - Interrogative model conveys some

general information about how a rule can influence process behavior, but because of the

high level of abstraction, there is no visibility into the kinds of rules that could be used to

specify detailed process constraints. At a lower level of specificity, however, such as that

which is available in the EAS, we could explore the usefulness of this element more

fully. This suggests that a spectrum of meta-model specificity is useful in framing and

answering questions derived from theory.

149

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

A review of the literature revealed that all researchers provided valuable solution-

specific demonstrations of translations from static to dynamic modeling and also showed

the value derived from such an endeavor. These investigations were valuable; however,

no common theory underlying these applications can be found in the literature. In

addition, no one has attempted to conduct a holistic investigation into the theoretical

elements of executable architectures (dynamic models). This is the gap in the body of

knowledge which was addressed in this dissertation study.

The purpose of the study was to conduct a holistic investigation into the elements

of executable architectures, by means of a qualitative investigative study, utilizing and

further exploring a theoretical framework for inquiry into the dimensions of executable

architectures. This research began by using inductive reasoning to drive development of

the Executable Architecture Concept Triangle (EACT), which is a conceptual framework

that was leveraged to design a method for development of the EAS. Use of the

framework and method led to deductive reasoning insights with regard to the potential

elements of Executable Architectures. The conceptual framework, the EACT, suggests ~

and the derived method for building the EAS employs -- data triangulation and thick

description to drive elemental convergence in the EAS.

The method employs precision in coding, revealing language element potential

contributions to the reference Architecture Framework (UPDM) with respect to

Executable Architectures, in the context of validation against M&S Formalisms.

(Executable Architecture descriptions require lower level, modeling specific elemental

descriptions, whereas, in M&S Formalisms, elemental semantics and syntax are by

definition very high level and more general.)

This approach demonstrates that a coding-based, qualitative study is useful in

exploring modeling language areas where the data is complex and theory is not well

established. This approach further demonstrates that meta-model-based methods can

provide a context in which lower level, specific elemental descriptions and relationships

can be explored.

150

The following main contributions have been realized: a refined theoretical

framework and method for analysis and development of architecture frameworks in

accordance with the objectives for Executable Architectures; the utilization of the

theoretical framework resulting in a description of the theoretical elements and their

relationships.

The investigation into the Elements of Executable Architectures has produced the

following five research results:

1. A well-defined conceptual framework, the Executable Architecture Concept

Triangle (EACT), that lends itself to the exploration and development of a method

(described in Chapter 4) for derivation of an executable architecture meta-model;

2. The development of a richly detailed meta-model, Executable Architecture

Specification (EAS); the result is a composite meta-model for executable

architecture, based on architecture elements from the UPDM architecture

framework, and drawing from Modeling Language contributions from UML,

SysML, BPMN and IDEF, and validated in comparison to M&S formalisms;

3. The development of a detailed Executable Architecture Specification Ontology

leveraged to refine the EAS (above), which is an expansion of the six information

and knowledge interrogatives to nine;

4. An intermediate-level meta-model Executable Architecture Specification -

Intermediate (EAS-I), used to investigate the essential elements of Executable

Architecture, that incorporates the static and dynamic elements;

5. An interrogative meta-model that shows the relationships between the nine

interrogatives, potentially useful at the abstract, theoretical level.

5.1 Synopsis of Research Results

This section provides a brief discussion of the five main research results above:

1. The research produced the Executable Architecture Concept Triangle (EACT,

Figure 46), which was further refined over time to an extended version. This

extended version is more complete, revealing annotated relationship lines; it

better describes the Executable Architecture Specification (EAS) core component;

which more clearly reflects the structure based on 9 interrogatives and their

151

syntactic relationships. The extended version of the EACT provided more clarity

in building the EAS, and for deriving a method for development of the EAS.

Figure 46 - EACT Summary

2. The research produced a detailed meta-model for Executable Architectures,

referred to as an Executable Architecture Specification (EAS, Figure Al) Each

element in the meta-model is color coded to reflect the nine interrogative types. It

is further comprised of UML generalization, composition, and association

relationships between elements, shown as annotated lines and arrows. The meta-

model is based on architecture elements and relationships derived from two

sources - the Unified Profile for DODAF and MODAF (UPDM) architecture

framework, and key Modeling Languages (UML, SysML, BPMN and IDEF) —

and validated against the M&S Formalisms (CP-net, DEVS).

152

Figure 47 - EAS Summary

3. The research produced a detailed EAS ontology which was derived from the

foundational EAS meta-model, and which was used to refine the EAS meta-

model. The ontology is a taxonomy of elements that is based on the nine

interrogatives used throughout the investigation, and which contains composition

and generalization relationships from each interrogative root to child level

specifications (see Process Element Node Tree in Figure 48). The six information

and knowledge interrogatives, What, Who, Where, When, How, and Why,

153

described by Sage (2009), were extended to nine interrogatives to include

Relationship, State, and Hybrid. The EAS Ontology was used in the analysis and

refinement of the EAS meta-model, in a way that was iterative between the model

and the ontology.

Figure 48 - Process Element Node Tree Summary

4. An intermediate-level meta-model, the Executable Architecture Specification -

Intermediate (EAS-I, Figure 49), based on the EAS, was developed, which helped

to reveal the potential elements and relationships for executable architectures.

The EAS-I was developed from the EAS by trimming away tertiary level detail.

Each of the elements in the EAS-I was described and analyzed as a static or

dynamic element, in the context of a comparative stoplight chart against M&S

formalisms, in terms of its contribution and significance to executable

architectures.

154

Figure 49 - EAS-I Summary

5. A meta-model based on the nine interrogative elements, the Executable

Architecture Specification - Interrogative (EAS - Interrogative, Figure 50), was

derived from the EAS Intermediate-level Meta-model. This meta-model was

developed by trimming secondary level detail from the EAS-I. It is highly

generalized, but shows key relationships between the interrogatives. High level

abstraction meta-models can be used as an aid to understanding generalized

relationships in real-world data model implementations without the distraction of

detail.

Figure 50 - EAS - Interrogative Summary

5.2 Potential Elements of Executable Architectures (EA)

In Table 45 and Table 46, the set of 30 potential elements of Executable

Architecture are provided in alignment with their interrogative categories, with

descriptions and notes about why each is important. These elements were discussed in

depth in Chapter 4 and are part of the EAS-1 meta-model.

Table 45 - Static Elements of EA

Root/Fork 1
Interrogative &

Description

Node /Fork 2

(EAS element)
Why Important

Description

%'•'&

M -

A pm is an element and multiplicity element that provides values to actions and accepts result
values from them.

Node Port
A port is a property of a Node that specifies a distinct interaction point between the node and
its environment or between the (behavior of the) node and its internal parts.

Queues

Defines the resource that will perform or wilt be responsible for the
Activity, the resource, e.g,, a performer, can be specified m the form of
a specific individual, a group, an organization role or position, or an organisation.

Competence A specific set of abilities defined by knowledge, skills and attitude.

A Node is an element of the operational architecture that produces, consumes, or processes
information

A Gate is a connection point for relating a Message outside an InteractionFragment with a
Message inside the InteractionFragment. Sequence Diagram Connectivity
Activity parameter nodes are object nodes at the beginning and end of flows that provide a
means to accept inputs to an activity and provide outputs from the activity, through the
activity parameters.

Organisationalsource or Functionalltesource that can contribute towards fulfilling a
capability. Hie Resource is used to specify resources that can be referenced by Activities.

locus of activity

Activity Connection specificity

Node Connection specifity

Sequence Diagram Connectivity

Manage Token arrival. Queue

ordering (FIFO, UFO)

Resource executes activity at a
Node. Affects performance

Describes resouce

Performance measures

Static

if-"&«ty :
Operational Exchange Item

An abstract utility element used as common ancestor for: informationElement,
ResourceArtrfact, Energy, OrganiiationalResource Generalization for exchange types

Information Element (Data) A relationship specifying the need to exchange information between nodes
Produced fay activity or event, has

attributes, i.e.. a token
Data Characteristics -

Attributes
Data properties, structure

Specifies properties, structure of

data/token

Gateways & Control Nodes
Gateways are used to control how the Process flows (how Tokens flow) through Sequence
Flows as they converge and diverge within a Process.

Logical Control, flow control

Operational Activity Edge

UPOM An extension of «ActivityEdge» that is used to model the flow of control /objects
through an Operations I Activity. An OperationalActivityEdge
[M0OAF::Gperational Activity Flow) is a flow of information, energy or matenel from one
activity to another. An activity edge is an abstract class for directed connections between two
activities

Provides connectivity: Edge,
connector, sequence and data
flows

Relationship
(C) Operational Exchange

Abstract element An abstract utility element used as common ancestor for:
informaUontxchanfie.Organiiationaltxcbange, EnergyExchange, MaterielExchange
An operational exchange is formed when an activity of one operational node consumes items
produced by another activity of a different operational node.

Data element produced by an
activity at a node, by a resource:
hybrid characteristics

A needlme documents the requirement to exchange information between nodes. The
needline does not indicate how the information transfer is implemented. Role-up of information exchanges

State Transition

A transition is a directed relationship between a source vertex and a target vertex. It may be
part of a compound transition, which takes the state machine from one state configuration to
another, representing the complete response of the state machine to an occurrence of an
event of a particular type.

change of state

Act ua IM ea su r em ent -Set

A set or collection of Actual Measurements): Measurements: Accountability,
Interoperability Level Achievable, Classification, Classification Caveat, Criticaltty, Periodicity,
Protection Duration, Protection Suspense Calendar Date, Protection Type Name
Timeliness, Transaction Type, Protection Duration Code, Reieasabilrty, Sue, Throughput

measures

Capability
A Capability is a high-level specification of an ability or capacity which achieves specific
objectives.

High level system description: SE
utility

Table 46 - Dynamic Elements EA

Root /Fork 1

Interrogative &
Description

Process (P)

When
Timing (T)

Node/Fork 2

(EAS Element)
Why Important

Description

19

20

21

22

23

24

25

26

27

28

29

30

Performed Activty

Event (Token Generation)

Communication Diagram

Control

Sequence Diagram Logical

Contracts

Operational Constraint

Activity Control Elements

(logical)

Pseudostate - State Control

Operational-EventTrace •

Sequence (Time)

Event Timer

Control Elements (Time)

Sequence Diagram Timing

Constraints

State

An abstract element that represents a behavior (i.e. a Function or OperationalActivlty) that

can be performed by a Performer.

Events An Event is something that "happens" during the course of a Process. These Events

affect the Dow of the Process and usually have a cause or an impact

Communications diagram control logical controls (e.g., sequence, guard, iteration, etc.)

logical control over event traces/ sequences (e,g, loop, sequence, parallel)

Generalisation element for rules, scope, contex, expressions

Logical control over behavior/activites such as Probabilities & Control as Data

State Transition Control

Timing notations that may be applied to describe time observation

and timing constraints, with respect to sequence diagrams

Token F!ow,sequence or timing of Activities of a Process

Detailed Timing Control

Detailed Timing Control, for the sequence diagram

A state models a situation during which some (usually implicit) invariant condition holds. The

invariant may represent a static situation such as an object waiting for some external event to

occur. However, it can also model dynamic conditions

such as the process of performing some behavior (i.e., the model element under

consideration enters the state when the behavior commences and leaves it as soon as the

behavior is completed).

Basic unit of behavior

Token Flow,sequence or timing of

Activities of a Process

Message f low control

Sequencing control

Operatioanl Constraints

Probabilities Si Control as Data

State Transition Control

Model for sequence depiction

Token Flow,sequence or timing of

Activities of a Process

Detailed Timing Control

Detailed Timing Control

Condition

158

5.3 Recommendations

For quality assurance (QA) purposes it is recommended as a follow-on activity to

develop a series of use cases, similar in method to the use case explained in section 4.6,

for model validation. Feasibility and usefulness of such an effort have been shown in this

thesis.

It is also recommended to allocate EAS elements back to a set of revised UPDM

models, from the UPDM-Language composite model. This could be facilitated by use of

data attributes and query sets in MAXQDA.

In addition, this method offers good traceability with support for detailed

composite model development and the ability to cross reference data elements. In

addition, the linkage between data objects and visual modeling methods is good.

However, because of tool limitations (in that MAXQDA does not support UML

compliant modeling), it would be better to implement these models in a UML compliant

modeling tool supporting XMI Metadata Interchange (XMI), in order to instantiate these

models as physical schemas. By putting these models into a UML Class Diagram, using

appropriate relational modeling constructs, it should be possible to produce an XML

Metadata Interchange (XMI) serialization of the models. Such a serialization could be

used in the generation of the Data Definition Language (DDL) needed for the

development of physical data models, data structures, and databases supporting the

instantiation of the executable architecture constructs into real database and tool

implementations.

Finally, there are tools (e.g., Torque) that could be used to support the

transformation of a UML / XMI compliant Class diagrams into DDL. As a practical,

follow-on research endeavor and engineering task, it would be valuable to explore the use

instantiation of the meta-model as a basis for executable architecture tool exploration and

development.

5.4 Over-specification Concerns

The Executable Architecture concept is designed to enable additional systems

engineering capability. The purpose of the EAS is to build Executable Architecture.

Inclusion of process simulation capability in the EAS and in subsequent Frameworks and

159

tools based on these frameworks should be viewed generally as a multi-level

specification capability rather than narrowly as prescriptive. Systems engineering is

often approached on a number of levels of modeling specificity, depending on the

maturity and stage of the project at hand. Having a meta-model that enables simulation

capability should enable object re-use within a project database, as additional complexity

in modeling and simulation is required. Furthermore, the inclusion of simulation

capabilities in an architecture framework should not require a higher level of general

training for the modeling team. As is generally the case today, a variety of experience,

from novice architect to simulation engineer can be expected. One of the problems with

architecture today is that it is treated as a one size fits all endeavor, rather than as a multi-

faceted set of methods and tools and approaches which are the means to good systems

engineering. With this in mind, Executable Architecture should be viewed as an

additional enabler in a spectrum of integrated modeling and simulation capabilities.

5.5 Significance of Study

This method is extensible to other architecture frameworks, and other language

instantiations, as well as other formalisms. With this approach, the key would be to put

boundaries on the problem space up front so that the baseline draws from candidate

models and formalisms that are relevant to the problem space and desired outcome. In

this study, the upfront assumptions were that the focus of the research would be on

process modeling, both static and dynamic. Furthermore, the investigation was focused

on UPDM for both reasons of practicality (the strength of the starting meta-model) and

utility (UPDM is based on DODAF and MODAF, broadly used in the United States

Department of Defense and the UK Ministry of Defense). The method also allows for

comparisons of similar Architecture Frameworks, such as DODAF 1.5 and DODAF 2.0.

5.5.1 Practical Implementations and Significance

The study may be informative with respect to the design of future DODAF-like

meta-models that include dynamic modeling. Findings may have implications for the

development of future modeling tools. The conceptual framework and method may be

useful for the evaluation of other architecture frameworks in future studies. There are a

160

number of potential practical applications for both the method and the results of this

investigation.

5.5.2 DODAF3.0

The composite meta-model that was developed in the process of exploring this

methodology was focused on the operational architecture models. The next major

revision to DODAF (DODAF 3.0), MODAF, or UPDM could use both the resultant

meta-model of this study and the method. Other military frameworks such as the

Canadian Department of National Defence Architecture Framework (DNDAF) and

NATO Architecture Framework (NAF) could leverage the meta-model developed here

and / or the method. Beyond the military domain, this method should be extensible to

other architecture such as TOGAF (Open-Group, 2009), which is an industry standard

architecture framework. To build a new executable architecture framework, a holistically

derived series of model-centric meta-models should be developed to support the new

construct. If it were designed along executable architecture inclusive lines, the architects

of this new meta-model could take advantage of the composite operational meta-model

that was developed here. That meta-model could provide insights into the operational

models associated with that future architecture framework.

This investigation only partially explored the systems side of UPDM elements.

Systems level objects were coded using in-vivo coding methods, and arranged

ontologically based on a first cut assessment in MAXQDA. They were not subsequently

modeled graphically to provide that follow-on level of elemental relational investigation,

because it was not deemed necessary for the exploration of the method. Because of the

intentionally designed operational-systems dichotomy in DODAF (Ring, et al., 2008)

(and related frameworks such as UPDM), there is extensive parallelism between systems

and operational elemental constructs (e.g., an operational process or activity parallels a

system function, and so forth). As such, it stands to reason that with parallelism in

elements, it may be inferred that there would be not be obstacles to the application of this

method to systems elements and modeling constructs.

161

5.5.3 SysML (Next Generation)

Another practical usage of the results and method discussed here could be in a

revision to SysML. SysML process models were explored extensively in this

investigation. SysML has several, but not all of the elements described in the composite

UPDM-Language meta-model. It might be interesting to explore the expansion of

SysML in ways that would support simulation modeling of processes through an

expanded SysML.

The inclusion of simulation capability could broadly include basic discrete event

modeling elements and constructs, which would apply to both general process modeling

and systems process modeling. Beyond that, the method could potentially be extended to

continuous modeling methods and physics-based modeling and simulation problem

domains.

5.5.4 Tool Mediation

Lastly, the EAS meta-model and the method for developing it could be used to

spin off holistic executable architecture-based Modeling and Simulation tool

development. There are tools in the market place that support some elements of dynamic

modeling such as iGrafx and System Architect. iGrafix supports modeling and

simulation of BPMN based models, and System Architect supports simulation of both

BPMN and process flow models. Neither, however, supports an integrated architecture-

based approach to modeling and simulation. This is probably because executable

architectures have not been defined from the meta-model perspective. Apart from that

kind of lead from an authoritative developing body, such as DOD or OMG, a specific

tool implementation could result in a practical proto-type implementation or proprietary

development effort.

5.6 Conclusion

In conclusion, this dissertation has successfully explored a method for holistically

developing Executable Architecture Specifications, using the Executable Architecture

Concept Triangle as a framework for guiding data triangulation. UPDM Architecture

Elements, Modeling Languages, and Modeling and Simulation Formalisms were used as

a basis for systematic development of a detailed Executable Architecture Specification

(EAS), containing detailed semantic and syntactic information. This study has explored

162

and described the elements of architecture in terms of a set of nine information

interrogatives, using this set to build an executable architecture information ontology to

describe those elements. Lastly, the EAS meta-model and ontology were utilized to

investigate and describe a set of 30 potential elements for executable architecture

through the EAS-Intermediate meta-model.

163

REFERENCES

Alberts, D. (2002). Code of Best Practice: Experimentation. Washington, D.C.:
Command and Control Research Program (CCRP).

Bienvenu, M., Shin, I., & Levis, A. (2000). C4ISR Architectures III: An Object-Oriented
Approach for Architecture Design. Journal of Systems Engineering, 3(No. 4).

Booch, G., Rumbaugh, J., & Jacobson, 1. (1999). The unified modeling language user
guide. Reading Mass.: Addison-Wesley.

Buede, D. M. (2009). The Engineering Design of Systems : Models and Methods.
Hoboken: Wiley.

CCRP. (2002). NATO Code of Best Practice for C2 Assessment. Washington, D.C.: DoD
Command and Control Research Program.

Charmaz, K. (2000). Grounded theory: Objectivist and constructivist methods. Thousand
Oaks, CA: Sage.

CJCSI. (2009). JOINT CAPABILITIES INTEGRATION AND DEVELOPMENT SYSTEM
CJCSI 3170.01G. (CJCSI 3170.01G). Washington, D.C.: Chairman of the Joint
Chiefs of Staff.

Clemson, B. (1984). Cybernetics : a new management tool. Tunbridge Wells, Kent:
Abacus Press.

Corbin, J. M., & Strauss, A. L. (2008). Basics of qualitative research : techniques and
procedures for developing grounded theory. Los Angeles, Calif.: Sage
Publications.

Creswell, J. (2009). Research design: qualitative, quantitative, and mixed methods
approaches. Thousand Oaks, California: Sage Publications.

Cutcliffe, J. R. (2000). Methodological issues in grounded theory. Journal of advanced
nursing., 31, 1476-1484.

DeMarco, T. (1979). Structured analysis and system specification Classics in software
engineering (pp. 409-424): Yourdon Press.

DeMarco, T. (1979). Structured analysis and system specification Classics in software
engineering (pp. 409-424). Saddle River, NJ: Yourdon Press.

DOD. (2007a). DOD Architecture Framework Version 1.5 Volume I: Definitions and
Guidelines. Washington, D.C.: Department of Defense.

DOD. (2007b). DOD Architecture Framework Version 1.5 Volume II: Product
Descriptions. Washington, D.C.: Department of Defense.

DOD. (2009). DOD Architecture Framework Version 2.0. Washington, D.C.:
Department of Defense.

Dori, D. (2002). Object-process methodology: a holistics systems paradigm. Berlin
Heidelberg New York: Springer-Verlag.

Fishwick, P. A. (1995). Simulation model design and execution: building digital worlds.
Englewood Cliffs, N.J.: Prentice Hall.

Flood, R. L., & Carson, E. R. (1993). Dealing with complexity: an introduction to the
theory and application of systems science. New York and London: Plenum Press.

Garcia, J. (2011). Adding Executable Content to Executable Architectures: Endabling an
Executable Context Simulation Framework (ECSF). PhD, Old Dominion
University, Norfolk. (AAT 3459272)

164

Glaser, B. G. (1991). Basics of Grounded Theory Analysis: Emergence vs. Forcing. Mill
Valley, California: Sociology Press.

IDEF. (2010). Integrated Definition Methods (1DEF) 2010, from http://www.idef.com
IEEE. (Ed.) (1990) IEEE Std 610.12-1990.
Jensen, K. (1992a). Coloured Petri Nets Basic Concepts, Analysis Methods and Practical

Use (Second Edition ed. Vol. 1). Berlin Heidelberg New York: Springer-Verlag.
Jensen, K. (1992). Coloured Petri nets basic concepts, analysis methods, and practical use
Kelton, D., Sadowski, R. P., & Sadowski, D. A. (2001). Simulation with Arena: McGraw-

Hill.
Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis: McGraw-Hill.
Leedy, P. D., & Ormrod, J. E. (2010). Practical Research Planning and Design (Ninth

Edition ed.). Saddle River, New Jersey: Pearson Education, Inc.
Levis, A., & Wagenhals, L. (2000). C4ISR architectures. I: Developing a process for

C4ISR architecture design. Syst Eng 3, 225-247.
Lewins, A., & Silver, C. (2007). Using software in qualitative research: a step-by-step

guide: SAGE.
MAXDQAIO. (2011). MAXQDA Retrieved Oct 9, 2011, from http://www.maxqda.com/
meta-model. (Ed.) (2011) Object Management Group Terms and Acronyms OMG.
MindManager. (2011). Mindjet Retrieved October 9, 2011, 2011, from

http://www.mindjet.com/
Mittal, S. (2006). Extending DODAF to allow integrated DEVS-based modeling and

simulation. The Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology, 5(2), 95.

Mittal, S. (2007). Devs unified process for integrated development and testing of service
oriented architectures. Ph. D. Dissertation, University of Arizona.

Mittal, S., Mitra, A., Gupta, A., & Zeigler, B. (2006, 16-18 Sept. 2006). Strengthening
OV-6a Semantics with Rule-Based Meta-models in DEVS/DODAF based Life-
cycle Architectures Development. Paper presented at the Information Reuse and
Integration, 2006 IEEE International Conference on.

Mittal, S., Risco, J., & Zeigler, B. (2007). DEVS-based simulation web services for net-
centric T&E. Paper presented at the SCSC Procedings of the 2007 Summer
Computer Simulation Conference, Madrid, Spain.

Mittal, S., Zeigler, B., Risco Martin, J., Sahin, F., & Jamshidi, M. (2008). Modeling and
Simulation for Systems of Systems Engineering. In M. Jamshidi (Ed.), System of
Systems - Innovations for the 21st Century. Hoboken, New Jersey: John Wiley &
Sons, Inc.

Morse, J. M. U. (Ed.). (1994). Critical issues in qualitative research methods. London:
Sage Publications.

Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4), 541-580.

necessary. (Ed.) (2011) Oxford English Dictionary (Third edition, June 2003; online
version September 2011 ed.). Oxford University Press.

OMG. (2003). MDA Guide Version 1.0.1. Needham, MA: Object Management Group
(OMG).

OMG. (2006). SysML Specification Version 1.1 . Needham, MA: Object Management
Group (OMG).

http://www.idef.com
http://www.maxqda.com/
http://www.mindjet.com/

165

OMG. (2009). Business Process Model and Notation (BPMN) Version 1.2. Needham,
MA: Object Management Group (OMG).

OMG. (2009). Unified Modeling Language (OMG UML) Superstructure, Version 2.2.
Needham, MA: Object Management Group (OMG).

OMG. (2009a). Unified Profile for Department of Defense Architecture Framework
(DODAF) and the Ministry of Defense Architecture Framework (MODAF)
Needham, MA: Object Management Group (OMG).

OMG. (2011). Business Process Model and Notation (BPMN) Version 2.0. Needham,
MA: Object Management Group (OMG).

Open-Group. (2009). TOGAF Version 9.0. Reading Berkshire, RG1 1 AX United
Kingdom.

Pawlowski III, T., Barr, P., Ring, S., Vitkevich, J., Leach, M., & Segarra, S. (2004).
Executable Architecture Methodology for Analysis, FY04 Final Report. MITRE,
Washington C3 Center. McLean, Virginia.

Peirce, C. S. (1998). The Essential Peirce (Vol. 2). Bloomington, IN: Indiana University
Press.

Petri, C. (1962). Kommunikation mit Autmaten. Institut fur Instrumentelle Mathematik,
Bonn. Vol. 1 Suppl. 1, database. (Schriften des IIMNr. 2)

Petty, M. D., McKenzie, F. D., & Qingwen, X. (2002, 2002). Using a software
architecture description language to model the architecture and run-time
performance of a federate. Paper presented at the Distributed Simulation and
Real-Time Applications, 2002. Proceedings. Sixth IEEE International Workshop
on.

Renzhong, W., & Dagli, C. H. (2008, 7-10 April 2008). An Executable System
Architecture Approach to Discrete Events System Modeling Using SysML in
Conjunction with Colored Petri Net. Paper presented at the Systems Conference,
2008 2nd Annual IEEE.

Ring, S. J., Nicholson, D., & S, P. (2008). Activity-Based Methodology for Development
and Analysis of Integrated DOD Architectures. In S. Pallab (Ed.), Handbook of
Enterprise Systems Architecture in Practice (pp. 85-113): Information Science
Reference.

Risco-Martin, J., De La Cruz, J., Mittal, S., & Zeigler, B. (2009). eUDEVS: Executable
UML with DEVS Theory of Modeling and Simulation. Simulation, 55(11-12),
750-777. doi: 10.1177/0037549709104727

Sage, A. P., & Rouse, W. B. (2009). Handbook of Systems Engineering and
Management. Hoboken, NJ: John Wiley & Sons.

Shaw, M., & Garlan, D. (1996). Software Architecture: Perspectives on an Emerging
Discipline: Prentice Hall.

Sheehan, J., Deitz, P., Bray, B., Harris, B., & Wong, A. (2003). The Military Missions
and Means Framework. Paper presented at the Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC).

Shuman, E. (2010). Understanding Executable Architectures Through An
Examination of Language Model Elements. Paper presented at the Proceedings of the

2010 Summer
Simulation Conference, Ottawa, CA.

166

Tolk, A., Garcia, J., & Shuman, E. (2010). Executable Architecture Research at Old
Dominion University. Virginia Beach, VA.

W3C. (2004). Web Services Architecture W3C Working Group Note 11 February 2004.
Wagenhals, L., Haider, S., & Levis, A. (2002). Synthesizing executable models of object

oriented architectures. Paper presented at the Proceedings of the conference on
Application and theory of petri nets: formal methods in software engineering and
defence systems - Volume 12, Adelaide, Australia.

Wagenhals, L., Shin, I., Kim, D., & Levis, A. (2000). C4ISR architectures: IT. A
structured analysis approach for architecture design. Systems Engineering, 3(4),
248-287.

Zachman, J. A. (1999). A framework for information systems architecture. IBM Systems
Journal, 38(23), 454-470.

Zeigler, B., & Mittal, S. (2005, 10-12 Oct. 2005). Enhancing DODAF with a DEVS-
based system lifecycle development process. Paper presented at the Systems, Man
and Cybernetics, 2005 IEEE International Conference on.

Zeigler, B., & Mittal, S. (2006). Enhancing DODAF with a DEVS-based system lifecycle
development process.

Zeigler, B., Praehofer, H., & Kim, T. (2000). Theory of modeling and simulation:
integrating discrete event and continuous complex dynamic systems. San Diego,
CA: Academic Press.

Zinn, A. (2004). The Use of Integrated Architectures to Support Agent Based Simulation
An Initial Investigation. Master's Thesis, Air Force Institute of Technology.

APPENDIXES

A. Element Comparison Tables
Element Comparison Tables

Table 47 - Activity Comparison Table

BPMN Process & Collab
Activities
Task (Atomic)
Human Interaction
Sub-Process

Nested/Embedded SubProcess
Expanded Sub-Process
Collapsed Sub-Process
Transaction

IDEFO
Function

OV-5

PerformedActivity

Opera tionatActivityAction
OperationalActivity

StandardOperational Activity
OV-6a
Opera tional Activity

SysML & UML Activity
Action
StructuredActivityNode
ConditionalNode
ExpansionReqion
LoopNode
SequenceNode

OV-4
Function

BPMN

X

X

X

X

X

X

X

X

UML Act

X

X

X

X

X

X

X

SysML Act

X

X

X

X

X

X

X

IDEFO

X

ov-s

X

X

X

X

OV-6a

X

X

X

X

X

Count

1
2

3
4
5
6
7

8

9
10
11
12
13

14

Comparison
Classification

IE
IE
SEC (PerformedActivity)
IE
IE
IE
IE
IE

SEC (PerformedActivity)

IE

SEC (PerformedActivity)
SEC (PerformedActivity)

SEC (PerformedActivity)

D (OperationalActivity)

D (T a s k)
I X (Sub-Process)
IE
IE
IE
IE

IE

Comment

Parent to
OperationalActivity and

UPDM ref to function
here

Elemental Comparative Classification

Individual Elements (I E)
Duplicate (D)
Same Equivalent Class (SEC)
Individual Extension (I X)

168

Table 48 - Product Comparison Group

Code: <P>'6ducj: Q y
SvSMLft UML AcbvttV
Parameter
Para meterSet
BPMN Process & Collab
Data

Data Objects
Data Object References
Data Sto'es
Messaqe

OV-5
OBerattona iPa ram eter

OoeratlonalExthanqertem
InformatlonEtement
OrganteatlonaSResource
Energy
Resource Artifact

ov-6a
InformatfonElement
OV-7

Informs tfon Element
Entityltem
EntltyAttnbute
EntllyRelatlonshlp

DataModel
BPMN Process & Collab
Data Characteristics

Data Structure ("ItemDefinition")
DatsState

BPMN

X
X
X
X

X
X

UML Act

X
X

SysMi Act

X
X

Timing
Diagram

IOEFO OV-5

i t
x

X
K

X
X

X

X

X

X

OV-6a

X

X

X

X

X

Count

1
2

3
4
5
6

7
8
9

1 0
1 1

1 3

1 2

1 4

1 3
1 4

Comment

1£
I E

I E

I E
I E
I E

0 (QueraHonAlExctiantf^Itent)
I E
I X

XX
I X

I X

D {Information Element)

0 (Information Eteftirnt)
t £

I E

I E

xc
XE

Elementa l Compara t ive Classification
I n d i v i d u a l e lements (I E)
Dupl icate (I)
Same Equivalent Class (&£t)
Ind iv idua l Extension (I X)

Table 49 - Rule Comparison Group

msamm
UML Act
Behavioral Feature
Local PreandPostCond tions
Expans onKind (Expansion Reg on
control)
BPMN Process & Collab
Rule
Scope
Expressions
IDEFO
Viewpoint
Context
OV-6a
Mission
Operations IContramt
SvsML Activity
(+)Contro!Operator
LocalPreandPost Conditions
ExpansionKind (Expansion Region
control)
f +)Probabifity (edqe control".
Parameter Diagram
Constraint Block

BPMN

X

X

X

UML, Act

X

X

X

SysML
Act

X

X

X

X

X

X

X

X

X

X

*>y«§> mm

X

X

iili
i
2

3

4

5

6

7

8

9

1 0

1 1

1 2

X

X
X

X

Comparison Classification

IE
IE

IE

IE
SEC (Context)
IE

IE
IE

IE
IE

IE
0 (LoealPreand Postconditions

Comment

possible implementation
possible implementation

possible implementation

possible implementation
1

O (LoealPreand Postconditions)

IE

IE
Elemental Comparative
Classification

Individual Elements (I E)

Duplicate (D)
Same Fqtin/alent Class tSf r .
Individual Extension (I X)

Table 50 - Time Comparison Group

SysML Activity
+Tlmlnq constraint notes (et t)
+ftate

+Discrete (ex t)
-KonHnuous (ext)

+Ttmina Diagram {ext 1
Time Constra nt
Duration Constraint
Destruction E \f«nt
General Ordering

8PMN Process a Collab
Event Timer

EvonE Timor eJmaDat*
Event Timor thnaCtcIa
Event Timer ti mo Duration

TlmeEwnt

K

X

X

Cod* (UMlAc t)

X

Code (SysMl Act)

V

* X

K

Tinting
Ding ram

X

X

X

X

Cods
(IDEPO)

Cod«(OV
3)

Code
(ov-e»>

Count

1

2

3

4

5

6

7

8

9

1 0

X

X

X

X

C o m p a r i s o n C l a s s i f i c a t i o n

I E

I E

I E

16

D Evpftt T;msr TtmeOuratKiti
I E

It

ie
K (1 i n « C o m t < « i n t)
I K

I E

Comment

Elemental Comparative Classification
Indiv idual Element* (IE)
Duplicate (D)
Same Equivalent Class (SEC)
Individual Extension (XX)

Table 51 - Control Node Comparison Group

S u b q r o u p : R e l a t i o n a l : C
SwsML a. UML
Control Node (Gateway) c l

Decision Hode
FbrkNode
IrltlftiNocte
tainNodf
MetcpNodf
FinalNodf

Flow Rial
ActwrtLfinal

BPMN
Gateways

Complex
Evpnt Biged
EwJusWe
Inclusive
PaifiliPl
Paiallfl Fveiillwceci

Activity Edge: c2
ConliolFlow (Sr-qiK iirr» Flow)
ObtectFbw

Sequence Flow (Control Flow)
Merniixi
LooDina
Fork
Join
Normal flow
Condi lion a 1 Mow
Opftiull- ilow
Exception Row
Com r*"i Ration An«axSiitioii
Uiicontiolled flow
Oaln Flow

He£Ba(>p Flow
IXita /V&OCIdljflHli,

IOEF
(Sequence) Hows

Arrow (Flow)
AJIOH Sect me lit
Boundai v AITOW
Branch

Fork
W i n

Bii ™JS nq /Unhi i nd II nrj
Control Airow

Outuul Airow
Internal Airow
HRclianl'an Arrow
lunnetod Ano#

ov-s
Edge (Sequence Flow)

OppranonalActlvJtvMap
Ope.ratJona'I'Exchnrifle c'3
OV-2
Needlinc c4

OoerBtiofvaillExctTariae c4

SPMlil t f 'UMLtActj Sys'ML filTOEFQ' | ~.OV-5 | C»V-6a ^ * O V i 2 * OV-3 . Count Comparison Classification

x

X

x

X
Jt

X

X
x

x

x

x

X

X

x

x

x

X

x
x
x
X

x

x

x

x

x

X

X

X

x

X

X

X

X

X

X

x
X

X

X

X

X

X

X

X

x

x

X

X

x

X

x

X

x

x

X

x

x

X

« V

X

X

X

X

x

x

X
X

X

X

x

x

X

D

1

2

3

4

s

& 7

s

9

1 0

1 1

1 2

1 3

1 4

0

1

2

3

4

5

& 7

B

9

1 0

1 1

1 2

1 3

1 4

1 4

I S

1 6

1 7

I B

1 9

2 0

2 1

2 1

2 2

2 3

X

K

X

X

I E

I E

I E

I £

I E

I E

I E

I E

I E

I E

I E

I E

I E

I E

I E

I E

I E

I E

1£

I E

I E

I E

I E

I E

O (ControtFlow)
I E

I E

I E

I E

I E

O to ObjectFlew
IX to Obicc t f low - add
IX to Object Flow - add

0 to Control Flow
I E

I E

DForfc
DJn in
I E

I E

IX Acfavityfedsje. Ctmtx olFtow
IX Activi ty Edge, ControlHow
IX Activi ty Edge, Control Flow
I E

I E

Ident ical to Activity Edge
lOparahonalExcruH'tQe (below)

I E

I E

Elemental Comparative
Indiv idual Elements (XE)
Duplicate (D)
Seme Equivalent C!as* (SEC;
Indiv idual Extension (IX)

170

Table 52 - Node Comparison Group

:^mm^.
SysMLSt UML Activity
Activ tvPartlton
BPMN Piocess (.Collab
5n im lanes

Pools
Lanes

ov-s
Performer
Node

Activ tySubjert

ov-ea
fJode
OV 6c
Lifel oes
@tf°feb •*
fteqlon

BPHW

X

X

X

«v

UMLAct

fc-V^

SysML
A t t

X

Timing
Diagram

Code
IDEFO

OV-S

X

x

X

OV-Sa

x

a t

0V-6b

«•<& X

X

X

X
X

ov-st

4&%Sjr v

Count

l
2
3

4

fc * 5

Comparison

classification

1 Sw im tunes

IE
I E
IE

D { N o d e)
I E

O (Node)

IE

Comment

Hon node abstraction lor
object class

Elemental Comparative Classification

Individual Elements (IE)

Duplicate (D)

Same Equivalent Class (SEC)
Individual Extension (I X)

171

B. Dissertation Electronic Files

This dissertation includes a CD (entitled Electronic Files for Understanding the Elements

of Executable Architectures) of various dissertation related files:

(1) the dissertation MAXQDQ database;
(2) MAXQDA-Reader;
(3) PDF files of the EAS and EAS-Intermediate meta-models.

To view the dissertation database, place the MAXQDA Reader on your computer and
install it. This will allow you read-only access of the dissertation database.

172

VITA

Mr. Edwin Shuman received his Bachelor of Arts (1980) from the University of

Virginia. He received his Master of Science in Computer Systems Management (1990)

from the Naval Postgraduate School, in Monterey, California. He retired as a

Commander from the United States Navy (1983-2005). He works for the MITRE

Corporation in Modeling and Simulation Engineering.

	Old Dominion University
	ODU Digital Commons
	Winter 2011

	Understanding the Elements of Executable Architectures Through a Multi-Dimensional Analysis Framework
	Edwin A. Shuman IV
	Recommended Citation

	ProQuest Dissertations

