61 research outputs found

    Derandomizing Isolation in Space-Bounded Settings

    Get PDF
    We study the possibility of deterministic and randomness-efficient isolation in space-bounded models of computation: Can one efficiently reduce instances of computational problems to equivalent instances that have at most one solution? We present results for the NL-complete problem of reachability on digraphs, and for the LogCFL-complete problem of certifying acceptance on shallow semi-unbounded circuits. A common approach employs small weight assignments that make the solution of minimum weight unique. The Isolation Lemma and other known procedures use Omega(n) random bits to generate weights of individual bitlength O(log(n)). We develop a derandomized version for both settings that uses O(log(n)^{3/2}) random bits and produces weights of bitlength O(log(n)^{3/2}) in logarithmic space. The construction allows us to show that every language in NL can be accepted by a nondeterministic machine that runs in polynomial time and O(log(n)^{3/2}) space, and has at most one accepting computation path on every input. Similarly, every language in LogCFL can be accepted by a nondeterministic machine equipped with a stack that does not count towards the space bound, that runs in polynomial time and O(log(n)^{3/2}) space, and has at most one accepting computation path on every input. We also show that the existence of somewhat more restricted isolations for reachability on digraphs implies that NL can be decided in logspace with polynomial advice. A similar result holds for certifying acceptance on shallow semi-unbounded circuits and LogCFL

    Isolating a Vertex via Lattices: Polytopes with Totally Unimodular Faces

    Get PDF
    We present a geometric approach towards derandomizing the {Isolation Lemma} by Mulmuley, Vazirani, and Vazirani. In particular, our approach produces a quasi-polynomial family of weights, where each weight is an integer and quasi-polynomially bounded, that can isolate a vertex in any 0/1 polytope for which each face lies in an affine space defined by a totally unimodular matrix. This includes the polytopes given by totally unimodular constraints and generalizes the recent derandomization of the Isolation Lemma for {bipartite perfect matching} and {matroid intersection}. We prove our result by associating a {lattice} to each face of the polytope and showing that if there is a totally unimodular kernel matrix for this lattice, then the number of vectors of length within 3/2 of the shortest vector in it is polynomially bounded. The proof of this latter geometric fact is combinatorial and follows from a polynomial bound on the number of circuits of size within 3/2 of the shortest circuit in a regular matroid. This is the technical core of the paper and relies on a variant of Seymour\u27s decomposition theorem for regular matroids. It generalizes an influential result by Karger on the number of minimum cuts in a graph to regular matroids

    The Matching Problem in General Graphs is in Quasi-NC

    Full text link
    We show that the perfect matching problem in general graphs is in Quasi-NC. That is, we give a deterministic parallel algorithm which runs in O(log3n)O(\log^3 n) time on nO(log2n)n^{O(\log^2 n)} processors. The result is obtained by a derandomization of the Isolation Lemma for perfect matchings, which was introduced in the classic paper by Mulmuley, Vazirani and Vazirani [1987] to obtain a Randomized NC algorithm. Our proof extends the framework of Fenner, Gurjar and Thierauf [2016], who proved the analogous result in the special case of bipartite graphs. Compared to that setting, several new ingredients are needed due to the significantly more complex structure of perfect matchings in general graphs. In particular, our proof heavily relies on the laminar structure of the faces of the perfect matching polytope.Comment: Accepted to FOCS 2017 (58th Annual IEEE Symposium on Foundations of Computer Science

    Typically-Correct Derandomization for Small Time and Space

    Get PDF
    Suppose a language L can be decided by a bounded-error randomized algorithm that runs in space S and time n * poly(S). We give a randomized algorithm for L that still runs in space O(S) and time n * poly(S) that uses only O(S) random bits; our algorithm has a low failure probability on all but a negligible fraction of inputs of each length. As an immediate corollary, there is a deterministic algorithm for L that runs in space O(S) and succeeds on all but a negligible fraction of inputs of each length. We also give several other complexity-theoretic applications of our technique

    Space Complexity of Perfect Matching in Bounded Genus Bipartite Graphs

    Get PDF
    We investigate the space complexity of certain perfect matching problems over bipartite graphs embedded on surfaces of constant genus (orientable or non-orientable). We show that the problems of deciding whether such graphs have (1) a perfect matching or not and (2) a unique perfect matching or not, are in the logspace complexity class \SPL. Since \SPL\ is contained in the logspace counting classes \oplus\L (in fact in \modk\ for all k2k\geq 2), \CeqL, and \PL, our upper bound places the above-mentioned matching problems in these counting classes as well. We also show that the search version, computing a perfect matching, for this class of graphs is in \FL^{\SPL}. Our results extend the same upper bounds for these problems over bipartite planar graphs known earlier. As our main technical result, we design a logspace computable and polynomially bounded weight function which isolates a minimum weight perfect matching in bipartite graphs embedded on surfaces of constant genus. We use results from algebraic topology for proving the correctness of the weight function.Comment: 23 pages, 13 figure

    Isolation Schemes for Problems on Decomposable Graphs

    Get PDF
    The Isolation Lemma of Mulmuley, Vazirani and Vazirani [Combinatorica'87] provides a self-reduction scheme that allows one to assume that a given instance of a problem has a unique solution, provided a solution exists at all. Since its introduction, much effort has been dedicated towards derandomization of the Isolation Lemma for specific classes of problems. So far, the focus was mainly on problems solvable in polynomial time. In this paper, we study a setting that is more typical for NP\mathsf{NP}-complete problems, and obtain partial derandomizations in the form of significantly decreasing the number of required random bits. In particular, motivated by the advances in parameterized algorithms, we focus on problems on decomposable graphs. For example, for the problem of detecting a Hamiltonian cycle, we build upon the rank-based approach from [Bodlaender et al., Inf. Comput.'15] and design isolation schemes that use - O(tlogn+log2n)O(t\log n + \log^2{n}) random bits on graphs of treewidth at most tt; - O(n)O(\sqrt{n}) random bits on planar or HH-minor free graphs; and - O(n)O(n)-random bits on general graphs. In all these schemes, the weights are bounded exponentially in the number of random bits used. As a corollary, for every fixed HH we obtain an algorithm for detecting a Hamiltonian cycle in an HH-minor-free graph that runs in deterministic time 2O(n)2^{O(\sqrt{n})} and uses polynomial space; this is the first algorithm to achieve such complexity guarantees. For problems of more local nature, such as finding an independent set of maximum size, we obtain isolation schemes on graphs of treedepth at most dd that use O(d)O(d) random bits and assign polynomially-bounded weights. We also complement our findings with several unconditional and conditional lower bounds, which show that many of the results cannot be significantly improved
    corecore