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Abstract
Suppose a language L can be decided by a bounded-error randomized algorithm that runs in space
S and time n · poly(S). We give a randomized algorithm for L that still runs in space O(S) and
time n · poly(S) that uses only O(S) random bits; our algorithm has a low failure probability on all
but a negligible fraction of inputs of each length. As an immediate corollary, there is a deterministic
algorithm for L that runs in space O(S) and succeeds on all but a negligible fraction of inputs of
each length. We also give several other complexity-theoretic applications of our technique.
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1 Introduction

1.1 The Power of Randomness When Time and Space Are Limited
A central goal of complexity theory is to understand the relationship between three fun-
damental resources: time, space, and randomness. Based on a long line of research
[42, 9, 6, 29, 20, 37, 25], most complexity theorists believe that randomized decision al-
gorithms can be made deterministic without paying too much in terms of time and space.
Specifically, suppose a language L can be decided by a randomized algorithm that runs
in time T = T (n) ≥ n and space S = S(n) ≥ logn. Klivans and van Melkebeek showed
that assuming some language in DSPACE(n) has exponential circuit complexity, there is a
deterministic algorithm for L that runs in time poly(T ) and space O(S) [25].1

Proving the hypothesized circuit lower bound seems unlikely for the foreseeable future. In
the 90s and early 2000s, researchers managed to prove powerful unconditional derandomization
theorems by focusing on the space complexity of the deterministic algorithm. For example,
Nisan and Zuckerman showed that if S ≥ TΩ(1), there is a deterministic algorithm for

1 More generally, Klivans and van Melkebeek constructed a pseudorandom generator that fools size-T
circuits on T input bits under this assumption. The generator has seed length O(log T ) and is computable
in O(log T ) space.
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9:2 Typically-Correct Derandomization for BPTISP

L that runs in space O(S) [30].2 Alas, in the past couple of decades, progress on such
general, unconditional derandomization has stalled. Nobody has managed to extend the
Nisan-Zuckerman theorem to a larger regime of pairs (T, S), and researchers have been forced
to focus on more restricted models of computation.

In this paper, we focus on highly efficient randomized algorithms. That is, we consider
the case that T and S are both small, such as T ≤ Õ(n) and S ≤ O(logn).

1.2 Our Results
1.2.1 Reducing the Amount of Randomness to O(S)
Suppose T ≤ n · poly(S). For our main result, we give a randomized algorithm for L that
still runs in time n · poly(S) and space O(S) that uses only O(S) random bits. The catch
is that our algorithm is only guaranteed to succeed on most inputs. The fraction of “bad”
inputs of length n is at most 2−Sc , where c ∈ N is an arbitrarily large constant. On “good”
inputs, our algorithm’s failure probability is at most 2−S1−α , where α > 0 is an arbitrarily
small constant.

1.2.2 Eliminating Randomness Entirely
From the result described in the preceding paragraph, a deterministic algorithm that runs
in space O(S) follows immediately by iterating over all O(S)-bit random strings. We can
express this theorem in terms of complexity classes using terminology introduced by Kinne
et al. for typically-correct algorithms [24]. Suppose L is a language, C is a complexity class,
and ε(n) is a function. We say that L is within ε of C if there is some L′ ∈ C such that
for every n,

Pr
x∈{0,1}n

[x ∈ L∆L′] ≤ ε(n). (1)

If C and C′ are complexity classes, we say that C is within ε of C′ if every language in C is
within ε of C′. In these terms, our result is that

BPTISP(n · poly(S), S) is within 2−S
c

of DSPACE(S). (2)

Here, BPTISP(T, S) is the class of languages that can be decided by a bounded-error
randomized algorithm that runs in time O(T (n)) and space O(S(n)), and DSPACE(S) is
the class of languages that can be decided by a deterministic algorithm that runs in space
O(S). Note that if S ≥ nΩ(1), the mistake rate in Equation (2) drops below 2−n. Since
there are only 2n inputs of length n, the algorithm must in fact be correct on all inputs.
Our result can therefore be viewed as a generalization of the Nisan-Zuckerman theorem
BPTISP(poly(S), S) ⊆ DSPACE(S) [30].

1.2.3 Derandomization with Advice
Adleman’s argument [1] shows that BPL ⊆ L/poly. We study the problem of derandomizing
BPL with as little advice as possible. Goldreich and Wigderson discovered a critical threshold:
roughly, if an algorithm can be derandomized with fewer than n bits of advice, then there is
a typically-correct derandomization of the algorithm with no advice [15].3

2 More generally, the Nisan-Zuckerman theorem applies as long as the original randomized algorithm for
L uses only poly(S) random bits, regardless of how much time it takes.

3 This result also requires that (a) most advice strings are “good”, and (b) there is an appropriate efficient
extractor.
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Motivated by this phenomenon, Fortnow and Klivans proved that BPL ⊆ L/O(n) [12].
We refine their argument and show that BPL ⊆ L/(n+O(log2 n)), getting very near the
critical threshold of n bits of advice. More interestingly, we show that the connection
identified by Goldreich and Wigderson [15] works the other way: in the space-bounded
setting, typically-correct derandomizations imply derandomizations with just a little advice.
Combining with our main result gives that for every constant c ∈ N,

BPTISP(Õ(n), logn) ⊆ L/(n− logc n). (3)

1.2.4 Derandomizing Turing Machines
All algorithms in the results mentioned so far are formulated in a general random-access
model, i.e., the algorithm can read any specified bit of its input in a single step. (See
Section 2.2 for details.) We also study the weaker multitape Turing machine model. The
main weakness of the Turing machine model is that if its read head is at position i of its
input and it wishes to read bit j of its input, it must spend |i− j| steps moving its read head
to the appropriate location. Let BPTISPTM(T, S) denote the class of languages that can
be decided by a bounded-error randomized Turing machine that runs in time O(T (n)) and
space O(S(n)).

1.2.4.1 Beyond Linear Advice

We give a typically-correct derandomization for BPTISPTM analogous to our main result
but with a lower mistake rate. In terms of advice, our derandomization implies that for every
constant c ∈ N,

BPTISPTM(Õ(n), logn) ⊆ L/O
(

n

logc n

)
. (4)

Equation (4) gives an interesting example of a class of BPL algorithms that can be deran-
domized with o(n) bits of advice.

1.2.4.2 Beyond Quasilinear Time

Using different techniques, we also show how to derandomize log-space Turing machines that
use almost a quadratic amount of time. In particular, we show that if TS2 ≤ o(n2/ logn),
then

BPTISPTM(T, S) is within o(1) of DTISP(poly(n), S). (5)

1.2.5 Disambiguating Nondeterministic Algorithms
For some of our derandomization results, we give analogous theorems regarding unambiguous
simulations of nondeterministic algorithms. We defer a discussion of these results to Section 6.

1.3 Techniques
1.3.1 “Out of Sight, out of Mind”
Our typically-correct derandomizations work by treating the input as a source of randomness.
This idea was pioneered by Goldreich and Wigderson [15]. For the sake of discussion, let A
be a randomized algorithm that uses n random bits. A naïve strategy for derandomizing A

CCC 2019



9:4 Typically-Correct Derandomization for BPTISP

is to run A(x, x). Most random strings of A lead to the right answer, so it is tempting to
think that for most x, A(x, x) will give the right answer. This reasoning is flawed, because
A might behave poorly when its input is correlated with its random bits.

In this work, we avoid these troublesome correlations using a simple idea embodied by
the adage “out of sight, out of mind.” We use part of the input as a source of randomness
while A is processing the rest of the input.

To go into more detail, suppose A runs in time Õ(n) and space O(logn). Our randomness-
efficient simulation of A operates in polylog(n) phases. At the beginning of a new phase,
we pick a random polylog(n)-bit block x|I of the input x. We apply a seeded extractor
to x|I , giving a string of length Θ(log2 n). We apply Nisan’s pseudorandom generator for
space-bounded computation [26], giving a pseudorandom string of length Õ(n). We use the
pseudorandom string to run the simulation of A forward until it tries to read from x|I , at
which time we pause the simulation of A and move on to the next phase.

The key point is that the output of the extractor is processed without ever looking at x|I ,
the input to the extractor. Extractors are good samplers [44], and A only has polynomially
many possible configurations, so for most x, the output of the extractor is essentially as
good as a uniform random seed to Nisan’s generator. Therefore, in each phase, with high
probability, we successfully simulate n/ polylog(n) steps of A before it reads from x|I and
we have to move on to the next phase. Thus, with high probability, after polylog(n) phases,
the simulation of A is complete.

Each bit of the output of Nisan’s generator can be computed in time4 polylog(n) and
space O(logn). Therefore, our simulation of A still runs in time Õ(n) and space O(logn),
but now it uses just polylog(n) random bits (O(logn) random bits per phase to pick the
random block I and to pick a seed for the extractor).

The reader may wonder whether we could have achieved the same effect by simply directly
applying Nisan’s generator from the start – its seed length is polylog(n), after all. The point
is that Nisan’s generator requires two-way access to its seed, whereas our simulation only
uses one-way access to its random bits. During our simulation, we are able to give Nisan’s
generator two-way access to its seed, because we have two-way access to the input x from
which we extract that seed.

Finally, because our simulation reads its polylog(n) random bits from left to right, we can
further reduce the number of random bits to just O(logn) by applying the Nisan-Zuckerman
pseudorandom generator [30].

1.3.2 Other Techniques

Our derandomizations with advice are based on Fortnow and Klivans’ technique for proving
BPL ⊆ L/O(n) [12] and Nisan’s technique for proving RL ⊆ SC [28]. Our derandomization
of BPTISPTM with a low mistake rate uses a similar “out of sight, out of mind” technique
as our main result. The lower mistake rate is achieved by exploiting knowledge of the region
of the input that will be processed in the near future, based on the locality of the Turing
machine’s read head. Our derandomization of BPTISPTM(T, S) for T (n) ≈ n2 is based
on a seed-extending pseudorandom generator for multiparty communication protocols by
Kinne et al. [24].

4 See work by Diehl and van Melkebeek [11] for an even faster implementation of Nisan’s generator.
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1.4 Related Work

We will only mention some highlights of the large body of research on unconditional deran-
domization of time- and space-bounded computation. Fix L ∈ BPTISP(T, S). Nisan gave
a randomized algorithm for L that runs in time poly(T ) and space O(S log T ) that uses only
O(S log T ) random bits [26]. Nisan also gave a deterministic algorithm for L that runs in
time 2O(S) and space O(S log T ) [28]. Nisan and Zuckerman gave a randomized algorithm
for L that runs in time poly(T ) and space O(S + T ε) that uses only O(S + T ε) random
bits, where ε > 0 is an arbitrarily small constant [30] (this is a generalization of the result
mentioned in Section 1.1). Saks and Zhou gave a deterministic algorithm for L that runs in
space O(S

√
log T ) [32]. Combining the techniques from several of these works, Armoni [4]

gave a deterministic algorithm for L that runs in space5

O

(
S ·

√
log T

max{1, logS − log log T}

)
. (6)

Armoni’s algorithm remains the most space-efficient derandomization known for all T and S.
When T = Θ̃(n) and S = Θ(logn), Armoni’s algorithm runs in space Θ(log3/2 n), just like
the earlier Saks-Zhou algorithm [32]. Cai et al. gave a time-space tradeoff [10] interpolating
between Nisan’s deterministic algorithm [28] and the Saks-Zhou algorithm [32].

All of the preceding results apply, mutatis mutandis, to derandomizing algorithms that
use at most T random bits, regardless of how much time they take. In contrast, our proofs
crucially rely on the fact that a time-T algorithm queries its input at most T times. This
aspect of our work is shared by work by Beame et al. [8] on time-space lower bounds.

Goldreich and Wigderson’s idea of using the input as a source of randomness for a
typically-correct derandomization [15] has been applied and developed by several researchers
[5, 41, 23, 43, 35, 24, 33, 3]; see related survey articles by Shaltiel [34] and by Hemaspaandra
and Williams [19]. Researchers have proven unconditional typically-correct derandomization
results for several restricted models, including sublinear-time algorithms [43, 35], commu-
nication protocols [35, 24], constant-depth circuits [35, 24], and streaming algorithms [35].
On the other hand, Kinne et al. proved that any typically-correct derandomization of BPP
with a sufficiently low mistake rate would imply strong circuit lower bounds [24]. We are the
first to study typically-correct derandomization for algorithms with simultaneous bounds on
time and space.

1.5 Outline of This Paper

In Section 2, we discuss random-access models of computation and extractors. In Section 3,
we give our derandomization of BPTISP(n · poly(S), S). In Section 4, we give our two
derandomizations of BPTISPTM(T, S). In Section 5, we discuss derandomization with
advice. Section 6 concerns disambiguation of nondeterministic algorithms, and we conclude
in Section 7 with some suggested directions for further research.

5 Actually, the space bound given in Equation (6) is achieved by using better extractors than were known
when Armoni wrote his paper [4, 22].

CCC 2019
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2 Preliminaries

2.1 General Notation
Strings

For strings x, y, let x ◦ y denote the concatenation of x with y. For a natural number n, let
[n] = {1, 2, . . . , n}. For a string x ∈ {0, 1}n and a set I = {i1 < i2 < · · · < i`} ⊆ [n], let
x|I = xi1xi2 . . . xi` ∈ {0, 1}`.

Sets

For a finite set X, we will use the notations #X and |X| interchangeably to refer to the
number of elements of X. For X ⊆ {0, 1}n, let density(X) = |X|/2n. We will sometimes
omit the parentheses, e.g., density{000, 111} = 0.25. We identify a language L ⊆ {0, 1}∗
with its indicator function L : {0, 1}∗ → {0, 1}, i.e.,

L(x) =
{

1 if x ∈ L
0 if x 6∈ L.

(7)

Probability

If X and Y are probability distributions on the same space, we write X ∼ε Y to indicate
that X and Y are ε-close in total variation distance. For T ∈ N, let UT denote the uniform
distribution over {0, 1}T .

2.2 Random-Access Algorithms
Our main theorems govern general random-access algorithms. Our results are not sensitive
to the specific choice of model of random-access computation. For concreteness, following
Fortnow and van Melkebeek [13], we will work with the random-access Turing machine model.
This model is defined like the standard multitape Turing machine model, except that each
ordinary tape is supplemented with an “index tape” that can be used to move the ordinary
tape’s head to an arbitrary specified location in a single step. See the paper by Fortnow and
van Melkebeek [13] for details.

A randomized random-access Turing machine is a random-access Turing machine equipped
with an additional read-only tape, initialized with random bits, that can only be read from
left to right. Thus, if the algorithm wishes to reread old random bits, it needs to have copied
them to a work tape, which counts toward the algorithm’s space usage. The random tape
does not have a corresponding index tape.

For functions T : N → N and S : N → N, we define BPTISP(T, S) to be the class of
languages L such that there is a randomized random-access Turing machine A such that on
input x ∈ {0, 1}n, A(x) always halts in time O(T (n)), A(x) always touches O(S(n)) cells on
all of its read-write tapes, and Pr[A(x) = L(x)] ≥ 2/3.

2.3 Randomized Branching Programs
Our algorithms are most naturally formulated in terms of branching programs, a standard
nonuniform model of time- and space-bounded computation. Recall that in a digraph, a
terminal vertex is a vertex with no outgoing edges. In the following definition, n is the
number of input bits and m is the number of random bits.
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I Definition 1. A randomized branching program on {0, 1}n × {0, 1}m is a directed acyclic
graph, where each nonterminal vertex v is labeled with two indices i(v) ∈ [n], j(v) ∈ [m] and
has four outgoing edges labeled with the four two-bit strings. If P is a randomized branching
program, we let V (P) be the set of vertices of P.

The interpretation is that from vertex v, the program follows the edge labeled xi(v)yj(v),
where x is the input and y is the random string. This interpretation is formalized by the
following definition, which sets P(v;x, y) to be the vertex reached from v on input x using
randomness y.

I Definition 2. Suppose P is a randomized branching program on {0, 1}n × {0, 1}m. We
identify P with a function P : V (P) × {0, 1}n × {0, 1}m → V (P) defined as follows. Fix
v ∈ V (P), x ∈ {0, 1}n, y ∈ {0, 1}m. Take a walk through P by starting at v and, having
reached vertex u, following the edge labeled xi(u)yj(u). Then P(v;x, y) is the terminal vertex
reached by this walk.

As previously discussed, random-access Turing machines can only access their random
bits from left to right. This corresponds to an R-OW randomized branching program.

I Definition 3. An R-OW randomized branching program is a randomized branching program
P such that for every edge (v, v′) between two nonterminal vertices, j(v′) ∈ {j(v), j(v) + 1}.

The term “R-OW” indicates that the branching program has “random access” to its input
bits and “one-way access” to its random bits.

The size of a branching program is defined as size(P) = |V (P)|. The length of the
program, length(P), is defined to be the length of the longest path through the program.
Observe that BPTISP(T, S) corresponds to R-OW randomized branching programs of size
2O(S) and length O(T ).

Many of our algorithms will use a restriction operation that we now introduce.

I Definition 4. Suppose P is a randomized branching program on {0, 1}n and I ⊆ [n]. Let
P|I be the program obtained from P by deleting all outgoing edges from vertices v such
that i(v) 6∈ I.

So in P|I , there are two types of terminal vertices: vertices that were terminal in P,
and vertices v that are now terminal because i(v) 6∈ I. The computation P|I(v;x, y) halts
when it reaches either type of terminal vertex. Thus, P|I(v;x, y) does not depend on x|[n]\I ,
because P|I(v;x, y) outputs the vertex reached by running the computation P(v;x, y) until
it finishes or it tries to read from x|[n]\I .

2.4 Extractors
Recall that a (k, ε)-extractor is a function Ext : {0, 1}` × {0, 1}d → {0, 1}s such that if X
has “min-entropy” at least k and Y ∼ Ud is independent of X, then Ext(X,Y ) ∼ε Us. It
can be shown nonconstructively that for every `, k, ε, there exists Ext with d ≤ log(`− k) +
2 log(1/ε) +O(1) and s ≥ k + d− 2 log(1/ε)−O(1) (see, e.g., Vadhan’s monograph [38]).

We will need a computationally efficient extractor. The extractor literature has mainly
focused on the time complexity of computing extractors, but we are concerned with space
complexity, too. This paper is not meant to be about extractor constructions, so we encourage
the reader to simply pretend that optimal extractors can be computed in a single step with
no space overhead. In actuality, we will use two incomparable non-optimal extractors.

To prove our main results, we will use an extractor by Shaltiel and Umans [36]. The
benefit of the Shaltiel-Umans extractor is that it allows for small error ε.

CCC 2019



9:8 Typically-Correct Derandomization for BPTISP

I Theorem 5 ([36]). Fix a constant α > 0. For every `, k ∈ N, ε > 0 such that k ≥ log4/α `

and k ≥ log4/α(1/ε), there is a (k, ε)-extractor SUExt : {0, 1}` × {0, 1}d → {0, 1}s where
d ≤ O

(
log `+ log ` log(1/ε)

log k

)
and s ≥ k1−α. Given x, y, k, and ε, SUExt(x, y) can be computed

in time poly(`) and space O(d).

To derandomize BPL with as little advice as possible, we will use an extractor by
Guruswami, Umans, and Vadhan [16] (not the most famous extractor from their work, but a
slight variant). The benefit of the GUV extractor is that it outputs a constant fraction of
the entropy.

I Theorem 6 ([16]). Let α, ε > 0 be constant. For every `, k ∈ N, there is a (k, ε)-extractor
GUVExt : {0, 1}` × {0, 1}d → {0, 1}s with s ≥ (1 − α)k and d ≤ O(log `) such that given x

and y, GUVExt(x, y) can be computed in O(log `) space.

In both cases, the original authors [36, 16] did not explicitly analyze the space complexity
of their extractors, so we explain in Appendices A and B why these extractors can be
implemented in small space. (We remark that Hartman and Raz also constructed small-space
extractors [18], but the seed lengths of their extractors are too large for us.)

2.4.1 Extractors as Samplers
We will actually only be using extractors for their sampling properties. The connection
between extractors and samplers was first discovered by Zuckerman [44]. The following
standard proposition expresses this connection for non-Boolean functions.

I Proposition 7 ([44]). Suppose Ext : {0, 1}` × {0, 1}d → {0, 1}s is a (k, ε)-extractor and
f : {0, 1}s → V is a function. Let δ = ε|V |/2. Then

#{x ∈ {0, 1}` : f(Us) 6∼δ f(Ext(x, Ud))} ≤ 2k+1|V |. (8)

For completeness, we include a proof of Proposition 7 in Appendix C, since the specific
statement of Proposition 7 does not appear in Zuckerman’s paper [44].

2.5 Constructibility
We say that f : N → N is constructible in space S(n), time T (n), etc. if there is a
deterministic random-access Turing machine A that runs in the specified resource bounds
with A(1n) = f(n), written in binary. As usual, we say that f is space constructible if f is
constructible in space O(f(n)). We say that δ : N→ [0, 1] is constructible in specified resource
bounds if δ can be written as δ(n) = δ1(n)

δ2(n) , where δ1, δ2 : N→ N are both constructible in
the specified resource bounds.

3 Derandomizing Efficient Random-Access Algorithms

3.1 Main Technical Algorithm: Low-Randomness Simulation of
Branching Programs

Suppose P is an R-OW randomized branching program on {0, 1}n × {0, 1}T of length T

and size 2S . (As a reminder, such a program models BPTISP(T, S).) Given P, v0, and x,
the distribution P(v0;x, UT ) can trivially be sampled in time T · poly(S) and space O(S)
using T random bits. Our main technical result is an efficient typically-correct algorithm for
approximately sampling P(v0;x, UT ) using roughly T/n random bits.
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I Theorem 8. For each constant c ∈ N, there is a randomized algorithm A with the following
properties. Suppose P is an R-OW randomized branching program on {0, 1}n × {0, 1}T with
S ≥ logn, where S def= dlog size(P)e. Suppose v0 ∈ V (P), T ≥ length(P), and x ∈ {0, 1}n.
Then A(P, v0, x, T ) outputs a vertex v ∈ V (P) in time6 T · poly(S) and space O(S) using
dT/ne · poly(S) random bits. Finally, for every such P, v0, T ,

density{x ∈ {0, 1}n : A(P, v0, x, T ) 6∼exp(−cS) P(v0;x, UT )} ≤ 2−S
c

. (9)

The algorithm of Theorem 8 relies on Nisan’s pseudorandom generator [26]. The seed
length of Nisan’s generator is not O(S), but Nisan’s generator does run in space O(S), given
two-way access to the seed.

I Theorem 9 ([26]). For every S, T ∈ N, ε > 0 with T ≤ 2S, there is a generator NisGen :
{0, 1}s → {0, 1}T with seed length s ≤ O((S + log(1/ε)) · log T ), such that if P is an R-OW
randomized branching program of size 2S, v is a vertex, and x is an input, then

P(v;x,NisGen(Us)) ∼ε P(v;x, UT ). (10)

Given S, T, ε, z, i, the bit NisGen(z)i can be computed in time poly(S, log(1/ε)) and space
O(S + log(1/ε)).

Algorithm 1: The algorithm A of Theorem 8.
if Sc+1 > bn/9c then

Directly simulate P (v0;x, UT ) using T random bits
else

Let I1, I2, . . . , IB ⊆ [n] be disjoint sets of size Sc+1 with B as large as possible
Initialize v ← v0
repeat r times /* r is given by Equation (11) */

Pick b ∈ [B] uniformly at random and let I ← Ib
Pick y ∈ {0, 1}O(S) uniformly at random
Update v ← P|[n]\I(v;x,NisGen(SUExt(x|I , y)))

end
return v

end

For Theorem 8, we can replace T with min{T, 2S} without loss of generality, so we will
assume that T ≤ 2S . The algorithm A is given in Algorithm 1.

Parameters

Set

r
def= max

{⌈
8T

B − 8

⌉
, 8(cS + 1)

}
= dT/ne · poly(S). (11)

The parameter r is the number of “phases” of A as outlined in Section 1.3.1. Note that
if Sc+1 ≤ bn/9c, then B ≥ 9, so Equation (11) makes sense. Naturally, Nisan’s generator

6 The graph of P should be encoded in adjacency list format, so that the neighborhood of a vertex v can
be computed in poly(S) time.

CCC 2019
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NisGen is instantiated with the parameters S, T from the statement of Theorem 8. The error
of NisGen is set at

ε
def= e−cS

4r = 2−Θ(S). (12)

That way, the seed length of NisGen is s ≤ O(S log T ) ≤ O(S2). The algorithm A also relies
on the Shaltiel-Umans extractor SUExt of Theorem 5. This extractor is instantiated with
source length ` def= Sc+1, α def= 2/3, error

ε′
def= e−cS

2r · 2S = 2−Θ(S), (13)

and entropy

k
def= max{s3, log6 `, log6(1/ε)} = Θ(S6). (14)

Our choice of k explicitly meets the hypotheses of Theorem 5, and by construction, k1−α ≥ s,
so we can think of SUExt as outputting s bits.

Efficiency

We now analyze the computational efficiency of A. First, we bound the running time. If
Sc+1 > bn/9c, then A clearly runs in time T · poly(S). Otherwise, A repeatedly replaces v
with one of its neighbors a total of at most T times, since T ≥ length(P). Each such step
requires computing a bit of Nisan’s generator, which takes time poly(S), times poly(S) steps
to compute each bit of the seed of Nisan’s generator by running SUExt. Thus, overall, A runs
in time T · poly(S).

Next, we bound the space complexity of A. If Sc+1 > bn/9c, then A clearly runs in
space O(S + log T ) = O(S). Otherwise, space is required to store a loop index (O(log r)
bits), the vertex v (O(S) bits), the index b (O(logn) bits), and the seed y (O(S) bits).
These terms are all bounded by O(S). Running SUExt takes O(log ` + log ` log(1/ε′)

log k ) bits
of space. Since k ≥ SΩ(1), log `

log k ≤ O(1), and hence the space used for SUExt is only
O(logS + log(1/ε′)) = O(S). Finally, running NisGen takes O(S + log(1/ε)) = O(S) bits of
space. Therefore, overall, A runs in space O(S).

Finally, we bound the number of random bits used by A. If Sc+1 > bn/9c, then A uses T
random bits, which is at most 9T (1+Sc+1)

n in this case. Otherwise, in each iteration of the
loop, A uses O(logn) random bits for b, plus O(S) random bits for y. Therefore, overall, the
number of random bits used by A is O(rS), which is dT/ne · poly(S).

Correctness

We now turn to proving Equation (9). If Sc+1 > bn/9c, then obviously A(P, v0, x, T ) ∼
P(v0;x, UT ). Assume, therefore, that Sc+1 ≤ bn/9c. The proof will be by a hybrid argument
with three hybrid distributions. The first hybrid distribution is defined by the algorithm H1
given by Algorithm 2.

We need a standard fact about Markov chains. SupposeM andM ′ are stochastic matrices
(i.e., each row is a probability vector) of the same size. We write M ∼γ M ′ to mean that
for each row index i, the probability distributions Mi and M ′i are γ-close in total variation
distance.

I Lemma 10. If M ∼γ M ′, then Mr ∼γr (M ′)r.
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Algorithm 2: The algorithm H1 defining the first hybrid distribution used to prove
Equation (9). The only difference between A and H1 is that H1 picks a uniform
random seed for NisGen, instead of extracting the seed from the input.
Initialize v ← v0
repeat r times

Pick b ∈ [B] uniformly at random and let I ← Ib
Pick y′ ∈ {0, 1}s uniformly at random
Update v ← P|[n]\I(v;x,NisGen(y′))

end
return v

For a proof of Lemma 10, see, e.g., work by Saks and Zhou [32, Proposition 2.3]. We are now
ready to prove that for most x, the behavior of A is statistically similar to the behavior of H1.

B Claim 11 (A ≈ H1). Let δ = ε′ · r · 2S−1 = 2−Θ(S). Then

density{x ∈ {0, 1}n : A(P, v0, x, T ) 6∼δ H1(P, v0, x, T )} ≤ 2−S
c

. (15)

Proof. Fix any b ∈ [B] and v ∈ V (P). Let I = Ib, and fix any x′ ∈ {0, 1}n with x′|I = 0|I|.
Define f : {0, 1}s → V by

f(y′) = P|[n]\I(v;x′,NisGen(y′)). (16)

By Proposition 7,

#{x|I ∈ {0, 1}` : f(SUExt(x|I , Ud)) 6∼ε′2S−1 f(Us)} ≤ 2k+S+1. (17)

Therefore,

#{x ∈ {0, 1}n : x|[n]\I = x′|[n]\I and f(SUExt(x|I , Ud)) 6∼ε′2S−1 f(Us)} ≤ 2k+S+1. (18)

Now, let M [x] be the size(P)× size(P) stochastic matrix defined by

M [x]uv = Pr
b,y

[P|[n]\I(u;x,NisGen(SUExt(x|I , y))) = v where I = Ib]. (19)

Let M ′[x] be the stochastic matrix defined by

M ′[x]uv = Pr
b,y′

[P|[n]\I(u;x,NisGen(y′)) = v where I = Ib]. (20)

By summing over all b, v, x′, we find that

#{x ∈ {0, 1}n : M [x] 6∼ε′2S−1 M ′[x]} ≤ B · 2S · 2n−` · 2k+S+1 (21)

≤ 2n−S
c+1+O(S6) (22)

≤ 2n−S
c

, (23)

assuming c ≥ 6 and n is sufficiently large. If M [x] ∼ε′2S−1 M ′[x], then by Lemma 10,
M [x]r ∼δ M ′[x]r. The output of A is a sample from (M [x]r)v0 and the output of H1 is a
sample from (M ′[x]r)v0 , completing the proof. C

The second hybrid distribution is defined by the algorithm H2 given by Algorithm 3.
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Algorithm 3: The algorithm H2 defining the second hybrid distribution used to
prove Equation (9). The only difference between H1 and H2 is that H2 feeds true
randomness to P|[n]\I , instead of feeding it a pseudorandom string from Nisan’s
generator.
Initialize v ← v0
repeat r times

Pick b ∈ [B] uniformly at random and let I ← Ib
Pick y′′ ∈ {0, 1}T uniformly at random
Update v ← P|[n]\I(v;x, y′′)

end
return v

Algorithm 4: The algorithm H3 defining the third hybrid distribution used to
prove Equation (9). The only difference between H2 and H3 is that H2 terminates
after r iterations, whereas H3 waits until it reaches a terminal vertex of P.
Initialize v ← v0
while v is not a terminal vertex of P do

Pick b ∈ [B] uniformly at random and let I ← Ib
Pick y′′ ∈ {0, 1}T uniformly at random
Update v ← P|[n]\I(v;x, y′′)

end
return v

B Claim 12 (H1 ≈ H2). For every x,

H1(P, v0, x, T ) ∼εr H2(P, v0, x, T ). (24)

Proof. This follows immediately from the correctness of NisGen and an application of
Lemma 10 that is perfectly analogous to the reasoning used to prove Claim 11. C

Next, we must show that the output of H2 is statistically close to the output of H3. The
idea is that in each iteration, with high probability, H2 progresses by roughly B steps before
running into a vertex v with i(v) ∈ I. (Recall that i(v) is the index of the input queried by
vertex v.) Therefore, in total, with high probability, H2 progresses roughly rB steps, which
is at least T by our choice of r. We now give the detailed statement and proof.

B Claim 13 (H2 ≈ H3). For every x,

H2(P, v0, x, T ) ∼exp(−r/8) H3(P, v0, x, T ). (25)

Proof. Consider iteration t of the loop in H2, where 1 ≤ t ≤ r. Let Tt be the number of
steps through P|[n]\I that are taken in iteration t when updating v = P|[n]\I(v;x, y′′) before
reaching a vertex that tries to query from I. (If we never reach such a vertex, i.e., we reach
a terminal vertex of P, then let Tt = T .) We claim that

Pr
[

r∑
t=1

Tt < T

]
≤ e−r/8. (26)

Proof: For t ∈ [r], consider the value of v at the beginning of iteration t and the string
y′′ ∈ {0, 1}T chosen in iteration t. As a thought experiment, consider computing P(v;x, y′′),
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i.e., taking a walk through the unrestricted program. Let v = u0, u1, u2, . . . , uT ′ be the
vertices visited in this walk, T ′ ≤ T . Let St be the set of blocks b′ ∈ [B] that are queried by
the first B/2 steps of this walk. That is,

St = {b′ ∈ [B] : ∃h < bB/2c such that i(uh) ∈ Ib′}, (27)

so that |St| ≤ bB/2c. Let S′t = St ∪ [B′], where B′ is chosen so that |S′t| = bB/2c. Let Et be
the event that b ∈ S′t, where b is the value chosen by H2 in iteration t of the loop.

Since b and y′′ are chosen independently at random, the events Et are independent, and
Pr[Et] = bB/2c

B ≤ 1/2. Therefore, by Hoeffding’s inequality,

Pr[#Et that occur > (3/4)r] ≤ e−r/8. (28)

Now, suppose that Et does not occur. Then b 6∈ S′t, so b 6∈ St. This implies that when
updating v = P|[n]\I(v;x, y′′) (taking a walk through the restricted program), we either reach
a terminal vertex of P or we take at least bB/2c steps before reaching a vertex that tries to
query I. Therefore, Tt ≥ min{bB/2c, T}. By Equation (11),

r

4 ·
⌊
B

2

⌋
≥ r ·

(
B

8 − 1
)
≥ T. (29)

Equation (26) follows. Since T ≥ length(P),
∑r
t=1 Tt ≥ T implies that H2 outputs a terminal

vertex of P . Therefore, any random string that gives
∑r
t=1 Tt ≥ T also causes H2 and H3 to

output the same vertex. C

Finally, we argue that H3 perfectly simulates P (with zero error).

B Claim 14 (H3 ∼ P). For every x,

H3(P, v0, x, T ) ∼ P(v0;x, UT ). (30)

Proof. For any path v0, v1, . . . , vT ′ through P ending at a terminal vertex, both computations,
H3(P, v0, x, T ) and P(v0;x, UT ), have exactly a 2−T ′ chance of following that path. C

Proof of Theorem 8. By Claims 11 to 14 and the triangle inequality,

density{x ∈ {0, 1}n : A(P, v0, x, T ) 6∼δ P(v0;x, UT )} ≤ 2−S
c

, (31)

where δ = εr+ε′r ·2S−1 +e−r/8. By our choice of ε (Equation (12)), the first term is at most
e−cS/4. By our choice of ε′ (Equation (13)), the second term is also at most e−cS/4. By our
choice of r (Equation (11)), the third term is at most e−cS/2. Therefore, δ ≤ e−cS . J

3.2 Main Result: Derandomizing Uniform Random-Access Algorithms
Theorem 8 immediately implies BPTISP(n · poly(S), S) can be simulated by a typically-
correct algorithm that runs in time n · poly(S) and space O(S) that uses only poly(S)
random bits.

I Corollary 15. Fix a function S(n) ≥ logn that is constructible in time n · poly(S) and
space O(S), and fix a constant c ∈ N. For every language L ∈ BPTISP(n · poly(S), S),
there is a randomized algorithm A running in time n · poly(S) and space O(S) that uses
poly(S) random bits such that

density{x ∈ {0, 1}n : Pr[A(x) 6= L(x)] > 2−S
c

} ≤ 2−S
c

. (32)
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Proof. Let B be the algorithm witnessing L ∈ BPTISP(n ·poly(S), S). Let c′ be a constant
so that B runs in time n · Sc′ . For n ∈ N, let Pn be a randomized branching program, where
each vertex in V (Pn) describes a configuration of B with at most S(n) symbols written on
each tape. For each vertex v ∈ V (Pn), let i(v) be the location of the input tape read head in
the configuration described by v, and let j(v) be the location of the random tape read head
in the configuration described by v. The transitions of Pn correspond to the transitions of B
in the obvious way.

By construction, Pn is an R-OW branching program with size 2O(S) and length at most
n · Sc′ . Furthermore, given a vertex v, the neighborhood of v can be computed in poly(S)
time and O(S) space, simply by consulting the transition function for B.

Given x ∈ {0, 1}n, the algorithmA0 runs the algorithm of Theorem 8 on input (Pn, v0, x, n·
Sc
′), where v0 encodes the starting configuration of B. This gives a vertex v ∈ V (Pn). The

algorithm A0 accepts if and only if v encodes an accepting configuration of B. That way,

density{x ∈ {0, 1}n : Pr[A0(x) 6= L(x)] > 1/3 + e−cS} ≤ 2−S
c

. (33)

The algorithm A(x) runs O(Sc) repetitions of A0(x) and takes a majority vote, driving the
failure probability down to 2−Sc .

Clearly, A runs in time n · Sc′ · poly(S) · Sc = n · poly(S) and space O(S). The number
of random bits used by A is O(n·S

c′

n · poly(S) · Sc) = poly(S). J

We can further reduce the randomness complexity by using a pseudorandom generator
by Nisan and Zuckerman [30].

I Theorem 16 ([30]). Fix constants c ∈ N, α > 0. For every S ∈ N, there is a generator
NZGen : {0, 1}s → {0, 1}Sc with seed length s ≤ O(S) such that if P is an R-OW randomized
branching program of size 2S, v is a vertex, and x is an input, then

P(v;x,NZGen(Us)) ∼ε P(v;x, USc), (34)

where ε = 2−S1−α . Given S and z, NZGen(z) can be computed in O(S) space and poly(S) time.

I Corollary 17 (Main result). Fix a function S(n) ≥ logn that is constructible in time
n · poly(S) and space O(S), and fix constants c ∈ N, α > 0. For every language L ∈
BPTISP(n · poly(S), S), there is a randomized algorithm A running in time n · poly(S) and
space O(S) that uses O(S) random bits such that

density{x ∈ {0, 1}n : Pr[A(x) 6= L(x)] > 2−S
1−α
} ≤ 2−S

c

. (35)

Proof sketch. Compose the algorithm of Corollary 15 with the Nisan-Zuckerman generator
(Theorem 16). The algorithm of Corollary 15 can be implemented as a randomized branching
program as in the proof of Corollary 15. J

Finally, we can eliminate the random bits entirely at the expense of time.

I Corollary 18. For every space-constructible function S(n) ≥ logn, for every constant
c ∈ N,

BPTISP(n · poly(S), S) is within 2−S
c

of DSPACE(S). (36)

Proof. Run the algorithm of Corollary 17 on all possible random strings and take a majority
vote. J
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4 Derandomizing Turing Machines

In this section, we give our improved typically-correct derandomizations for Turing machines.
Sections 4.1 and 4.2 concern derandomization with a low mistake rate, and Sections 4.3
to 4.5 concern derandomization of Turing machines with runtime T ≈ n2.

4.1 Low-Randomness Simulation of Sequential-Access Branching
Programs with a Low Mistake Rate

Recall that for a nonterminal vertex v in a branching program, i(v) is the index of the input
queried by v, and j(v) is the index of the random string queried by v.

I Definition 19. An S-OW randomized branching program is a randomized branching
program P such that for every edge (v, v′) between two nonterminal vertices, |i(v)− i(v′)| ≤ 1
and j(v′) ∈ {j(v), j(v) + 1}.

In words, an S-OW randomized branching program has sequential access to its input and
one-way access to its random bits. By “sequential access”, we mean that after reading
bit i, it reads bit i − 1, bit i, or bit i + 1, like a head of a Turing machine. For S-OW
branching programs, we give an algorithm analogous to Theorem 8 but with a much lower
rate of mistakes.

I Theorem 20. For each constant c ∈ N, there is a randomized random-access algorithm
A with the following properties. Suppose P is an S-OW randomized branching program
on {0, 1}n × {0, 1}T with S ≥ logn, where S def= dlog size(P)e. Suppose v0 ∈ V (P), T ≥
length(P), and x ∈ {0, 1}n. Then A(P, v0, x, T ) outputs a vertex v ∈ V (P). The number of
random bits used by A is dT/ne · poly(S), and A runs in time7 T · poly(n, S) and space O(S).
Finally, for every such P, v0, T ,

#{x ∈ {0, 1}n : A(P, v0, x, T ) 6∼exp(−cS) P(v0;x, UT )} ≤ 2n/S
c

. (37)

The proof of Theorem 20 is very similar to the proof of Theorem 8. The main difference
is that instead of using a small part of the input as the source of randomness, we use most of
the input as a source of randomness. The only part of the input that is not used as a source
of randomness is the region near the bit that the branching program was processing at the
beginning of the current phase.

Because the proof of Theorem 20 does not introduce any significantly new techniques, we
defer the proof to Appendix D.

4.2 Derandomizing Turing Machines with a Low Mistake Rate
A randomized Turing machine is defined like a randomized random-access Turing machine
except that there are no index tapes. Thus, moving a read head from position i to position
j takes |i− j| steps. For functions T, S : N→ N, let BPTISPTM(T, S) denote the class of
languages L such that there is a randomized Turing machine A that always runs in time
O(T (n)) and space O(S(n)) such that for every x ∈ {0, 1}∗,

Pr[A(x) = L(x)] ≥ 2/3. (38)

7 Like in Theorem 8, the graph of P should be encoded in adjacency list format. We also stress that A is
a random-access simulation of sequential-access branching programs.
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Trivially, a randomized Turing machine can be simulated by a randomized random-access
Turing machine without loss in efficiency. Conversely, a single step of a randomized O(S)-
space random-access Turing machine can be simulated in O(n+ S) steps by a randomized
Turing machine. This proves the following elementary containments.

I Proposition 21. For any functions T, S : N→ N with S(n) ≥ logn,

BPTISPTM(T, S) ⊆ BPTISP(T, S) ⊆ BPTISPTM(T · (n+ S), S). (39)

Theorem 20 combined with the Nisan-Zuckerman generator [30] immediately implies a
derandomization theorem for Turing machines analogous to Corollary 17.

I Corollary 22. Fix a function S : N → N with S(n) ≥ logn that is constructible in
time poly(n, S) and space O(S), and fix constants c ∈ N, α > 0. For every language
L ∈ BPTISPTM(n·poly(S), S), there is a randomized algorithm A running in time poly(n, S)
and space O(S) that uses O(S) random bits such that

#{x ∈ {0, 1}n : Pr[A(x) 6= L(x)] > 2−S
1−α
} ≤ 2n/S

c

. (40)

Proof sketch. A randomized Turing machine obviously gives rise to an S-OW randomized
branching program. Like in the proof of Corollary 15 (but with Theorem 20 in place of
Theorem 8), we first obtain an algorithm that uses poly(S) random bits. Composing with
the Nisan-Zuckerman generator (Theorem 16) completes the proof. J

I Corollary 23. For every space-constructible function S(n) ≥ logn, for every constant
c ∈ N,

BPTISPTM(n · poly(S), S) is within 2−n+n/Sc of DSPACE(S). (41)

Proof. Simulate the algorithm of Corollary 22 on all possible random strings and take a
majority vote. J

4.3 Simulating Branching Programs with Random Access to Random
Bits

We now move on to our second derandomization of Turing machines, as outlined in Sec-
tion 1.2.4. Recall that for a nonterminal vertex v in a branching program, i(v) is the index
of the input that is queried by v.

I Definition 24. An S-R randomized branching program is a randomized branching program
P such that for every edge (v, v′) between two nonterminal vertices, |i(v)− i(v′)| ≤ 1.

In words, an S-R randomized branching program has sequential access to its input and
random access to its random bits. This model is more general than the S-OW model; the
S-OW model corresponds more directly to the randomized Turing machine model. But
studying the more general S-R model will help us derandomize Turing machines.

We will give a randomness-efficient algorithm for simulating S-R randomized branching
programs, roughly analogous to Theorems 8 and 20. The simulation will only work well if
the branching program has small length and uses few random bits.

Our simulation of S-R randomized branching programs is a fairly straightforward applica-
tion of work by Kinne et al. [24]; this section is not technically novel. But it is useful to be
able to compare the work by Kinne et al. [24] to our algorithms based on the “out of sight,
out of mind” technique.
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Unlike Theorems 8 and 20, our simulation of S-R branching programs will not work on a
step-by-step basis, generating a distribution on vertices that approximates the behavior of the
branching program. Instead, our simulation of S-R branching programs will only work for S-R
branching programs that compute a Boolean function. We now give the relevant definition.

I Definition 25. Let P be a randomized branching program on {0, 1}n × {0, 1}m. Suppose
some vertex v0 ∈ V (P) is labeled as the start vertex, and every terminal vertex of P
is labeled with an output bit b ∈ {0, 1}. In this case, we identify P with a function
P : {0, 1}n × {0, 1}m → {0, 1} defined by

P(x, y) = the output bit labeling P(v0;x, y). (42)

We say that P computes f : {0, 1}n → {0, 1} with failure probability δ if for every x ∈ {0, 1}n,

Pr[P(x, Um) = f(x)] ≥ 1− δ. (43)

Instead of assuming a time bound, it will be useful to assume a bound on the query
complexity of the branching program.

I Definition 26. Let P be randomized branching program. The query complexity of P,
denoted queries(P), is the maximum, over all paths v1, v2, . . . , vT through P consisting
entirely of nonterminal vertices, of

1 + #{t ∈ {2, 3, . . . , T} : i(vt) 6= i(vt−1)}. (44)

In words, queries(P) is the number of steps that P takes in which it queries a new bit of its
input, i.e., not the bit that it queried in the previous step. Trivially, queries(P) ≤ length(P).
The reader is encouraged to think of the distinction between queries(P) and length(P) as
being a technicality that can be ignored on the first reading.

We can now state our deterministic simulation theorem for S-R randomized branching
programs. It consists of a method of deterministically generating coins for the branching
program from its input.

I Theorem 27. There is a constant α > 0 so that for every n,m with m ≤ n/3, there is a
function R : {0, 1}n → {0, 1}m with the following properties. Suppose P is an S-R randomized
branching program on {0, 1}n × {0, 1}m that computes a function f with failure probability δ.
Suppose TSm ≤ αn2, where T def= queries(P) and S def= dlog size(P)e. Then

density{x ∈ {0, 1}n : P(x,R(x)) 6= f(x)} ≤ 3δ +m · 2−αn/m. (45)

Furthermore, given x and m, R(x) can be computed in space O(logn).

The function R is based on a pseudorandom generator by Kinne et al. [24] for multiparty
communication protocols. In a public-coin randomized 3-party NOF protocol Π, there are
three parties, three inputs x1, x2, x3, and one random string y. Party i knows xj for j 6= i,
and all three parties know y. All parties have access to a blackboard. The protocol specifies
who should write next as a function of what has been written on the blackboard so far and y.
Eventually, the protocol specifies the output Π(x1, x2, x3, y), which should be a function of
what has been written on the blackboard and y. The communication complexity of Π is the
maximum number of bits written on the blackboard over all x1, x2, x3, y. A deterministic
3-party NOF protocol is just the case |y| = 0.

CCC 2019



9:18 Typically-Correct Derandomization for BPTISP

Following Kinne et al. [24], we rely on a 3-party communication complexity lower bound by
Babai et al. [7]. For an integer ` ∈ N, define GIP` : ({0, 1}`)3 → {0, 1} to be the generalized
inner product function, i.e.,

GIP`(x, y, z) =
∑̀
i=1

xiyizi mod 2. (46)

Babai et al. showed that the trivial communication protocol for GIP` is essentially optimal,
even in the average-case setting.

I Theorem 28 ([7]). There is a constant β > 0 so that for every ` ∈ N, ε > 0, if Π is a
deterministic 3-party NOF protocol with

Pr
x,y,z

[Π(x, y, z) = GIP`(x, y, z)] ≥
1
2 + ε, (47)

then the communication complexity of Π is at least β · (`− log(1/ε)).

To define R, let x ∈ {0, 1}n. Partition n = n1 + n2 + n3, where ni ≥ bn/3c for each i.
Correspondingly partition x = x1 ◦ x2 ◦ x3, where |xi| = ni. Define

` =
⌊
bn/3c
m

⌋
, (48)

so that ` ≥ 1. For i ∈ [3] and j ∈ [m], let xij be the jth `-bit substring of xi. (Note that due
to roundoff errors, for some values of n, some bits of x are not represented in any xij .) Then
we define

R(x) = GIP`(x11, x21, x31) ◦ · · · ◦GIP`(x1m, x2m, x3m) ∈ {0, 1}m. (49)

Kinne et al. observed that x 7→ (x,R(x)) is a pseudorandom generator that fools 3-party
NOF protocols [24]. For clarity, we reproduce the argument here.

I Lemma 29. Suppose Π : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 × {0, 1}m → {0, 1} is a public-
coin randomized 3-party NOF protocol. Suppose that for some ε > 0, Π uses less than
β · (`− log(1/ε)) bits of communication, where β is the constant of Theorem 28. Then∣∣∣∣ Pr

x1,x2,x3,y
[Π(x1, x2, x3, y) = 1]− Pr

x1,x2,x3
[Π(x1, x2, x3,R(x1, x2, x3)) = 1]

∣∣∣∣ < εm. (50)

Proof. Let

δ =
∣∣∣∣ Pr
x1,x2,x3,y

[Π(x1, x2, x3, y) = 1]− Pr
x1,x2,x3

[Π(x1, x2, x3,R(x1, x2, x3)) = 1]
∣∣∣∣ . (51)

By Yao’s distinguisher-to-predictor argument [42], there is some index i ∈ [m] and a protocol
Π′ : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 × {0, 1}i−1 → {0, 1} so that

Pr
x1,x2,x3

[Π′(x1, x2, x3,R(x1, x2, x3)|[i−1]) = R(x1, x2, x3)i] ≥
1
2 + δ

m
. (52)

The protocol Π′ is a public-coin randomized 3-party NOF protocol that still uses less than
β · (`− log(1/ε)) bits of communication, since it merely involves simulating Π with certain
input/coin bits fixed to certain values and possibly negating the output. This immediately
implies a protocol for GIP` with the same parameters with advantage δ/m. There is some
way to fix the randomness to preserve advantage, so by Theorem 28, δ/m < ε. J
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The connection between S-R randomized branching programs and 3-party communication
protocols is given by the following lemma.

I Lemma 30. There is a public-coin randomized 3-party NOF protocol Π : {0, 1}n1 ×
{0, 1}n2 × {0, 1}n3 × {0, 1}m → {0, 1} such that

Π(x1, x2, x3, y) = P(x1 ◦ x2 ◦ x3, y), (53)

and Π uses only O(TSn ) bits of communication.

Proof. Parties 1 and 3 alternate simulating the operation of P . If party 1 is simulating and
the program reads from the first n1 bits of the input, party 1 sends the state to party 3.
Similarly, if party 3 is simulating and the program reads from the last n3 bits of the input,
party 3 sends the state to party 1. Each such transition indicates that the program must
have spent at least n2 steps traversing the middle n2 bits of the input. Therefore, the total
number of such transitions is at most T

n2
. J

Given Lemmas 29 and 30, Theorem 27 follows by a lemma by Kinne et al. [24, Lemma 1].
For clarity, we reproduce the argument here.

Proof of Theorem 27. The best case is at least as good as the average case, so there is some
string y∗ ∈ {0, 1}m such that

Pr
x∈{0,1}n

[P(x, y∗) 6= f(x)] ≤ δ. (54)

Define g : {0, 1}n × {0, 1}m → {0, 1} by

g(x, y) =
{

1 if P(x, y) = P(x, y∗)
0 otherwise.

(55)

Think of x ∈ {0, 1}n as x = x1 ◦x2 ◦x3, like in the definition of R. Then by Lemma 30, g can
be computed by a 3-party NOF protocol using O(TSn ) bits of communication. By choosing α
small enough and setting ε = 2−αn/m, this protocol for f will use fewer than β(`− log(1/ε))
bits of communication. Therefore, by Lemma 29,

Pr
x

[P(x,R(x)) 6= P(x, y∗)] ≤ Pr
x,y

[P(x, y) 6= P(x, y∗)] + εm. (56)

Therefore,

Pr
x

[P(x,R(x)) 6= f(x)] ≤ Pr
x

[P(x, y∗) 6= f(x)] + Pr
x

[P(x,R(x)) 6= P(x, y∗)] (57)

≤ δ + Pr
x,y

[P(x, y) 6= P(x, y∗)] + εm (58)

≤ δ + Pr
x,y

[P(x, y) 6= f(x)] + Pr
x

[P(x, y∗) 6= f(x)] + εm (59)

≤ δ + δ + δ + εm. (60)

Obviously, R(x) can be computed in O(logn) space. J
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4.4 Randomness-Efficient Amplification for Branching Programs
We will use a space-efficient expander walk algorithm by Gutfreund and Viola [17].

I Theorem 31 ([17]). For every s ∈ N, there is a constant-degree expander graph G on
vertex set {0, 1}s. Furthermore, there is an algorithm GVWalk such that if y ∈ {0, 1}s is a
vertex and e1, e2, . . . , er ∈ {0, 1}O(1) are edge labels, then GVWalk(y, e1, e2, . . . , er) outputs
the vertex reached by starting at y and taking a walk by following the edge labels e1, e2, . . . , er.
The algorithm GVWalk runs in space O(log s+ log r).

Recall that we are working toward derandomizing the class BPTISPTM(T, S) for all
TS2 ≤ o(n2/ logn). This class corresponds to branching programs on {0, 1}n × {0, 1}T that
compute some function with failure probability 1/3. But Theorem 27 requires that the
branching program use at most αn2

TS random bits. Furthermore, the failure probability of the
branching program governs the mistake rate of the derandomization.

We can overcome these two difficulties because randomized Turing machines correspond
to S-OW randomized branching programs (i.e., programs that have sequential access to the
input and one-way access to the random bits), whereas Theorem 27 applies to the more
powerful S-R model (i.e., programs that have sequential access to the input and random
access to the random bits). An S-OW branching program can be simulated by an S-R
branching program using very few random bits by applying Nisan’s generator. The following
lemma combines this idea with a random walk on an expander graph (Theorem 31) for
amplification. This is the same technique that Fortnow and Klivans used to prove that
BPL ⊆ L/O(n) [12].

I Lemma 32. Suppose P is an S-OW randomized branching program on {0, 1}n × {0, 1}T
that computes a function f : {0, 1}n → {0, 1} with failure probability 1/3. Let S = log size(P).
For every δ > 0, there is an S-R branching program P ′ on {0, 1}n × {0, 1}m that computes f
with failure probability δ such that

queries(P ′) ≤ O((queries(P) + n) log(1/δ)), (61)
log size(P ′) ≤ O(S + log log(1/δ)), (62)

m ≤ O(S log T + log(1/δ)). (63)

Furthermore, given P, δ, and a vertex v ∈ V (P ′), the neighborhood of v can be computed in
time8 poly(S, log(1/δ)) and space O(S + log log(1/δ)).

Proof. Let NisGen : {0, 1}s → {0, 1}T be Nisan’s generator with error 0.1 for randomized
branching programs of size size(P). Let G be the expander of Theorem 31 on vertex set
{0, 1}s. We will interpret a string y ∈ {0, 1}m as describing a walk through G from an
arbitrary initial vertex of length r − 1, so that m = s+O(r). Let y1, . . . , yr ∈ {0, 1}s be the
vertices visited by this walk. The program P ′(x, y) runs P(x,NisGen(yt)) for every y ∈ [r]
and takes a majority vote of the answers; it finds the vertices yt by running the algorithm
GVWalk of Theorem 31. By the expander walk Chernoff bound [14], for an appropriate choice
of r = Θ(log(1/δ)), the failure probability of P ′ is at most δ.

Clearly, queries(P ′) ≤ r · (queries(P) + n), where the +n term takes care of the steps
needed to get from the final position of x read in one iteration of P to the first position of x
read in the next iteration of P (recall that P ′ is an S-R branching program).

8 As usual, we assume that the graph of P is encoded in adjacency list format. We also assume that the
start vertex v0 is designated in a way that allows it to be computed in the specified time and space.
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The space needed by P ′ consists of the S bits of space needed for P, plus O(S) bits of
space for computing NisGen, plus O(log r) bits of space to keep track of the answers generated
by the iterations, plus O(logS + log r) bits of space for GVWalk. Finally, computing the
neighborhood of v merely requires inspecting the transition functions for the algorithms
NisGen and GVWalk, inspecting P, and doing arithmetic. J

4.5 Derandomizing Turing Machines with Runtime Near n2

Finally, we are ready to state and prove our typically-correct derandomization of Turing
machines based on Theorem 27.

I Corollary 33. Suppose T, S : N→ N are both constructible in time poly(n) and space O(S)
and TS2 ≤ o

(
n2

logn

)
. For every language L ∈ BPTISPTM(T, S), there is a constant γ > 0

so that

L is within exp
(
− γn√

TS

)
+ exp

(
− γn2

TS2 logn

)
of DTISP(poly(n), S). (64)

The rate of mistakes in Corollary 33 is always o(1). The rate of mistakes gets smaller
(i.e., the simulation quality gets higher) when T and S are smaller. For example, if S = logn
and T = n2/ log4 n, the rate of mistakes in Equation (64) is n−Ω(1). For another example, if
S = polylogn and T = npolylogn, the rate of mistakes in Equation (64) is exp

(
−Ω̃(
√
n)
)
.

As a reminder, Corollary 33 is incomparable to Corollary 18: the randomized classes in
the two results are incomparable; the deterministic algorithm in Corollary 33 is faster; the
mistake rate in Corollary 33 is lower when S and T are not too big. Similarly, Corollary 33
is incomparable to Corollary 23: the randomized class in Corollary 33 is more powerful and
the deterministic algorithm in Corollary 33 is faster, but the mistake rate in Corollary 33 is
much higher. Finally, even when S ≥ nΩ(1), Corollary 33 is incomparable to derandomizing
via the Nisan-Zuckerman generator [30], because the deterministic algorithm of Corollary 33
runs in polynomial time, although it makes some mistakes.

Conceptually, the proof of Corollary 33 merely consists of combining Lemma 32 and The-
orem 27. The only work to be done is in appropriately choosing δ and verifying parameters.

Proof of Corollary 33. Let A be the algorithm witnessing L ∈ BPTISPTM(T, S). Let Pn
be the S-OW branching program on {0, 1}n × {0, 1}T describing the behavior of A on inputs
of length n.

We consider two cases. First, suppose TS3 > n2/ log2 n. Then let

δ = exp
(
− γ0n

2

TS2 logn

)
, (65)

where the constant γ0 will be specified later. Let P ′n be the S-R branching program on
{0, 1}n × {0, 1}m given by Lemma 32. There is a constant c that does not depend on γ

so that

queries(P ′n) · log size(P ′n) ·m ≤ cTS2 logn ln(1/δ) + cTS ln2(1/δ) (66)

= cγ0n
2 + cγ2

0n
4

TS3 log2 n
(67)

≤ cγ0n
2 + cγ2

0n
2. (68)
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Choose γ0 so that cγ0+cγ2
0 ≤ α, where α is the value in Theorem 27. Since TS2 ≤ o(n2/ logn)

and T ≥ n, we must have S ≤ o(
√
n/ logn). Therefore,

m ≤ O
(
S logn+ n2

TS2 logn

)
≤ O

(
S logn+ TS3 logn

TS2

)
≤ o(

√
n logn) ≤ n/3. (69)

Therefore, the hypotheses of Theorem 27 are satisfied.
The deterministic algorithm, naturally, outputs P ′n(x,R(x)), where R is the function of

Theorem 27. It is immediate that this runs in poly(n) time and O(S) space. Finally, to
compute the rate of mistakes, observe that

m · 2−αn/m ≤ exp
(
−Ω

(
− n

S logn

))
, (70)

whereas

δ ≥ exp
(
−O

(
n

S2 logn

))
. (71)

Therefore, when n is sufficiently large, m · 2−αn/m < δ. Therefore,

density{x ∈ {0, 1}n : P ′n(x,R(x)) 6= L(x)} ≤ 4δ. (72)

For the second case, suppose TS3 ≤ n2/ log2 n. Then let

δ = exp
(
− γ0n√

TS

)
. (73)

Again, let P ′n be the S-R branching program on {0, 1}n × {0, 1}m given by Lemma 32. Then

queries(P ′n) · log size(P ′n) ·m ≤ cTS2 logn ln(1/δ) + cTS ln2(1/δ) (74)

= cγ1
√
TS3n logn+ cγ2

1n
2 (75)

≤ cγ1n
2 + cγ2

1n
2 (76)

≤ αn2. (77)

Furthermore, since TS3 ≤ n2/ log2 n, taking a square root gives S
√
TS ≤ n/ logn, and hence

m ≤ O
(
S logn+ n√

TS

)
≤ O

(
n√
TS

)
< n/3. (78)

Therefore, again, the hypotheses of Theorem 27. In this case as well, the deterministic
algorithm outputs P ′n(x,R(x)). We now compute the rate of mistakes again. We have

m · 2−αn/m ≤ exp(−Ω(
√
TS)) < δ (79)

for sufficiently large n, because
√
TS ≥

√
n logn. Therefore, once again,

density{x ∈ {0, 1}n : P ′n(x,R(x)) 6= L(x)} ≤ 4δ. (80)

Choosing γ < γ0 completes the proof. J
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5 Derandomization with Advice

As previously mentioned, Fortnow and Klivans showed that BPL ⊆ L/O(n) [12]. We now
explain how to refine their ideas and slightly improve their result. Fortnow and Klivans’
argument relied on the Gutfreund-Viola space-efficient expander walk (Theorem 31). They
only used this expander for its sampling properties. Extractors also have good sampling
properties. Our improvement will come from simply replacing the expander-based sampler
in Fortnow and Klivans’ argument with the GUV-based extractor of Theorem 6.

I Theorem 34. BPL ⊆ L/(n+O(log2 n)).

Proof. Let A be an algorithm witnessing L ∈ BPL, and assume A has failure probability
at most 0.1. Let NisGen : {0, 1}s → {0, 1}poly(n) be Nisan’s generator (Theorem 9) with
error 0.1 and space bound sufficient to fool A, so that s ≤ O(log2 n). Let GUVExt :
{0, 1}n+2s+3×{0, 1}d → {0, 1}s be the (2s, 0.1)-extractor of Theorem 6, so that d ≤ O(logn).

Given input x ∈ {0, 1}n and advice a ∈ {0, 1}n+2s+3, run A(x,NisGen(GUVExt(a, z))) for
all z and take a majority vote.

This algorithm clearly runs in space O(logn). By Proposition 7, for each fixed x, the
number of advice strings a causing the algorithm to give the wrong answer is at most 22s+2.
Therefore, the total number of advice strings a that cause the algorithm to give the wrong
answer for any x is at most 2n+2s+2 < 2|a|. Therefore, there is some choice of a such that
the algorithm succeeds on all inputs. J

We now generalize Theorem 34, showing that the amount of advice can be reduced to
below n in certain cases. We will rely on a special feature of Nisan’s generator that Nisan
used to prove RL ⊆ SC. The seed to Nisan’s generator is naturally divided into two parts,
s = s1 +s2, where s2 ≤ O(S+log(1/ε)).9 Nisan showed that there is an efficient procedure to
check that the first part of the seed is “good” for a particular randomized log-space algorithm
and a particular input to that algorithm.

I Lemma 35 ([28]). For every S ∈ N, there is a function NisGen : {0, 1}s1 × {0, 1}s2 →
{0, 1}2S , with s1 ≤ O(S2) and s2 ≤ O(S), and an algorithm Check, so that

For any R-OW randomized branching program P with log size(P) ≤ S and any input
x ∈ {0, 1}n,

Pr
y1∈{0,1}s1

[Check(P, x, y1) = 1] ≥ 1/2. (81)

If Check(P, x, y1) = 1, then for any vertex v0 ∈ V (P),

P(v0;x,NisGen(y1, Us2)) ∼0.1 P(v0;x, U2S ). (82)

Furthermore, Check runs in space O(S), and given S, y1, and y2, NisGen(y1, y2) can be
computed in space O(S).

A ZP · SPACE(S) algorithm for a language L with failure probability δ is a randomized
Turing machine A with two-way access to its random bits such that A runs in space O(S),
Pr[A(x) ∈ {L(x),⊥}] = 1, and Pr[A(x) = ⊥] ≤ δ. The following lemma refines a theorem by
Nisan that says that BPL ⊆ ZP · L [27]; the improvement is that our algorithm has a low
failure probability relative to the number of random bits it uses.

9 The first s1 bits specify the hash functions, and the last s2 bits specify the input to those hash functions.
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I Lemma 36. Fix S : N → N with S(n) ≥ logn and δ : N → [0, 1], both constructible in
space O(S). For every L ∈ BPSPACE(S), there is a ZP · SPACE(S) algorithm A that
decides L with failure probability δ and uses log2(1/δ) +O(S2) random bits.

Proof. Let B be the algorithm witnessing L ∈ BPSPACE(S), and assume B has failure
probability at most 0.1. Let P be the corresponding R-OW branching program for inputs of
length n. Let NisGen : {0, 1}s1 × {0, 1}s2 → {0, 1}poly(n) be the generator of Lemma 35 with
space bound dlog size(P)e, so that s1 ≤ O(S2).

Let ` = dlog2(1/δ)e + 2s1 + 2, and let GUVExt : {0, 1}` × {0, 1}d → {0, 1}s1 be the
(2s1, 0.1)-extractor of Theorem 6, so that d ≤ O(log log(1/δ) + logS). On input x ∈ {0, 1}n
and random string y ∈ {0, 1}`, run Algorithm 5.

Algorithm 5: The algorithm used to prove Lemma 36.
for z ∈ {0, 1}d do

Let y1 ← GUVExt(y, z)
if Check(P, x, y1) accepts then /* Check is the algorithm of Lemma 35 */

Run B(x,NisGen(y1, y2)) for every y2, take a majority vote, and output the
answer

end
end
Output ⊥

Clearly, Algorithm 5 runs in space O(S + d). Since δ is constructible in space O(S), its
denominator must have at most 2O(S) digits. Therefore, δ ≥ 2−2O(S) and d ≤ O(S), so the
algorithm runs in space O(S). Furthermore, the algorithm is clearly zero-error. Finally, by
Proposition 7, the number of y such that Check(P, x, y1) rejects for every z is at most 22s1+2,
and hence the failure probability of the algorithm is at most 22s1+2

2` ≤ δ. J

We now give our generalization of Theorem 34. From the work of Goldreich and Wigderson
[15], it follows that if a language L ∈ BPSPACE(S) is in DPSPACE(S)/a for a� n via an
algorithm where most advice strings are “good”, then L is close to being in DPSPACE(S).
Our theorem is a converse10 to this result, showing that in the space-bounded setting, there
is a very tight connection between typically-correct derandomizations and simulations with
small amounts of advice.

I Theorem 37. Fix functions S : N → N with S(n) ≥ logn and ε : N → [0, 1] that
are constructible in space O(S). Suppose a language L ∈ BPSPACE(S) is within ε of
DSPACE(S). Then

L ∈ DSPACE(S)/(n− log2(1/ε(n)) +O(S2)). (83)

Proof. Let A be the algorithm of Lemma 36 with δ < 2−n/ε. Let m = m(n) be the number
of random bits used by A. Let B be the algorithm witnessing the fact that L is within ε of
DSPACE(S).

The algorithm with advice is very simple. Given input x ∈ {0, 1}n and advice a ∈ {0, 1}m,
output A(x, a), unless A(x, a) = ⊥, in which case output B(x). This algorithm clearly runs
in O(S) space and uses n− log2(1/ε(n)) +O(S2) bits of advice.

10The statement of Theorem 37 doesn’t mention it, but indeed, in the proof of Theorem 37, most advice
strings are “good”.
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Now we argue that there is some advice string such that the algorithm succeeds on all
inputs. Let S ⊆ {0, 1}n be the set of inputs on which B fails. Consider picking an advice
string a uniformly at random. For each string x ∈ S, Pra[A(x, a) = ⊥] ≤ δ. Therefore, by
the union bound, the probability that there is some x ∈ S such that A(x, a) = ⊥ is at most
|S|δ = ε · 2n · δ < 1. Therefore, there is some advice string such that the algorithm succeeds
on all inputs in S. Finally, for any advice string, the algorithm succeeds on all inputs in
{0, 1}n \ S, because A is zero-error. J

Combining Theorem 37 with our typically-correct derandomizations gives unconditional
simulations with fewer than n bits of advice:

I Corollary 38. For every constant c ∈ N,

BPTISP(n polylogn, logn) ⊆ L/(n− logc n). (84)

Proof. Combine Corollary 18 and Theorem 37. J

I Corollary 39. For every constant c ∈ N,

BPTISPTM(n polylogn, logn) ⊆ L/
(

n

logc n

)
. (85)

Proof. Combine Corollary 23 and Theorem 37. J

I Corollary 40.

BPTISPTM(n1.99, logn) ⊆ L/(n− nΩ(1)). (86)

Proof. Combine Corollary 33 and Theorem 37. J

6 Disambiguating Efficient Nondeterministic Algorithms

6.1 Overview
Recall that a nondeterministic algorithm is unambiguous if on every input, there is at most
one accepting computation. Suppose a language L can be decided by a nondeterministic
algorithm that runs in time T = T (n) ≥ n and space S = S(n) ≥ logn. Allender, Reinhardt,
and Zhou showed that if SAT has exponential circuit complexity, there is an unambiguous
algorithm for L that runs in space O(S) [2]. Unconditionally, van Melkebeek and Prakriya
recently gave an unambiguous algorithm for L that runs in time 2O(S) and space O(S

√
log T )

[40].
For some of our results on derandomizing efficient algorithms, we give a corresponding

theorem for disambiguating efficient nondeterministic algorithms, albeit with slightly worse
parameters.

6.1.1 Our Results
Let NTISP(T, S) denote the class of languages that can be decided by a nondeterministic
random-access Turing machines that runs in time T and space S. Define UTISP(T, S)
the same way, but with the additional requirement that the algorithm is unambiguous. In
Sections 6.4 and 6.5, we show that for every S and every constant c ∈ N,

NTISP(n · poly(S), S) is within 2−S
c

of UTISP(2O(S), S
√

logS). (87)

Equation (87) is analogous to Corollary 18.
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Reinhardt and Allender showed that NL ⊆ UL/ poly [31]. In Section 6.6, we improve
the Reinhardt-Allender theorem by showing that NL ⊆ UL/(n+O(log2 n)). More generally,
we show that if a language L ∈ NSPACE(S) is within ε(n) of being in USPACE(S), then
L ∈ USPACE(S)/(n− log2(1/ε(n)) +O(S2)). This result is analogous to Theorem 37.

6.1.2 Techniques
Our disambiguation theorems are proven using the same “out of sight, out of mind” technique
that we used in Sections 3 and 4.2 for derandomization. Roughly, this is possible because
of prior work [31, 40] that reduces the problem of disambiguating algorithms to certain
derandomization problems. We review the necessary background in Section 6.3.

Our disambiguation algorithms do not really introduce any additional novel techniques,
beyond what we already used in Sections 3 and 4.2. Rather, our contribution in this section is
to identify another setting where our techniques are helpful, thereby illustrating the generality
of our techniques.

6.2 Preliminaries
Unambiguous algorithms can be composed as long as the inner algorithm is “single-valued”,
which we now define. This notion corresponds to classes such as UL ∩ coUL.

I Definition 41. A single-valued unambiguous algorithm A is a nondeterministic algorithm
such that for every input x, all but one computation path outputs a special symbol ⊥n
(indicating that the nondeterministic choices were “bad”). We let A(x) denote the output of
the one remaining computation path.

When describing unambiguous algorithms, we will often include steps such as “Compute
a ← A(x)”, where A is a single-valued unambiguous algorithm. Such a step should be
understood as saying to run A on input x. If A outputs ⊥n, immediately halt and output
⊥n. Otherwise, let a be the output of A.

6.3 Unambiguous Algorithms for Connectivity by van Melkebeek and
Prakriya

Recall that the s-t connectivity problem is defined by

STConn = {(G, s, t) : there is a directed path from s to t}, (88)

where G is a digraph and s, t ∈ V (G). STConn is a classic example of an NL-complete
language [21]. Using an “inductive counting” technique, Reinhardt and Allender gave a
single-valued unambiguous algorithm for testing whether a given digraph is “min-unique”, as
well as a single-valued unambiguous algorithm for solving STConn in min-unique digraphs
[31]. Using the isolation lemma, Reinhardt and Allender showed that assigning random
weights to a digraph makes it “min-unique” [31]. These two results are the main ingredients
in the proof that NL ⊆ UL/poly [31].

Recently, van Melkebeek and Prakriya gave a “pseudorandom weight generator” with
seed length O(log2 n) [40].11 Just like uniform random weights, the weights produced by this
generator make a digraph “min-unique” with high probability.12

11 In the terminology of van Melkebeek and Prakriya [40], here we refer to the “hashing only” approach.
12The van Melkebeek-Prakriya generator only works for layered digraphs, but this technicality does not

matter for us.
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Roughly, this pseudorandom weight generator by van Melkebeek and Prakriya will play a
role in our disambiguation results that is analogous to the role that Nisan’s generator played
in our derandomization results.

For our purposes, it is not necessary to give a precise account of min-uniqueness. What
matters is that STConn can be decided in unambiguous log-space given two-way access to
an O(log2 n)-bit random string. Furthermore, “bad” random strings can be unambiguously
detected. We now state this result more carefully.

I Theorem 42 ([40]). There is a single-valued unambiguous algorithm vMPSeededAlg so
that for every x ∈ {0, 1}n,

Pr
y∈{0,1}∞

[vMPSeededAlg(x, y) ∈ {STConn(x),⊥r}] = 1, (89)

Pr
y∈{0,1}∞

[vMPSeededAlg(x, y) = ⊥r] ≤ 1/2. (90)

Furthermore, vMPSeededAlg(x, y) only reads the first O(log2 n) bits of y (the “seed”) and
runs in space O(logn).

Proof sketch. We assume that the reader is familiar with the paper by van Melkebeek and
Prakriya [40]. Given an instance x of STConn, the algorithm vMPSeededAlg first applies a
reduction, giving a layered digraph G on which to test connectivity. Then, the first O(log2 n)
bits of y are interpreted as specifying O(logn) hash functions, which are used to assign
weights to the vertices in G. An algorithm by Reinhardt and Allender [31] is run to determine
whether the resulting weighted digraph is min-unique. If it is not, vMPSeededAlg outputs
⊥r. If it is, another closely related algorithm by Reinhardt and Allender [31] is run to decide
connectivity in the resulting weighted digraph. J

Notice that vMPSeededAlg can be thought of as having three read-only inputs: the
“real” input x ∈ {0, 1}n; the random seed y ∈ {0, 1}O(log2 n); and the nondeterministic bits
z ∈ {0, 1}poly(n). The algorithm has two-way access to x and y and one-way access to z.
Notice also that a computation path of vMPSeededAlg has four possible outputs: 0, indicating
that x 6∈ STConn; 1, indicating that x ∈ STConn; ⊥n, indicating bad nondeterministic bits
z; and ⊥r, indicating bad random bits y.

Iterating over all y in Theorem 42 would take Θ(log2 n) space. By modifying their “pseu-
dorandom weight generator”, van Melkebeek and Prakriya gave an unambiguous algorithm
for STConn that runs in O(log3/2 n) space. The performance of their algorithm is improved if
we only need to search for short paths; the precise details are given by the following theorem.

I Theorem 43 ([40]). There is a single-valued unambiguous algorithm vMPShortPathsAlg
such that if G is a digraph, s, t ∈ V (G), and r ∈ N, then vMPShortPathsAlg(G, s, t, r) = 1
if and only if there is a directed path from s to t in G of length at most r. Furthermore,
vMPShortPathsAlg runs in time poly(n) and space O(logn

√
log r).

Proof sketch. Again, we assume that the reader is familiar with the paper by van Melkebeek
and Prakriya [40]. Again, we first apply a reduction, giving a layered digraph G′ of width
|V (G)| and length r, so that the question is whether there is a path from the first vertex in
the first layer to the first vertex in the last layer.

We rely on the “combined hashing and shifting” generator by van Melkebeek and Prakriya
[40, Theorem 1]. The seed of this generator specifies O(

√
log r) hash functions (each is

specified with O(logn) bits). We find these hash functions by exhaustive search one at a time,
maintaining the invariant that portions of G′ that have weights assigned are min-unique. We
test for min-uniqueness using a slight variant of the algorithm by Reinhardt and Allender
[31] described by van Melkebeek and Prakriya [40, Lemma 1]. J
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Roughly speaking, Theorem 43 plays a role in our disambiguation results that is analogous
to the role that the Nisan-Zuckerman generator played in our derandomization results.

6.4 Disambiguating Branching Programs
For us, a nondeterministic branching program P on {0, 1}n × {0, 1}m is a randomized
branching program (but we think of the second input to the program as nondeterministic
bits instead of random bits) such that some vertex v0 ∈ V (P) is labeled as the start vertex
and some vertex vaccept ∈ V (P) is labeled as the accepting vertex. We identify P with a
function P : {0, 1}n × {0, 1}m → {0, 1} defined by

P(x, y) =
{

1 if P(v0;x, y) = vaccept,

0 otherwise,
(91)

and we also identify P with a function P : {0, 1}n → {0, 1} defined by

P(x) = 1 ⇐⇒ ∃y P(x, y) = 1. (92)

(Equation (92) expresses the fact that P is a nondeterministic branching program.) Finally,
an R-OW nondeterministic branching program is just a nondeterministic branching program
that is R-OW when thought of as a randomized branching program, i.e., it reads its
nondeterministic bits from left to right.

I Theorem 44. For every constant c ∈ N, there is a single-valued unambiguous algorithm A
with the following properties. Suppose P is an R-OW nondeterministic branching program on
{0, 1}n × {0, 1}T . Suppose S ≥ logn, where S def= dlog size(P)e, and T ≥ length(P). Then

density{x ∈ {0, 1}n : A(P, x, T ) 6= P(x)} ≤ 2−S
c

. (93)

Furthermore, A(P, x, T ) runs in time 2O(S) and space O(S
√

logdT/ne+ logS).

Toward proving Theorem 44, we introduce some notation. The computation of P(x)
naturally reduces to STConn. Let P[x] be the digraph (V,E), where V = V (P) and E is
the set of edges (u, v) in P labeled with xi(u)0 or xi(u)1. (So every nonterminal vertex in
P[x] has outdegree 2.) That way, P(x) = 1 if and only if (P[x], v0, vaccept) ∈ STConn.

The algorithm A of Theorem 44 is given in Algorithm 6. The algorithm relies on a
subroutine B given in Algorithm 7.

Parameters

Let s be the number of random bits used by vMPSeededAlg, so that s ≤ O(S2). The
subroutine B relies on the extractor GUVExt of Theorem 6. This extractor is instantiated
with source length `

def= Sc+1, error 0.1, entropy k def= 2s, and output length s. The seed
length of GUVExt is d ≤ O(log `) = O(logS).

Efficiency

First, we bound the space complexity of A. If Sc+1 > n, then A runs in space

O(log size(P)
√

log T ) = O(S
√

log T ) ≤ O
(
S

√
log TS

c+1

n

)
(94)

= O(S
√

log(T/n) + logS). (95)
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Algorithm 6: The algorithm A of Theorem 44.
if Sc+1 > n then

return vMPShortPathsAlg(P[x], v0, vaccept, T )
else

Let I1, I2, . . . , IB ⊆ [n] be disjoint sets of size Sc+1 with B as large as possible
for b = 1 to B do

Let I ← Ib
Let Vb ← {v ∈ V (P) : i(v) ∈ I} ∪ {v0, vaccept}
Let Eb be the set of pairs (u, v) ∈ V 2

b such that there is a directed path from
u to v in P|[n]\I [x]
Let Hb be the digraph (Vb, Eb)
Compute a← vMPShortPathsAlg(Hb, v0, vaccept, bSc+1T/nc+ 1). Whenever
vMPShortPathsAlg asks whether some pair (u, v) is in Eb, run B(P, x, b, u, v),
where B is given in Algorithm 7

if a = 1 then return 1
end
return 0

end

Algorithm 7: The algorithm B used by A to decide whether (u, v) ∈ Eb. The block
I is the same block Ib used by A.

for y ∈ {0, 1}O(logS) do
Let a′ ← vMPSeededAlg(P|[n]\I [x], u, v,GUVExt(x|I , y))
if a′ 6= ⊥r then return a′

end
return ⊥i

Suppose now that Sc+1 ≤ n. The extractor GUVExt runs in space O(logS), and the algorithm
vMPSeededAlg runs in space O(S), so B runs in space O(S). The algorithm vMPShortPathsAlg
runs in space

O(log |Vb|
√

log(bSc+1T/nc+ 1)) ≤ O(S
√

logdT/ne+ logS). (96)

Therefore, overall, A runs in space O(S
√

logdT/ne+ logS).
Next, we bound the running time of A. If Sc+1 > n, then A runs in time poly(size(P)) =

2O(S) as claimed. Suppose now that Sc+1 ≤ n. Because B runs in space O(S), it must run
in time 2O(S). Therefore, vMPShortPathsAlg runs in time 2O(S) · 2O(S) = 2O(S). Therefore,
overall, A runs in time 2O(S).

Correctness

Since vMPSeededAlg and vMPShortPathsAlg are single-valued unambiguous algorithms, A
is a single-valued unambiguous algorithm. All that remains is to show that for most x,
A(P, x, T ) = P(x). First, we show that for most x, the subroutine B is correct, i.e., the one
computation path that does not output ⊥n outputs a bit indicating whether (u, v) ∈ Eb.
Clearly, the only way that B can be incorrect is if it outputs ⊥i, indicating a “hard” input x.
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B Claim 45. For every P,

density{x ∈ {0, 1}n : ∃b, u, v such that B(P, x, b, u, v) = ⊥i} ≤ 2−S
c

. (97)

Proof. The graph P|[n]\I [x] does not depend on x|I . Therefore, for each fixed b, each fixed
z ∈ {0, 1}n−|Ib|, and each fixed u, v ∈ V (P), by Proposition 7,

#{x : x|[n]\I = z and B(P, x, b, u, v) = ⊥i} ≤ 2k+2 ≤ 2O(S4). (98)

Therefore, by summing over all b, z, u, v,

#{x ∈ {0, 1}n : ∃b, u, v such that B(P, x, b, u, v) = ⊥i} ≤ 2n−S
c+1+logn+2S+O(S4) (99)

= 2n−S
c+1+O(S4) (100)

≤ 2n−S
c

(101)

for sufficiently large n. C

Next, we show that as long as B does not make any mistakes, A is correct.

B Claim 46. If P(x) = 1, there is some b ∈ [B] so that there is a path from v0 to vaccept
through Hb of length at most bSc+1T/nc+ 1.

Proof. Since P(x) = 1, there is a path from v0 to vaccept through P[x] of length at most
T . Let v0, v1, v2, . . . , vT ′ = vaccept be the vertices visited by that path, so that T ′ ≤ T .
Consider picking b ∈ [B] uniformly at random. Then for each t < T ′, Pr[i(vt) ∈ Ib] ≤ Sc+1/n.
Therefore, by linearity of expectation,

E[#{t : i(vt) ∈ Ib}] ≤ Sc+1T/n. (102)

The best case is at least as good as the average case, so there is some b ∈ [B] such that
#{t : i(vt) ∈ Ib} ≤ Sc+1T/n. Let t1, t2, . . . , tr be the indices t such that i(vt) ∈ Ib. Then by
the definition of Eb, the edges (v0, t1), (t1, t2), . . . , (tr−1, tr), (tr, vaccept) are all present in Hb.
Therefore, there is a path from v0 to vaccept through Hb of length at most r + 1. C

Combining Claims 45 and 46 completes the proof of Theorem 44.

6.5 Disambiguating Uniform Random-Access Algorithms
I Corollary 47. For every space-constructible function S(n) ≥ logn, for every constant
c ∈ N,

NTISP(n · poly(S), S) is within 2−S
c

of UTISP(2O(S), S
√

logS). (103)

Proof sketch. The class NTISP(n · poly(S), S) corresponds to R-OW nondeterministic
branching programs of size 2O(S) and length T = n · poly(S). For these parameters, the
algorithm of Theorem 44 runs in time 2O(S) and space O(S

√
logS). J

6.6 Disambiguation with Advice
We now show how to disambiguate NL with only n+O(log2 n) bits of advice. The proof is
very similar to the proof of Theorem 34.

I Theorem 48. NL ⊆ UL/(n+O(log2 n)).
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Proof. Let R be a log-space reduction from L ∈ NL to STConn. Let s be the number
of random bits used by vMPSeededAlg on inputs of length nc, where nc is the length of
outputs of R on inputs of length n. Let GUVExt : {0, 1}n+2s+3 × {0, 1}d → {0, 1}s be the
(2s, 0.1)-extractor of Theorem 6, so that d ≤ O(logn).

Given input x ∈ {0, 1}n and advice a ∈ {0, 1}n+2s+3, compute

az
def= vMPSeededAlg(R(x),GUVExt(a, z)) (104)

for all z and accept if there is some z so that az = 1.
This algorithm clearly runs in space O(logn) and is unambiguous. By Proposition 7, for

each fixed x, the number of advice strings a causing the algorithm to give the wrong answer
is at most 22s+2. Therefore, the total number of advice strings a that cause the algorithm to
give the wrong answer for any x is at most 2n+2s+2 < 2|a|. Therefore, there is some choice
of a such that the algorithm succeeds on all inputs. J

Just like we did with Theorem 34, we now generalize Theorem 48, showing that the amount
of advice can be reduced to below n if we start with a language that has a typically-correct
disambiguation.

I Theorem 49. Fix functions S : N → N with S(n) ≥ logn and ε : N → [0, 1] that
are constructible in O(S) space. Suppose a language L ∈ NSPACE(S) is within ε of
USPACE(S). Then

L ∈ USPACE(S)/(n− log2(1/ε(n)) +O(S2)). (105)

The proof of Theorem 49 is very similar to the proof of Theorem 37. Because the proof
of Theorem 49 does not introduce any significantly new techniques, we defer the proof to
Appendix E.

I Corollary 50. For every constant c ∈ N,

NTISP(npolylogn, logn) ⊆ USPACE(logn
√

log logn)/(n− logc n). (106)

Proof. For any L ∈ NTISP(npolylogn, logn), obviously L ∈ NSPACE(logn
√

log logn),
and by Corollary 47, L is within 2− logc n of USPACE(logn

√
log logn). Applying Theorem 49

completes the proof. J

7 Directions for Further Research

The main open problem in this area is to prove that BPL is within o(1) of L. Corollary 18
implies that BPTISP(npolylogn, logn) is within o(1) of L, and Corollary 33 implies
that BPTISPTM(n1.99, logn) is within o(1) of L, but BPL allows time nc where c is an
arbitrarily large constant. At present, for a generic language L ∈ BPL, we do not even know
a deterministic log-space algorithm that succeeds on at least one input of each length.

This work also provides some additional motivation for studying small-space extractors.
The two extractors we used in this paper (Theorems 5 and 6) were sufficient for our
applications, but it would be nice to have a single log-space extractor that is optimal up to
constants for the full range of parameters.
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A Proof of Theorem 5: The Shaltiel-Umans Extractor

In this section, we discuss the proof of Theorem 5. The extractor follows the same basic
construction that Shaltiel and Umans used for a “low error” extractor [36, Corollary 4.21].
We will assume that the reader is familiar with the paper by Shaltiel and Umans [36]. We
will also switch to the parameter names by Shaltiel and Umans, so the source length of the
extractor is n rather than `, and the seed length is t rather than d. In these terms, we are
shooting for time poly(n) and space O(t).

The only change to the construction that we make is that we will use a different in-
stantiation of the “base field” Fq. Shaltiel and Umans [36] used a deterministic algorithm
by Shoup that finds an irreducible polynomial of degree log q over F2 in time poly(log q).
Unfortunately, Shoup’s algorithm is not sufficiently space-efficient for our purposes. To get
around this issue, we use an extremely explicit family of irreducible polynomials:

I Lemma 51 ([39, Theorem 1.1.28]). For every a ∈ N, the polynomial x2·3a + x3a + 1 is
irreducible over F2.

Therefore, by replacing q by some power of two between q and q3, we can easily, determin-
istically construct an irreducible polynomial of degree log q in time poly(log q) and space
O(log q). This only affects the bit length of field elements, log q, by at most a factor of 3.
Therefore, the hypotheses of Shaltiel and Umans’ main technical theorem [36, Theorem 4.5]
are still met, so the extractor is still correct.

Now we turn to analyzing the efficiency of the extractor. The parameters h, d,m, ρ, q
used by Shaltiel and Umans (with the described modification to q) can all easily be computed
in time poly(n) and space O(t). Next, we inspect the construction of the matrix B used
by Shaltiel and Umans [36, Proof of Lemma 4.18]. The exhaustive search used to find the
irreducible polynomial p(z) takes space O(d log q) ≤ O(t). The exhaustive search used to
find the generator g for (Hd)× also takes space O(d log q) = O(t). Finally, multiplication by
g takes space O(d log q) = O(t).

It follows immediately that the “q-ary extractor” E′ given by Shaltiel and Umans [36,
Equation 8] runs in space O(t), because we only need to store the vector Bi~v. Finally, to get
from E′ to the final extractor, a simple Hadamard code is applied, which can trivially be
computed in time poly(n) and space O(t).
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https://doi.org/10.1137/S0097539703438629
https://doi.org/10.1007/s00037-008-0243-3
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https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z
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B Proof of Theorem 6: The GUV Extractor

In this section, we discuss the proof of Theorem 6. We will assume that the reader is familiar
with the paper by Guruswami, Umans, and Vadhan. Recall that a condenser is like an
extractor, except that the output is merely guaranteed to be close to having high entropy
instead of being guaranteed to be close to uniform.

I Definition 52. A function Con : {0, 1}n × {0, 1}d → {0, 1}n′ is a k →ε k
′ condenser if for

every random variable X with H∞(X) ≥ k, there exists a distribution Z with H∞(Z) ≥ k′
such that if we let Y ∼ Ud be independent of X, then Con(X,Y ) ∼ε Z.

Guruswami, Umans, and Vadhan constructed a lossy condenser based on folded Reed-
Solomon codes [16, Theorem 6.2]. To ensure space efficiency, we will slightly modify their
construction to get the following condenser. We will follow the parameter names by Gu-
ruswami, Umans, and Vadhan.

I Theorem 53 (Based on [16, Theorem 6.2]). Let α > 0 be a constant. Consider any
n ∈ N, ` ≤ n such that 2` is an integer and any ε > 0. There is a parameter t = Θ(log(n`/ε))
and a

(1 + 1/α)`t+ log(1/ε)→3ε `t+ d− 2

condenser GUVCon : {0, 1}n × {0, 1}d → {0, 1}n′ , computable in space O(d), with seed length
d ≤ (1 + 1/α)t and output length n′ ≤ (1 + 1/α)`t+ d, provided `t ≥ log(1/ε).

Proof sketch. We need to use a base field Fq based on Lemma 51, so we slightly modify the
parameters of the GUV construction as follows. Choose q to be the smallest power of two of
the form 22·3a such that q ≥ (22+1/α ·n`/ε)1+α. This q satisfies q ≤ (22+1/α ·n`/ε)3+3α. Next,
define t = dα log q

1+α e and h = 2t, so that q ∈ ((h/2)1+1/α, h1+1/α]. Therefore, we still have

q > h · h1/α/21+1/α (107)

≥ h · q1/(1+α)/21+1/α (108)
≥ 2hn`/ε, (109)

and hence A ≥ εq/2. The rest of the argument is as in the original paper [16]. J

There is a standard extractor based on expander walks that works well for constant error
and constant entropy rate. Using the Gutfreund-Viola expander walk (Theorem 31), this
extractor runs in logarithmic space:

I Lemma 54. Let α, ε > 0 be constants. There is some constant β ∈ (0, 1) so that for all
n, there is a (βn, ε)-extractor GVExt : {0, 1}n × {0, 1}d → {0, 1}m with t ≤ log(αn) and
m ≥ (1− α)n so that given x and y, GVExt(x, y) can be computed in O(logn) space.

Proof sketch. This construction of an extractor from an expander is standard; see, e.g.,
an exposition by Guruswami et al. [16, Theorem 4.6]. The space bound follows from
Theorem 31. J

Finally, Theorem 6 follows by composing Theorem 53 and Lemma 54, just as is explained
in the paper by Guruswami et al. [16, Theorem 4.7].
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C Proof of Proposition 7: Extractors Are Good Samplers

Let X ⊆ {0, 1}` be the set on the left-hand side of Equation (8). Since total variation
distance is half `1 distance, for each x ∈ X,∑

v∈V
|Pr[f(Us) = v]− Pr[f(Ext(x, Ud)) = v]| > ε|V |. (110)

Therefore, by the triangle inequality, for each x ∈ X, there is some vx ∈ V such that

|Pr[f(Us) = vx]− Pr[f(Ext(x, Ud)) = vx]| > ε. (111)

Partition X = X1 ∪ · · · ∪X|V |, where Xv = {x ∈ X : vx = v}. For each v, we can further
partition Xv into X+

v ∪X−v , based on which term of the left hand side of Equation (111) is
bigger.

Identify X+
v with a random variable that is uniformly distributed over the set X+

v , and
let Y ∼ Ud be independent of X+

v . Then

Pr[Ext(X+
v , Y ) ∈ f−1(vx)] > Pr[Us ∈ f−1(vx)] + ε. (112)

Therefore, by the extractor condition, |X+
v | ≤ 2k. Similarly, |X−v | ≤ 2k, and hence |Xv| ≤

2k+1. By summing over all v, we conclude that |X| ≤ 2k+1|V | as claimed.

D Proof of Theorem 20: Derandomizing S-OW Branching Programs

The algorithm A of Theorem 20 is given in Algorithm 8. The analysis is similar to the proof
of Theorem 8. The main difference is when we argue that the second hybrid distribution, H2,
simulates P. (This argument has just two hybrid distributions.) Details follow.

Parameters

Just like in the proof of Theorem 8, we can assume without loss of generality that T ≤ 2S .
The block size h in Algorithm 8 is

h
def=
⌊ n

3Sc+1

⌋
. (113)

Note that this time, the number of phases, r, is dT/he, where h is the block size, in contrast
to the proof of Theorem 8, where the number of phases was roughly T/B, where B is the
number of blocks.

The algorithm A relies on Nisan’s generator NisGen (Theorem 9). Naturally, the generator
is instantiated with parameters S, T from the statement of Theorem 20. The error of NisGen
is set at ε def= exp(−cS)

2r , just like in the proof of Theorem 8. Again, the seed length of NisGen
is s ≤ O(S log T ) ≤ O(S2).

The algorithm A also relies on the Shaltiel-Umans extractor SUExt of Theorem 5. This
extractor is instantiated with source length ` def= n− 3h, α def= 1/2, error

ε′
def= exp(−cS)

r · 2S , (114)

and entropy k
def=
√
n. This choice of k meets the hypotheses of Theorem 5, because

log4/α ` ≤ log8 n ≤ k, and Sc+1 ≤
√
n, so log4/α(1/ε) ≤ polylogn ≤ k. Furthermore, by

construction, k1−α = n1/4 ≥ s as long as c ≥ 4 and n is sufficiently large, so we can think of
SUExt2 as outputting s bits.
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Algorithm 8: The algorithm A of Theorem 20.
if Sc+1 >

√
n then

Directly simulate P(v0;x, UT ) using T random bits
else

Partition [n] into disjoint blocks, [n] = I1 ∪ I2 ∪ · · · ∪ IB , where |Ib| ≈ h. More
precisely, let B = dn/he, and let
Ib ← {h · (b− 1) + 1, h · (b− 1) + 2, . . . ,min{h · b, n}}
Let I0, IB+1 ← ∅
for b ∈ [B] do

Let I ′b ← [n] \ (Ib−1 ∪ Ib ∪ Ib+1), with the largest elements removed so that
|I ′b| = n− 3h

end
Initialize v ← v0

repeat r times /* Here r
def= dT/he */

Let b ∈ [B] be such that i(v) ∈ Ib
Let I ← I ′b
Pick y ∈ {0, 1}O(S) uniformly at random
Update v ← P|[n]\I(v;x,NisGen(SUExt(x|I , y)))

end
return v

end

Efficiency

The runtime analysis of A is essentially the same as in the proof of Theorem 8; the only
substantial difference is that the input to SUExt has length Θ(n), so SUExt takes poly(n) time
instead of poly(S) time. Thus, overall, A runs in time T · poly(n, S). The space complexity
and randomness complexity analyses are essentially the same as in the proof of Theorem 8.

Correctness

The proof of Equation (37) has the same structure as the proof of Equation (9). Assume
without loss of generality that Sc+1 ≤

√
n. The first hybrid distribution is defined by

Algorithm 9. The number of “bad” inputs in Claim 55 is much lower than the number of
“bad” inputs in Claim 11; intuitively, this is because A uses a much larger portion of the
input as a source of randomness compared to the algorithm of Theorem 8.

B Claim 55 (A ≈ H1). Recall that ε′ is the error of SUExt. Then

#{x ∈ {0, 1}n : A(P, v0, x, T ) 6∼ε′r·2S−1 H1(P, v0, x, T )} ≤ 2n/S
c

. (115)

Proof sketch. The proof follows exactly the same reasoning as the proof of Claim 11. The
number of bad x values is bounded by

# bad x ≤ B · 2S · 2n−|I
′
b| · 2k+S+1 (116)

≤ 23h+
√
n+O(S) (117)

≤ 2n/S
c+1+

√
n+O(S) (118)

≤ 23n/Sc+1
(119)

≤ 2n/S
c

(120)

for sufficiently large n. C
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Algorithm 9: The algorithm H1 defining the first hybrid distribution used to prove
Equation (37). The only difference between A and H1 is that H1 picks a uniform
random seed for NisGen, instead of extracting the seed from the input.
Initialize v ← v0
repeat r times

Let b ∈ [B] be such that i(v) ∈ Ib
Let I ← I ′b
Pick y′ ∈ {0, 1}s uniformly at random
Update v ← P|[n]\I(v;x,NisGen(y′))

end
return v

Algorithm 10: The algorithm H2 defining the second hybrid distribution used to
prove Equation (37). The only difference between H1 and H2 is that H2 feeds true
randomness to P|[n]\I , instead of feeding it a pseudorandom string from Nisan’s
generator.
Initialize v ← v0
repeat r times

Let b ∈ [B] be such that i(v) ∈ Ib
Let I ← I ′b
Pick y′′ ∈ {0, 1}T uniformly at random
Update v ← P|[n]\I(v;x, y′′)

end
return v

The second hybrid distribution is defined by Algorithm 10.

B Claim 56 (H1 ≈ H2). For every x,

H1(P, v0, x, T ) ∼εr H2(P, v0, x, T ), (121)

where ε is the error of NisGen.

Proof sketch. The proof is the same as that of Claim 12. C

All that remains is the final step of the hybrid argument. In this case, H2 actually
simulates P with no error. This argument is where we finally use the fact that P only has
sequential access to its input.

B Claim 57 (H2 ∼ P). For every x,

H2(P, v0, x, T ) ∼ P(v0;x, UT ). (122)

Proof sketch. The set I ′b chosen by H2 excludes every index in [n] that is within h of i(v).
Therefore, each iteration of the loop in H2 simulates at least h steps of P. Since r ≥ T/h,
overall, H2 simulates at least T steps of P. But T ≥ length(P), so we are done, just like in
the proof of Claim 14. C

Proof of Theorem 20. By Claims 55 to 57 and the triangle inequality,

#{x ∈ {0, 1}n : A(P, v0, x, t) 6∼δ P(v0;x, UT )} ≤ 2n/S
c

, (123)

where δ = εr+ ε′r · 2S−1. By our choice of ε, the first term is at most e−cS/2. By our choice
of ε′, the second term is also at most e−cS/2. Therefore, δ ≤ e−cS . J
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E Proof of Theorem 49: Disambiguation with Advice

We begin with randomness-efficient amplification of Theorem 42; Lemma 58 is analogous
to Lemma 36, and its proof follows the same reasoning. The details are included only for
completeness.

I Lemma 58. Fix S : N → N with S(n) ≥ logn and δ : N → [0, 1], both constructible in
space O(S). For every L ∈ NSPACE(S), there is a single-valued unambiguous algorithm A
so that for every x ∈ {0, 1}n,

Pr
y∈{0,1}∞

[A(x, y) ∈ {L(x),⊥r}] = 1, (124)

Pr
y∈{0,1}∞

[A(x, y) = ⊥r] ≤ δ(n). (125)

Furthermore, A only reads the first log2(1/δ(n)) +O(S2) bits of y and runs in space O(S).

Proof. LetR be anO(S)-space reduction from L to STConn. For x ∈ {0, 1}n,R(x) ∈ {0, 1}n,
where n = 2O(S), and without loss of generality, n depends only on n. Let s be the number
of random bits used by vMPSeededAlg on inputs of length n, so that s ≤ O(log2 n) = O(S2).

Let ` = dlog2(1/δ)e+ 2s+ 2, and let GUVExt : {0, 1}`×{0, 1}d → {0, 1}s be the (2s, 0.1)-
extractor of Theorem 6, so that d ≤ O(log log(1/δ)+logS). On input x ∈ {0, 1}n, y ∈ {0, 1}`,
run Algorithm 11.

Algorithm 11: The algorithm used to prove Lemma 58.
for z ∈ {0, 1}d do

Let a← vMPSeededAlg(R(x),GUVExt(y, z))
if a 6= ⊥r then return a

end
return ⊥r

Clearly, Algorithm 11 runs in space O(S + d). Since δ is constructible in space O(S), its
denominator must have at most 2O(S) digits. Therefore, δ ≥ 2−2O(S) and d ≤ O(S), so the
algorithm runs in space O(S). Furthermore, it is clearly single-valued unambiguous, and it
is “zero-error”, i.e., Equation (124) holds. Finally, by Proposition 7, the number of y such
that vMPSeededAlg(R(x),GUVExt(y, z)) = ⊥r for every z is at most 22s+2, and hence the
probability that the algorithm outputs ⊥r is at most 22s+2

2` ≤ δ. J

Proof of Theorem 49. Let A be the algorithm of Lemma 58 with δ < 2−n/ε. Let m = m(n)
be the number of random bits used by A. Let B be the algorithm witnessing the fact that L
is within ε of USPACE(S).

Given input x ∈ {0, 1}n and advice a ∈ {0, 1}m, compute a = A(x, a). If a 6= ⊥r, output
a. If a = ⊥r, output B(x). This algorithm clearly runs in O(S) space, uses n− log2(1/ε(n)) +
O(S2) bits of advice, and is unambiguous (in fact, single-valued unambiguous).

Now we argue that there is some advice string such that the algorithm succeeds on all
inputs. Let S ⊆ {0, 1}n be the set of inputs on which B fails. Consider picking an advice
string a uniformly at random. For each string x ∈ S, Pra[A(x, a) = ⊥r] ≤ δ. Therefore, by
the union bound, the probability that there is some x ∈ S such that A(x, a) = ⊥r is at most
|S|δ = ε · 2n · δ < 1. Therefore, there is some advice string such that the algorithm succeeds
on all inputs in S. Finally, for any advice string, the algorithm succeeds on all inputs in
{0, 1}n \ S by Equation (124). J
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