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Abstract

The Isolation Lemma of Valiant and Vazirani [VV86] provides an efficient procedure for
isolating a satisfying assignment of a given satisfiable circuit: Given a Boolean circuit C on n
input variables, the procedure outputs a new circuit C ′ on the same n input variables such that
(i) every satisfying assignment of C ′ also satisfies C, and (ii) if C is satisfiable, then C ′ has
exactly one satisfying assignment. In particular, if C is unsatisfiable, then (i) implies that C ′

is unsatisfiable. The Valiant–Vazirani procedure is randomized, and when C is satisfiable it
produces a uniquely satisfiable circuit C ′ with probability Ω(1/n).

Is it possible to have an efficient deterministic witness-isolating procedure? Or, at least, is it
possible to improve the success probability of a randomized procedure to a large constant? We
prove that there exists a non-uniform randomized polynomial-time witness-isolating procedure
with success probability bigger than 2/3 if and only if NP ⊆ P/poly. We establish similar results
for other variants of witness isolation, such as reductions that remove all but an odd number of
satisfying assignments of a satisfiable circuit.

We also consider a blackbox setting of witness isolation that generalizes the setting of the
Valiant–Vazirani Isolation Lemma, and give an upper bound of O(1/n) on the success probability
for a natural class of randomized witness-isolating procedures.
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1 Introduction

The Isolation Lemma of Valiant and Vazirani [VV86] (as well as the related Isolation Lemma of
Mulmuley, Vazirani, and Vazirani [MVV87] and its refinement by Chari, Rohatgi, and Srinivasan
[CRS95]) is a basic tool with many important applications in complexity theory; see, e.g., Toda
[Tod91], Ben-David et al. [BDCGL92], and Reinhardt and Allender [RA00] for just a few such
applications. The lemma provides an efficient randomized algorithm to “isolate” a single object
from a collection of objects satisfying a given efficiently decidable property. More precisely, given
a Boolean circuit C(x1, . . . , xn), the algorithm produces a new Boolean circuit C ′(x1, . . . , xn) such
that (i) every satisfying assignment of C ′ also satisfies C with probability one (over the internal
randomness of the algorithm), and (ii) if C is satisfiable, then, with probability Ω(1/n), C ′ has
exactly one satisfying assignment. Thus, in case C is satisfiable, the unique satisfying assignment
for C ′ is an “isolated” assignment from among the satisfying assignments for C.

An obvious question is whether efficient deterministic isolation is possible. That is, is there
a deterministic polynomial-time algorithm that maps an input circuit C(x1, . . . , xn) to an output
circuit C ′(x1, . . . , xn) such that (i) every satisfying assignment of C ′ also satisfies C, and (ii) if C
is satisfiable, then C ′ has exactly one satisfying assignment? Another natural question is whether
the success probability Ω(1/n) for randomized isolation can be improved to, say, a large constant
probability. The work of Hemaspaandra et al. [HNOS96] suggests a negative answer to the first
question. We provide stronger evidence that also applies to the second question: randomized
isolation procedures with success probability larger than 2/3 are unlikely to exist.

1.1 Our results

If NP = P, then efficient deterministic isolation is trivially possible: Given a circuit C, one can use
the standard “search-to-decision” reduction to find in deterministic polynomial time some satisfying
assignment w for C, and then construct a circuit C ′ so that C ′ accepts the single input w. Näıvely,
it seems impossible to produce, efficiently and deterministically, a circuit C ′ with exactly one
satisfying assignment that also satisfies C, without actually finding such an assignment efficiently
deterministically. In other words, näıvely it seems that efficient deterministic isolation must be
equivalent to NP = P.

We show that such an equivalence is actually true in the non-uniform setting! We prove that
if there is a non-uniform family of polynomial-size circuits that achieve deterministic isolation (in
the sense defined above), then every language in NP can be decided by a non-uniform family
of polynomial-size circuits, i.e., NP ⊆ P/poly. Since the standard “search-to-decision” reduction
for NP can be run also in the non-uniform setting, we immediately get the other direction: if
NP ⊆ P/poly, then non-uniform efficient deterministic isolation is possible.

Given that deterministic isolation is unlikely, what can we say about the existence of a better
randomized isolation algorithm? A natural question is whether one can obtain randomized isolation
with success probability better than Ω(1/n) achieved by Valiant and Vazirani [VV86]. For example,
can one obtain (large) constant success probability?

We show that the answer is likely negative. In fact, we extend the result for deterministic
isolation and prove that if there is a (non-uniform) randomized isolation algorithm with success
probability greater than 2/3, then NP ⊆ P/poly (and, consequently, the polynomial-time hierarchy
collapses). We also consider more restricted and more relaxed notions of witness isolation, such as
reductions that remove all but an odd number of satisfying assignments of a satisfiable circuit. For

2



each of these notions, we prove that their existence implies some collapse of NP, namely NP = P,
NP ⊆ P/poly, NP = coNP, or NP ⊆ coNP/poly, and in most cases the collapse is actually equivalent
to the existence.

Finally, we consider a natural blackbox setting for isolation: A blackbox isolation with success
probability p is a randomized procedure that produces a predicate D on n variables x1, . . . , xn such
that, for any satisfiable circuit C on the variables x1, . . . , xn, the probability that C(x1, . . . , xn) ∧
D(x1, . . . , xn) has a unique satisfying assignment is at least p. Valiant and Vazirani [VV86] construct
a blackbox isolation by letting the predicate D(x) be the intersection of a random number of random
hyperplanes in GF(2)n, which gives success probability at least Ω(1/n). We give an asymptotically
tight upper bound by proving that every blackbox isolation has a success probability of at most
O(1/n).

1.2 Our techniques

We now sketch the proof of one of our main results – that efficient randomized isolation with
success probability above 2/3 implies NP ⊆ P/poly. The proof consists of two steps. Assuming the
existence of such a witness-isolating procedure, we show how to

[Step 1] efficiently reduce satisfiability to prUSAT, the promise version of satisfiability on in-
stances with at most one satisfying assignment, and

[Step 2] efficiently solve prUSAT.

Both steps run in P/poly, which results in a P/poly-algorithm for satisfiability and thus for all
languages in NP.

Deterministic setting. For reasons of exposition, we first consider the simpler deterministic
setting. Suppose there is a deterministic P/poly-algorithm A that achieves isolation. That is, given
a circuit C(x1, . . . , xn), A outputs a circuit C ′(x1, . . . , xn) on the same number of variables such
that (i) every satisfying assignment of C ′ also satisfies C, and (ii) if C is satisfiable, then C ′ has
exactly one satisfying assignment.

In this setting, Step 1 is trivial as A represents an efficient mapping reduction from satisfiability
to prUSAT. For Step 2, we mimic an argument due to Ko [Ko83] and devise a P/poly-algorithm
for prUSAT. The two steps combined put satisfiability in P/poly.

Ko [Ko83] proved that if satisfiability has a “selector function” computable in P/poly, then
satisfiability is in P/poly. A selector for satisfiability is a function that takes two input circuits C1

and C2, and selects the one that is “more likely” to be satisfiable. More precisely, the function
always outputs one of its two inputs, and if exactly one of the two inputs is satisfiable, then it
outputs that input. Such a function induces a binary relation R on the set of all inputs, where
R(C1, C2) holds if and only if the selector outputs C2 on input (C1, C2). The relation R has the
following “Ko”-properties:

(K1) If C1 is satisfiable and R(C1, C2), then C2 is satisfiable.

(K2) If C1 and C2 are satisfiable instances of the same length, then R(C1, C2) or R(C2, C1).

(K3′) R can be decided in polynomial time with oracle access to the selector.

3



Property (K2) actually holds in a stronger form, but the weaker form is all we need in Ko’s argument
to deduce that the directed graph induced by R on the set of satisfiable instances of length ` has a
dominating set D` of size polynomial in `. Combined with property (K1), this gives us the following
criterion for satisfiability on inputs of length `:

C ∈ SAT ⇔ (∃C∗ ∈ D`)R(C∗, C) . (1)

By property (K3′), criterion (1) yields a polynomial-time algorithm for satisfiability when given
oracle access to the selector and advice D`. Thus, we obtain a P/poly-algorithm for satisfiability if
satisfiability has a selector computable in P or in P/poly.

Now consider the setting where we have a deterministic isolation algorithm A for circuits. If at
least one of C1 or C2 is satisfiable and the sets of satisfying assignments are disjoint, the action of A
on C

.
= C1∨C2 or on C

.
= C2∨C1 can be viewed as that of a selector: It selects the unique Ci that

has a satisfying assignment in common with A(C). As a selector ought to act on the unordered
pair {C1, C2}, we actually apply A to C

.
= min(C1, C2) ∨max(C1, C2), where min(C1, C2) denotes

the lexicographically smaller of the two circuits C1 and C2, and similarly max(C1, C2) denotes the
lexicographically larger of the two circuits.

In general, we can define a binary relation R with similar properties as above: R(C1, C2) holds
if and only if

(a) C1 and C2 have a common satisfying assignment, or

(b′) C1 and A(C) have no common satisfying assignment, where C
.
= min(C1, C2)∨max(C1, C2).

This relation R satisfies the properties (K1) and (K2). Since these properties were all that was
needed to arrive at criterion (1), the criterion still holds. Property (K3′) may no longer hold, but
we can guarantee the following instead:

(K3) Whether R(C1, C2) holds can be decided in polynomial time with oracle access to A if the
set of satisfying assignments of C1 is given as advice.

Thus, criterion (1) yields a polynomial-time algorithm for satisfiability when given oracle access
to A as well as the following advice at input length `: for every C∗ ∈ D`, the circuit C∗ as well as
all its satisfying assignments. In general, the advice may be of superpolynomial length because the
circuits C∗ may have a superpolynomial number of satisfying assignments. Since Step 1 allows us
to reduce the number of satisfying assignments to at most one, we can restrict our attention to the
set of all inputs with at most one satisfying assignment. This way, the length of the advice becomes
polynomially bounded, and we obtain a P/poly-algorithm for prUSAT whenever A is computable
in P or in P/poly.

Randomized setting. Suppose there is an efficient randomized isolation algorithm A with
success probability at least p. That is, on input a circuit C(x1, . . . , xn), A outputs a circuit
C ′(x1, . . . , xn) such that (i) every satisfying assignment of C ′ also satisfies C, and (ii) if C is
satisfiable, then, with probability at least p, the circuit C ′ is a successful isolation of C, i.e., C ′ has
a unique satisfying assignment.

For Step 2, i.e., for efficiently solving prUSAT, we mimic the deterministic case but whenever
we would run A once, we now run it independently a polynomial number t times in order to get
concentration – except with exponentially small probability, the isolation is successful a number of
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times that is close to the expected value, which is at least p · t. Since the probability of deviating
more is that small, we can fix a single random string that produces at least p′ · t successful runs
of A, where p′ is somewhat smaller than p. This transformation is a special case of Adleman’s
argument for derandomizing randomized computation by using polynomial advice: We transform
the randomized P/poly-algorithm A into a deterministic P/poly-algorithm B that takes a circuit C
and outputs a list of circuits C ′ such that (i) every satisfying assignment of C ′ also satisfies C, and
(ii) if C is satisfiable, then at least a fraction p′ of the circuits C ′ in the list are successful isolations
of C.1

We adapt the relation R from the deterministic setting by replacing the condition (b′) with the
following:

(b) fewer than a fraction p′ of circuits C ′ on the list B(C) are such that C ′ and C1 have a common
satisfying assignment, where C

.
= min(C1, C2) ∨max(C1, C2).

Thus we let R(C1, C2) hold if and only if (a) or (b) holds. This modified relation R still has
property (K1). The main reason is that if C1 is satisfiable and (b) holds, then B(C) contains
at least one successful isolation C ′ that is not satisfied by any satisfying assignment of C1 but is
satisfiable, and therefore has to be satisfied by a satisfying assignment of C2.

As for property (K2), suppose that C1 and C2 are satisfiable but that neither R(C1, C2) nor
R(C2, C1) holds. By (a), this means that the sets of satisfying assignments of C1 and C2 are disjoint.
By (b) and inclusion-exclusion, at least a fraction 2p′ − 1 of the circuits C ′ in B(C) is satisfied
by a satisfying assignment of C1 as well as by a satisfying assignment of C2. Therefore, at least
a fraction 2p′ − 1 of the circuits C ′ have at least two satisfying assignments. This contradicts the
success rate p′ of B as long as 2p′−1 > 1−p′. Thus, (K2) is guaranteed to hold provided p′ > 2/3.

Property (K3) also holds for the new R. Since all three properties (K1), (K2), and (K3) hold
whenever p′ > 2/3, and since we can set p′ > 2/3 when p is a constant exceeding 2/3, Ko’s argument
gives us a P/poly-algorithm for prUSAT whenever p is a constant larger than 2/3. This completes
Step 2.

Step 1 is no longer trivial in the randomized setting but we can appeal to an unconditional
P/poly reduction that takes a circuit C and outputs a list of circuits C ′ such that (i) if C is
unsatisfiable then every C ′ is also unsatisfiable, and (ii) if C is satisfiable then at least one C ′ has
a unique satisfying assignment. Such a reduction follows by applying Adleman’s argument to the
Valiant–Vazirani isolation procedure. On input C, we cycle over all circuits C ′ on the list and apply
the prUSAT-algorithm from Step 2 to each C ′. We accept iff our prUSAT-algorithm accepts on at
least one circuit C ′. Note that for an unsatisfiable C, all circuits C ′ are also unsatisfiable, and will
be rejected by the prUSAT-algorithm. For a satisfiable C, at least one of the circuits C ′ is uniquely
satisfiable, and hence will be accepted by the prUSAT-algorithm. Thus we get a P/poly-algorithm
for satisfiability.

1.3 Related work

Chari, Rohatgi, and Srinivasan [CRS95] consider the problem of minimizing the number of random
bits that are used in the isolation lemma. They design an isolation lemma that improves upon
the procedure of Mulmuley, Vazirani, and Vazirani [MVV87], and they show that, in the blackbox

1It is not crucial to apply Adleman’s transformation at this stage of the argument. We could alternately keep the
randomness for now and only apply Adleman’s argument at the very end.
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setting, their improved isolation lemma uses the least possible number of random bits while still
achieving non-negligible success probability. Our blackbox result shows that it is impossible to
increase the success probability beyond O(1/n).

The problem of efficient deterministic isolation is related to the problem of multi-valued vs.
single-valued NP-computable functions [Sel94], which received considerable attention in the 1990’s.
In fact, it follows from the work of Hemaspaandra et al. [HNOS96] that efficient deterministic
isolation yields a collapse of the polynomial-time hierarchy. More precisely, their work implies that
the existence of a single-valued NP-machine that outputs a successful isolation on all satisfiable
inputs leads to the conclusion that NP ⊆ (NP ∩ coNP)/poly, which in turn is known to imply
the collapse of the polynomial-time hierarchy to the second level. In contrast, we prove that the
existence of a P-computable isolation procedure implies NP ⊆ P/poly. Both our hypothesis and
our conclusion are stronger, and, as observed above, our conclusion is actually equivalent to the
existence of efficient non-uniform deterministic isolation.

The problem of efficient deterministic isolation as defined above is different from the problem of
derandomizing the Valiant–Vazirani Isolation Lemma as studied, e.g., by Klivans and van Melkebeek
[KvM02]. In their setting, randomized isolation is defined via the existence of an efficient randomized
algorithm that maps an input circuit C to a list of circuits C ′1, . . . , C

′
t such that (i) every satisfying

assignment of the C ′i also satisfies C, and (ii) if C is satisfiable, then, with high probability, at
least one of the C ′i is uniquely satisfiable. This kind of randomized isolation follows from the
Valiant–Vazirani Isolation Lemma.

Derandomizing such isolation means designing an efficient deterministic algorithm that pro-
duces the list C ′1, . . . , C

′
t. One of the results of Klivans and van Melkebeek [KvM02] is that this

kind of derandomization is likely to exist since it follows from some plausible circuit complexity
assumptions. However, if we want to get a single circuit C ′ that is uniquely satisfiable if C is
satisfiable, no better way is known other than to pick one of the circuits on the list at random. But
then we end up with a randomized isolation procedure with inverse-polynomial success probability.
Thus, while it may be possible to design an efficient deterministic algorithm mapping a given input
circuit C to a list of circuits C ′1, . . . , C

′
t achieving isolation in the sense of Klivans and van Melke-

beek [KvM02], it is unlikely that there is an efficient deterministic isolation mapping C to a single
circuit C ′. Also, by our results, it is unlikely that there is a randomized “list-isolation” algorithm
that maps a satisfiable circuit C to a list of circuits where more than 2/3 of the circuits on the list
are uniquely satisfiable.

The question whether efficient deterministic isolation exists is also related to the question
whether NP = UP, that is, whether every language in NP can be decided by an unambiguous
polynomial-time machine, which is an NP-machine that has at most one accepting computation
path for every input. Clearly, if deterministic polynomial-time isolation is possible, then NP = UP.
However, the converse is not known to be true; the assumption NP = UP is only known to be
equivalent to the existence of disambiguations, that is, polynomial-time transformations that map
circuits C to circuits C ′ on a possibly different set of variable such that (i) if C is unsatisfiable,
then C ′ is unsatisfiable, and (ii) if C is satisfiable, then C ′ has exactly one satisfying assignment.
It remains an open question whether the existence of such a disambiguation yields any unexpected
consequences, e.g., whether it implies any collapse of the polynomial-time hierarchy.

For some applications of the isolation lemma, such as Toda’s theorem [Tod91], it suffices to
efficiently reduce NP to ⊕P, i.e., to map circuits C to circuits C ′ such that C is satisfiable if and
only if C ′ has an odd number of satisfying assignments. A single application of Valiant–Varizani’s
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isolation lemma gives a randomized reduction of this sort with success probability Ω(1/n); but in
this setting better results are known: Naik, Regan, and Sivakumar [NRS95] achieve success proba-
bility arbitrarily close to 1/2, and Gupta [Gup98] actually reaches 1/2. All of these reductions have
the pruning property, that is, all satisfying assignments of C ′ also satisfy C. For such reductions,
our results imply that the success probability cannot be improved beyond 2/3 unless NP ⊆ P/poly.

In general, this pruning property need not hold, and the circuit C ′ can have more inputs than C.
As observed in, e.g., Naik, Regan, and Sivakumar [NRS95, first paragraph of section 3], this freedom
allows us to achieve success probability 1 − 1/ exp in the setting of ⊕P. The key is the following
operation, which efficiently transforms a list C ′1, . . . , C

′
t of circuits into a single circuit C ′ such

that C ′ has an odd number of satisfying assignments if and only if some C ′i has an odd number of
satisfying assignments: (i) modify each circuit C ′i into a circuit C ′′i by adding a single new satisfying
assignment; (ii) construct a circuit C ′′ whose number of satisfying assignments is the product of
those of the circuits C ′′i by defining C ′′(x1, . . . , xt)

.
= ∧ti=1C

′′
i (xi), where each xi is of the input

size for C ′′i ; (iii) obtain C ′ by adding a single new satisfying assignment to C ′′. Starting from the
output C ′1, . . . , C

′
t of polynomially many independent runs of any of the above pruning procedures,

we obtain a randomized reduction from NP to ⊕P with success probability 1− 1/ exp. In a similar
way, using Adleman’s argument, we obtain a deterministic P/poly reduction from NP to ⊕P, and
under the circuit complexity assumption of Klivans and van Melkebeek [KvM02], a deterministic
polynomial-time reduction from NP to ⊕P.

1.4 Organization of the paper

Section 2 contains basic definitions and notation, the various notions of witness isolation we con-
sider, and lemmas that capture Adleman’s argument and Ko’s argument in a way that is useful
to us. We prove our conditional impossibility results for deterministic and randomized isolation
in Section 3, and categorize several variants based on which collapse of NP they are equivalent to.
In Section 4, we prove our unconditional impossibility result in the blackbox setting. We suggest
some directions for further research in Section 5.

2 Preliminaries

2.1 Basic definitions and notation

Complexity classes. We use standard definitions and notation for complexity classes such as
P, NP, and P/poly (see, e.g., Arora and Barak [AB09]), which we view as classes of languages over
the alphabet {0, 1}, or as classes of Boolean functions on {0, 1}∗. By a slight abuse of notation, we
extend the notation P and P/poly to not necessarily Boolean functions from {0, 1}∗ to {0, 1}∗. Thus,
a function f : {0, 1}∗ → {0, 1}∗ is called P-computable if it is computable by some deterministic
polynomial-time algorithm, and f is called P/poly-computable if it is computable by a family of
polynomial-size circuits.

Boolean circuits. We let SAT denote the satisfiability problem for deterministic Boolean cir-
cuits: Given a deterministic circuit C(x1, . . . , xn) with n variables x1, . . . , xn, decide whether it has
a satisfying assignment, that is, a binary string w ∈ {0, 1}n with C(w) = 1. If C has exactly one
satisfying assignment, we say that C is uniquely satisfiable.
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A (co-)nondeterministic circuit C(x1, . . . , xn) is a deterministic circuit D(x1, . . . , xn, y1, . . . , ym)
with additional “(co-)nondeterministic” variables y1, . . . , ym. For nondeterministic circuits, an
assignment w ∈ {0, 1}n to the x-variables satisfies C if and only if there exists an assignment
w′ ∈ {0, 1}m to the y-variables such that D(w,w′) = 1. For co-nondeterministic circuits, w sat-
isfies C if and only if all assignments w′ ∈ {0, 1}m to the y-variables satisfy D(w,w′) = 1. A
(co-)nondeterministic circuit C is uniquely satisfiable if it has exactly one satisfying assignment
w ∈ {0, 1}n.

Throughout this paper, we write n for the number of (deterministic) variables of a circuit and `
for the length of binary encodings. We assume that the encoding of circuits is efficient so that, e.g.,
for circuits C1 and C2 of length ` each, the circuit C1 ∨ C2 can be computed in polynomial time
and is of length at most O(`).

Promise problems. A promise problem is a pair Π = (Yes,No) of disjoint subsets Yes ∪̇ No ⊆
{0, 1}∗. For the promise problem of unique satisfiability for deterministic Boolean circuits, prUSAT,
the set Yes is the set of all uniquely satisfiable deterministic circuits, and No is the set of all
unsatisfiable deterministic circuits.

We say that an algorithm A decides Π if it accepts all x ∈ Yes, rejects all x ∈ No, and behaves
arbitrarily for all other inputs. In terms of complexity classes, we write Π ∈ C if there exists a
language L ∈ C such that Yes ⊆ L and No ⊆ L, where L

.
= {0, 1}∗ \ L denotes the complement

of L.

2.2 Notions of isolation

We study isolation and several variations that are all motivated by the question whether NP coin-
cides with UP, unambiguous polynomial time. Because of this connection, we use the generic term
“disambiguation” to refer to all variants.

UP = NP is equivalent to the existence of a polynomial-time verifier V (C,w) for SAT such that
each input circuit C has at most one valid witness w with V (C,w) = 1. Since the computation
of V (C, .) for each fixed C can be modeled as a polynomial-size Boolean circuit C ′, the UP = NP
question is equivalent to the existence of a polynomial-time transformation of a deterministic cir-
cuit C into a deterministic circuit C ′ such that (i) if C is unsatisfiable, then C ′ is unsatisfiable, and
(ii) if C is satisfiable, then C ′ has exactly one satisfying assignment.

More generally, we define a disambiguation for a class C of Boolean circuits as follows, where
natural choices for C are Boolean formulas and deterministic or nondeterministic Boolean circuits.

Definition 1. A disambiguation for a class C of Boolean circuits is a randomized algorithm that
maps a given circuit C ∈ C to a circuit C ′ ∈ C such that:

Perfect Soundness: if C is unsatisfiable, then C ′ is also unsatisfiable (with probability one).

p-Completeness: If C is satisfiable, then with probability at least p the circuit C ′ has a unique
satisfying assignment.

Here p = p(`) ∈ [0, 1] is the success probability of the disambiguation, and may depend on the input
length `. We typically want an efficient disambiguation; we consider disambiguations computable
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in P or in P/poly2. We call a disambiguation deterministic if it does not use any randomness and
satisfies the above conditions with p = 1. We call a disambiguation satisfiability-preserving if C ′ is
satisfiable whenever C is satisfiable.

For general disambiguations, no specific relationship between the satisfying assignments of C
and the satisfying assignments of C ′ is required. In this paper we study notions of disambiguation
that additionally impose such restrictions. In decreasing order of restrictiveness we consider witness-
isolating disambiguation, or isolation for short, and witness-recoverable disambiguation. We now
specify the respective additional conditions as strengthenings of the requirements in Definition 1.

Isolation. An isolation is a disambiguation that maps circuits C to circuits C ′ on the same
set of variables as C, in such a way that every satisfying assignment of C ′ also satisfies C, with
probability one. Any particular output C ′ of an isolation is a successful isolation of a satisfiable
circuit C if C ′ has a unique satisfying assignment. In a minimal witness isolation, we additionally
require the unique satisfying assignment of a successful isolation C ′ to be the lexicographically
smallest satisfying assignment of C. The procedures of Valiant and Vazirani [VV86], Mulmuley,
Vazirani, and Vazirani [MVV87], and Chari, Rohatgi, and Srinivasan [CRS95] yield randomized
polynomial-time isolations with success probabilities p = Ω(1/n), p = Ω(1/n2), and p = Ω(1/n8),
respectively.

Witness-recoverable disambiguation. A witness-recoverable disambiguation is a disambigua-
tion that maps circuits C to circuits C ′ on a potentially different set of variables. Furthermore,
there has to exist a deterministic polynomial-time witness recovery algorithm W such that, if C is
satisfiable, then with probability at least p the following two conditions hold simultaneously:

◦ C ′ has a unique satisfying assignment, say w, and

◦ given C, C ′, and w, the algorithm W outputs a satisfying assignment for C.

Every isolation is a witness-recoverable disambiguation: The witness recovery algorithm can just
output W (C,C ′, w) = w since isolation guarantees that any satisfying assignment w of C ′ also sat-
isfies C. For nondeterministic circuits, the existence of these two notions is in fact equivalent, that
is, there is an isolation for nondeterministic circuits if and only if there is a witness-recoverable
disambiguation for nondeterministic circuits. The reverse direction follows because a nondeter-
ministic circuit C ′′ can guess and verify a satisfying assignment w′ for the circuit C ′ that the
witness-recoverable reduction produces, and C ′′ can further compute w

.
= W (C,C ′, w′) and check

that w satisfies C. (See the step (iv)⇒ (ii) in the proof of 3.8 for more details.)
A witness-recoverable disambiguation for deterministic circuits yields a witness-recoverable dis-

ambiguation for nondeterministic circuits – simply apply the former to the deterministic circuit
underlying the nondeterministic circuit, and recover the actual input bits. (See the “furthermore”
part at the end of the proof of Theorem 3.8 for more details.) Combined with the above argument,
a witness-recoverable disambiguation for deterministic circuits yields an isolation for nondetermin-
istic circuits. This motivates the study of isolation for nondeterministic circuits. If we were to
require the uniqueness condition after recovery rather than before, witness-recoverable disambigua-
tion for deterministic and for nondeterministic circuits would be equivalent to each other, as well
as to isolation for nondeterministic circuits.

2As explained in Section 2.3, in contrast to the standard setting of decision procedures, the combination “ran-
domized P/poly” does make sense in the setting of disambiguation procedures.
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2.3 Adleman’s argument

We derandomize randomized algorithms by transforming them into deterministic algorithms with
small advice. In the case of decision algorithms, an argument due to Adleman [Adl78] turns any
BPP-machine into a P/poly-algorithm that decides the same language, and it does not really make
sense to talk about randomized P/poly-algorithms since BPP/poly = P/poly. For transformations
such as randomized disambiguations, the notions of randomized P/poly-algorithms and determin-
istic P/poly-algorithms do seem to be different. Adleman’s argument allows us to list-derandomize
randomized P/poly transformations in the sense of the following lemma.

Lemma 2.1 (Adleman). Let A be a randomized P/poly-algorithm that maps strings x to strings y.
Let p1, p2 : N → [0, 1] be functions and let P1(x, y) and P2(x, y) be properties such that, for all in-
puts x of length ` = |x|, P1

(
x, y
)

holds with probability at least p1(`) and P2

(
x, y
)

holds with
probability at least p2(`) over the internal randomness of A.

Then, for every c > 0, there exists a deterministic P/poly-algorithm B that, on input x of
length `, produces a list y1, . . . , yt such that (i) P1(x, yi) holds for at least p′1(`) · t many i ∈ [t]
and (ii) P2(x, yi) holds for at least p′2(`) · t many i ∈ [t], where p′j(`) = 1 whenever pj(`) = 1, and
p′j(`) = pj(`)− 1/(c · `c) otherwise.

Proof. Let c > 0 and ` ∈ N. For some t = t(`) = poly(`) chosen below, let At be the algorithm that
runs A on an input x of length ` exactly t times, each time with fresh randomness, and outputs a
list y1, . . . , yt. For j ∈ {1, 2}, the expected number of i ∈ [t] that satisfy Pj(x, yi) is at least pj · t. If
pj = 1, we can choose p′j = 1 since all t instances satisfy the property. Otherwise, we set p′j = pj− ε
with ε = 1/(c · `c) and apply Hoeffding’s bound [Hoe63] to prove concentration: The probability
that fewer than p′jt runs of At satisfy Pj(x, yi) is bounded from above by exp(−2ε2t). We can make

this probability smaller than 2−`−1 by setting t = O(`/ε2) = poly(`). By the union bound, the
probability that fewer than p′1t of the pairs (x, yi) satisfy P1 or fewer than p′2t of the pairs (x, yi)
satisfy P2 is smaller than 2−`. Thus, for every input x ∈ {0, 1}`, all but a fraction less than 2−`

of the random strings of At produce y1, . . . , yt such that P1(x, yi) is satisfied for at least p′1t many
i ∈ [t], and P2(x, yi) is satisfied for at least p′2t many i ∈ [t]. By the union bound, there must be a
random string for At such that this property is satisfied for every input. We provide this random
string as advice and get the deterministic procedure B as required. �

2.4 Ko’s argument

The following lemma captures the main argument in Ko’s proof that the existence of a P-selector
for a language L implies L ∈ P/poly. The notion of a P-selector is due to Selman [Sel79], who
observed that a P-selector for SAT implies P = NP. Ko [Ko83] proved his lemma for arbitrary
languages, and we formulate it here for promise problems so that we can apply it to prUSAT.

Lemma 2.2 (Ko). Let Π = (Yes,No) be a promise problem, and let R be a binary relation over
Yes ∪No satisfying the following properties.

(K1) If x ∈ Yes and R(x, y), then y ∈ Yes.

(K2) If x, y ∈ Yes with |x| = |y|, then R(x, y) or R(y, x).

(K3) There exists a constant c > 0 such that for every ` ∈ N and every x ∈ Yes of length `, there
is a circuit Rx of size at most c · `c that decides on input y ∈ Yes ∪ No of length ` whether
R(x, y) holds.
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If the circuits Rx are deterministic, then there is a P/poly-algorithm for Π. If the circuits Rx

are co-nondeterministic, then there is a coNP/poly-algorithm for Π.

Proof. We fix the length ` of the input and design a polynomial-size circuit that decides instances
of length `, and we write Yes`

.
= Yes ∩ {0, 1}`. We first argue that the directed graph induced

by R on Yes` has a dominating set of size at most ` + 1. That is, we show that there is a list
a1, . . . , am ∈ Yes` with 0 6 m 6 ` + 1 such that, for all y ∈ Yes`, there exists an i ∈ [m] so
that R(ai, y) holds. To see this, assume we already constructed a1, . . . , aj for some j > 0, and let
Sj =

{
y ∈ Yes`

∣∣ R(ai, y) does not hold for any i ∈ [j]
}

. Note that S0 = Yes`. If Sj is empty, we
are done and set m = j. Otherwise, Sj 6= ∅ and we define aj+1 as follows. Property (K2) implies
that, for all x, y ∈ Sj , we have R(x, y) or R(y, x). Thus the average out-degree of the directed
graph that R induces on Sj is at least |Sj |/2. In particular, there exists an element aj+1 ∈ Sj such
that at least half of all y ∈ Sj satisfy R(aj+1, y). Thus |Sj+1| 6 1

2 |Sj | 6
1

2j+1 |S0|. Since |S0| 6 2`,
this implies that we reach Sm = ∅ for some m 6 `+ 1, and we are done.

Based on the list a1, . . . , am, we now devise an algorithm A for Π = (Yes,No) at input length `.

◦ Given: y ∈ {0, 1}`.

◦ Advice: The circuits Ra1 , . . . , Ram .

◦ Accept if and only if Rai(y) = 1 for some i ∈ [m].

If y ∈ No ∩ {0, 1}`, then (K1) guarantees that R(a, y) = 0 holds for all a ∈ Yes`. Hence all circuits
Rai reject y, and A rejects. On the other hand, if y ∈ Yes`, then the choice of the advice guarantees
that some i ∈ [m] satisfies R(ai, y) = 1. In this case the circuit Rai accepts y and A accepts.

If the Rai ’s are deterministic, then A is a P/poly-algorithm. If the Rai ’s are co-nondeterministic,
then A can simulate the Rai ’s in coNP/poly. �

3 Isolation is unlikely to exist

In this section we show that efficient witness isolation and several other kinds of disambiguation
imply unlikely collapses of complexity classes, namely NP = P, NP ⊆ P/poly, NP = coNP, or NP ⊆
coNP/poly. In fact, in many cases the reverse implication also holds, so we obtain equivalences.
Our results can therefore be viewed as taxonomic – they show that the existence of seemingly
very restricted isolation procedures, such as deterministic non-uniform minimal witness isolation,
is actually equivalent to the existence of more relaxed forms of isolation, such as randomized non-
uniform isolation with success probability p > 2/3.

We obtain such results for both deterministic and nondeterministic circuits. We first consider
deterministic circuits.

3.1 Uniform disambiguation for deterministic circuits

We argue that polynomial-time minimal witness isolation for the class of deterministic circuits is
a very strong notion. In the uniform setting, its existence is equivalent to NP = P. It is the only
form of disambiguation from which we obtain the collapse NP = P. The argument has a somewhat
different flavor than the main collapse result described in the introduction.
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Theorem 3.1. There is a P-computable minimal witness isolation for deterministic circuits if and
only if NP = P.

Proof. “⇒”. We devise a polynomial-time algorithm M for SAT. Given an instance C(x1, . . . , xn)
of SAT, we first add a variable x0 and define the following circuit:

D(x0, x1, . . . , xn)
.
=
(
x0 = · · · = xn = 1

)
∨
(
x0 = 0 ∧ C(x1, . . . , xn)

)
.

Note that the satisfying assignments of D are of the form 1n+1 ∪ 0S, where S ⊆ {0, 1}n is the set
of satisfying assignments of C. The algorithm M for SAT applies the assumed minimal witness
isolation to D, yielding a deterministic circuit D′, and then M accepts if and only if D′ rejects
the assignment 1n+1. For the correctness, note that, if C is unsatisfiable, then the only satis-
fying assignment of D and hence D′ is 1n+1, and our algorithm M rejects. Conversely, if C is
satisfiable, then 1n+1 is not the minimal witness of D, which means that D′ rejects 1n+1 and our
algorithm M accepts. Note that testing whether the deterministic circuit D′ rejects 1n+1 can be
done in polynomial time.

“⇐”. Given a Boolean circuit C(x1, . . . , xn) and an assignment w ∈ {0, 1}n, we can verify in PH
that w is the lexicographically smallest satisfying assignment of C. If NP = P, we have PH = P and
this verification can be performed in P. Hence we can efficiently compute a deterministic circuit
C ′(x1, . . . , xn) that outputs 1 if and only if its input is the lexicographically smallest satisfying
assignment of C. If C is satisfiable, then the constructed circuit C ′ is uniquely satisfied by the
lexicographically smallest satisfying assignment of C. On the other hand, if C is unsatisfiable,
then C ′ is unsatisfiable. Since C ′ can be computed from C in polynomial time, this isolation
procedure runs in polynomial time. �

3.2 Non-uniform disambiguation for deterministic circuits

Our main result shows that several P/poly-computable notions of disambiguation are equivalent
to NP ⊆ P/poly. To prove the collapse direction, we follow the two-step approach outlined in the
introduction. The forward direction of the following lemma implements Step 1, a reduction from
SAT to prUSAT.

Lemma 3.2. prUSAT ∈ P/poly if and only if NP ⊆ P/poly.

Proof. “⇒”. Assume M is a P/poly-algorithm for prUSAT. We claim that SAT ∈ P/poly. Recall
that Valiant–Vazirani gives a randomized isolation procedure A with success probability p = Ω

(
1
n

)
.

Adleman’s argument (Lemma 2.1) yields a P/poly-algorithm B that, given a circuit C, produces a
list of t = poly(n) circuits C ′1, . . . , C

′
t satisfying the following: (i) if C is unsatisfiable, then each C ′i

is unsatisfiable for i ∈ [t], and (ii) if C is satisfiable then a fraction Ω(1/n) of the C ′i are successful
isolations of C, that is, are uniquely satisfiable.

The following algorithm decides SAT. Given an input circuit C, compute the list B(C) =
(C ′1, . . . , C

′
t). If M(C ′i) accepts for at least one i, where i ∈ [t], then accept; otherwise, reject.

The described algorithm is clearly in P/poly. For correctness, if C is unsatisfiable, then by (i)
so are all C ′i, and hence M must reject each of them. If C is satisfiable, then by (ii) some C ′i is
uniquely satisfiable, and hence M must accept this C ′i.

“⇐”. This direction holds because any algorithm for SAT also solves prUSAT. �
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We are now ready to prove our main result on disambiguations for deterministic circuits in the
non-uniform setting.

Theorem 3.3. Each of the following statements is equivalent to NP ⊆ P/poly.

(i) There is a P/poly-computable minimal witness isolation for deterministic circuits.

(ii) There is a randomized P/poly-computable isolation for deterministic circuits with success
probability p > 2

3 + 1
poly(`) .

(iii) There is a randomized P/poly-computable satisfiability-preserving isolation for deterministic
circuits with success probability p > 1

poly(`) .

Obviously, the statements above are also equivalent to each other. In particular, the implication
(ii)⇒ (i) transforms any randomized P/poly-computable isolation with success probability p = p(`)
into a deterministic minimal witness isolation, the strongest notion of disambiguation that we
consider. This implication holds for all functions p : N → [0, 1] for which there exists a constant
c > 0 such that p(`) > 2/3 + 1/(c · `c) for all ` ∈ N.

Proof. The proof that NP ⊆ P/poly implies (i) is as in proof of Theorem 3.1. The implications
(i)⇒ (ii) and (i)⇒ (iii) are immediate by setting p = 1.

(ii) ⇒ (NP ⊆ P/poly). This corresponds to Step 2 as sketched in the introduction. Let
(Yes,No) denote the promise problem prUSAT, i.e., Yes denotes the set of uniquely satisfiable
circuits, and No the set of unsatisfiable circuits. Assume that there exists a randomized P/poly
isolation procedure A with success probability p > 2

3 + 1
poly(`) . By Lemma 3.2, it suffices to show

that prUSAT ∈ P/poly. We apply Adleman’s argument (Lemma 2.1) to A, where P1 expresses the
soundness property of A, and P2 its p-completeness. We use the parameter settings p1 = p′1 = 1,
p2 = p, and p′2 = p′ = p− 1/(c · `c), where we pick c > 0 sufficiently large such that p′(`) > 2

3 holds
for all ` ∈ N. We obtain a deterministic P/poly-algorithm B that maps any deterministic circuit
C to a list of deterministic circuits C ′1, . . . , C

′
t with the following properties: (i) every satisfying

assignment of every C ′i also satisfies C, and (ii) if C is satisfiable, then at least a p′-fraction of the
circuits C ′i have a unique satisfying assignment. We want to apply Ko’s argument, Lemma 2.2, to
prove prUSAT ∈ P/poly. For this, we construct the following binary relation R ⊆ Yes× (Yes∪No).
For C1 ∈ Yes with the unique satisfying assignment w1 and for C2 ∈ (Yes ∪ No), we set R(C1, C2)
true if and only if at least one of the following conditions holds:

(a) w1 satisfies C2.

(b) w1 satisfies less than a p′-fraction of the circuits C ′i on the list B(C), where C
.
= min(C1, C2)∨

max(C1, C2).

It remains to verify the three conditions in Lemma 2.2. For (K1), if R(C1, C2), then w1 satisfies C2

and hence C2 ∈ Yes, or w1 satisfies less than a p′-fraction of all circuits C ′i in the list B(C).
The latter implies that the list B(C) contains at least one successful isolation C ′i of C that is not
satisfied by w1. Since the unique satisfying assignment of this C ′i is not w1, it must be a satisfying
assignment of C2. In either case, we have that C2 ∈ Yes.

To show (K2), assume for contradiction that there are C1, C2 ∈ Yes such that neither R(C1, C2)
nor R(C2, C1) holds. Recall that the list (C ′1, . . . , C

′
t)

.
= B(C) depends only on the set {C1, C2}

and not on the order of the inputs. By the assumption, we know that C1 and C2 have different
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unique satisfying assignments w1 and w2 that each satisfy at least a p′-fraction of the C ′i. Inclusion-
exclusion yields that at least a fraction 2 · p′ − 1 of the circuits C ′i on the list B(C) are satisfied by
both assignments. Since 2 · p′ − 1 > 1/3 > 1 − p′, this contradicts the fact that B produces a list
of circuits, at least p′ of which have a unique satisfying assignment. Hence R(C1, C2) or R(C2, C1)
holds.

For (K3), note that, for a fixed C1 ∈ Yes, the membership of (C1, C2) in R can be decided by
a deterministic circuit RC1 that uses C1, w1, and p′t as advice, and B as a subroutine. The size
of the circuit is a fixed polynomial in the length of C1 and the circuit complexity of B. Thus R
satisfies the conditions of Lemma 2.2, and we get prUSAT ∈ P/poly.

(iii) ⇒ (NP ⊆ P/poly). This is analogous to the previous case, with the exception that we
slightly modify the definition of R. We start from a randomized P/poly-computable satisfiability-
preserving isolation A and transform it into a deterministic algorithm B, again using Adleman’s
argument, where P1 expresses the property that A is sound and satisfiability-preserving, and P2

is the p-completeness of A. We use the parameter settings p1 = p′1 = 1, p2 = p, and p′2 = p′ =
p − 1/(c · `c), where we pick c > 0 sufficiently large such that p′(`) > 0 holds for all ` ∈ N. Thus,
on input C, the algorithm B outputs a list of circuits C ′i such that: all satisfying assignments
of C ′i also satisfy C, and if C is satisfiable, then each C ′i is satisfiable and at least one of the C ′i
in the list is uniquely satisfiable. For C1 ∈ Yes with the unique satisfying assignment w1 and for
C2 ∈ (Yes∪No), we set R(C1, C2) true if and only if at least one of the following conditions holds:

(a) w1 satisfies C2.

(b) Some circuit C ′i on the list B(C) is not satisfied by w1, where C
.
= min(C1, C2)∨max(C1, C2).

To argue (K1), note that if R(C1, C2) holds, then w1 satisfies C2 and hence C2 ∈ Yes, or some circuit
C ′i in the list B(C) is not satisfied by w1. In the latter case, since B is satisfiability-preserving, this
implies that C2 ∈ Yes. For (K2), if neither R(C1, C2) nor R(C2, C1) holds, then C1 and C2 have
two distinct unique satisfying assignments w1 and w2, respectively, and every circuit C ′i is satisfied
by both assignments w1 and w2. This contradicts the fact that B outputs at least one uniquely
satisfiable C ′i. The efficiency condition (K3) can be argued just as in the previous case. Thus, by
Ko’s argument, we have prUSAT ∈ P/poly. �

Extensions. We stated Theorem 3.3 for randomized isolation and randomized satisfiability-
preserving isolation, but the proof does not make use of all properties of these notions. For example,
the algorithm A only ever gets invoked for inputs C that have exactly one or exactly two satisfying
assignments, so we do not need to make any assumptions on A’s behavior for other inputs. The
soundness and p-completeness conditions on those inputs can also be relaxed. These observation
allow us to generalize the theorem as follows.

Theorem 3.4. Consider a randomized P/poly-algorithm A that maps deterministic circuits C to
deterministic circuits C ′ such that the following two conditions hold:

(1) If C has a unique satisfying assignment w, then, with probability at least p1, the circuit C ′ is
satisfied by w.

(2) If C has exactly two satisfying assignments w1 and w2, then, with probability at least p2, the
circuit C ′ is not satisfied by both assignments w1 and w2.
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Such an algorithm A exists with p1 + 1
2p2 > 1 + 1

poly(`) if and only if NP ⊆ P/poly.

Algorithms A that satisfy (1) and (2) are more general than isolation: The conditions on A only
apply to inputs that have exactly one or two satisfying assignments; in case (1) C ′ can have satisfying
assignments other than w; and in case (2) C ′ can be unsatisfiable or have satisfying assignments
other than w1 and w2. In fact, Theorem 3.4 simultaneously generalizes the cases (ii) and (iii) of
Theorem 3.3, and it interpolates between them. In particular, (ii) is captured by p1, p2 > 2

3 + 1
poly(`) ,

and (iii) by p1 = 1 and p2 > 1
poly(`) .

Moreover, Theorem 3.4 also applies to randomized P/poly-reductions that map satisfiable cir-
cuits C to circuits C ′ with an odd number of satisfying assignments such that all satisfying as-
signments of C ′ also satisfy C. A randomized polynomial-time algorithm that achieves this task
with success probability 1/2 was given by Gupta [Gup98]. Since such reductions satisfy (1) and (2)
where p1 = p2 is the success probability, our results rule out the possibility of improving the success
probability to 2/3 + 1

poly(`) , unless NP ⊆ P/poly. We formulate this observation in the following
corollary to Theorem 3.4.

Corollary 3.5. Each of the following statements is equivalent to NP ⊆ P/poly.

(i) There is a randomized P/poly-computable reduction mapping circuits C to circuits C ′ such
that, if C is satisfiable, then with probability at least p > 2

3 + 1
poly(`) the circuit C ′ has an odd

number of satisfying assignments, each of which also satisfies C.

(ii) There is a randomized P/poly-computable reduction mapping circuits C to circuits C ′ such
that, if C is satisfiable, then C ′ is satisfiable, and with probability at least p > 1

poly(`) the

circuit C ′ has an odd number of satisfying assignments, each of which also satisfies C.

Let us now formally prove Theorem 3.4.

Proof (of Theorem 3.4). The reverse direction of the theorem follows immediately from the im-
plication NP ⊆ P/poly ⇒ (i) of Theorem 3.3 and the fact that any minimal witness isolation
satisfies (1) and (2) with p1 = p2 = 1.

Now let us argue the forward direction, so let p1 = p1(`) and p2 = p2(`) be such that p1 + 1
2p2 >

1
poly(`) , and let A be an algorithm that satisfies (1) and (2). Using Adleman’s argument, we obtain

from A a list-derandomization B that achieves (1) with p1 replaced by p′1 = p1 − ε (or p′1 = 1 if
p1 = 1) and (2) with p2 replaced by p′2 = p2 − ε (or p′2 = 1 if p2 = 1), where ε

.
= 1/(c`c) with c > 0

large enough so that p′1 + 1
2p
′
2 > 1 + 1

poly(`) holds. Such a constant c exists by the assumption that

p1 + 1
2p2 > 1+ 1

poly(`) holds. The probabilities p′1 and p′2 are interpreted with respect to the uniform

distribution over the list B(C).
We devise a P/poly-algorithm for prUSAT. To adapt the proof of Theorem 3.3 to this more

general setting, we define the relation R on Yes × (Yes ∪ No) as follows. For any deterministic
circuit C1 that is uniquely satisfied by some w1 and any deterministic circuit C2 that has at most
one satisfying assignment, we define R(C1, C2) by the following conditions:

(a) w1 satisfies C2, or

(b) w1 satisfies less than a p′1-fraction of the C ′i in the list B(C), where C
.
= min(C1, C2) ∨

max(C1, C2).
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The relation R satisfies the efficiency requirement (K3) just as in the proof of Theorem 3.3. We
claim that R also satisfies (K1) and (K2) if p′1 + 1

2p
′
2 > 1. By Ko’s argument, the existence of such

an algorithm A then implies NP ⊆ P/poly. We briefly argue (K1) and (K2).
(K1). Let R(C1, C2) hold. If (a) holds, then C2 is satisfiable. Otherwise (b) holds, and

we assume for contradiction that C2 is unsatisfiable. Then C has the unique witness w1, in which
case (1) guarantees that a fraction at least p′1 of the C ′i have w1 as a witness. But this contradicts (b),
so C2 must be satisfiable.

(K2). Assume that neither R(C1, C2) nor R(C2, C1) hold for some uniquely satisfiable C1

and C2. Then C has exactly two witnesses w1 and w2, which must be distinct since (a) does not
hold. Because (b) does not hold in either direction, a fraction at least 2p′1−1 of the C ′i are satisfied
by both assignments. This contradicts (2) since 2p′1 − 1 > 1− p′2. �

Limitations. Regarding the implication (ii) ⇒ NP ⊆ P/poly of Theorem 3.3, one may wonder
whether our proof technique as captured by Theorem 3.4 can provide evidence against randomized
P/poly-computable isolation procedures with success probability p below 2

3 + 1
poly(`) . The Valiant–

Vazirani isolation procedure satisfies (1) and (2) with p1 = 1/2 and p2 = 3/4: Recall that the
Valiant–Vazirani procedure intersects the solution space with a random number of random hyper-
planes. Applied to circuits with at most two solutions, it suffices to fix the number of hyperplanes
to one. The latter achieves the above guarantees since any given witness is on the hyperplane with
probability p1 = 1/2, and two distinct witnesses are not both on the hyperplane with probability
p2 = 3/4. This means that we cannot expect our approach to work when p 6 min(p1, p2) = 1

2 .
In fact, we cannot expect our approach to handle constant success probabilities p < 1

ϕ ≈ .618,
where ϕ denotes the golden ratio. This is because, for every positive constant ε, we can construct
an algorithm A that satisfies (1) and (2) with p1, p2 > 1

ϕ−ε. Here is how. Let GF(q) denote a finite
field with q elements. On input a circuit C(x) on n variables x1, . . . , xn, the algorithm A picks
an affine function f : GF(q)n → GF(q) uniformly at random. That is, A picks a random vector
a ∈ GF(q)n and a random b ∈ GF(q), and sets f(x) =

∑n
i=1 ai · xi + b. The output of A is the

circuit C ′(x)
.
= C(x)∧ (f(x) ∈ S), where S ⊆ GF(q) is a subset independent from C. The set of all

such f forms a universal familiy of hash functions. Hence, for every fixed w, the probability over
the choice of f that f(w) ∈ S holds is exactly p1 = |S|/|q|. Furthermore, the events f(w1) ∈ S and
f(w2) ∈ S are independent for every fixed w1 6= w2, and hence p2 = (1− p21). Note that min(p1, p2)
is maximized for p1 = p2, which solves to p1 = 1

ϕ . Since |S|/q can approximate 1
ϕ arbitrarily well,

we get for every ε > 0 an algorithm A that satisfies (1) and (2) with p1, p2 > 1
ϕ − ε. Thus it seems

that our approach cannot prove that Theorem 3.3(ii) for any constant p < 1
ϕ implies NP ⊆ P/poly.

3.3 Uniform disambiguation for nondeterministic circuits

Similar to Theorem 3.1 in the case of deterministic circuits, we now show that the existence of
polynomial-time minimal witness isolation for the class of nondeterministic circuits is equivalent to
NP = coNP.

Theorem 3.6. There is a P-computable minimal witness isolation for nondeterministic circuits if
and only if NP = coNP.

Proof. “⇒”. This is analogous to the proof of the corresponding direction of Theorem 3.1. The
difference is that the circuit D′ obtained after the isolation may now be nondeterministic. In this
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case, testing whether the nondeterministic circuits D′ rejects the assignment 1n+1 can be done in
coNP, for which reason the algorithm M for SAT now runs in coNP.

“⇐”. This is as in the proof of Theorem 3.1, except that NP = coNP is only known to
imply PH = NP, and hence the efficiently constructed circuit C ′ is no longer deterministic, but
nondeterministic. �

3.4 Non-uniform disambiguation for nondeterministic circuits

We now develop the analog of our main result (Theorem 3.3) for nondeterministic instead of de-
terministic circuits. One motivation is the fact that a witness-recoverable disambiguation for de-
terministic circuits implies an isolation for nondeterministic circuits.

To prove the collapse direction, we again follow the two-step approach outlined in the intro-
duction. The following lemma is an analog of Lemma 3.2 one level higher in the polynomial-time
hierarchy. Note that the underlying problems SAT and prUSAT are the same as before, and in
particular, their instances are still deterministic circuits.

Lemma 3.7. prUSAT ∈ coNP/poly if and only if coNP ⊆ NP/poly.

Proof. “⇒”. Let M be the assumed coNP/poly-algorithm for prUSAT. That is, if C has a unique
satisfying assignment, then M(C) accepts on all computation paths; and if C is unsatisfiable,
M(C) rejects on at least one computation path. We will devise a coNP-algorithm A that decides
SAT, the satisfiability of deterministic circuits. The algorithm uses the same P/poly-algorithm B
that we used in the proof of Lemma 3.2 to reduce from SAT to prUSAT. Recall that B is a list-
derandomization of Valiant–Vazirani’s isolation lemma for deterministic circuits, that is, B maps
a deterministic input circuit C to a list of t = poly(n) deterministic circuits C ′1, . . . , C

′
t so that: (i)

if C is unsatisfiable then so is C ′i for every i ∈ [t], and (ii) if C is satisfiable then at least one C ′i is
uniquely satisfiable.

The following coNP/poly-algorithm A decides SAT. On input a deterministic circuit C, we
compute the list B(C) = (C ′1, . . . , C

′
t). For each i ∈ [t], we co-nondeterministically guess a

string zi ∈ {0, 1}poly(n), and simulate the coNP/poly-computation M(C ′i) using zi as the co-
nondeterministic choices. We accept if, for at least one i, the computation M(C ′i) accepts when
using the co-nondeterministic choices zi; otherwise, we reject.

The described algorithm A is a co-nondeterministic polynomial-time algorithm with polynomial
advice. It remains to argue that A decides SAT. If C is satisfiable, then by (ii) there is an i ∈ [t]
such that C ′i is uniquely satisfiable, and hence M(C ′i) accepts for every string zi. In this case, every
computation path of A on input C is accepting. On the other hand, if C is unsatisfiable, then
by (i) every C ′i is unsatisfiable, and hence, for every i ∈ [t], there is a zi such that M(C ′i) rejects
when using zi as the co-nondeterministic choices. The sequence of these zi’s yields a rejecting
computation path for the algorithm A on input C.

“⇐”. This direction holds because any algorithm for SAT also solves prUSAT. �

Here is the analog of Theorem 3.3 for nondeterministic circuits.

Theorem 3.8. Each of the following statements is equivalent to coNP ⊆ NP/poly.

(i) There is a P/poly-computable minimal witness isolation for nondeterministic circuits.

(ii) There is a randomized P/poly-computable isolation for nondeterministic circuits with success
probability p > 2

3 + 1
poly(`) .
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(iii) There is a randomized P/poly-computable satisfiability-preserving isolation for nondetermin-
istic circuits with success probability p > 1

poly(`) .

(iv) There is a randomized P/poly-computable witness-recoverable disambiguation for nondeter-
ministic circuits with success probability p > 2

3 + 1
poly(`) .

Furthermore, the following statement implies coNP ⊆ NP/poly.

(v) There is a randomized P/poly-computable witness-recoverable disambiguation for determinis-
tic circuits with success probability p > 2

3 + 1
poly(`) .

Proof. The proof that coNP ⊆ NP/poly implies (i) is as in the proof of Theorem 3.6 using the fact
that PH = NP/poly. The proof that (i) implies each of (ii), (iii), (iv), and (v) is immediate by
setting p = 1.

(ii) ⇒ (coNP ⊆ NP/poly). This step is similar to the step that condition (ii) in Theorem 3.3
implies NP ⊆ P/poly. Assume A is the given isolation for nondeterministic circuits. We use Adle-
man’s argument (Lemma 2.1) where P1 is the soundness property of A and P2 is its p-completeness.
We use the parameter settings p1 = p′1 = 1, p2 = p, and p′2 = p′ = p − 1/(c · `c) > 2/3 for some
large enough constant c > 0 to obtain a deterministic list-derandomization B of A: On input a
(non)deterministic circuit C, the procedure B outputs a list of nondeterministic circuits C ′i such
that the satisfying assignments of the circuits C ′i in the list also satisfy C, and if C is satisfiable
then at least a p′-fraction of the C ′i in the list have a unique satisfying assignment.

Because of Lemma 3.7, it suffices to prove that prUSAT ∈ coNP/poly. We want to apply
Ko’s argument, Lemma 2.2, to show that prUSAT ∈ coNP/poly. For this, we define a binary
relation R ⊆ Yes × (Yes ∪ No) where Yes is the set of uniquely satisfiable deterministic circuits
and No is the set of unsatisfiable deterministic circuits. For C1 ∈ Yes with the unique satisfying
assignment w1 and for C2 ∈ (Yes ∪ No), we set R(C1, C2) true if and only if the pair (C1, C2)
satisfies (a) or (b):

(a) w1 satisfies C2.

(b) w1 satisfies less than a p′-fraction of the circuits C ′i on the list B(C), where C
.
= min(C1, C2)∨

max(C1, C2).

The conditions (a) and (b) are the same as the ones in the proof that condition (ii) in Theorem 3.3
implies NP ⊆ P/poly. The only difference is that the C ′i here may be nondeterministic instead of
deterministic. This, however, does not affect the proof that the relation R satisfies (K1) and (K2).
The only difference is the efficiency of the algorithm: For (K3), we argue that R(C1, C2) can be
computed by a small co-nondeterministic circuit for every fixed C1 ∈ Yes. Condition (a) can be
checked in P/poly since we can give w1 as advice and C2 is a deterministic circuit. Furthermore,
condition (b) is of the form “more than (1 − p′) · t of the circuits C ′i reject w1”, which can be
checked in coNP/poly since each C ′i is a nondeterministic circuit. This gives rise to a family RC1

of co-nondeterministic circuits, where each circuit has size polynomial in the length of C1 and the
circuit complexity of B. Hence, Lemma 2.2 implies that prUSAT ∈ coNP/poly.

(iii) ⇒ (coNP ⊆ NP/poly). This is analogous to the proof that condition (iii) in Theorem 3.3
implies NP ⊆ P/poly. The only difference is, again, that the efficiency of the constructed relation R
changes from P/poly to coNP/poly.
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(iv)⇒ (ii). Let A be a randomized P/poly-computable witness-recoverable disambiguation for
nondeterministic circuits with success probability p. We construct a randomized P/poly-computable
isolation B for nondeterministic circuits with the same success probability p. Intuitively, on input
a circuit C, B constructs a circuit C ′′ that guesses and verifies a witness w′ for the circuit C ′

that A produces on input C, uses the witness recovery procedure of A to obtain a witness w for
C, and verifies that w satifies C. More precisely, let W denote a polynomial-size circuit that
implements the witness recovery procedure of A, i.e., given C, C ′, and a satisfying assignment of
A’s output, W produces a satisfying assignment of A’s input. Consider a nondeterministic circuit
C(x1, . . . , xn) and let D(x1, . . . , xn, y1, . . . , ym) denote the underlying deterministic circuit. On
input C, our new machine B first runs A to compute the nondeterministic circuit C ′(x′1, . . . , x

′
n′)

and the underlying deterministic circuit D′(x′1, . . . , x
′
n′ , y

′
1, . . . , y

′
m′). Then B constructs and outputs

the nondeterministic circuit C ′′(x1, . . . , xn) induced by the deterministic circuit

D′′(x1, . . . , xn, y1, . . . , ym, x
′
1, . . . , x

′
n′ , y

′
1, . . . , y

′
m′)

that outputs 1 if and only if all of the following conditions hold:

◦ D(x1, . . . , xn, y1, . . . , ym) = 1,

◦ D′(x′1, . . . , x′n′ , y′1, . . . , y′m′) = 1, and

◦ (x1, . . . , xn) = W (C,C ′, x′1, . . . , x
′
n′).

Note that C ′′ only accepts inputs that are also accepted by C. Moreover, if C is satisfiable and
C ′ is the output of a successful run of A, then C ′ accepts exactly one input w′, which by the
defining property of the witness recovery procedure W implies that C ′′ accepts exactly one input,
namely w

.
= W (C,C ′, w′). Thus, the algorithm B that computes C ′′ is an isolation procedure for

nondeterministic circuits, and its success probability is the same as that of A.
(v) ⇒ (coNP ⊆ NP/poly). Let A be a randomized P/poly-computable witness-recoverable dis-

ambiguation for deterministic circuits with success probability p, and let W be the correspond-
ing deterministic recovery procedure. We argue that A also constitutes a witness-recoverable
disambiguation for nondeterministic circuits with the same success probability p, and then ap-
ply (iv). Given a nondeterministic circuit C(x1, . . . , xn) with underlying deterministic circuit
D(x1, . . . , xn, y1, . . . , ym), we simply apply A to D. This produces a deterministic circuit D′ on
some variables z1, . . . , zm, which we view as a nondeterministic circuit C ′ on the same inputs
(without nondeterministic variables). If C is unsatisfiable, then so are D, D′, and C ′. If C is
satisfiable, then D is satisfiable, and if A is successful on this D, then D′ has a unique satisfying
assignment w′ such that w

.
= W (D,D′, w′) satisfies D; in that case the first n bits of w satisfy C.

Thus, if we define W ′(C,C ′, w′) as the first n bits of W (D,D′, w′), then A combined with the
recovery algorithm W ′ is a randomized P/poly-computable witness-recoverable disambiguation for
nondeterministic circuits with success probability p. This means that (iv) holds, which implies
coNP ⊆ NP/poly. �

Remark 3.9. The proof of Theorem 3.8 only ever considers deterministic circuits as input to the
isolation procedures for nondeterministic circuits. Thus the statements (i) — (iv) of Theorem 3.8
can be strengthened by restricting the input of the procedures to deterministic circuits while still
allowing their output to be nondeterministic circuits.
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Remark 3.10. We pointed out after the proof of Theorem 3.3 that a relaxed form of disambigua-
tion is sufficient for the proof of cases (ii) and (iii) to go through. The same relaxation, this time
for nondeterministic circuits, is possible for the cases (ii) and (iii) of Theorem 3.8, for the same
reasons.

4 Blackbox isolation

We consider a general situation where some randomized procedure is used to isolate one element in
a given unknown set W in some specified familyW of subsets of {0, 1}n. The randomized procedure
can be designed depending on W, but it is not given any information on which W ∈ W is chosen.
The randomized procedure can check whether a given w ∈ {0, 1}n is chosen or not; in other words,
it is specified as a distribution D over subsets of {0, 1}n, where each D ∈ D is the set of strings
that the randomized procedure selects when its random seed is fixed. This leads to the following
type of isolation. Below, for a distribution D and an element D from the support of D, we denote
by D ← D the fact that D is chosen according to the distribution D.

Definition 2 (Blackbox isolation). For any familyW of nonempty subsets of {0, 1}n, a blackbox
isolation procedure is a distribution D over subsets D of {0, 1}n. For any D ∈ D and any W ∈ W,
we say that D succeeds on W if |D ∩W | = 1.

The isolation probability of D for W is defined as

min
W∈W

Pr
D←D

[
|D ∩W | = 1

]
.

While this is regarded as the “worst-case” isolation probability, we may also consider an average
isolation probability. For this, we regard W as a distribution over subsets of {0, 1}n. For any
distributionW over subsets of {0, 1}n and any blackbox isolation procedure D, the average isolation
probability of D for W is defined as EW←W [ PrD←D[ |D ∩W | = 1 ] ]. Clearly, the average isolation
probability for a distributionW is an upper bound on the isolation probability for the corresponding
subset family W.

We now construct a distributionW∗ for which the average isolation probability of any blackbox
isolation D is O(1/n). In order to do so, we first analyze what happens with the distribution WK

defined as follows, where K is any integer in the range 1 6 K 6 N
.
= 2n: We put each w ∈ {0, 1}n

into W independently with probability pK
.
= K/N . Roughly, W ←WK has K strings on average.

That is, we consider the isolation when we can approximate the target set size well. The Valiant–
Vazirani procedure achieves an isolation probability of at least 1/8 when given an integer k such
that |W | ∈ [2k, 2k+1], and an isolation probability of at least 1/4 when given an integer k such
that |W | = 2k (see, e.g., Papadimitriou [Pap94, p. 450–451]). We show that one cannot go beyond
(1 +o(1))/e using any blackbox isolation procedure when K = o(N). More precisely, we obtain the
following bound.

Theorem 4.1. For any blackbox isolation procedure D, its average isolation probability for WK is
at most (1− K

N )−1e−1.
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Proof. Consider any set D with H elements. Then its isolation probability for WK is

Pr
W←WK

[ |D ∩W | = 1 ] = H · pK (1− pK)H−1 =

(
1− K

N

)−1
· HK
N
·
(

1− K

N

)H

(2)

6

(
1− K

N

)−1
· HK
N
· e−HK/N 6

(
1− K

N

)−1
· e−1 ,

where the last inequality follows since x · e−x has e−1 as its maximum value, which is achieved for
x = 1, i.e., for H = N/K. Note that the upper bound is the same for any D. Since the average
isolation probability of D is a convex combination of the probabilities that |D ∩W | = 1, the result
follows. �

We construct the distributionW∗ as a uniform superposition of the distributionsWK , where K
ranges over a well-chosen set K. For K not too close to N , (2) shows that the isolation probability
forWK of a set D with H elements is maximized for H around N/K, and decreases rapidly when H
deviates from N/K. This means that if we pick the values of K in K such that their ratios remain
far from 1, then any set D can only have a significant contribution to the isolation probability
for WK for a few K ∈ K, and the overall isolation probability of D for W∗ becomes O(1/|K|). In
particular, for a geometrically increasing set of values K ∈ K, we obtain the tight upper bound of
Θ(1/ logN) = Θ(1/n) on the isolation probability of any blackbox isolation for W∗.

The next theorem refers to the specific distribution W∗ defined as follows: Choose K from
K .

= {1, 2, 4, . . . , 2n−1} uniformly at random, and then sample W according to the distribution
WK .

Theorem 4.2. For any blackbox isolation procedure D, its average isolation probability for W∗
is O(1/n).

Proof. Since the average isolation probability of D is a convex combination of the probabilities that
|D ∩W | = 1 for all fixed D, it suffices to upper bound the latter probabilities. Let D be any set
with H elements. By (2), we have that

Pr
W←W∗

[ |D ∩W | = 1 ] =
1

n
·
∑
K∈K

Pr
W←WK

[ |D ∩W | = 1 ] =
1

n
·
∑
K∈K

(
1− K

N

)−1
· HK
N
·
(

1− K

N

)H

.

To upper bound the right-hand side, we split the sum into the cases K ≤ N/H and K > N/H.
Then noting that K ≤ 2n−1 = N/2, we have

∑
K∈K

(
1− K

N

)−1
· HK
N
·
(

1− K

N

)H

≤
∑
K∈K

2HK

N

(
1− K

N

)H

≤
∑
K∈K

K≤N/H

2HK

N

(
1− K

N

)H

+
∑

K>N/H

2HK

N
e−HK/N

≤
∑
K∈K

K≤N/H

2HK

N

(
1− K

N

)H

+O(1) , (3)
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where the last line follows from the fact that
∑

x≥1 xe
−x = O(1). On the other hand, since we have

2HK

N

(
1− K

N

)H

≤ 2HK

N

(
1− HK

N
+

1

2

(
HK

N

)2
)
,

and

∑
K∈K

K≤N/H

2HK

N

(
1− HK

N
+

1

2

(
HK

N

)2
)

≤ 2H

N
· 2N

H
− 2H2

N2
· 4N2

3H2
+

2H3

2N3
· 8N3

7H3
= 4− 8

3
+

8

7
≤ 3 ,

we conclude that (3) is O(1), which gives the desired bound. �

One application of isolation is finding witnesses using nonadaptive queries to a satisfiability
oracle. The standard search-to-decision reduction constructs a witness bit-by-bit using n adaptive
queries to a satisfiability oracle. If the witness is unique, then the queries can be made in a
nonadaptive fashion. The Valiant–Vazirani procedure thus yields a nonadaptive search-to-decision
procedure that makes n queries and succeeds with probability Ω(1/n). By running the procedure
O(n) times in parallel, we obtain a nonadaptive search-to-decision procedure that makes O(n2)
queries and succeeds with probability Ω(1). Ben-David et al. [BDCGL92] present an alternate
procedure with similar behavior. Recently, Kawachi, Rossman, and Watanabe [KRW12] extended
our blackbox framework and showed that in that setting every nonadaptive search-to-decision
procedure with success probability Ω(1) has to make Ω(n2) queries.

5 Further discussion

We have considered different ways in which one might want to strengthen the Valiant–Vazirani
isolation: deterministic isolation, randomized isolation with large constant success probability,
or satisfiability-preserving randomized isolation with inverse-polynomial success probability. We
showed that any such strengthening would lead to a collapse of the polynomial-time hierarchy, and
thus, is unlikely. We also showed that a natural “blackbox” isolation procedure (generalizing the
one of Valiant and Vazirani [VV86]) cannot have success probability better than O(1/n).

Our result that an efficient deterministic isolation procedure would imply NP ⊆ P/poly (Theo-
rem 3.3) can be interpreted as saying that derandomizing the Isolation Lemma (in the strong sense,
where the output of the isolation procedure is a single circuit) would imply circuit upper bounds
for NP. This is in contrast to the previous results showing that derandomization would imply
circuit lower bounds for NEXP Impagliazzo, Kabanets, and Wigderson [IKW02]; Kabanets and
Impagliazzo [KI04]; Arvind and Mukhopadhyay [AM08]. Also, while such strong derandomization
of the Valiant–Vazirani Isolation Lemma seems unlikely, the derandomization in the weak sense,
where a satisfiable circuit is mapped to a list of circuits with at least one being uniquely satisfiable,
is likely to exist (under plausible complexity assumptions) Klivans and van Melkebeek [KvM02].

While we have argued that an efficient randomized isolation with success probability p > 2/3
is unlikely to exist, it remains an interesting open problem to consider intermediate values of p,
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namely ω(1/n) < p 6 2/3. Regarding more general mapping reductions from NP to UP, does the
assumption NP = UP lead to any surprising consequences?

Our results also apply to mapping reductions from NP to ⊕P that can only remove witnesses.
In this setting the open range for the success probability is 1/2 < p 6 2/3. In contrast, general
mapping reductions from NP to ⊕P can have success probabilities arbitrarily close to 1, and are
therefore strictly more powerful unless NP ⊆ P/poly.
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