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Abstract
We present a geometric approach towards derandomizing the Isolation Lemma by Mulmuley,
Vazirani, and Vazirani. In particular, our approach produces a quasi-polynomial family of weights,
where each weight is an integer and quasi-polynomially bounded, that can isolate a vertex in any
0/1 polytope for which each face lies in an affine space defined by a totally unimodular matrix.
This includes the polytopes given by totally unimodular constraints and generalizes the recent
derandomization of the Isolation Lemma for bipartite perfect matching and matroid intersection.
We prove our result by associating a lattice to each face of the polytope and showing that if there
is a totally unimodular kernel matrix for this lattice, then the number of vectors of length within
3/2 of the shortest vector in it is polynomially bounded. The proof of this latter geometric fact is
combinatorial and follows from a polynomial bound on the number of circuits of size within 3/2
of the shortest circuit in a regular matroid. This is the technical core of the paper and relies on
a variant of Seymour’s decomposition theorem for regular matroids. It generalizes an influential
result by Karger on the number of minimum cuts in a graph to regular matroids.
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1 Introduction

The Isolation Lemma by Mulmuley, Vazirani, and Vazirani [14] states that for any given family
of subsets of a ground set E, if we assign random weights (bounded in magnitude by poly(|E|))
to the elements of E then, with high probability, the minimum weight set in the family is
unique. Such a weight assignment is called an isolating weight assignment. The lemma was
introduced in the context of randomized parallel algorithms for the matching problem. Since
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then it has found numerous other applications, in both algorithms and complexity: e.g., a
reduction from CLIQUE to UNIQUE-CLIQUE [14], NL/poly ⊆ ⊕L/poly [29], NL/poly =
UL/poly [17], an RNC-algorithm for linear matroid intersection [15], and an RP-algorithm
for disjoint paths [3]. In all of these results, the Isolation Lemma is the only place where
they need randomness. Thus, if the Isolation Lemma can be derandomized, i.e., if a
polynomially bounded isolating weight assignment can be deterministically constructed, then
the aforementioned results that rely on it can also be derandomized. In particular, it will
give a deterministic parallel algorithm for matching.

A simple counting argument shows that a single weight assignment with polynomially
bounded weights cannot be isolating for all possible families of subsets of E. We can
relax the question and ask if we can construct a poly-size list of poly-bounded weight
assignments such that for each family B ⊆ 2E , one of the weight assignments in the list is
isolating. Unfortunately, even this can be shown to be impossible via arguments involving
the polynomial identity testing (PIT) problem. The PIT problem asks if an implicitly given
multivariate polynomial is identically zero. Derandomization of PIT is another important
consequence of derandomizing the Isolation Lemma. Here, the Isolation Lemma is applied
to the family of monomials present in the polynomial. In essence, if we have a small list of
weight assignments that works for all families, then we will have a small hitting-set for all
small degree polynomials, which is impossible (see [2]). Once we know that a deterministic
isolation is not possible for all families, a natural question is to solve the isolation question for
families B, that have a succinct representation, for example, the family of perfect matchings
of a graph.

For the general setting of families with succinct representations, no deterministic isolation
is known, other than the trivial construction with exponentially large weights. In fact,
derandomizing the isolation lemma in this setting will imply circuit lower bounds [2]. Efficient
deterministic isolation is known only for very special kinds of families, for example, perfect
matchings in some special classes of graphs [1, 5, 6, 9], s-t paths in directed graphs [4, 12, 28].
Recently, there has been significant progress on deterministic isolation for perfect matchings
in bipartite graphs [7] and subsequently, in general graphs [25], and matroid intersection [10],
which implied quasi-NC algorithms for these problems.

Motivated by these recent works, we give a generic approach towards derandomizing
the Isolation Lemma. We show that the approach works for a large class of combinatorial
polytopes and conjecture that it works for a significantly larger class. For a family of sets
B ⊆ 2E , define the polytope P (B) ⊆ RE to be the convex hull of the indicator vectors of
the sets in B. Our main result shows that for m := |E|, there exists an mO(logm)-sized
family of weight assignments on E with weights bounded by mO(logm) that is isolating for
any family B whose corresponding polytope P (B) satisfies the following property: the affine
space spanned by any face of P (B) is parallel to the null space of some totally unimodular
(TU) matrix; see Theorem 2.3. This is a black-box weight construction in the sense that it
does not need the description of the family or the polytope.

A large variety of polytopes satisfy this property and, as a consequence, have been
extensively studied in combinatorial optimization. The simplest such class is when the
polytope P (B) has a description Ax ≤ b with A being a TU matrix. Thus, a simple
consequence of our main result is a resolution to the problem of derandomizing the isolation
lemma for polytopes with TU constraints, as raised in a recent work [25]. This generalizes
the isolation result for perfect matchings in a bipartite graph [7], since the perfect matching
polytope of a bipartite graph can be described by the incidence matrix of the graph, which
is TU. Other examples of families whose polytopes are defined by TU constraints are vertex
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covers of a bipartite graph, independent sets of a bipartite graph, and, edge covers of a
bipartite graph. Note that these three problems are computationally equivalent to bipartite
matching and thus, already have quasi-NC algorithms due to [7]. However, the isolation
results for these families are not directly implied by isolation for bipartite matchings.

Our work also generalizes the isolation result for the family of common bases of two
matroids [10]. In the matroid intersection problem, the constraints of the common base
polytope are a rank bound on every subset of the ground set. These constraints, in general,
do not form a TUM. However, for every face of the polytope there exist two laminar families
of subsets that form a basis for the tight constraints of the face. The incidence matrix for
the union of two laminar families is TU (see [20, Theorem 41.11]).

Since our condition on the polytope P (B) does not require the constraint matrix defining
the polytope itself (or any of its faces) to be TU, it is quite weak and is also well studied.
Schrijver [19, Theorem 5.35] shows that this condition is sufficient to prove that the polytope
is box-totally dual integral. The second volume of Schrijver’s book [20] gives an excellent
overview of polytopes that satisfy the condition required in Theorem 2.3 such as

R− S bibranching polytope [20, Section 54.6]
directed cut cover polytope [20, Section 55.2]
submodular flow polyhedron [20, Theorem 60.1]
lattice polyhedron [20, Theorem 60.4]
submodular base polytope [20, Section 44.3]
many other polytopes defined via submodular and supermodular set functions [20, Sections
46.1, 48.1, 48.23, 46.13, 46.28, 46.29, 49.3, 49.12, 49.33, 49.39, 49.53].

We would like to point out that it is not clear if our isolation results in the above settings
lead to any new derandomization of algorithms. Finding such algorithmic applications of our
isolation result would be quite interesting.

To derandomize the Isolation Lemma, we abstract out ideas from the bipartite matching
and matroid intersection isolation [7, 10], and give a geometric approach in terms of certain
lattices associated to polytopes. For each face F of P (B), we consider the lattice LF of
all integer vectors parallel to F . We show that, if for each face F of P (B), the number of
near-shortest vectors in LF is polynomially bounded then we can construct an isolating
weight assignment for B with quasi-polynomially bounded weights; see Theorem 2.4. Our
main technical contribution is to give a polynomial bound on the number of near-shortest
vectors in LF (whose `1-norm is less than 3/2 times the smallest `1-norm of any vector in LF ),
when this lattice is the set of integral vectors in the null space of a TUM; see Theorem 2.5.

The above lattice result is in contrast to general lattices where the number of such
near-shortest vectors could be exponential in the dimension.

Our result on lattices can be reformulated using the language of matroid theory: the
number of near-shortest circuits in a regular matroid is polynomially bounded; see The-
orem 2.6. In fact, we show how Theorem 2.5 can be deduced from Theorem 2.6. One crucial
ingredient in the proof of Theorem 2.6 is Seymour’s remarkable decomposition theorem for
regular matroids [21]. Theorem 2.6 answers a question raised by Subramanian [24] and is a
generalization of (and builds on) known results in the case of graphic and cographic matroids,
that is, the number of near-minimum length cycles in a graph is polynomially bounded
(see [24, 26]) and the result of Karger [13] that states that the number of near-mincuts in a
graph is polynomially bounded.

Thus, not only do our results make progress in derandomizing the isolation lemma
for combinatorial polytopes, they make interesting connections between lattices (that are
geometric objects) and combinatorial polytopes. Our structural results about the number of
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near-shortest vectors in lattices and near-shortest circuits in matroids should be of independent
interest and raise the question: to what extent are they generalizable?

A natural conjecture would be that for any (0, 1)-matrix, the lattice formed by its
integral null vectors has a small number of near-shortest vectors. In turn, this would give us
the isolation result for any polytope which is defined by a (0, 1)-constraint matrix. Many
combinatorial polytopes have this property. One such interesting example is the perfect
matchings polytope for general graphs. The recent result of [25], which showed a quasi-NC
algorithm for perfect matchings, does not actually go via a bound on the number of near-
shortest vectors in the associated lattice. Obtaining a polynomial bound on this number
would give a proof for their quasi-NC result in our unified framework and with improved
parameters. Another possible generalization is for (0, 1)-polytopes that have this property
that the integers occurring in the description of each supporting hyperplane are bounded
by a polynomial in the dimension of the polytope. Such polytopes generalize almost all
combinatorial polytopes and yet seem to have enough structure – they have been recently
studied in the context of optimization [22,23].

2 Our Results

2.1 Isolating a vertex in a polytope
For a set E and a weight function w : E → Z, we define the extension of w to any set S ⊆ E
by w(S) :=

∑
e∈S w(e). Let B ⊆ 2E be a family of subsets of E. A weight function w : E → Z

is called isolating for B if the minimum weight set in B is unique. In other words, the set
arg minS∈B w(S) is unique. The Isolation Lemma of Mulmuley, Vazirani, and Vazirani [14]
asserts that a uniformly random weight function is isolating with a good probability for
any B.

I Lemma 2.1 (Isolation Lemma). Let E be a set, |E| = m, and let w : E → {1, 2, . . . , 2m}
be a random weight function, where for each e ∈ E, the weight w(e) is chosen uniformly and
independently at random. Then for any family B ⊆ 2E, w is isolating with probability at
least 1/2.

The task of derandomizing the Isolation Lemma requires the deterministic construction of
an isolating weight function with weights polynomially bounded in m = |E|. Here, we view
the isolation question for B as an isolation over a corresponding polytope P (B), as follows.
For a set S ⊆ E, its indicator vector xS := (xSe )e∈E is defined as xSe = 1 if e ∈ S and xSe = 0
otherwise. For any family of sets B ⊆ 2E , the polytope P (B) ⊆ Rm is defined as the convex
hull of the indicator vectors of the sets in B, i.e., P (B) := conv

{
xS | S ∈ B

}
. Note that

P (B) is contained in the m-dimensional unit hypercube.
The isolation question for a family B is equivalent to constructing a weight vector w ∈ ZE

such that 〈w, x〉 has a unique minimum over P (B). The property we need for our isolation
approach is in terms of total unimodularity of a matrix.

I Definition 2.2 (Totally unimodular matrix). A matrix A ∈ Rn×m is said to be totally
unimodular (TU), if every square submatrix has determinant 0 or ±1.

Our main theorem gives an efficient quasi-polynomial isolation for a family B when each face
of the polytope P (B) lies in the affine space defined by a TU matrix.

I Theorem 2.3 (Main Result). Let E be a set with |E| = m. Consider a class C of families
B ⊆ 2E that have the following property: for any face F of the polytope P (B), there exists
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a TU matrix AF ∈ Rn×m such that the affine space spanned by F is given by AFx = bF
for some bF ∈ Rn. We can construct a set W of mO(logm) weight assignments on E with
weights bounded by mO(logm) such that for any family B in the class C, one of the weight
assignments in W is isolating.

2.2 Short vectors in lattices associated to polytopes
Our starting point towards proving Theorem 2.3 is a reformulation of the isolation approach
for bipartite perfect matching and matroid intersection [7, 10]. For a set E and a family
B ⊆ 2E , we define a lattice corresponding to each face of the polytope P (B). The isolation
approach works when this lattice has a small number of near-shortest vectors. For any face
F of P (B), consider the lattice of all integral vectors parallel to F ,

LF :=
{
v ∈ ZE | v = α(x1 − x2) for some x1, x2 ∈ F and α ∈ R

}
.

Let λ(L) := min { ‖v‖ | 0 6= v ∈ L } denote the length of the shortest nonzero vector of a
lattice L, where ‖·‖ denotes the `1-norm. We prove that if, for all faces F of P (B) the number
of near-shortest vectors in LF is small, then we can efficiently isolate a vertex in P (B).

I Theorem 2.4 (Isolation via Lattices). Let E be a set with |E| = m and let B ⊆ 2E be a
family such that there exists a constant c > 1, such that for any face F of polytope P (B), we
have |{ v ∈ LF | ‖v‖ < cλ(LF ) }| ≤ mO(1). Then one can construct a set of mO(logm) weight
functions with weights bounded by mO(logm) such that at least one of them is isolating for B.

The main ingredient of the proof of Theorem 2.3 is to show that the hypothesis of Theorem 2.4
is true when the lattice LF is the set of all integral vectors in the nullspace of a TU matrix.
For any n×m matrix A we define a lattice:

L(A) := { v ∈ Zm | Av = 0 } .

I Theorem 2.5 (Near-shortest vectors in TU lattices). For an n × m TU matrix A, let
λ := λ(L(A)). Then |{ v ∈ L(A) | ‖v‖ < 3/2λ }| = O(m5).

A similar statement can also be shown with any `p-norm for p ≥ 2, but with an appropriate
multiplicative constant. Theorem 2.5 together with Theorem 2.4 implies Theorem 2.3.

Proof of Theorem 2.3. Let F be a face of the polytope P (B) and let AF be the TU matrix
associated with F . Thus AFx = bF defines the affine span of F . In other words, the set
of vectors parallel to F is precisely the solution set of AFx = 0 and the lattice LF is given
by L(AF ). Theorem 2.5 implies the hypothesis of Theorem 2.4 for any LF = L(AF ), when
the matrix AF is TU. J

2.3 Near-shortest circuits in regular matroids
The proof of Theorem 2.5 is combinatorial and uses the language and results from matroid
theory. We recall a few basic definitions from matroid theory. A matroid is said to be
represented by a matrix A, if its ground set is the column set of A and its independent sets
are the sets of linearly independent columns of A. A matroid represented by a TU matrix
is said to be a regular matroid. A circuit of a matroid is a minimal dependent set. The
following is one of our main results which gives a bound on the number of near-shortest
circuits in a regular matroid, which, in turn, implies Theorem 2.5. Instead of the circuit size,
we consider the weight of a circuit and present a more general result.
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I Theorem 2.6 (Near-shortest circuits in regular matroids). Let M = (E, I) be a regular
matroid with m = |E| ≥ 2 and let w : E → N be a weight function. Suppose M does not have
any circuit C with w(C) < r for some number r. Then

|{C | C circuit in M and w(C) < 3r/2 }| ≤ 240m5.

I Remark. An extension of this result would be to give a polynomial bound on the number
of circuits of weight at most αr for any constant α. Our current proof technique does not
extend to this setting.

3 Isolation via the Polytope Lattices: Proof of Theorem 2.4

This section is dedicated to a proof of Theorem 2.4. That is, we give a construction of
an isolating weight assignment for a family B ⊆ 2E assuming that for each face F of the
corresponding polytope P (B), the lattice LF has small number of near-shortest vectors. First,
let us see how the isolation question for a family B translates in the polytope setting. For
any weight function w : E → Z, we view w as a vector in ZE and consider the function 〈w, x〉
over the points in P (B). Note that 〈w, xB〉 = w(B), for any B ⊆ E. Thus, a weight function
w : E → Z is isolating for a family B if and only if 〈w, x〉 has a unique minimum over the
polytope P (B).

Observe that for any w : E → Z, the points that minimize 〈w, x〉 in P (B) will form a face
of the polytope P (B). The idea is to build the isolating weight function in rounds. In every
round, we slightly modify the current weight function to get a smaller minimizing face. Our
goal is to significantly reduce the dimension of the minimizing face in every round. We stop
when we reach a zero-dimensional face, i.e., we have a unique minimum weight point in P (B).

In the following, we will denote the size of the set E by m. The following claim asserts
that if we modify the current weight function on a small scale, then the new minimizing face
will be a subset of the current minimizing face. See the full version [11] for a proof.

I Claim 3.1. Let w : E → Z be a weight function and F be the face of P (B) that minimizes w.
Let w′ : E → {0, 1, . . . , N−1} be another weight function and let F ′ be the face that minimizes
the combined weight function mN w + w′. Then F ′ ⊆ F .

Thus, in each round, we will add a new weight function to the current function using a
smaller scale and try to get a sub-face with significantly smaller dimension. Henceforth, N
will be a sufficiently large number bounded by poly(m). The following claim gives a way to
go to a smaller face.

I Claim 3.2. Let F be the face of P (B) minimizing 〈w, x〉 and let v ∈ LF . Then 〈w, v〉 = 0.

Proof. Since v ∈ LF , we have v = α(x1−x2), for some x1, x2 ∈ F and α ∈ R. As x1, x2 ∈ F ,
we have 〈w, x1〉 = 〈w, x2〉. The claim follows. J

Now, let F0 be the face that minimizes the current weight function w0. Let v be in LF0 . Choose
a new weight function w′ ∈ {0, 1, . . . , N − 1}E such that 〈w′, v〉 6= 0. Let w1 := mN w0 + w′

and let F1 be the face that minimizes w1. Clearly, 〈w1, v〉 6= 0 and thus, by Claim 3.2,
v 6∈ LF1 . This implies that F1 is strictly contained in F0. To ensure that F1 is significantly
smaller than F0, we choose many vectors in LF0 , say v1, v2, . . . , vk, and construct a weight
vector w′ such that for all i ∈ [k], we have 〈w′, vi〉 6= 0. The following well-known lemma
actually constructs a list of weight vectors such that one of them has the desired property
(see [8, Lemma 2]).
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I Lemma 3.3. Given m, k, t, let q = mk log t. In time poly(q) one can construct a set
of weight vectors w1, w2, . . . , wq ∈ {0, 1, 2, . . . , q}m such that for any set of nonzero vectors
v1, v2, . . . , vk in {−(t− 1), . . . , 0, 1, . . . , t− 1}m there exists a j ∈ [q] such that for all i ∈ [k]
we have 〈wj , vi〉 6= 0. (see the full version [11] for a proof).

There are two things to note about this lemma: (i) It is black-box in the sense that we do not
need to know the set of vectors {v1, v2, . . . , vk}. (ii) We do not know a priori which function
will work in the given set of functions. So, one has to try all possibilities.

The lemma tells us that we can ensure that 〈w′, v〉 6= 0 for polynomially many vec-
tors v whose coordinates are polynomially bounded. Below, we formally present the weight
construction.

To prove Theorem 2.4, let c be the constant in the assumption of the theorem. Let
N = mO(1) be a sufficiently large number and p = blogc(m+ 1)c. Let w0 : E → Z be a weight
function such that 〈w0, v〉 6= 0 for all nonzero v ∈ ZE with ‖v‖ < c. For i = 1, 2, . . . , p, define

Fi−1: the face of P (B) minimizing wi−1
w′i: a weight vector in {0, 1, . . . , N − 1}E such that 〈w′i, v〉 6= 0 for all nonzero v ∈ LFi−1

with ‖v‖ < ci+1.
wi: mNwi−1 + w′i.

Observe that Fi ⊆ Fi−1, for each i by Claim 3.1. Hence, also for the associated lattices we
have LFi

⊆ LFi−1 . As we show in the next claim, the choice of w′i together with Claim 3.2
ensures that there are no vectors in LFi

with norm less than ci+1.

I Claim 3.4. For i = 0, 1, 2, . . . , p, we have λ(LFi
) ≥ ci+1.

Proof. Consider a nonzero vector v ∈ LFi . By Claim 3.2, we have

〈wi, v〉 = mN〈wi−1, v〉+ 〈w′i, v〉 = 0. (1)

Since v is in LFi , it is also in LFi−1 and again by Claim 3.2, we have 〈wi−1, v〉 = 0. Together
with (1) we conclude that 〈w′i, v〉 = 0. By the definition of w′i, this implies that ‖v‖ ≥ ci+1. J

Finally we argue that wp is isolating.

I Claim 3.5. The face Fp is a point.

Proof. Let y1, y2 ∈ Fp be vertices and thus belong to {0, 1}m. Then y1 − y2 ∈ LFp and
‖y1 − y2‖ ≤ m < cp+1. By Claim 3.4, we have that y1 − y2 must be zero, i.e., y1 = y2. J

We get a bound of mO(logm) on both the number of weight vectors we need to try and the
weights involved, which finishes the proof of Theorem 2.4 (see the full version [11]).

4 Number of Short Vectors in Lattices: Proof of Theorem 2.5

In this section, we show that Theorem 2.5 follows from Theorem 2.6. We define a circuit of a
matrix and show that to prove Theorem 2.5, it is sufficient to upper bound the number of
near-shortest circuits of a TU matrix. We argue that this, in turn, is implied by a bound
on the number of near-shortest circuits of a regular matroid. Just as a circuit of a matroid
is a minimal dependent set, a circuit of matrix is a minimal linear dependency among its
columns. Recall that for an n×m matrix A, the lattice L(A) is defined as the set of integer
vectors in its kernel,

L(A) := { v ∈ Zm | Av = 0 } .

ICALP 2018



74:8 Isolating a Vertex in Totally Unimodular Polytopes

I Definition 4.1 (Circuit). For an n×m matrix A, a vector u ∈ L(A) is a circuit of A if
there is no nonzero v ∈ L(A) with supp(v) ( supp(u), and
gcd(u1, u2, . . . , um) = 1.

Note that if u is a circuit of A, then so is −u. The following property of the circuits of a TU
matrix is well known (see [16, Lemma 3.18]).

I Fact 4.2. Let A be a TU matrix. Then every circuit of A has its coordinates in {−1, 0, 1}.

Now, we define a notion of conformality among two vectors.

I Definition 4.3 (Conformal [16]). Let u, v ∈ Rm. We say that u is conformal to v, denoted
by u v v, if uivi ≥ 0 and |ui| ≤ |vi|, for each 1 ≤ i ≤ m.

I Observation 4.4. For vectors u and v with u v v, we have ‖v − u‖ = ‖v‖ − ‖u‖.

The following lemma follows from [16, Lemma 3.19].

I Lemma 4.5. Let A be a TU matrix. Then for any nonzero vector v ∈ L(A), there is a
circuit u of A that is conformal to v.

We use the lemma to argue that any small enough vector in L(A) must be a circuit.

I Lemma 4.6. Let A be a TU matrix and let λ := λ(L(A)). Then any nonzero vector
v ∈ L(A) with ‖v‖ < 2λ is a circuit of A.

Proof. Suppose v ∈ L(A) is not a circuit of A. We show that ‖v‖ ≥ 2λ. By Lemma 4.5,
there is a circuit u of A with u v v. Since v is not a circuit, v − u 6= 0. Since both u

and v − u are nonzero vectors in L(A), we have ‖u‖ , ‖v − u‖ ≥ λ. By Observation 4.4, we
have ‖v‖ = ‖v − u‖+ ‖u‖ and thus, we get that ‖v‖ ≥ 2λ. J

Recall that a matroid represented by a TU matrix is a regular matroid. The following lemma
shows that the two definitions of circuits, 1) for TU matrices and 2) for regular matroids,
coincide. See the full version [11] for a proof.

I Lemma 4.7. Let M = (E, I) be a regular matroid, represented by a TU matrix A. Then
there is a one to one correspondence between the circuits of M and the circuits of A (up to
change of sign).

To prove Theorem 2.5, let A be TU matrix. By Lemma 4.6, it suffices to bound the number
of near-shortest circuits of A. By Lemma 4.7, the circuits of A and the circuits of the regular
matroid M represented by A, coincide. Moreover, the size of a circuit of M is same as the
`1-norm of the corresponding circuit of A, as a circuit of A has its coordinates in {−1, 0, 1}
by Fact 4.2. Now Theorem 2.5 follows from Theorem 2.6 when we define the weight of each
element being 1.

5 Proof Overview of Theorem 2.6

Here we give a proof overview of Theorem 2.6; see the full version [11] for a complete proof.
Theorem 2.6 states that for a regular matroid, the number of near-shortest circuits – circuits
whose size is a constant multiple of the shortest circuit size – is polynomially bounded. The
starting point of the proof of this theorem is a remarkable result of Seymour [21] which
showed that every regular matroid can be decomposed into a set of much simpler matroids.
Each of these building blocks for regular matroids either belongs to the classes of graphic
and cographic matroids – the simplest and well-known examples of regular matroids, or is a
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special 10-element matroid R10 (see the full version [11] for the definitions). One important
consequence of Seymour’s result is a polynomial time algorithm, the only one known, for
testing the total unimodularity of a matrix; see [18] (recall that a TU matrix represents a
regular matroid). Our strategy is to leverage Seymour’s decomposition theorem in order to
bound the number of circuits in a regular matroid.

Seymour’s Theorem and a simple inductive approach

Seymour’s decomposition involves a sequence of binary operations on matroids, each of which
is either a 1-sum, a 2-sum or a 3-sum. Formally, it states that for every regular matroid M ,
we can build a decomposition tree – which is a binary rooted tree – in which the root node
is the matroid M , every node is a k-sum of its two children for k = 1, 2, or 3, and at the
bottom we have graphic, cographic and the R10 matroids as the leaf nodes. Note that the
tree, in general, is not necessarily balanced and can have large depth (linear in the ground
set size).

This suggests that to bound the number of near-shortest circuits in a regular matroid,
perhaps one can use the tree structure of its decomposition, starting from the leaf nodes and
arguing, inductively, all the way up to the root. It is known that the number of near-shortest
circuits in graphic and cographic matroids is polynomially bounded. This follows from the
polynomial bounds on the number of near-shortest cycles of a graph [24] and on the number
of near min-cuts in a graph [13]. The challenge is to show how to combine the information
at an internal node.

The k-sum M of two matroids M1 and M2 is defined in a way such that each circuit of M
can be built from a combination of two circuits, one from M1 and another from M2. Thus, if
we have upper bounds for the number of circuits in M1 and M2, their product will give a
naive upper bound for number of circuits in M . Since there can be many k-sum operations
involved, the naive product bound can quickly explode. Hence, to keep a polynomial bound
we need to take a closer look at the k-sum operations.

k-sum operations

1-sum. A 1-sum M of two matroids M1 and M2 is simply their direct sum. That is, the
ground set of M is the disjoint union of the ground sets of M1 and M2, and any circuit of
M is either a circuit of M1 or a circuit of M2.

The 2-sum and 3-sum are a bit more intricate. It is known that the set of circuits of a
matroid completely characterizes the matroid. The 2-sum and 3-sum operations are defined
by describing the set of circuits of the matroid obtained by the sum. To get an intuition
for the 2-sum operation, we first describe it on two graphic matroids. A graphic matroid is
defined with respect to a graph, where a circuit is a simple cycle in the graph.

2-sum on graphs. For two graphs G1 and G2, their 2-sum G = G1 ⊕2 G2 is any graph
obtained by identifying an edge (u1, v1) in G1 with an edge (u2, v2) in G2, that is, identifying
u1 with u2 and v1 with v2 and then, deleting the edge (u1, v1) = (u2, v2). It would be
instructive to see how a cycle in G, i.e., a circuit of the associated graphic matroid, looks
like. A cycle in G is either a cycle in G1 or in G2 that avoids the edge (u1, v1) = (u2, v2),
or it is a union of a path u1  v1 in G1 and a path v2  u2 in G2. This last possibility is
equivalent to taking a symmetric difference C14C2 of two cycles C1 in G1 and C2 in G2
such that C1 passes through (u1, v1) and C2 passes through (u2, v2).
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2-sum on matroids. The 2-sumM1⊕2M2 of two matroidsM1 andM2 is defined analogously.
The grounds sets of M1 and M2, say E1 and E2 respectively, have an element in common,
say e (this can be achieved by identifying an element from E1 with an element from E2). The
sum M1⊕2 M2 is defined on the ground set E = E1∆E2, the symmetric difference of the two
given ground sets. Any circuit of the sum M1 ⊕2 M2 is either a circuit in M1 or in M2 that
avoids the common element e, or it is the symmetric difference C14C2 of two circuits C1 and
C2 of M1 and M2, respectively, such that both C1 and C2 contain the common element e.

3-sum on matroids. A 3-sum is defined similarly. A matroid M is a 3-sum of two matroids
M1 and M2 if their ground sets E1 and E2 have a set S of three elements in common such
that S is a circuit in both the matroids and the ground set of M is the symmetric difference
E14E2. Moreover, a circuit of M is either a circuit in M1 or in M2 that avoids the common
elements S, or it is the symmetric difference C14C2 of two circuits C1 and C2 of M1 and
M2, respectively, such that both C1 and C2 contain a common element e from S and no
other element from S.

The inductive bound on the number of circuits
Our proof is by a strong induction on the ground set size.
Base case: For a graphic or cographic matroid with a ground set of size m, if its shortest
circuit has size r then the number of its circuits of size less than αr is at most m4α. For the
R10 matroid, we present a constant upper bound on the number of circuits.
Induction hypothesis: For any regular matroid with a ground set of size m < m0, if its
shortest circuit has size r, then the number of its circuits of size less than αr is bounded by
mcα for some sufficiently large constant c.
Induction step: We prove the induction hypothesis for a regular matroid M with a ground
set of size m0. Let the minimum size of a circuit in M be r. We want to show a bound
of mcα

0 on the number of circuits in M of size less than αr. The main strategy here is as
follows: by Seymour’s Theorem, we can write M as a k-sum of two smaller regular matroids
M1 and M2, with ground sets of size m1 < m0 and m2 < m0 respectively. As the circuits of
M can be written as a symmetric differences of circuits of M1 and M2, we derive an upper
bound on the number circuits of M from the corresponding bounds for M1 and M2, which
we get from the induction hypothesis.

The 1-sum case. In this case, any circuit of M is either a circuit of M1 or a circuit of M2.
Hence, the number of circuits in M of size less than αr is simply the sum of the number
of circuits in M1 and M2 of size less than αr. Using the induction hypothesis, this sum is
bounded by mcα

1 +mcα
2 , which is less than mcα

0 since m0 = m1 +m2.

The 2-sum and 3-sum cases. Let the set of common elements in the ground sets of M1
and M2 be S. Note that m0 = m1 +m2 − |S|. Recall from the definition of a k-sum that
any circuit C of M is of the form C14C2, where C1 and C2 are circuits in M1 and M2
respectively, such that either (i) one of them, say C1, has no element from S and the other
one C2 is empty or (ii) they both contain exactly one common element from S. We will refer
to C1 and C2 as projections of C. Note that |C1|, |C2| ≤ |C|. In particular, if circuit C is of
size less than αr, then so are its projections C1 and C2.

An obstacle. The first step would be to bound the number of circuits C1 of M1 and C2 of
M2 using the induction hypothesis. However, we do not have a lower bound on the minimum
size of a circuit in M1 or M2, which is required to use the induction hypothesis. What we do
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know is that any circuit in M1 or M2 that does not involve elements from S is also a circuit
of M , and thus, must have size at least r. However, a circuit that involves elements from S

could be arbitrarily small. We give different solutions for this obstacle in case (i) and case
(ii) mentioned above.

Case (i): deleting elements in S. Let us first consider the circuits C1 of M1 that do not
involve elements from S. These circuits can be viewed as circuits of a new regular matroid
M1 \ S obtained by deleting the elements in S from M1. Since we know that the minimum
size of a circuit in M1 \ S is r, we can apply the induction hypothesis to get a bound of
(m1 − |S|)cα for the number of circuits C1 of M1 \ S of size less than αr. Summing this with
a corresponding bound for M2 \ S gives us a bound less than mcα

0 for the number of circuits
of M in case (i).

Case (ii): stronger induction hypothesis. The case when circuits C1 and C2 contain an
element from S turns out to be much harder. For this case, we actually need to strengthen our
induction hypothesis. Let us assume that for a regular matroid of ground set size m < m0, if
the minimum size of a circuit that avoids a given element ẽ is r, then the number of circuits
containing ẽ and of size less than αr is bounded by mcα. This statement will also be proved
by induction, but we will come to its proof later.

Since we know that any circuit in M1 (or M2) that avoids elements from S has size
at least r, we can use the above stronger inductive hypothesis to get a bound of mcα

1 on
the number of circuits C1 in M1 containing a given element from S and of size less than
αr. Similarly, we get an analogous bound of mcα

2 for circuits C2 of M2. Since C can be a
symmetric difference of any C1 and C2, the product of these two bounds, that is, (m1m2)cα
bounds the number of circuits C of M of size less than αr. Unfortunately, this product can
be much larger than mcα

0 . Note that this product bound on the number of circuits C is not
really tight since C1 and C2 both cannot have their sizes close to αr simultaneously. This is
because C = C14C2 and thus, |C| = |C1|+ |C2| − 1. Hence, a better approach is to consider
different cases based on the sizes of C1 and C2.

Number of circuits C when one of its projections is small. We first consider the case
when the size of C1 is very small, i.e., close to zero. In this case, the size of C2 will be close
to αr and we have to take the bound of mcα

2 on the number of such circuits C2. Now, if
number of circuits C1 with small size is N then we get a bound of Nmcα

2 on the number of
circuits C of M of this case. Note that Nmcα

2 is dominated by mcα
0 only when N ≤ 1, as m2

can be comparable to m. While N ≤ 1 does not always hold, we show something weaker
which is true.

Uniqueness of C1. We can show that for any element s in the set of common elements S,
there is at most one circuit C1 of size less than r/2 that contains s and no other element
from S. To see this, assume that there are two such circuits C1 and C ′1. It is known that
the symmetric difference of two circuits of a matroid is a disjoint union of some circuits of
the matroid. Thus, C14C ′1 will be a disjoint union of circuits of M1. Since C14C ′1 does not
contain any element from S, it is also a disjoint union of circuits of M . This would lead us
to a contradiction because the size of C14C ′1 is less than r and M does not have circuits of
size less than r. This proves the uniqueness of C1. Our problem is still not solved since the
set S can have three elements in case of a 3-sum, and thus, there can be three possibilities
for C1 (i.e., N=3).
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Assigning weights to the elements. To get around this problem, we use a new idea of
considering matroids elements with weights. For each element s in S, consider the unique
circuit C1 of size at most r/2 that contains s. In the matroid M2, we assign a weight of
|C1| − 1 to the element s. The elements outside S get weight 1. The weight of element
s ∈ S signifies that if a circuit C2 of M2 contains s then it has to be summed up with the
unique circuit C1 containing s, which adds a weight of |C1| − 1. Essentially, the circuits of
the weighted matroid M2 that have weight γ will have a one-to-one correspondence with
circuits C = C14C2 of M that have size γ and have |C1| < r/2. Hence, we can assume there
are no circuits in the weighted matroid M2 of weight less than r. Thus, we can apply the
induction hypothesis on M2, but we need to further strengthen the hypothesis to a weighted
version. By this new induction hypothesis, we will get a bound of mcα

2 on the number of
circuits of M2 with weight less that αr. As mentioned above, this will bound the number of
circuits C = C14C2 of M with size less than αr and |C1| < r/2. Note that the bound mcα

2
is smaller than the desired bound mcα

0 .

Number of circuits C when none of its projections is small. It is relatively easier to
handle the other case when C1 has size at least r/2 (and less than αr). In this case, C2 has
size less than (α− 1/2)r. The bounds we get by the induction hypothesis for the number of
circuits C1 and C2 are mcα

1 and mc(α−1/2)
2 respectively. Their product mcα

1 m
c(α−1/2)
2 bounds

the number of circuits C in this case. However, this product is not bounded by mcα
0 .

Stronger version of Seymour’s Theorem. To get a better bound we need another key idea.
Instead of Seymour’s Theorem, we work with a stronger variant given by Truemper [27]. It
states that any regular matroid can be written as a k-sum of two smaller regular matroids
M1 and M2 for k = 1, 2 or 3 such that one of them, say M1, is a graphic, cographic or R10
matroid. The advantage of this stronger statement is that we can take a relatively smaller
bound on the number of circuits of M1, which gives us more room for the inductive argument.
Formally, we know from above that when M1 is a graphic or cographic matroid, the number
of its circuits of size less than αr is at most m4α

1 . One can choose the constant c in our
induction hypothesis to be sufficiently large so that the product m4α

1 m
c(α−1/2)
2 is bounded by

mcα
0 .

A stronger induction hypothesis
To summarize, we work with an inductive hypothesis as follows: If a regular matroid (with
weights) has no circuits of weight less than r that avoid a given set R of elements then the
number of circuits of weight less than αr that contain the set R is bounded by mcα. As the
base case, we first show this statement for the graphic and cographic case.

When we rerun the whole inductive argument with weights and with a fixed set R, we
run into another issue. It turns out that in the case when the size of C1 is very small,
our arguments above do not go through if C1 has some elements from R. To avoid such a
situation we use yet another strengthened version of Seymour’s Theorem. It says that any
regular matroid with a given element ẽ can be written as a k-sum of two smaller regular
matroids M1 and M2, such that M1 is a graphic, cographic or R10 matroid and M2 is a
regular matroid containing ẽ. When our R is a single element set, say {ẽ}, we use this
theorem to ensure that M1, and thus C1, has no elements from R. This rectifies the problem
when R has size 1. However, as we go deeper inside the induction, the set R can grow in size.
Essentially, whenever α decreases by 1/2 in the induction, the size of R grows by 1. Thus, we
take α to be 3/2, which means that to reach α = 1 we need only one step of decrement, and
thus, the size of R at most becomes 1. This is the reason our main theorem only deals with
circuits of size less than 3/2 times the smallest size.
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