159 research outputs found

    Development of economically viable, highly integrated, highly modular SEGIS architecture.

    Full text link

    GigaHertz Symposium 2010

    Get PDF

    Security and Privacy of Radio Frequency Identification

    Get PDF
    Tanenbaum, A.S. [Promotor]Crispo, B. [Copromotor

    The 31st Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the 31st Aerospace Mechanisms Symposium are reported. Topics covered include: robotics, deployment mechanisms, bearings, actuators, scanners, boom and antenna release, and test equipment. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms

    Revision of the EU Green Public Procurement Criteria for Street Lighting and Traffic Signals - Preliminary Report

    Get PDF
    Lighting is used on more than 1.6 million km of roads in EU28 countries, accounting for some 35 TWh of electricity consumption (1.3% of total electricity consumption) and costing public authorities almost €4000 million each year. A broad review of relevant technical, policy, academic and legislative literature has been conducted. This report examines the current market situation and the potential for reducing environmental impacts and electricity costs by assessing the recent developments in road lighting technology, particularly LEDs. Particularly important areas identified relate to energy efficiency, light pollution, product durability and, specifically for longer lasting and rapidly evolving new LED technologies, reparability and upgradeability. The information in this report shall serve as a basis for discussion with stakeholders about the further development and revision of EU GPP criteria for street lighting and traffic signals.JRC.B.5-Circular Economy and Industrial Leadershi

    On benchmarking of deep learning systems: software engineering issues and reproducibility challenges

    Get PDF
    Since AlexNet won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012, Deep Learning (and Machine Learning/AI in general) gained an exponential interest. Nowadays, their adoption spreads over numerous sectors, like automotive, robotics, healthcare and finance. The ML advancement goes in pair with the quality improvement delivered by those solutions. However, those ameliorations are not for free: ML algorithms always require an increasing computational power, which pushes computer engineers to develop new devices capable of coping with this demand for performance. To foster the evolution of DSAs, and thus ML research, it is key to make it easy to experiment and compare them. This may be challenging since, even if the software built around these devices simplifies their usage, obtaining the best performance is not always straightforward. The situation gets even worse when the experiments are not conducted in a reproducible way. Even though the importance of reproducibility for the research is evident, it does not directly translate into reproducible experiments. In fact, as already shown by previous studies regarding other research fields, also ML is facing a reproducibility crisis. Our work addresses the topic of reproducibility of ML applications. Reproducibility in this context has two aspects: results reproducibility and performance reproducibility. While the reproducibility of the results is mandatory, performance reproducibility cannot be neglected because high-performance device usage causes cost. To understand how the ML situation is regarding reproducibility of performance, we reproduce results published for the MLPerf suite, which seems to be the most used machine learning benchmark. Because of the wide range of devices and frameworks used in different benchmark submissions, we focus on a subset of accuracy and performance results submitted to the MLPerf Inference benchmark, presenting a detailed analysis of the difficulties a scientist may find when trying to reproduce such a benchmark and a possible solution using our workflow tool for experiment reproducibility: PROVA!. We designed PROVA! to support the reproducibility in traditional HPC experiments, but we will show how we extended it to be used as a 'driver' for MLPerf benchmark applications. The PROVA! driver mode allows us to experiment with different versions of the MLPerf Inference benchmark switching among different hardware and software combinations and compare them in a reproducible way. In the last part, we will present the results of our reproducibility study, demonstrating the importance of having a support tool to reproduce and extend original experiments getting deeper knowledge about performance behaviours

    Raspberry Pi Technology

    Get PDF

    Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems

    Get PDF
    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment
    corecore