805 research outputs found

    Automatic performance optimisation of component-based enterprise systems via redundancy

    Get PDF
    Component technologies, such as J2EE and .NET have been extensively adopted for building complex enterprise applications. These technologies help address complex functionality and flexibility problems and reduce development and maintenance costs. Nonetheless, current component technologies provide little support for predicting and controlling the emerging performance of software systems that are assembled from distinct components. Static component testing and tuning procedures provide insufficient performance guarantees for components deployed and run in diverse assemblies, under unpredictable workloads and on different platforms. Often, there is no single component implementation or deployment configuration that can yield optimal performance in all possible conditions under which a component may run. Manually optimising and adapting complex applications to changes in their running environment is a costly and error-prone management task. The thesis presents a solution for automatically optimising the performance of component-based enterprise systems. The proposed approach is based on the alternate usage of multiple component variants with equivalent functional characteristics, each one optimized for a different execution environment. A management framework automatically administers the available redundant variants and adapts the system to external changes. The framework uses runtime monitoring data to detect performance anomalies and significant variations in the application's execution environment. It automatically adapts the application so as to use the optimal component configuration under the current running conditions. An automatic clustering mechanism analyses monitoring data and infers information on the components' performance characteristics. System administrators use decision policies to state high-level performance goals and configure system management processes. A framework prototype has been implemented and tested for automatically managing a J2EE application. Obtained results prove the framework's capability to successfully manage a software system without human intervention. The management overhead induced during normal system execution and through management operations indicate the framework's feasibility

    Engineering Self-Adaptive Collective Processes for Cyber-Physical Ecosystems

    Get PDF
    The pervasiveness of computing and networking is creating significant opportunities for building valuable socio-technical systems. However, the scale, density, heterogeneity, interdependence, and QoS constraints of many target systems pose severe operational and engineering challenges. Beyond individual smart devices, cyber-physical collectives can provide services or solve complex problems by leveraging a “system effect” while coordinating and adapting to context or environment change. Understanding and building systems exhibiting collective intelligence and autonomic capabilities represent a prominent research goal, partly covered, e.g., by the field of collective adaptive systems. Therefore, drawing inspiration from and building on the long-time research activity on coordination, multi-agent systems, autonomic/self-* systems, spatial computing, and especially on the recent aggregate computing paradigm, this thesis investigates concepts, methods, and tools for the engineering of possibly large-scale, heterogeneous ensembles of situated components that should be able to operate, adapt and self-organise in a decentralised fashion. The primary contribution of this thesis consists of four main parts. First, we define and implement an aggregate programming language (ScaFi), internal to the mainstream Scala programming language, for describing collective adaptive behaviour, based on field calculi. Second, we conceive of a “dynamic collective computation” abstraction, also called aggregate process, formalised by an extension to the field calculus, and implemented in ScaFi. Third, we characterise and provide a proof-of-concept implementation of a middleware for aggregate computing that enables the development of aggregate systems according to multiple architectural styles. Fourth, we apply and evaluate aggregate computing techniques to edge computing scenarios, and characterise a design pattern, called Self-organising Coordination Regions (SCR), that supports adjustable, decentralised decision-making and activity in dynamic environments.Con lo sviluppo di informatica e intelligenza artificiale, la diffusione pervasiva di device computazionali e la crescente interconnessione tra elementi fisici e digitali, emergono innumerevoli opportunità per la costruzione di sistemi socio-tecnici di nuova generazione. Tuttavia, l'ingegneria di tali sistemi presenta notevoli sfide, data la loro complessità—si pensi ai livelli, scale, eterogeneità, e interdipendenze coinvolti. Oltre a dispositivi smart individuali, collettivi cyber-fisici possono fornire servizi o risolvere problemi complessi con un “effetto sistema” che emerge dalla coordinazione e l'adattamento di componenti fra loro, l'ambiente e il contesto. Comprendere e costruire sistemi in grado di esibire intelligenza collettiva e capacità autonomiche è un importante problema di ricerca studiato, ad esempio, nel campo dei sistemi collettivi adattativi. Perciò, traendo ispirazione e partendo dall'attività di ricerca su coordinazione, sistemi multiagente e self-*, modelli di computazione spazio-temporali e, specialmente, sul recente paradigma di programmazione aggregata, questa tesi tratta concetti, metodi, e strumenti per l'ingegneria di ensemble di elementi situati eterogenei che devono essere in grado di lavorare, adattarsi, e auto-organizzarsi in modo decentralizzato. Il contributo di questa tesi consiste in quattro parti principali. In primo luogo, viene definito e implementato un linguaggio di programmazione aggregata (ScaFi), interno al linguaggio Scala, per descrivere comportamenti collettivi e adattativi secondo l'approccio dei campi computazionali. In secondo luogo, si propone e caratterizza l'astrazione di processo aggregato per rappresentare computazioni collettive dinamiche concorrenti, formalizzata come estensione al field calculus e implementata in ScaFi. Inoltre, si analizza e implementa un prototipo di middleware per sistemi aggregati, in grado di supportare più stili architetturali. Infine, si applicano e valutano tecniche di programmazione aggregata in scenari di edge computing, e si propone un pattern, Self-Organising Coordination Regions, per supportare, in modo decentralizzato, attività decisionali e di regolazione in ambienti dinamici

    From distributed coordination to field calculus and aggregate computing

    Get PDF
    open6siThis work has been partially supported by: EU Horizon 2020 project HyVar (www.hyvar-project .eu), GA No. 644298; ICT COST Action IC1402 ARVI (www.cost -arvi .eu); Ateneo/CSP D16D15000360005 project RunVar (runvar-project.di.unito.it).Aggregate computing is an emerging approach to the engineering of complex coordination for distributed systems, based on viewing system interactions in terms of information propagating through collectives of devices, rather than in terms of individual devices and their interaction with their peers and environment. The foundation of this approach is the distillation of a number of prior approaches, both formal and pragmatic, proposed under the umbrella of field-based coordination, and culminating into the field calculus, a universal functional programming model for the specification and composition of collective behaviours with equivalent local and aggregate semantics. This foundation has been elaborated into a layered approach to engineering coordination of complex distributed systems, building up to pragmatic applications through intermediate layers encompassing reusable libraries of program components. Furthermore, some of these components are formally shown to satisfy formal properties like self-stabilisation, which transfer to whole application services by functional composition. In this survey, we trace the development and antecedents of field calculus, review the field calculus itself and the current state of aggregate computing theory and practice, and discuss a roadmap of current research directions with implications for the development of a broad range of distributed systems.embargoed_20210910Viroli, Mirko; Beal, Jacob; Damiani, Ferruccio; Audrito, Giorgio; Casadei, Roberto; Pianini, DaniloViroli, Mirko; Beal, Jacob; Damiani, Ferruccio; Audrito, Giorgio; Casadei, Roberto; Pianini, Danil

    DALiuGE: A Graph Execution Framework for Harnessing the Astronomical Data Deluge

    Full text link
    The Data Activated Liu Graph Engine - DALiuGE - is an execution framework for processing large astronomical datasets at a scale required by the Square Kilometre Array Phase 1 (SKA1). It includes an interface for expressing complex data reduction pipelines consisting of both data sets and algorithmic components and an implementation run-time to execute such pipelines on distributed resources. By mapping the logical view of a pipeline to its physical realisation, DALiuGE separates the concerns of multiple stakeholders, allowing them to collectively optimise large-scale data processing solutions in a coherent manner. The execution in DALiuGE is data-activated, where each individual data item autonomously triggers the processing on itself. Such decentralisation also makes the execution framework very scalable and flexible, supporting pipeline sizes ranging from less than ten tasks running on a laptop to tens of millions of concurrent tasks on the second fastest supercomputer in the world. DALiuGE has been used in production for reducing interferometry data sets from the Karl E. Jansky Very Large Array and the Mingantu Ultrawide Spectral Radioheliograph; and is being developed as the execution framework prototype for the Science Data Processor (SDP) consortium of the Square Kilometre Array (SKA) telescope. This paper presents a technical overview of DALiuGE and discusses case studies from the CHILES and MUSER projects that use DALiuGE to execute production pipelines. In a companion paper, we provide in-depth analysis of DALiuGE's scalability to very large numbers of tasks on two supercomputing facilities.Comment: 31 pages, 12 figures, currently under review by Astronomy and Computin

    Intention-oriented programming support for runtime adaptive autonomic cloud-based applications

    Get PDF
    The continuing high rate of advances in information and communication systems technology creates many new commercial opportunities but also engenders a range of new technical challenges around maximising systems' dependability, availability, adaptability, and auditability. These challenges are under active research, with notable progress made in the support for dependable software design and management. Runtime support, however, is still in its infancy and requires further research. This paper focuses on a requirements model for the runtime execution and control of an intention-oriented Cloud-Based Application. Thus, a novel requirements modelling process referred to as Provision, Assurance and Auditing, and an associated framework are defined and developed where a given system's non/functional requirements are modelled in terms of intentions and encoded in a standard open mark-up language. An autonomic intention-oriented programming model, using the Neptune language, then handles its deployment and execution. © 2013 Elsevier Ltd. All rights reserved

    Introduction to Runtime Verification

    Get PDF
    International audienceThe aim of this chapter is to act as a primer for those wanting to learn about Runtime Verification (RV). We start by providing an overview of the main specification languages used for RV. We then introduce the standard terminology necessary to describe the monitoring problem, covering the pragmatic issues of monitoring and instrumentation, and discussing extensively the monitorability problem

    A field-based computing approach to sensing-driven clustering in robot swarms

    Get PDF
    Swarm intelligence leverages collective behaviours emerging from interaction and activity of several “simple” agents to solve problems in various environments. One problem of interest in large swarms featuring a variety of sub-goals is swarm clustering, where the individuals of a swarm are assigned or choose to belong to zero or more groups, also called clusters. In this work, we address the sensing-based swarm clustering problem, where clusters are defined based on both the values sensed from the environment and the spatial distribution of the values and the agents. Moreover, we address it in a setting characterised by decentralisation of computation and interaction, and dynamicity of values and mobility of agents. For the solution, we propose to use the field-based computing paradigm, where computation and interaction are expressed in terms of a functional manipulation of fields, distributed and evolving data structures mapping each individual of the system to values over time. We devise a solution to sensing-based swarm clustering leveraging multiple concurrent field computations with limited domain and evaluate the approach experimentally by means of simulations, showing that the programmed swarms form clusters that well reflect the underlying environmental phenomena dynamics
    corecore