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Abstract: Today’s business applications are increasingly process driven,
meaning that the main application logic is executed by a dedicate process
engine. In addition, component-oriented software development has
been attracting attention for building complex distributed applications.
In this paper we present the experiences gained from building a
process-driven biometric identification application that makes use of
Grid infrastructures via the Grid Component Model (GCM). GCM,
besides guaranteeing access to Grid resources, supports autonomic
management of notable parallel composite components. This feature
is exploited within our biometric identification application to ensure
real time identification of fingerprints. Therefore, we briefly introduce
the GCM framework and the process engine used, and we describe
the implementation of the application by means of autonomic GCM
components. Finally, we summarize the results, experiences, and lessons
learned focusing on the integration of autonomic GCM components and
the process-driven approach.
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1 Introduction

Today’s businesses are increasingly process driven. Ideally, all actions within
an enterprise are explicitly defined as processes with the goal to improve
control, flexibility, and effectiveness of delivering customer value. Additionally,
business processes are oftentimes supported or even fully implemented by software
applications (zur Muehlen 2004). In many cases, the business processes are turned
into software such that they are hidden in the application’s source code. However,
there is a trend towards separating the main business logic from the functional code
such that the resulting applications become more transparent and more flexible.
The approach is to embed a so-called process engine into the application, which then
executes process definitions representing the main control logic of the application.
Functional code is then triggered from the process engine in accordance with the
process definition. Such applications are called process-driven or workflow-driven
applications. The main advantages of this approach are the fact that the application
logic can be modified without re-compiling the application, even at runtime, the
business logic is more evident, and monitoring features of the process engine can
be explored.
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Besides the trend towards process-driven applications, enterprises seek ways to
benefit from resources available from computing Grids/Clouds, in particular in all
those cases were parallel computing is required to guarantee fair performances.
Within the plethora of programming environments targeting Grids, GCM (the Grid
Component Model developed within CoreGRID project (2007) and whose reference
implementation has been provided by GridCOMP project (2008)) supports Grid
programmers in designing parallel/distributed grid applications. In particular,
GCM provides pre-defined autonomic composite components modelling standard
parallel/distributed computation patterns.

In this work, we discuss a process-driven application, which makes use of GCM
autonomic components to solve the problem of large-scale biometric identification,
which has been developed as part of the activities of the GridCOMP project (2008).
In particular, we discuss how process-driven application development exploits the
autonomic features provided by the underlying Grid software as well as the results,
experiences, and lessons learned during application development focusing on the
integration of autonomic GCM components and the process-driven approach.

The paper is organized as follows: Sec. 2 discusses related work with respect
to the process-driven approach and autonomic Grid components. Sec. 3 introduces
GCM and Behavioural Skeletons (BS). Sec. 4 introduces the process engine used to
implement the biometric identification application presented in Sec. 5. Eventually,
Sec. 6 discusses the overall results achieved and Sec. 7 drafts the conclusions of the
paper.

2 Related Work

With the recent hype around business process management (BPM) (Smith &
Fingar 2006) interest in building process-driven applications with the goal to
arrive at more flexible IT systems that can keep up with a very agile business
environment is increasing. However, implementing the process-driven approach in
diverse application domains requires generic and easily embeddable process engines.
While many of the contemporary process frameworks are rather domain specific and
monolithic, a few developments into providing such generic engines can be observed
(Bukovics 2007, Faura & Baeyens 2007, Weigold et al. 2007). Nevertheless, the
majority of the work focuses on mapping higher-level process modelling languages
such as BPEL, XPDL, or BPMN (Ryan 2009) to executable code interpreted by
the process engine (Freeman & Pryce 2006). Furthermore, most of the application
scenarios are rooted in the traditional workflow domain, for example, document and
human task management. Therefore, in this paper we apply a generic process-engine
to the problem of distributed biometric identification with the goal to evaluate
how the process-driven approach integrates with advanced distributed computing
frameworks supporting autonomic features, such as GCM.

The idea of autonomic management of parallel/distributed/grid applications is
present in several programming frameworks, although in different flavours. ASSIST
(Vanneschi 2002, Aldinucci & Danelutto 2006), AutoMate (Parashar et al. 2006),
K-Components (Dowling 2004), SAFRAN (David & Ledoux 2006) and finally GCM
(CoreGRID project 2007) all include autonomic management features. The latter
two are derived from a common ancestor, i.e. the Fractal hierarchical component
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model (Bruneton et al. 2003). All the named frameworks, except SAFRAN, are
targeted to distributed applications on grids, and all except ASSIST are component
based. Though these programming frameworks considerably ease the development
of an autonomic application for the grid (to various degrees), all of them but
GCM fully rely on the application programmer’s expertise for the set-up of the
management code, which can be quite difficult to write since it may involve the
management of black-box components, and, notably, is tailored to the particular
component or to a particular component assembly. As a result, the introduction
of dynamic adaptivity and self-management might enable the management of
grid heterogeneity, dynamism, and uncertainty aspects but, at the same time,
decreases the component reuse potential since it further specialises components
with application specific management code.

While component models provide a suitable way to spatially compose the
parts of a applications, whereas workflow models have been mainly developed to
support composition of independent programs (usually loosely coupled and named
tasks) by specifying temporal dependencies among them (and defining a temporal
composition, in fact), to support efficient scheduling onto available resources, e.g.
sites, processors, memories (Fox & Gannon 2006). Recently, various attempts to
merge components and workflows models into a spatio-temporal model have been
undertaken, e.g. in the Spatio-Temporal Component Model (Bouziane et al. 2008)).

As we shall see, GCM mainly differentiate from other frameworks because it
provides programmers with skeletons (i.e. high-level programming patterns) that
substantially ease non-functional management of applications. It is worth noticing
that the introduction the skeleton concept could equally have built upon K-
Components or the AutoMate framework as all provide distributed system based
component frameworks with autonomic capability.

3 The GCM framework

The Grid Component Model (GCM) is a component model explicitly designed
within CoreGRID project (2007) to support component-based autonomic
applications in distributed contexts. The main features of this component model
can be summarised as follows:

• Hierarchical: GCM components can be composed in a hierarchical way
in composite components. Composite components are first class components
and they are not distinguishable from non-composite components at the user
level. Hierarchical composition greatly improves the expressive power of the
component model and is inherited by GCM from the Fractal component model
(Bruneton et al. 2003).

• Structured: In addition to standard intra-component interaction
mechanisms (use/provide ports (Armstrong et al. 1999)) GCM allows
components to interact through collective ports modelling common structured
parallel computation communication patterns. These patterns include
broadcast, multicast, scatter and gather communications operating on
collections of components. Also, GCM provides data and stream ports,
modelling access to shared data encapsulated into components and data flow
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streams. All these additional port types, not present in other well known
component models, increase the possibilities offered to the component system
user for developing efficient parallel component applications.

• Autonomic: GCM specifically supports implementing autonomic
components in two distinct ways: by supporting the implementation of
user defined component controllers and by providing behavioural skeletons.
Component controllers can be programmed in the component membrane
(the membrane concept, as the place where component control activities
take place, is inherited from Fractal (Bruneton et al. 2003)) and controllers
can be components themselves. This provides a substantial support to
the development of reusable autonomic controllers. Behavioural skeletons,
thoroughly discussed in Sec. 3.1, are composite GCM components modelling
notable parallel/distributed computation patterns and supporting autonomic
managers, i.e. components taking care of non functional concerns affecting
parallel computation.

Due to the presence of controllers and autonomic managers, GCM components
implement two distinct kinds of interfaces: functional and non-functional ones.
The functional interfaces host those ports concerned with the implementation of
the functional features of the component. The non-functional interfaces host the
ports related to controllers and autonomic managers. These ports are the ones
actually supporting the component management activity in the implementation of
the non-functional features, i.e. those features contributing to the efficiency of the
component in obtaining the expected (functional) results but not directly involved
in result computation.

GCM has been designed within the Institute on Programming model of the
CoreGRID NoE (2009) and a reference implementation of the component model has
been developed within the GridCOMP project (2008). Within the same GridCOMP
project, a Grid Integrated Development Environment (GIDE) has been developed
to support development and maintenance of GCM programs.

3.1 Behavioural Skeletons

Behavioural skeletons (BS) represent a specialisation of the algorithmic skeleton
concept for component management (Cole 2004). Algorithmic skeletons have been
traditionally used as a vehicle to provide efficient implementation templates of
parallel paradigms. BS, as algorithmic skeletons, represent patterns of parallel
computations (which are expressed in GCM as graphs of components), but
in addition they exploit the inherent skeleton semantics to design sound self-
management schemes of parallel components.

BS are composed of an algorithmic skeleton together with an autonomic
manager (see Fig. 1). They provide the programmer with a component that can
be turned into a running application by providing the code parameters needed
to instantiate the algorithmic skeleton parameters (e.g. the code of the different
stages in a pipeline or the code of the worker in a task farm) plus some kind of
Service Level Agreement (SLA, e.g. the expected parallelism degree or the expected
throughput of the application). The code parameters are used to build the actual
code run on the target parallel/distributed architecture, while the SLA is used by



6 T. Weigold, M. Aldinucci, M. Danelutto, and V. Getov

Algorithmic
Skeletons

Autonomic
Management

Standard code, 
parameters

Behavioral
Skeletons

(factory usage)

Working
automomic
application

Developing framework concern

Application programmer concern

Functional concern Non-Functional concern

Behavioral
Skeletons

(factory design)

Figure 1 Behavioural skeleton rationale

the autonomic manager that will take care of ensuring this SLA (best effort) while
the application is being computed.

The choice of the skeleton to be used as well as the code parameters provided
to instantiate the BS are functional concerns: they only depend on what has to
be computed (i.e. on the application at hand) and on the qualitative parallelism
exploitation pattern the programmer wants to exploit. The autonomic management
itself is a non-functional concern. The self-management and self-tuning activities
taking place in the manager to ensure user supplied SLA both depend on the
application structure (the one defined by the algorithmic skeleton) and on the target
architecture at hand. The implementation of both the algorithmic skeleton and
the autonomic manager is in the charge of the “system” programmer, i.e. the one
providing the behavioural skeleton framework to the application user.

In the programming model provided by BS, the application programmers are in
charge of picking up a BS (or a composition of BS) among those available and of
providing the corresponding parameters and SLA. The system, and in particular
the autonomic managers of the BS instantiated by the application programmer, are
in charge of performing all those activities needed to ensure the user supplied SLA.
These activities, in turn, may include varying some implementation parameters
(e.g. the parallelism degree, the kind of communication protocol used among
different parallel entities or scheduling/mapping of the parallel activities to the
target processing elements) as well as changing the BS (composition) chosen by
the application programmer (e.g. using “under the hoods” an equivalent, but more
efficient (with respect to the target architecture and user supplied SLA) behavioural
skeleton (composition)).

Autonomic management of non-functional concerns is based on the concurrent
execution (with respect to the application “business logic”) of a basic control loop
such as that shown in Fig. 2. In the monitor phase, the application behaviour is
observed, then in the analyse and plan phases the observed behaviour is examined to
discover possible malfunctioning and corrective actions are planned. The corrective
actions are usually taken from a library of known actions and the chosen action
is determined by the result of the analysis phase. Finally, the actions planned
are applied to the application during the execute phase (Kephart & Chess 2003,
Danelutto 2005, Aldinucci & Danelutto 2006, Aldinucci et al. 2007, 2009c,b).
Currently, two kind of BS are implemented in GCM: a task farm BS and a data
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parallel BS (see Fig. 3). The former models embarrassingly parallel computations
processing independent items xi of an input stream to obtain items f(xi) of
the corresponding output stream. The latter models data parallel computations
by computing for each item of the input stream xi an item f(xi, D) of the
corresponding output stream, where D represents a read only data structure and
the result of f(xi, D) can be computed as a map of some function f ′(xi) on all the
items of D followed by a reduce of the different f ′(xi, Dj) with an associative and
commutative operator g.

Both BS implement an AM taking care of the performance of the parallel
computation at hand. In particular, the AM may ensure contracts stating the
expected service time (or throughput, i.e. the time between the delivery of two
consecutive items on the output stream) of the BS (both task farm and data parallel
BS) or the expected partition size of data structure D (data parallel BS only).
Currently, the contracts must be supplied to the BS AMs through the BS non
functional ports as a(n ASCII string hosting a) set of JBoss rules defined in terms
of the operations provided by the ABC controller bean. In fact, the AM control
loop is implemented by running an instance of the JBoss business rule engine at
regular intervals of time. At each time interval, all the pre-condition-action rules
supplied to the AM are evaluated and those that turn out to be fireable (e.g. whose
with the pre-condition holding true) are executed ordered by priority (or salience
according to JBoss jargon). The pre-conditions are evaluated using values provided
by the monitoring system implemented in the ABC controller beans, actually. The
period used to run the JBoss engine is determined in such a way it is neither too
fast (reacting when it was not the case to react to small changes in the system, thus
increasing overhead to the autonomic management) nor too slow (poorly reacting to
actual changes in the system, thus decreasing efficiency of autonomic management).

The AMs taking care of performance in behavioural skeletons manage the
contracts varying the parallelism degree of the BS, i.e. the number of worker
instances actually used to implement the BS. The variation of the number of worker
instances happens adding/removing a fixed amount of workers. This fixed amount
is a BS user configurable constant (∆w). Rules supplied to the AM in the BS
also consist in specific rules avoiding to perform (probably) useless adaptations
(e.g. avoiding to adapt BS parallelism degree immediately after another adaptation
took place) as well as rules default actions basically only taking care of updating
monitored values when no other, more significant actions turn out to be fireable.

Analyse
Is the contract
broken? Why?

QoS
contract

Plan
Which plan can

solve the problem?

Monitor
How is AE 
behaving?

Execute (Adapt)
Actuate the reconf.

protocol

Sensors Effectors

Figure 2 The classical control loop implemented within Autonomic Managers in GCM
Behavioural Skeletons



8 T. Weigold, M. Aldinucci, M. Danelutto, and V. Getov

Non-Functional
client & server ports

membrane

ABC
LC
CC
BC

AM

S C

W

W

content

Non-Functional
client & server ports

membrane

ABC
LC
CC
BC

AM

S

content
W

W

D

Functional client & server ports

LC: Lifecycle Controller
CC: Content Controller
BC: Binding Controller

ABC: Autonomic Behaviour Controller
AM: Autonomic Manager

W:Worker component

Task Farm BS Data Parallel BSTask Farm BS: receives tasks
to be computed via port S, 

schedules them to one worker. 
Once computed, results are

delivered to components 
connected to port C.

Data Parallel BS: receives 
data to be partitioned among

workers through port D and 
tasks through port S. Results are 

returned as results of calls
to port S.

Figure 3 Behavioural skeletons currently implemented in GCM

Recently, the behavioural skeleton framework has been extended in such a way:

• The BS set has been extended, introducing a pipeline BS, modelling
computations organized in stages.

• BS may be nested to model more and more complex applications. This implies
that managers belong to a manager hierarchy reflecting the BS nesting used
to model the application.

• A procedure has been developed to derive local contracts for all the BS used
to implement a given application from the initial, application directed, user
supplied performance contract. The top level AM manages to split the user
supplied contract in subcontracts that are then passed to nested BSs. The
procedure is recursively applied in such a way eventually each BS in the BS
tree has is own subcontract. The subcontracts are derived in such a way if all
of them are ensured, the unique, application performance contract supplied
by the user is also ensured.

• Policies and contracts have been experimented that allow an AM to inform
its ancestor AM and to enter a passive state in all those cases where no local
action may be taken to enforce the local contract. The upper level manager is
expected to eventually provide the “passive mode” AM with a new contract,
such that this AM can start again is usual (active mode) control loop.

This improved BS framework has been proven to be able to suitably handle complex
autonomic management policies, such as those where manager actions on BSi are
de facto triggered by another autonomic manager BSj (Aldinucci et al. 2009b). As
an example, in this extended framework, an AM of a farm being the i− th stage
in a pipeline could report a contract violation to the pipeline AM, not being able
to sustain its throughput due to a poor input task inter-arrival rate. Therefore, the
pipeline AM may send a new contract to stage i aimed at increasing its output rate,
such that eventually the farm can succeed fulfilling its contract. Despite the fact
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these new features are not necessary to support the case discussed in this paper, it
is worth pointing out that applications more complex—in terms of the structure of
parallelism exploited—of the one used in this paper may be targeted.

4 The ePVM Process Engine

The embeddable Process Virtual Machine (ePVM) is a research prototype process
engine basically built upon two core concepts. Firstly, a process model that
is rooted in the theoretical framework of communicating extended finite state
machines (CEFSM). Secondly, whereas many efforts have been made to create
the ultimate process language, ePVM provides in contrast a low-level run-time
environment based on a JavaScript interpreter where higher-level domain specific
process languages can be mapped to.

The idea of ePVM can be considered to follow a bottom-up or micro-kernel type
of approach for building process-driven applications, Business Process Management
Systems (BPM), or workflow systems. This means that ePVM is a basic framework
for building such systems rather than a complete off-the-shelf application that can
run stand-alone. It consists of a library including a lightweight, generic, and easily
programmable process execution engine. Lightweight hereby means that the engine
is small in size and imposes minimum requirements on its environment, namely the
host application it is embedded in. ePVM has its own process model resembling
networks of communicating state machines running in parallel, which makes it
an inherently asynchronous, event-driven run-time system. Every state machine is
implemented by one JavaScript function, has an associated thread executing it,
has a state object which is passed every time the function is invoked, and can
communicate with other processes as well as entities external to the process engine
via some messaging system. An arbitrary number of external entities, so-called host
processes, can be attached to the engine to become visible for ePVM processes. The
ePVM programming model based on the theory of CEFSM combines the simplicity
of JavaScript with an easy and powerful way of defining complex concurrent business
processes. More details can be found in (Weigold et al. 2007).

5 Process-Driven Distributed Biometric Identification

In recent years biometric methods for verification and identification of people have
become very popular. Applications span from governmental projects like border
control or criminal identification to civil purposes such as e-commerce, network
access, or transport. Frequently, biometric verification is used to authenticate
people meaning that a 1:1 match operation of a claimed identity to the one stored
in a reference system is carried out. In an identification system, however, the
complexity is much higher. Here, a person’s identity is to be determined solely
on biometric information, which requires matching the live scan of his biometrics
against all enrolled (known) identities. Such a 1:N match operation can be quite
time-consuming making it unsuitable for real-time applications. In order to tackle
this challenge, a distributed biometric identification system (BIS), which can work
on a large user population of up to millions of individuals, has been developed. It
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is based on fingerprint biometrics and allows real-time identification within a few
seconds period by taking advantage of the Grid, in particular via GCM components.

5.1 Application Architecture

The BIS can be considered a process-driven application, as it is centrally driven by
the ePVM process engine. Fig. 4 outlines its high-level architectural design.

A number of ePVM process definitions describing the main control flow for
operations such as starting up the system or identifying a person are loaded into
the process engine. These processes co-operate with external entities such as the
GUI, the database (DB) of known identities, and the distributed GCM component
system via a number of host processes to implement the overall functionality of the
BIS.

5.2 Process-Engine/GCM Interfacing

The actual distributed fingerprint matching functionality is implemented via a set
of GCM components deployed within a Grid/Cloud infrastructure as indicated
in Fig. 4. Processes running within the process engine must be able to create,
deploy, configure and interact with these components. For this purpose, a dedicated
host process named GCM adapter (c.f. Fig. 4) has been developed, which
receives messages from ePVM process instances, turns these messages into method
invocations on GCM framework methods or GCM components, and generates
appropriate reply messages returned to ePVM. The GCM adapter represents
the main interface between ePVM and GCM. As ePVM process definitions are

Biometric Identification System (BIS)

Identities
DB

Application
GUI

BIS
services

DB
access

GCM 
adapter ePVM process engine

Process definitions

Enrolment Identification

System 
management Admin

Host process

GCM 
components

GCM 
components

GRID infrastructure

Figure 4 BIS high-level architecture
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implemented in JavaScript and the GCM framework is available as a Java library,
the GCM adapter essentially converts between JavaScript messages and Java
method invocations.

An alternative option would have been to export the GCM components as Web
services, as supported by the GCM implementation, and invoke them from within
the GCM adapter. However, this would have increased the number of required
type conversions going from Java Script over SOAP to Java and vice versa. Also,
the GCM framework only supports exporting GCM components as Web services.
Other framework services, for example, functionality for deployment and component
creation, cannot be turned into Web services automatically. Finally, the ePVM
process engine does not necessarily require working on Web Services level like,
for instance, process engines based on the Business Process Execution Language
(BPEL). Consequently, we decided not to use Web services as interfaces between
the process engine and GCM.

The functionality provided by the GCM adapter includes:

• Activate a given GCM deployment descriptor to start the nodes available in
the Grid.

• Modify architecture description language (ADL) files describing the GCM
components used.

• Create GCM components within the Grid.

• Invoke methods on GCM components, for example, to configure the quality
of service (QoS) contract, distribute the DB of known identities, or submit
the biometrics of a person for identification.

The GCM adapter is triggered by ePVM process instances to implement the
overall application logic. As an example, the activity flow chart shown in Fig. 5
illustrates the control logic implemented within an ePVM processes as it is executed
during BIS initialization. For each of the activities a message is being sent to a
host adapter which implements the functionality. Some of the activities execute in
parallel, for instance, activity 1.1 to 1.3, some are sequential.

5.3 Using Autonomic GCM Components

The problem of biometric identification can be considered a search problem where
the compare function is a biometric matching algorithm, here fingerprint matching.
To distribute the problem within a Grid infrastructure, the DB of known identities
needs to be distributed such that each computing node in the Grid receives a
partition of the overall DB and can match a given identity against this partition. The
time spent in matching the given identity against the local portion of the database
is clearly proportional to the size of this local DB portion. Therefore, considering
that the distribution of the DB among the grid nodes is performed once and for all,
and considering negligible the time spent to broadcast the fingerprint that has to be
matched with those in the distributed database, the ability to perform fingerprint
matching in real time roughly depends on the ability to distribute local portions
of the database small enough to allow real time matching of the broadcasted
fingerprint. More precisely, the time spent in matching a single fingerprint against



12 T. Weigold, M. Aldinucci, M. Danelutto, and V. Getov

the local database also depends on the computing power and on the load of the
machine used to perform the matching. The machine power and the local database
sizes are somehow static properties. The load of the machine is instead a dynamic
property. Thus, in order to keep the matching time perceived by the application
user within a given range (i.e. satisfying a given service level agreement (SLA)
or performance contract), our BIS application should i) properly dimension the
number of distributed resources used to host database portions and ii) dynamically
adapt to the varying load of the grid resources involved in such a way a user
supplied performance contract (such as match fingerprint in less than 30 seconds)
is ensured. Both features are supported within the GCM Behavioural skeletons
presented in Sec. 3.1: if the user instantiates a Behavioural skeleton to implement
the BIS search process, and if he/she provides a contract stating the expected
latency of the fingerprint matching process, the AM of the behavioural skeleton will
start with a predefined number of workers (i.e. a predefined parallelism degree) and
then adapt this number to achieve the matching latency adding (removing) workers
from the BS composite component. In case of overload of some of the resources
used in the matching, the AM of the behavioural skeleton will also manage to
increase the number of resources recruited to the parallel matching, in such a way
the contract can be ensured again. In this case, the recruitment of a new processing
resource induces a physical redistribution of the database among the resources. This
redistribution is completely implemented/managed by the behavioural skeleton
AM.

In order to implement our BIS application, we used a data parallel (DP)
behavioural skeleton. Referring to Fig. 3 (right), the DP skeleton is a composite
component which includes an autonomic behaviour controller (ABC) and an
autonomic manager (AM). The AM periodically evaluates certain monitored
properties of the skeleton to ensure that a given QoS contract is satisfied. If
this is not the case, it triggers appropriate reconfiguration operations provided
by the ABC. To apply the DP skeleton for our application scenario, it must
be parameterised with a worker component and a QoS contract. The worker

Start
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Start Nodes
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Generate ADL

1.3
Connect DB DB Valid? 1.4

Generate DB

2
Create GCM
Components
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Figure 5 BIS initialization process flow
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component, here named IDMatcher, implements the actual fingerprint matching
functionality and the skeleton allocates one instance of this worker component per
node. The QoS contract consists of a set of rules interpreted by the JBoss Drools
rule engine.

For our BIS prototype we chose to implement a QoS contract requiring to keep
the partition size of the workers constant, independently of the size of the database
presented to the BS through port D. The contract is provided before starting the
computation through the non functional server port attached to the BS AM. The
AM, in this case, adds or removes workers from the BS in case the partition size
exceeds or is less than the value supplied by the user within the contract provided
through the non functional BS ports.

Before identification requests can be processed, the identity DB is distributed
across the worker components using port D. As a consequence, the DB is partitioned
on the inner W components. The identity DB holds information such as name,
address, and fingerprints of all enrolled (known) people.

Once the skeleton has been initialized, identification requests can be submitted
via the second port provided by the BS, port S, the so-called broadcast port.
Fingerprints of a person to be identified are broadcasted via this port to all worker
components and each worker matches them against its partition of the DB. Results
are returned synchronously via method return values.

If the AM triggers reconfiguration via the ABC, for example, to increase the
number of worker components, the AM collects all DB partitions from the workers,
modifies the number of workers, and finally redistributes the DB to the workers.
This way the DB is redistributed during each reconfiguration operation.

The submission of the contract through non functional interfaces, the DB
through BS port D, and the fingerprints to be matched through port S are all
interactions with the GCM BS triggered by ePVM processes via the GCM adapter.

5.4 Application Monitoring

Monitoring is one of the core features of every process engine and it is an important
argument for using one when building an application. The ePVM engine supports
monitoring processes by registering monitor objects for one or more process
definitions. Furthermore, it can be specified which events shall be monitored.
Available are a number of standard events such as a process instance being created,
a message being processed, or a process becoming idle. Furthermore, custom events
can be defined such that more fine-grained monitoring can be implemented, for
example, multiple events can be triggered while a single message is processed.

In the BIS application, a monitor object is used to track the progress of ePVM
process instances, for example, while the system initialization process is executed
(c.f. Fig. 5). The monitor object is triggered by the process engine whenever
activities start or finish and it updates the GUI to reflect the state of the system.
Furthermore, it is desired to monitor the GCM component system with the goal
to visualize AM actions and the number of workers used in the DP skeleton. A
system administrator could observe this and, if required, trigger reconfiguration or
add resources manually. For monitoring the skeleton, functionality provided by the
GCM framework can be used. However, monitoring in GCM is based on a pull
model where information about components and their states can be retrieved on



14 T. Weigold, M. Aldinucci, M. Danelutto, and V. Getov

request. On the contrary, the ePVM approach can be considered a push model where
a monitor is registered and receives events. To integrate GCM monitoring with
the event-driven paradigm applied in ePVM some adaptation is necessary. A first
solution is to create a dedicated ePVM process which regularly retrieves information
about the component system via the GCM API and creates events for the monitor
object. A second solution is to instrument the component implementation to
actively send events to an ePVM process. The first approach is more generic with
respect to distribution, as the GCM framework handles remote method invocations
required to query for component states automatically. The second approach is
more efficient, as communication only takes place if an event to be monitored
occurs. However, a component might not be able to easily communicate with the
process engine if it is running on a remote machine, since the process engine itself
is not a GCM component. In the BIS we used the first approach to implement
monitoring the number of workers, as the workers are typically distributed. For
monitoring AM actions, we use the second approach exploiting the fact that in
our deployments the AM is always co-located with the process engine such that no
remote communication is necessary.

In general, the requirement to monitor actions within the DP skeleton to some
extend is contradictory to the idea of autonomic components. On one hand the goal
of using the DP skeleton is to take advantage of its built-in functionality without
taking care of the implementation details. On the other hand, we still want to
be able to monitor certain internal details such as reconfiguration operations and
the number of workers. From the perspective of the process-driven applications
paradigm all important actions which shall be monitored should be centrally
controlled by the process-engine. However, in real-world applications a trade-off
between central process control and autonomy must be made.

5.5 Automatic Futures vs. Message Passing

When integrating process-engines and distributed computing frameworks, it is very
important to be aware of their communication and synchronization paradigms. The
GCM framework is based on Java RMI and implements the concept of automatic
futures (Caromel & Henrio 2005). This means that method invocations always
return immediately, whereas results which are not yet available are represented
by so-called future objects. Program execution is then blocked automatically if a
future object is being accessed as long as the value represented is not yet available.
The goal is to ease parallel programming by hiding synchronization details within
a meta object protocol implemented in GCM. The ePVM process engine, however,
uses message passing for communication and synchronization between concurrent
control flows. If these two paradigms are interweaved, as it is the case in the BIS
application, process flows can easily become distorted. For example, if a process
definition assigns two activities to be carried out sequentially (c.f. activity 2 and 3
in Fig. 5), it must be ensured that no more future objects resulting from the first
activity exist before the second is triggered.

This issue becomes obvious when an identification process is triggered within
the BIS. In this case, an ePVM process sends a message to the GCM adapter
including fingerprints of a person to be identified. The GCM adapter forwards
this information to the component system by invoking the broadcast interface of
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the DP skeleton (port S, Fig. 3). This interface is a so-called collective interface,
which turns one method invocation into N method invocations on all the bound
IDMatcher components to broadcast the identification request. The return value
is a list of result objects, one from each IDMatcher component. When the
interface is invoked, it immediately returns a list of future objects, which at the
beginning are all unavailable and then by-and-by become available as the IDMatcher
components return their results. It is important that the GCM adapter waits for
the futures to become available and generates messages to be returned to the ePVM
process instance accordingly. It must not report the identification as completed
before all futures are available. Effectively, the GCM adapter retracts automatic
synchronization in order to make the actual progress visible to the process engine,
which must to be informed whenever an IDMatcher component has searched its
part of the DB. Obviously, converting from one paradigm into the other must be
handled with care as the semantics of the process definitions can be broken due to
delayed synchronization within GCM.

6 Results, Experiences, and Lessons Learned

The primary result of this work is the fully functional prototype of the BIS
application, which acts as a use case demo for the process engine as well as for the
GCM framework. Additional results have been gained by critically evaluating the
application and experimenting with it. Firstly, it has been successfully deployed
on various hardware platforms ranging from one multi-core PC to heterogeneous
sets of clusters as provided by the Grid5000 project (The Grid5000 Project 2008).
Switching hardware platforms did not require changing a single line of functional
code, only the infrastructure part of the XML deployment descriptor required
modification. The strict separation of concerns and the autonomic functionality
implemented within the GCM framework have turned out to be the main factors
leading to this flexibility. The former ensures that resources are never directly
referenced in the source code while the latter provides autonomic adaptation to the
performance properties of the hardware in use.

Secondly, functionality and autonomic behaviour of the application has been
verified using Grid5000. The BIS has been started using 50 workers (one per node),
a DB holding 50000 identities (approx. 400 MB), and a QoS contract mandating a
partition size of 1000 identities/worker. At runtime, the contract has been updated
to 800 (± 10%) identities/worker. Thereupon, the AM has successfully detected
7 contract violations and each time reconfigured the DP skeleton by adding one
additional worker until a partition size of 877 identities/worker was reached at 57
workers/nodes. During this experiment, every reconfiguration operation took about
9 seconds in which the complete DB has been redistributed (from the node hosting
the whole database to the nodes hosting the workers of the data parallel BS) by the
ABC. When identification requests where issued during reconfiguration, they where
queued automatically by the skeleton and processed as soon as reconfiguration was
completed. For the given DB size, each identification request required around 10
seconds to be processed. This means that each reconfiguration operation roughly
decreases the throughput of the BIS by one identification for any given timeframe.
Therefore, if the BIS is used in a very dynamic environment requiring frequent
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reconfiguration, the number of occurrences of reconfigurations may be sensibly
reduced by adopting more aggressive parallelism degree variation policies, in such
a way the overall overhead is reduced. Such more aggressive policies at the moment
consist in varying the constant ∆w that defines the number of workers to be
added/removed when reconfiguring the parallelism degree of a BS. As shown in
(Aldinucci et al. 2009c), the evaluation of such ∆w can also take in account the
overhead and the delay of the reconfiguration itself by using historical data. In the
BS/GCM framework we are currently investigating the possibility to use a kind
of exponential back-off increase/decrease protocol. All those cases, of course, rely
on the possibility to effectively monitor the increase/decrease achieved in the BS
performance as a consequence of the parallelism degree adaptation.

Finally, evaluating the application’s source code, including the deployment
descriptor required to run on 50 nodes of Grid5000, unveiled the source code
breakdown illustrated in Fig. 6. The functional code mainly includes the host
processes (c.f. Fig. 4) providing DB access, the GUI functionality, and the
interfacing to the GCM components. Its absolute size is about 2500 lines of code,
which is very small considering the the overall functionality provided by the
application. This is due to the fact that the GCM framework provides all the
functionality for distribution and autonomicity. Implementing this functionality
from scratch not using GCM would have been significantly more effort. In particular,
adding autonomic control to an application is virtually effortless if a matching
behavioural skeleton is available. Only the QoS contract must be provided and a
few non-functional interfaces used by the controller must be implemented within
the worker component. In case of the BIS application, only about 200 lines of
code where necessary for that. Furthermore, it is to be noted that more than a
quarter of the source code (27%) consists of code interpreted at runtime. This code,
including the deployment descriptor, the process definitions, the QoS contract, and
the GCM component definitions, contains the main control logic and infrastructure

Figure 6 BIS source code breakdown
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definition of the application. As a result, the application can be adapted significantly
without recompilation - a very important property required for operation in today’s
dynamic business environments. Hard-coding this part of the application would
clearly decrease the applications flexibility as achieved through the combination of
GCM and ePVM.

During application development, we have made a number of experiences with
regards to the integration of process technology and the GCM framework. The
interfacing between the two technologies went rather smoothly, since the ePVM
engine is available as a Java library and it does not dictate the use of Web services.
Also, the DP skeleton fits well to the given biometric identification problem.
However, application monitoring turned out to be challenging. One must be aware
that the idea behind components is hiding complexity and this can be a problem if
component internals need to be monitored. The GCM framework supports querying
the state of a component system, however, it does not support monitoring activities
within components, for example, reconfiguration within a BS. Solving this problem
by instrumenting component implementations (c.f. Sec. 5.4) requires comprehensive
knowledge of the GCM framework. Furthermore, the monitoring support of GCM
follows a pull model while process engines are mostly event driven. Joining the two
paradigms in a sensible way requires an extra effort and can have a performance
impact. For example, regularly traversing component hierarchies to detect newly
created components is not very efficient.

Another lesson we have learned is that the two different synchronization
paradigms applied in GCM and ePVM can interfere if not handled with care. The
concept of automatic futures implemented in the GCM framework follows the wait-
by-necessity idea. This means that unavailable results are replaced by future objects
such that synchronization is delayed as long as possible. Therefore, it must be
carefully checked if results of activities within a process flow include one or more
future objects before the next activity of a sequence is triggered, otherwise the
process semantics can easily become distorted. In other words, if a GCM component
returns an object it does not necessarily mean that all the related operations have
completed.

Finally, we realized that working with the advanced features of both frameworks,
ePVM and GCM, requires working with a large number of different development
artefacts and acquiring related skills. The Grid IDE (GIDE) (Basukoski et al. 2008),
which consists of a set of plugins to the famous Eclipse development environment
eases this to some extend and provides a jump start into GCM. Nevertheless,
combining process technology with GCM allows producing extremely flexible and
complex distributed applications with minimum effort.

7 Conclusions

Process-driven application development is increasingly gaining attention in the
business environment. At the same time, software development frameworks for the
Grid/Cloud are raising interest in the course of the Cloud computing wave. In this
paper we have considered combining the two approaches to produce a process-driven
distributed biometric identification system. In discussing the application we have
made the following contributions:
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• We provided a brief overview of the GCM framework, its support for
autonomic components and behavioural skeletons, and the ePVM process
engine.

• We described the architectural design and implementation of the process-
driven biometric identification system utilizing the DP autonomic behavioural
skeleton available in GCM.

• We presented the results, experiences, and lessons learned while integrating
both technologies, the process engine and the GCM framework.

We believe that this use case application demonstrates that combining process
technology and autonomic Grid/Cloud components represents a powerful approach
for developing flexible distributed applications with minimum effort. Obviously, the
application could have been developed without using GCM and ePVM. However,
the development effort would have been much higher and the resulting application
would have been less flexible due to the hard-coded application logic and autonomic
strategy.
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