522 research outputs found

    Deploying applications in Multi-SAN SMP clusters

    Get PDF
    The effective exploitation of multi-SAN SMP clusters and the use of generic clusters to support complex information systems require new approaches. On the one hand, multi-SAN SMP clusters introduce another level of parallelism which is not addressed by conventional programming models that assume a homogeneous cluster. On the other hand, traditional parallel programming environments are mainly used to run scientific computations, using all available resources, and therefore applications made of multiple components, sharing cluster resources or being restricted to a particular cluster partition, are not supported. We present an approach to integrate the representation of physical resources, the modelling of applications and the mapping of application into physical resources. The abstractions we propose allow to combine shared memory, message passing and global memory paradigms

    Bridging the gap between cluster and grid computing

    Get PDF
    The Internet computing model with its ubiquitous networking and computing infrastructure is driving a new class of interoperable applications that benefit both from high computing power and multiple Internet connections. In this context, grids are promising computing platforms that allow to aggregate distributed resources such as workstations and clusters to solve large-scale problems. However, because most parallel programming tools were primarily developed for MPP and cluster computing, to exploit the new environment higher abstraction and cooperative interfaces are required. Rocmeμ is a platform originally designed to support the operation of multi-SAN clusters that integrates application modeling and resource allocation. In this paper we show how the underlying resource oriented computation model provides the necessary abstractions to accommodate the migration from cluster to multicluster grid enabled computing

    Composable architecture for rack scale big data computing

    No full text
    The rapid growth of cloud computing, both in terms of the spectrum and volume of cloud workloads, necessitate re-visiting the traditional rack-mountable servers based datacenter design. Next generation datacenters need to offer enhanced support for: (i) fast changing system configuration requirements due to workload constraints, (ii) timely adoption of emerging hardware technologies, and (iii) maximal sharing of systems and subsystems in order to lower costs. Disaggregated datacenters, constructed as a collection of individual resources such as CPU, memory, disks etc., and composed into workload execution units on demand, are an interesting new trend that can address the above challenges. In this paper, we demonstrated the feasibility of composable systems through building a rack scale composable system prototype using PCIe switch. Through empirical approaches, we develop assessment of the opportunities and challenges for leveraging the composable architecture for rack scale cloud datacenters with a focus on big data and NoSQL workloads. In particular, we compare and contrast the programming models that can be used to access the composable resources, and developed the implications for the network and resource provisioning and management for rack scale architecture

    Virtual Cluster Management for Analysis of Geographically Distributed and Immovable Data

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics and Computing, 2015Scenarios exist in the era of Big Data where computational analysis needs to utilize widely distributed and remote compute clusters, especially when the data sources are sensitive or extremely large, and thus unable to move. A large dataset in Malaysia could be ecologically sensitive, for instance, and unable to be moved outside the country boundaries. Controlling an analysis experiment in this virtual cluster setting can be difficult on multiple levels: with setup and control, with managing behavior of the virtual cluster, and with interoperability issues across the compute clusters. Further, datasets can be distributed among clusters, or even across data centers, so that it becomes critical to utilize data locality information to optimize the performance of data-intensive jobs. Finally, datasets are increasingly sensitive and tied to certain administrative boundaries, though once the data has been processed, the aggregated or statistical result can be shared across the boundaries. This dissertation addresses management and control of a widely distributed virtual cluster having sensitive or otherwise immovable data sets through a controller. The Virtual Cluster Controller (VCC) gives control back to the researcher. It creates virtual clusters across multiple cloud platforms. In recognition of sensitive data, it can establish a single network overlay over widely distributed clusters. We define a novel class of data, notably immovable data that we call "pinned data", where the data is treated as a first-class citizen instead of being moved to where needed. We draw from our earlier work with a hierarchical data processing model, Hierarchical MapReduce (HMR), to process geographically distributed data, some of which are pinned data. The applications implemented in HMR use extended MapReduce model where computations are expressed as three functions: Map, Reduce, and GlobalReduce. Further, by facilitating information sharing among resources, applications, and data, the overall performance is improved. Experimental results show that the overhead of VCC is minimum. The HMR outperforms traditional MapReduce model while processing a particular class of applications. The evaluations also show that information sharing between resources and application through the VCC shortens the hierarchical data processing time, as well satisfying the constraints on the pinned data

    The Virginia Tech Computational Grid: A Research Agenda

    Get PDF
    An important goal of grid computing is to apply the rapidly expanding power of distributed computing resources to large-scale multidisciplinary scientic problem solving. Developing a usable computational grid for Virginia Tech is desirable from many perspectives. It leverages distinctive strengths of the university, can help meet the research computing needs of users with the highest demands, and will generate many challenging computer science research questions. By deploying a campus-wide grid and demonstrating its effectiveness for real applications, the Grid Computing Research Group hopes to gain valuable experience and contribute to the grid computing community. This report describes the needs and advantages which characterize the Virginia Tech context with respect to grid computing, and summarizes several current research projects which will meet those needs

    NASA Tech Briefs, December 2007

    Get PDF
    Topics include: Ka-Band TWT High-Efficiency Power Combiner for High-Rate Data Transmission; Reusable, Extensible High-Level Data-Distribution Concept; Processing Satellite Imagery To Detect Waste Tire Piles; Monitoring by Use of Clusters of Sensor-Data Vectors; Circuit and Method for Communication Over DC Power Line; Switched Band-Pass Filters for Adaptive Transceivers; Noncoherent DTTLs for Symbol Synchronization; High-Voltage Power Supply With Fast Rise and Fall Times; Waveguide Calibrator for Multi-Element Probe Calibration; Four-Way Ka-Band Power Combiner; Loss-of-Control-Inhibitor Systems for Aircraft; Improved Underwater Excitation-Emission Matrix Fluorometer; Metrology Camera System Using Two-Color Interferometry; Design and Fabrication of High-Efficiency CMOS/CCD Imagers; Foam Core Shielding for Spacecraft CHEM-Based Self-Deploying Planetary Storage Tanks Sequestration of Single-Walled Carbon Nanotubes in a Polymer PPC750 Performance Monitor Application-Program-Installer Builder Using Visual Odometry to Estimate Position and Attitude Design and Data Management System Simple, Script-Based Science Processing Archive Automated Rocket Propulsion Test Management Online Remote Sensing Interface Fusing Image Data for Calculating Position of an Object Implementation of a Point Algorithm for Real-Time Convex Optimization Handling Input and Output for COAMPS Modeling and Grid Generation of Iced Airfoils Automated Identification of Nucleotide Sequences Balloon Design Software Rocket Science 101 Interactive Educational Program Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites Dog-Bone Horns for Piezoelectric Ultrasonic/Sonic Actuators Benchtop Detection of Proteins Recombinant Collagenlike Proteins Remote Sensing of Parasitic Nematodes in Plants Direct Coupling From WGM Resonator Disks to Photodetectors Using Digital Radiography To Image Liquid Nitrogen in Voids Multiple-Parameter, Low-False-Alarm Fire-Detection Systems Mosaic-Detector-Based Fluorescence Spectral Imager Plasmoid Thruster for High Specific-Impulse Propulsion Analysis Method for Quantifying Vehicle Design Goals Improved Tracking of Targets by Cameras on a Mars Rover Sample Caching Subsystem Multistage Passive Cooler for Spaceborne Instruments GVIPS Models and Software Stowable Energy-Absorbing Rocker-Bogie Suspension

    Parallel Processes in HPX: Designing an Infrastructure for Adaptive Resource Management

    Get PDF
    Advancement in cutting edge technologies have enabled better energy efficiency as well as scaling computational power for the latest High Performance Computing(HPC) systems. However, complexity, due to hybrid architectures as well as emerging classes of applications, have shown poor computational scalability using conventional execution models. Thus alternative means of computation, that addresses the bottlenecks in computation, is warranted. More precisely, dynamic adaptive resource management feature, both from systems as well as application\u27s perspective, is essential for better computational scalability and efficiency. This research presents and expands the notion of Parallel Processes as a placeholder for procedure definitions, targeted at one or more synchronous domains, meta data for computation and resource management as well as infrastructure for dynamic policy deployment. In addition to this, the research presents additional guidelines for a framework for resource management in HPX runtime system. Further, this research also lists design principles for scalability of Active Global Address Space (AGAS), a necessary feature for Parallel Processes. Also, to verify the usefulness of Parallel Processes, a preliminary performance evaluation of different task scheduling policies is carried out using two different applications. The applications used are: Unbalanced Tree Search, a reference dynamic graph application, implemented by this research in HPX and MiniGhost, a reference stencil based application using bulk synchronous parallel model. The results show that different scheduling policies provide better performance for different classes of applications; and for the same application class, in certain instances, one policy fared better than the others, while vice versa in other instances, hence supporting the hypothesis of the need of dynamic adaptive resource management infrastructure, for deploying different policies and task granularities, for scalable distributed computing
    corecore