
DEPLOYING APPLICATIONS

IN MULTI-SAN SMP CLUSTERS

Albano Alves1, António Pina2, José Exposto1 and José Rufino1

1ESTiG, Instituto Politécnico de Bragança.

{albano, exp, rufino}@ipb.pt

2Departamento de Informática, Universidade do Minho.

pina@di.uminho.pt

Abstract The effective exploitation of multi-SAN SMP clusters and the use of
generic clusters to support complex information systems require new
approaches. On the one hand, multi-SAN SMP clusters introduce an-
other level of parallelism which is not addressed by conventional pro-
gramming models that assume a homogeneous cluster. On the other
hand, traditional parallel programming environments are mainly used
to run scientific computations, using all available resources, and there-
fore applications made of multiple components, sharing cluster resources
or being restricted to a particular cluster partition, are not supported.

We present an approach to integrate the representation of physical
resources, the modelling of applications and the mapping of application
into physical resources. The abstractions we propose allow to combine
shared memory, message passing and global memory paradigms.

Keywords: Resource management, application modelling, logical-physical mapping

1. Introduction

Clusters of SMP (Symmetric Multi-Processor) workstations intercon-
nected by a high-performance SAN (System Area Network) technology
are becoming an effective alternative for running high-demand applica-
tions. The assumed homogeneity of these systems has allowed to develop
efficient platforms. However, to expand computing power, new nodes
may be added to an initial cluster and novel SAN technologies may be
considered to interconnect these nodes, thus creating a heterogeneous
system that we name multi-SAN SMP cluster.

Clusters have been used mainly to run scientific parallel programs.
Nowadays, as long as novel programming models and runtime systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

are developed, we may consider using clusters to support complex infor-
mation systems, integrating multiple cooperative applications.

Recently, the hierarchical nature of SMP clusters has motivated the
investigation of appropriate programming models (see [8] and [2]). But
to effectively exploit multi-SAN SMP clusters and support multiple co-
operative applications new approaches are still needed.

2. Our Approach

Figure 1(a) presents a practical example of a multi-SAN SMP cluster
mixing Myrinet and Gigabit. Multi-interface nodes are used to integrate
sub-clusters (technological partitions).

Gigabit Ethernet (1 Gbit/s)

...

...

Fast Ethernet (100 Mbits/s) ...

Myrinet (2 Gbits/s)

Dual Athlon 1.8GHz
Quad Xeon

700MHz

Dual PIII 733MHz

(a)

MVIA

RoCL

GM

High−level abstractions

Directory

FastEthernet

Myrinet Gigabit

...

U
D

P

(b)

Figure 1. Exploitation of a multi-networked SMP cluster.

To exploit such a cluster we developed RoCL [1], a communication
library that combines GM – the low-level communication library pro-
vided by Myricom – and MVIA – a Modular implementation of the
Virtual Interface Architecture. Along with a basic cluster oriented di-
rectory service, relying on UDP broadcast, RoCL may be considered a
communication-level SSI (Single System Image), since it provides full
connectivity among application entities instantiated all over the cluster
and also allows to register and discover entities (see fig. 1(b)).

Now we propose a new layer, built on top of RoCL, intended to assist
programmers in setting-up cooperative applications and exploiting clus-
ter resources. Our contribution may be summarized as a new methodol-
ogy comprising three stages: (i) the representation of physical resources,
(ii) the modelling of application components and (iii) the mapping of ap-
plication components into physical resources. Basically, the programmer
is able to choose (or assist the runtime in) the placement of application
entities in order to exploit locality.

3. Representation of Resources

The manipulation of physical resources requires their adequate repre-
sentation and organization. Following the intrinsic hierarchical nature

Deploying Applications in Multi-SAN SMP Clusters 3

of multi-SAN SMP clusters, a tree is used to lay out physical resources.
Figure 2 shows a resource hierarchy to represent the cluster of figure 1(a).

GFS=/ethfs

CPU=2

Myrinet

Gigabit

GFS=/gigfs

GFS=/gigfs

GFS=/myrfs

Myrinet

GFS=/myrfs

... ...
Mem=1G

CPU=4

Mem=1G

CPU=4

...
Mem=512

CPU=2

Mem=512

CPU=2

FastEthernet

Mem=512

CPU=2

Mem=512

Gigabit

Sub−Cluster Sub−Cluster

1 kNode A Node An1 Node B Node B Node C1

Dual AthlonQuad XeonMyrinet

m Node C

Dual PIII
Sub−Cluster Sub−Cluster

Cluster

Figure 2. Cluster resources hierarchy.

3.1 Basic Organization

Each node of a resource tree confines a particular assortment of hard-
ware, characterized by a list of properties, which we name as a domain.
Higher-level domains introduce general resources, such as a common
interconnection facility, while leaf domains embody the most specific
hardware the runtime system can handle.

Properties are useful to evidence the presence of qualities – classifying
properties – or to establish values that clarify or quantify facilities –
specifying properties. For instance, in figure 2, the properties Myrinet

and Gigabit divide cluster resources into two classes while the properties
GFS=... and CPU=... establish different ways of accessing a global file
system and quantify the resource processor, respectively.

Every node inherits properties from its ascendant, in addition to the
properties directly attached to it. That way, it is possible to assign a
particular property to all nodes of a subtree by attaching that prop-
erty to the subtree root node. Node A1 will thus collect the properties
GFS=/ethfs, FastEthernet, GFS=myrfs, Myrinet, CPU=2 and Mem=512.

By expressing the resources required by an application through a list
of properties, the programmer instructs the runtime system to traverse
the resource tree and discover a domain whose accumulated properties
conform to the requirements. Respecting figure 2, the domain Node
A1 fulfils the requirements (Myrinet) ∧ (CPU=2), since it inherits the
property Myrinet from its ascendant.

If the resources required by an application are spread among the do-
mains of a subtree, the discovery strategy returns the root of that sub-
tree. To combine the properties of all nodes of a subtree at its root, we
use a synthesization mechanism. Hence, Quad Xeon Sub-Cluster fulfils
the requirements (Myrinet) ∧ (Gigabit) ∧ (CPU=4*m).

4

3.2 Virtual Views

The inheritance and the synthesization mechanisms are not adequate
when all the required resources cannot be collected by a single domain.
Still respecting figure 2, no domain fulfils the requirements (Myrinet)
∧ (CPU=2*n+4*m)1. A new domain, symbolizing a different view, should
therefore be created without compromising current views. Our approach
introduces the original/alias relation and the sharing mechanism.

An alias is created by designating an ascendant and one or more
originals. In figure 2, the domain Myrinet Sub-cluster (dashed shape) is
an alias whose originals (connected by dashed arrows) are the domains
Dual PIII and Quad Xeon. This alias will therefore inherit the properties
of the domain Cluster and will also share the properties of its originals,
that is, will collect the properties attached to its originals as well as the
properties previously inherited or synthesized by those originals.

By combining original/alias and ascendant/descendant relations we
are able to represent complex hardware platforms and to provide pro-
grammers the mechanisms to dynamically create virtual views accord-
ing to application requirements. Other well known resource specification
approaches, such as the RSD (Resource and Service Description) envi-
ronment [4], do not provide such flexibility.

4. Application Modelling

The development of applications to run in a multi-SAN SMP cluster
requires appropriate abstractions to model application components and
to efficiently exploit the target hardware.

4.1 Entities for Application Design

The model we propose combines shared memory, global memory and
message passing paradigms through the following six abstraction entities:

domain - used to group or confine related entities, as for the rep-
resentation of physical resources;

operon - used to support the running context where tasks and
memory blocks are instantiated;

task - a thread that supports fine-grain message passing;

mailbox - a repository to/from where messages may be sent/re-
trieved by tasks;

memory block - a chunk of contiguous memory that supports re-
mote accesses;

1n and m stand for the number of nodes of sub-clusters Dual PIII and Quad Xeon.

Deploying Applications in Multi-SAN SMP Clusters 5

memory block gather - used to chain multiple memory blocks.

Following the same approach that we used to represent and organize
physical resources, application modelling comprises the definition of a
hierarchy of nodes. Each node is one of the above entities to which we
may attach properties that describe its specific characteristics. Aliases
may also be created by the programmer or the runtime system to pro-
duce distinct views of the application entities. However, in contrast to
the representation of physical resources, hierarchies that represent ap-
plication components comprise multiple distinct entities that may not
be organized arbitrarily; for example, tasks must have no descendants.

Programmers may also instruct the runtime system to discover a par-
ticular entity in the hierarchy of an application component. In fact,
application entities may be seen as logical resources that are available
to any application component.

4.2 A Modelling Example

Figure 3 shows a modelling example concerning a simplified version of
SIRe2, a scalable information retrieval environment. This example is just
intended for explaining our approach; specific work on web information
retrieval may be found eg in [3, 5].

...

Word/URL Word/URL

gather
block

block
memory

mailboxtaskoperondomain

...Word/URL Word/URL

... Word/URLRobot

Index

Querying

Search

Robot IndexerPending

Download

Parse

Indexer

Spread

Crawling

SIRe

Index

Inquirer

Indexing

Figure 3. Modelling example of the SIRe system.

Each Robot operon represents a robot replica, executing on a sin-
gle machine, which uses multiple concurrent tasks to perform each of
the crawling stages. At each stage, the various tasks compete for work
among them. Stages are synchronized through global data structures in
the context of an operon. In short, each robot replica exploits an SMP
workstation through the shared memory paradigm.

2A research supported by FCT/MCT, Portugal, contract POSI/CHS/41739/2001.

6

Within the domain Crawling, the various robots cooperate by parti-
tioning URLs. After the parse stage, the spread stage will thus deliver
to each Robot operon its URLs. Therefore Download tasks will con-
currently fetch messages within each operon. Because no partitioning
guarantees, by itself, a perfect balancing of the operons, Download tasks
may send excedentary URLs to the mailbox Pending. This mailbox
may be accessed by any idle Download task. That way, the cooperation
among robots is achieved by message passing.

The indexing system represented by the domain Indexing is purposed
to maintain a matrix connecting relevant words and URLs. The large
amount of memory required to store such a matrix dictate the use of sev-
eral distributed memory fragments. Therefore, multiple Indexer operons
are created, each to hold a memory block. Each indexer manages a col-
lection of URLs stored in consecutive matrix rows, in the local memory
block, thus avoiding references to remote blocks.

Finally, the querying system uses the disperse memory blocks as a
single large global address space to discover the URLs of a given word.
Memory blocks are chained through the creation of aliases under a mem-
ory block gather which is responsible to redirect memory references and
to provide a basic mutual exclusion access mechanism. Accessing the
matrix through the gather Word/URL will then result in transparent
remote reads throughout a matrix column. The querying system thus
exploits multiple nodes through the global memory paradigm.

5. Mapping Logical into Physical Resources

The last step of our methodology consists on merging the two separate
hierarchies produced on the previous stages to yield a single hierarchy.

5.1 Laying Out Logical Resources

Figure 4 presents a possibility of integrating the application depicted
in figure 3 into the physical resources depicted in figure 2.

Operons, mailboxes and memory block gathers must be instantiated
under original domains of the physical resources hierarchy. Tasks and
memory blocks are created inside operons and so have no relevant role
on hardware appropriation. In figure 4, the application domain Crawling
is fundamental to establish the physical resources used by the crawling
sub-system, since the operons Robot are automatically spread among
cluster nodes placed under the originals of that alias domain.

To preserve the application hierarchy conceived by the programmer,
the runtime system may create aliases for those entities instantiated

Deploying Applications in Multi-SAN SMP Clusters 7

...

...

.........

... ...

... ...

Idx

N. C1 N. Ck

Sub−Cluster
Dual PIII

SIRe

Indexing Querying

Dual Athlon
Sub−Cluster

Crawling

N. BmN. B1N. AnN. A1

Idx Idx Idx Idx Rbt Rbt Rbt Rbt

RbtRbt

ParsePending

PendingIdx RbtRbtIdx

W/U
Inq

W/U

Inq

W/U

W/UW/U

Cluster

W/UW/U

W/UW/U

Idx

Quad Xeon
Sub−Cluster

W/U

Figure 4. Mapping logical hierarchy into physical.

under original physical resource domains. Therefore, two distinct views
are always present: the programmer’s view and the system view.

The task Parse in figure 4, for instance, can be reached by two distinct
paths: Cluster → Dual Athlon → Node Ck → Robot → Parse – the
system view – and Cluster → SIRe → Crawling → Robot (Alias) → Parse
– the programmer’s view. No alias is created for the task Parse because
the two views had already been integrated by the alias domain Robot ;
aliases allow to jump between views.

Programmer’s skills are obviously fundamental to obtain an optimal
fine-grain mapping. However, if the programmer instantiates applica-
tion entities below the physical hierarchy root, the runtime system will
guarantee that the application executes but efficiency may decay.

5.2 Dynamic Creation of Resources

Logical resources are created at application start-up, since the runtime
system automatically creates an initial operon and a task, and when
tasks execute primitives with that specific purpose. To create a logical
resource it is necessary to specify the identifier of the desired ascendant
and the identifiers of all originals in addition to the resource name and
properties. To obtain the identifiers required to specify the ascendant
and the originals, applications have to discover the target resources based
on their known properties.

When applications request the creation of operons, mailboxes or mem-
ory block gathers, the runtime system is responsible for discovering a do-
main that represents a cluster node. In fact, programmers may specify

8

a higher-level domain confining multiple domains that represent cluster
nodes. The runtime system will thus traverse the corresponding sub-tree
in order to select an adequate domain.

After discovering the location for a specific logical resource, the run-
time system instantiates that resource and registers it in the local direc-
tory server. The creation and registration of logical resources is com-
pletely distributed and asynchronous.

6. Discussion

Traditionally, the execution of high performance applications is sup-
ported by powerful SSIs that transparently manage cluster resources to
guarantee high availability and to hide the low-level architecture eg [7].
Our approach is to rely on a basic communication-level SSI used to
implement simple high-level abstractions that allow programmers to di-
rectly manage physical resources.

When compared to a multi-SAN SMP cluster, a metacomputing sys-
tem is necessarily a much more complex system. Investigation of re-
source management architectures has already been done in the context
of metacomputing eg [6]. However, by extending the resource concept
to include both physical and logical resources and by integrating on a
single abstraction layer (i) the representation of physical resources, (ii)
the modelling of applications and (iii) the mapping of application com-
ponents into physical resources, our approach is innovative.

References

[1] A. Alves, A. Pina, J. Exposto, and J. Rufino. RoCL: A Resource oriented Com-
munication Library. In Euro-Par 2003, pages 969–979, 2003.

[2] S. B. Baden and S. J. Fink. A Programming Methodology for Dual-tier Multi-
computers. IEEE Transactions on Software Engineering, 26(3):212–226, 2000.

[3] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

[4] M. Brune, A. Reinefeld, and J. Varnholt. A Resource Description Environment
for Distributed Computing Systems. In International Symposium on High Per-
formance Distributed Computing, pages 279–286, 1999.

[5] J. Cho and H. Garcia-Molina. Parallel Crawlers. In 11th International World-
Wide Web Conference, 2002.

[6] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A Resource Management Architecture for Metacomputing Systems.
In IPPS/SPDP’98, pages 62–82, 1998.

[7] P. Gallard, C. Morin, and R. Lottiaux. Dynamic Resource Management in a
Cluster for High-Availability. In Euro-Par 2002, pages 589–592. Springer, 2002.

[8] A. Gursoy and I. Cengiz. Mechanism for Programming SMP Clusters. In
PDPTA’99, volume IV, pages 1723–1729, 1999.

