564 research outputs found

    Signal constellation and carrier recovery technique for voice-band modems

    Get PDF

    A Bang-Bang All-Digital PLL for Frequency Synthesis

    Get PDF
    abstract: Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily analog in nature and since the development of the charge pump PLL, they have almost exclusively been analog. Recently, however, much research has been focused on ADPLLs because of their scalability, flexibility and higher noise immunity. This research investigates some of the latest all-digital PLL architectures and discusses the qualities and tradeoffs of each. A highly flexible and scalable all-digital PLL based frequency synthesizer is implemented in 180 nm CMOS process. This implementation makes use of a binary phase detector, also commonly called a bang-bang phase detector, which has potential of use in high-speed, sub-micron processes due to the simplicity of the phase detector which can be implemented with a simple D flip flop. Due to the nonlinearity introduced by the phase detector, there are certain performance limitations. This architecture incorporates a separate frequency control loop which can alleviate some of these limitations, such as lock range and acquisition time.Dissertation/ThesisM.S. Electrical Engineering 201

    A jittered-sampling correction technique for ADCs

    Get PDF
    In Analogue to Digital Converters (ADCs) jittered sampling raises the noise floor; this leads to a decrease in its Signal to Noise ratio (SNR) and its effective number of bits (ENOB). This research studies a technique that compensate for the effects of sampling with a jittered clock. A thorough understanding of sampling in various data converters is complied

    Synchronisation for terrestrial mobile radio systems

    Get PDF

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    Timing Signals and Radio Frequency Distribution Using Ethernet Networks for High Energy Physics Applications

    Get PDF
    Timing networks are used around the world in various applications from telecommunications systems to industrial processes, and from radio astronomy to high energy physics. Most timing networks are implemented using proprietary technologies at high operation and maintenance costs. This thesis presents a novel timing network capable of distributed timing with subnanosecond accuracy. The network, developed at CERN and codenamed “White- Rabbit”, uses a non-dedicated Ethernet link to distribute timing and data packets without infringing the sub-nanosecond timing accuracy required for high energy physics applications. The first part of this thesis proposes a new digital circuit capable of measuring time differences between two digital clock signals with sub-picosecond time resolution. The proposed digital circuit measures and compensates for the phase variations between the transmitted and received network clocks required to achieve the sub-nanosecond timing accuracy. Circuit design, implementation and performance verification are reported. The second part of this thesis investigates and proposes a new method to distribute radio frequency (RF) signals over Ethernet networks. The main goal of existing distributed RF schemes, such as Radio-Over-Fibre or Digitised Radio-Over-Fibre, is to increase the bandwidth capacity taking advantage of the higher performance of digital optical links. These schemes tend to employ dedicated and costly technologies, deemed unnecessary for applications with lower bandwidth requirements. This work proposes the distribution of RF signals over the “White-Rabbit” network, to convey phase and frequency information from a reference base node to a large numbers of remote nodes, thus achieving high performance and cost reduction of the timing network. Hence, this thesis reports the design and implementation of a new distributed RF system architecture; analysed and tested using a purpose-built simulation environment, with results used to optimise a new bespoke FPGA implementation. The performance is evaluated through phase-noise spectra, the Allan-Variance, and signalto- noise ratio measurements of the distributed signals

    Energy-efficient wireline transceivers

    Get PDF
    Power-efficient wireline transceivers are highly demanded by many applications in high performance computation and communication systems. Apart from transferring a wide range of data rates to satisfy the interconnect bandwidth requirement, the transceivers have very tight power budget and are expected to be fully integrated. This thesis explores enabling techniques to implement such transceivers in both circuit and system levels. Specifically, three prototypes will be presented: (1) a 5Gb/s reference-less clock and data recovery circuit (CDR) using phase-rotating phase-locked loop (PRPLL) to conduct phase control so as to break several fundamental trade-offs in conventional receivers; (2) a 4-10.5Gb/s continuous-rate CDR with novel frequency acquisition scheme based on bang-bang phase detector (BBPD) and a ring oscillator-based fractional-N PLL as the low noise wide range DCO in the CDR loop; (3) a source-synchronous energy-proportional link with dynamic voltage and frequency scaling (DVFS) and rapid on/off (ROO) techniques to cut the link power wastage at system level. The receiver/transceiver architectures are highly digital and address the requirements of new receiver architecture development, wide operating range, and low power/area consumption while being fully integrated. Experimental results obtained from the prototypes attest the effectiveness of the proposed techniques
    • 

    corecore