126 research outputs found

    Fault Trees, Decision Trees, and Binary Decision Diagrams:A systematic comparison

    Get PDF
    Contains fulltext : 239924.pdf (Publisherā€™s version ) (Closed access)ESREL 202

    Sigref ā€“ A Symbolic Bisimulation Tool Box

    Get PDF
    We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation. We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description. This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center ā€œAutomatic Verification and Analysis of Complex Systemsā€ (SFB/TR 14 AVACS). See www.avacs.org for more information

    EVMDD-based analysis and diagnosis methods of multi-state systems with multi-state components

    Get PDF
    A multi-state system with multi-state components is a model of systems, where performance, capacity, or reliability levels of the systems are represented as states. It usually has more than two states, and thus can be considered as a multi-valued function, called a structure function. Since many structure functions are monotone increasing, their multi-state systems can be represented compactly by edge-valued multi-valued decision diagrams (EVMDDs). This paper presents an analysis method of multi-state systems with multi-state components using EVMDDs. Experimental results show that, by using EVMDDs, structure functions can be represented more compactly than existing methods using ordinary MDDs. Further, EVMDDs yield comparable computation time for system analysis. This paper also proposes a new diagnosis method using EVMDDs, and shows that the proposed method can infer the most probable causes for system failures more efficiently than conventional methods based on Bayesian networks.Japan Society for the Promotion of ScienceMinistry of Education, Culture, Sports, Science and Technology (MEXT)Hiroshima City UniversityGrant-in Aid No. 2500050 (MEXT)Grant no. 0206 (HCU)Grant in Aid for Scientific Research (JSPS

    ATM: a Logic for Quantitative Security Properties on Attack Trees

    Full text link
    Critical infrastructure systems - for which high reliability and availability are paramount - must operate securely. Attack trees (ATs) are hierarchical diagrams that offer a flexible modelling language used to assess how systems can be attacked. ATs are widely employed both in industry and academia but - in spite of their popularity - little work has been done to give practitioners instruments to formulate queries on ATs in an understandable yet powerful way. In this paper we fill this gap by presenting ATM, a logic to express quantitative security properties on ATs. ATM allows for the specification of properties involved with security metrics that include "cost", "probability" and "skill" and permits the formulation of insightful what-if scenarios. To showcase its potential, we apply ATM to the case study of a CubeSAT, presenting three different ways in which an attacker can compromise its availability. We showcase property specification on the corresponding attack tree and we present theory and algorithms - based on binary decision diagrams - to check properties and compute metrics of ATM-formulae

    An efficient algorithm for exact computation of system and survival signatures using binary decision diagrams

    Get PDF
    System and survival signatures are important and popular tools for studying and analysing the reliability of systems. However, it is difficult to compute these signatures for systems with complex reliability structure functions and large numbers of components. This paper presents a new algorithm that is able to compute exact signatures for systems that are far more complex than is feasible using existing approaches. This is based on the use of reduced order binary decision diagrams (ROBDDs), multidimensional arrays and the dynamic programming paradigm. Results comparing the computational efficiency of deriving signatures for some example systems (including complex benchmark systems from the literature) using the new algorithm and a comparison enumerative algorithm are presented and demonstrate a significant reduction in computation time and improvement in scalability with increasing system complexity

    Fault Tree Analysis: a survey of the state-of-the-art in modeling, analysis and tools

    Get PDF
    Fault tree analysis (FTA) is a very prominent method to analyze the risks related to safety and economically critical assets, like power plants, airplanes, data centers and web shops. FTA methods comprise of a wide variety of modelling and analysis techniques, supported by a wide range of software tools. This paper surveys over 150 papers on fault tree analysis, providing an in-depth overview of the state-of-the-art in FTA. Concretely, we review standard fault trees, as well as extensions such as dynamic FT, repairable FT, and extended FT. For these models, we review both qualitative analysis methods, like cut sets and common cause failures, and quantitative techniques, including a wide variety of stochastic methods to compute failure probabilities. Numerous examples illustrate the various approaches, and tables present a quick overview of results
    • ā€¦
    corecore