
PFL: A Probabilistic Logic for Fault Trees

Stefano M. Nicoletti1(B) , Milan Lopuhaä-Zwakenberg1 ,
E. Moritz Hahn1 , and Mariëlle Stoelinga1,2

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{s.m.nicoletti,m.a.lopuhaa,e.m.hahn,m.i.a.stoelinga}@utwente.nl

2 Department of Software Science, Radboud University, Nijmegen, The Netherlands

Abstract. Safety-critical infrastructures must operate in a safe and reli-
able way. Fault tree analysis is a widespread method used for risk assess-
ment of these systems: fault trees (FTs) are required by, e.g., the Fed-
eral Aviation Administration and the Nuclear Regulatory Commission.
In spite of their popularity, little work has been done on formulating
structural queries about fts and analyzing these, e.g., when evaluating
potential scenarios, and to give practitioners instruments to formulate
queries on fts in an understandable yet powerful way. In this paper, we
aim to fill this gap by extending BFL [37], a logic that reasons about
Boolean fts. To do so, we introduce a Probabilistic Fault tree Logic
(PFL). PFL is a simple, yet expressive logic that supports easier for-
mulation of complex scenarios and specification of FT properties that
comprise probabilities. Alongside PFL, we present LangPFL, a domain
specific language to further ease property specification. We showcase PFL
and LangPFL by applying them to a COVID-19 related FT and to a FT
for an oil/gas pipeline. Finally, we present theory and model checking
algorithms based on binary decision diagrams (BDDs).

1 Introduction

Our self-driving cars, power plants, oil/gas refineries and transportation systems
must operate in a safe and reliable way. Risk assessment is a key activity to iden-
tify, analyze and prioritize the risk in a system, and come up with (cost-)effective
countermeasures. Fault tree analysis (FTA) [43,45] is a widespread formalism to
support risk assessment. FTA is applied to many safety-critical systems and
the use of fault trees is required, e.g., by the Federal Aviation Administration
(FAA), the Nuclear Regulatory Commission (NRC), in the ISO 26262 standard
[28] for autonomous driving and for software development in aerospace systems.
A fault tree (ft) models how component failures arise and propagate through
the system, eventually leading to system level failures. Leaves in a ft represent

This work was partially funded by the NWO grant NWA.1160.18.238 (PrimaVera),
and the European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 101008233, and the ERC Consolidator
Grant 864075 (CAESAR).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 199–221, 2023.
https://doi.org/10.1007/978-3-031-27481-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_13&domain=pdf
http://orcid.org/0000-0001-5522-4798
http://orcid.org/0000-0001-5687-854X
http://orcid.org/0000-0002-9348-7684
http://orcid.org/0000-0001-6793-8165
https://doi.org/10.1007/978-3-031-27481-7_13

200 S. M. Nicoletti et al.

basic events (bes), i.e. elements of the tree that do not need further refine-
ment. Once these fail, the failure is propagated through the intermediate events
(ies) via gates, to eventually reach the top level event (TLE), which symbol-
izes system failure. In the (sub)tree represented in Fig. 1, the tle—Medium
Corrosion—is refined by an AND-gate (MeC). For MeC to fail, water must
be present, i.e., the With Water (WW) BE must fail, and there must be at
least one acid medium in the pipes, i.e., Acid Medium (AcM) has to happen.

Fig. 1. ft excerpt
from Fig. 3.

This last OR-gate is further refined with three BEs: for it
to fail, at least one of its three children needs to fail. This
means that either Hydrogen sulfide (H2S) or Oxygen (O2)
or Carbon dioxide (CO2) must be present. Fault tree anal-
ysis supports qualitative and quantitative analysis. Quali-
tative analysis aims at pointing out root causes and critical
paths in the system. One can identify the minimal cut sets
(mcss) of a ft, i.e. minimal sets of bes that, when failed,
cause the system to fail. One can also identify minimal path
sets (mpss), i.e. minimal sets of bes that - when opera-
tional - guarantee that the system will remain operational.
Quantitative analysis allows to compute relevant depend-
ability metrics, such as the system reliability, availability
and mean time to failure. A formal background on fts is given in Sect. 2.

Probabilistic Fault Tree Logic. In spite of their popularity, little work has
been done on formulating structural queries about fts and analyzing these,
e.g., when evaluating potential scenarios, and to give practitioners instruments
to formulate queries on fts in an understandable yet powerful way. Usually,
fts are translated to stochastic models and existing logics specify properties
on these, rather than on elements of fts. Our previous work [37] presents a
logic to reason about static fts when bes have Boolean values. The present
work aims to extend that framework by devising a probabilistic logic for fts,
called PFL, where one could easily reason about fts also taking probabilities
into account. To further meet the need for usability - that we uncovered through
interviews with a domain expert [36] - we present a domain specific language
for PFL, LangPFL, and showcase property specification with both on two case
studies, one with a COVID-19 ft, and one with an oil/gas pipeline ft.

Model Checking. In this paper, we provide model checking algorithms that
extend our work in [37]. While we build from algorithms from [37], we require
extensions for formulae in which probabilities come into play. We introduce novel
algorithms which can decide 1. whether a single probability assignment to all
BEs of a ft satisfies a formula; 2. whether a formula is satisfied for all pos-
sible probability assignments to BEs and 3. in which regions of the parameter
space the considered formula holds. Building on our previous work, all three
algorithms are based on construction and manipulation of binary decision dia-
grams (bdds). This translation to BDDs constitutes a formal ground to address
these procedures in a uniform way, while integrating novel work presented in this
paper with previous algorithms.

PFL: A Probabilistic Logic for Fault Trees 201

Related Work. Numerous logics describe properties of state-transition systems,
such as labelled transition systems (LTSs) and Markov models, e.g., CTL [14],
LTL [40], and their variants for Markov models, PCTL [26] and PLTL [38].
State-transition systems are usually not written by hand, but are the result
of the semantics of high-level description mechanisms, such as AADL [9], the
hardware description language VHDL [19] or model description languages such
as JANI [11] or PRISM [33]. Consequently, these logics are not used to reason
about the structure of such models (e.g. the placement of circuit elements in
a VHDL model or the structure of modules in a PRISM model), but on the
temporal behaviour of the underlying state-transition system. Similarly, related
work on model checking on fts [6,8,46,47] exhibits significant differences: these
works perform model checking by referring to states in the underlying stochastic
models, and properties are formulated in terms of these stochastic logics, not
in terms of events in the given ft. In [48], the author provides a formulation
of Pandora, a logic for the qualitative analysis of temporal fts. In spite of
the use of logic to capture properties of fts, [48] focuses on the analysis of
time, introducing gates that are different from the ones considered in this work:
the Priority-AND-gate (PAND), the Simultaneous-AND-gate (SAND), and the
Priority-OR gate (POR). In PFL we do not (yet) consider time and we focus on
AND, OR and VOT-gates. Furthermore, [48] focuses more on the algorithmic
part of FTA while leaving out any formalization of fts or the logic defined upon.
In [25] the authors investigate how FTA results can be linked to software safety
requirements by proposing the same system model for both. They introduce a
duration calculus based on discrete time interval logic (ITL) [34] to give fts
formal semantics. Our work, on the other hand, adopts standard semantics for
fts and develops a logic to specify probabilistic properties on fts. Furthermore,
we do not address timed behaviours while [25] disregards probabilistic analysis
on fts. In previous work [37] we presented BFL, a logic on fts that however
reasons about fts only in Boolean terms. We take this framework and develop
a logic that extends BFL with probabilities. Literature related to fts, property
specification languages, bdds and parametric model checking is referenced and
contextualized in Sect. 2, Sect. 5, Sect. 6.1 and Sect. 6.5.

Contributions. To summarize, in this work:
1. We develop PFL, a probabilistic logic to reason about fts.
2. We present a domain specific language for PFL, LangPFL, to further ease

property specification.
3. We showcase the potential of PFL and LangPFL by applying them to a

medium-sized COVID-19 related example and to a large-sized case study
of an oil/gas pipeline.

4. We provide model checking algorithms to check properties defined in PFL.
5. We provide the theory and an algorithm to solve problems where the

probabilities of bes are parametric.

202 S. M. Nicoletti et al.

Structure of the Paper. Section 2 covers background on fts, Sect. 3 describes
PFL, Sect. 4 shows the application of PFL to case studies, Sect. 5 introduces
LangPFL, Sect. 6 presents algorithms and Sect. 7 concludes our work.

2 Fault Trees: Background

Developed in the early ’60s [21], fts are directed acyclic graphs (dags) that
model how low-level failures can propagate and cause a system-level failure. The
overall failure of a system is captured by a top level event (tle), that is refined
through the use of gates. fts come with different gate types. For the purposes
of our paper and in order to create a modular and functional framework, we will
focus on static fault trees, featuring OR-gates, AND-gates and VOT(k/N)-gates:
we foresee support for dynamic gates as a possible future extension (see Sect.
7). For a low-level failure to propagate, at least one child of an OR-gate has to
fail, all the children of an AND-gate must fail, and at least k out of N children
must fail for a VOT(k/N)-gate to fail. When gates can no longer be refined,
we reach the basic events (bes) which are the leaves of the tree. fts enable
both qualitative and quantitative analyses. On the qualitative side, minimal cut
sets (mcss) and minimal path sets (mpss) highlight root causes of failures and
critical paths in the system. mcss are minimal sets of events that - when failed
- cause the failure of the tle. mpss are minimal sets of events that - when
remaining operational - guarantee that the tle will remain operational.

Definition 1 (Fault Tree). A Fault Tree is a tuple T = (E, A, t) where (E, A)
is a rooted directed acyclic graph (E are the vertices, called events) and t is a
map E → {AND, OR, BE} such that t(e) = BE iff e is a leaf.

We denote the top event by etop, and the set of children of an event e by ch(e) =
{e′ | (e, e′) ∈ A}. Slightly abusing notation, we denote the set of basic events, e
with t(e) = BE, as BE, whose elements we enumerate BE = {e1, . . . , en}. We also
define the set of intermediate events IE = E\BE. The behaviour of a ft T can
be rigorously expressed through its structure function [43] - ΦT: if we assume
the convention that a be has value 1 if failed and 0 if operational, the structure
function indicates the status of the tle given the status of all the n bes of T,
given by a Boolean vector b = (b1, . . . , bn). Such a boolean vector can also be
regarded as a subset of be, allowing us to interpret statements such as b′ ⊂ b .

Definition 2 (Structure Function). The structure function of an FT T is a
function ΦT : B

n × E → B defined recursively by

ΦT(b , e) =

⎧
⎪⎨

⎪⎩

bi if e = ei ∈ BE
∨

e′∈ch(e) ΦT(b , e′) if t(e) = OR
∧

e′∈ch(e) ΦT(b , e′) if t(e) = AND

Thus, for each set of bes we can identify its characteristic vector b. One can
extend Definition 2 by allowing gates derived from AND- and OR-gates, e.g.,
voting gates, where a gate with t(e) = VOT(k/N) fails if at least k of its children
fail, i.e.

PFL: A Probabilistic Logic for Fault Trees 203

∑

e′∈ch(e)

ΦT(b , e′) ≥ k

We can also define the classical notions of minimal cut sets and minimal path
sets [43]. A cut set is any set of basic events that causes the tle to occur,
i.e., for which the structure function evaluates to 1. A path set is any set of
basic events that does not cause the tle to occur, i.e., for which the structure
function evaluates to 0.

Definition 3. A status vector b is a cut set (CS) for e ∈ E of a given tree T iff
ΦT(b , e) = 1. A minimal cut set (MCS) is a cut set of which no subset is a cut
set: b is a MCS for e ∈ E of T if ΦT(b , e) = 1 ∧ ∀b′ ⊂ b , ΦT(b , e) = 0.

Definition 4. A status vector b is a path set (PS) for e ∈ E of a given tree T
iff ΦT(b , e) = 0. A minimal path set (MPS) is a path set of which no subset is
a path set: b is a MPS for e ∈ E of T if ΦT(b , e) = 0 ∧ ∀b′ ⊂ b , ΦT(b , e) = 1.

3 A Probabilistic Logic to Reason About FTs

3.1 Syntax

Our logic PFL consists of three syntactical layers represented by φ, ψ and ξ
respectively. To refer to layer-two or layer-three formulae indistinctly we write θ
and χ is a generic formula in PFL. Layer-one is Boolean and we indicate atomic
formulae with the letter e. Each atomic formula represent an element of a given
ft, it being an ie or a be. Furthermore, in layer-one we have the possibility to
arbitrarily set the value of one atom e in complex formulae either to 0 or to 1 by
writing φ[e �→ 0] and φ[e �→ 1]. Note that φ[e �→ 0] is not equivalent to φ ∧ ¬e:
for φ = ¬e, we have (¬e)[e �→ 0] = true while (¬e) ∧ ¬e does not necessarily
equal true. Moreover, we have operators to check for mpss and mcss for a given
layer-one formula. The second layer allows us to reason about probabilities and
their bounds. We can check whether the probability of a given layer-one formula
(potentially conditioned by another one) respects a certain threshold. We can
set the value of one atom e in complex formulae to an arbitrary probability value
p. We can also check if two layer-one formulae (e.g., two intermediate events)
are stochastically independent. Formulae in φ and ψ can be rewritten with the
usual negation and conjunction. Finally, the third layer allows us to return the
probability value for a given layer-one formula, possibly mapping atoms to an
arbitrary probability value p. Note that, for all three layers, we usually assign
values to e ∈ BE. We can however assign values to ies if 1. e is a module [20],
i.e., all paths between descendants of e and the rest of the ft pass through e
2. and none of the descendants of e are present in the formula. If so, we prune
that (sub)ft and treat occurring ies as bes.

φ ::= e | ¬φ | φ ∧ φ | φ[e �→ 0] | φ[e �→ 1] | MCS(φ)
ψ ::= ¬ψ | ψ ∧ ψ | Pr

��p
(φ | φ) | ψ[e �→ q] | IDP(φ, φ)

ξ ::= Pr(φ | φ) | ξ[e �→ q]

where �	 ∈ {<, ≤, =, ≥, >}.

204 S. M. Nicoletti et al.

Syntactic sugar. We let Xn be the set of layer-n formulae and we define the
following derived operators, where formulae θ are in the set of layer-one or layer-
two formulae, i.e., such that θ ∈ X1 ∪ X2:

θ1 ∨ θ2 ::=¬(¬θ1 ∧ ¬θ2) θ1 �⇔ θ2 ::= ¬(θ1 ⇔ θ2)
θ1 ⇒ θ2 ::=¬(θ1 ∧ ¬θ2) mps(φ) ::= mcs(¬φ)
θ1 ⇔ θ2 ::=(θ1 ⇒ θ2) ∧ (θ2 ⇒ θ1) SUP(e) ::= IDP(e, etop)

Vot
��k

(φ1, . . . , φN) ::=
∨

U⊆{1,...,N}
|U |��k

(
∧

u∈U

φu

)

∧
⎛

⎝
∧

u∈{1,...,N}\U

¬φu

⎞

⎠ with k ≤ N

where mps checks for minimal path sets of a given formula and SUP checks if
an element e is superfluous, i.e., if it is independent w.r.t. the tle.

3.2 Semantics
The semantics for our logic is structured according to the three syntactic layers.
For the first layer of PFL, formulae are evaluated on a Boolean status vector b
and on a tree T. Atomic formulae e are satisfied by b and T if the structure
function in Definition 2 returns 1 with these b and e as input. Formally:

b ,T |= e iff ΦT(b , e) = 1

b ,T |= ¬φ iff b ,T �|= φ

b ,T |= φ ∧ φ′ iff b ,T |= φ and b ,T |= φ′

b ,T |= φ[ei �→ 0] iff b′ ,T |= φ with b′ = (b′
1, . . . , b′

n) where
b′

i = 0 and for j �= i we have b′
j = bj

b ,T |= φ[ei �→ 1] iff b′ ,T |= φ with b′ = (b′
1, . . . , b′

n) where
b′

i = 1 and b′
j = bj for j �= i

b ,T |= MCS(φ) iff b ,T |= φ ∧ (¬∃b′. b′ ⊂ b ∧ b′,T |= φ)

With �φ�T we denote the satisfaction set of vectors for φ, i.e., the set of all
b that satisfy φ given T. Semantics for the second and third layer require the
introduction of probabilities. If we consider the function ΦT : B

n ×E → B, we can
devise an extension such that ΦT : B

n ×X1 → B, where X1 is the set of layer-one
formulae (note that E ⊆ X1). With a slight abuse of notation, ΦT will now return
1 whenever the input Boolean vector satisfies the input layer-one formula. With
φ ∈ X1, we lift the structure function to Φ∗

T : Dist(Bn) × X1 → [0, 1], where Dist
expresses a set of probability distributions, in a standard fashion, i.e.,

Φ∗
T(μ, φ) =

∑
{μ(b) | b ∈ B

n for which ΦT(b , φ) = 1}

We further convert each probabilistic status vector ρ ∈ [0, 1]n to a distribution
μρ ∈ Dist(Bn):

μρ (b1, . . . , bk) =
k∏

i=1

(bi × ρi + (1 − bi) × (1 − ρi))

PFL: A Probabilistic Logic for Fault Trees 205

We can then define semantics for the second syntactic layer as follows1:
ρ ,T |= ¬ψ iff ρ ,T �|= ψ

ρ ,T |= ψ ∧ ψ′ iff ρ ,T |= ψ and ρ ,T |= ψ′

ρ ,T |= Pr
��p

(φ | φ′) iff Φ∗
T(μρ , φ ∧ φ′)/Φ∗

T(μρ , φ′) �	 p

ρ ,T |= ψ[ei �→ q] iff ρ [ρi �→ q],T |= ψ

ρ ,T |= IDP(φ, φ′) iff Φ∗
T(μρ , φ ∧ φ′) = Φ∗

T(μρ , φ) · Φ∗
T(μρ , φ′)

Finally, to define semantics for the third layer we let Valρ ,T : X3 → [0, 1] define
an evaluation function of layer-three formulae in X3:

Valρ ,T(Pr(φ | φ′)) = Φ∗
T(μρ , φ ∧ φ′)/Φ∗

T(μρ , φ′)
Valρ ,T(ξ[ei �→ q]) = Valρ [ρi �→q],T(ξ)

Furthermore we write T |= θ, meaning ∀ρ . ρ , T |= θ.

4 Case Study: Examples

We showcase the potential of our logic by presenting two case studies: a COVID-
19 related ft [3,37] and the ft for an oil/gas pipeline [50].

4.1 COVID-19 FT

Fig. 2. COVID-19 ft.

The tle represents
a COVID-19 infected
worker on site, abbre-
viated IWoS . As shown
in Fig. 2, the ft con-
siders events in sev-
eral categories: COVID-
19 pathogens and reser-
voirs (i.e., germs and
objects carrying the
virus); their mode of
transmissions; the pres-
ence of susceptible
hosts, infected objects
and workers; physi-
cal contacts as well
as human errors. Note
that Fig. 2 contains
several repeated basic
events (marked with
a dashed border): IT ,
PP, H1 and IW . This
1 When considering conditional probabilities in layer-two and layer-three formulae, we

disregard the case in which Φ∗
T(μρ , φ′) = 0.

206 S. M. Nicoletti et al.

tle IWoS is refined via an AND-gate with three children. Thus, for the TLE
to occur the following must happen: COVID pathogens/COVID infected objects
must exist, there has to be a susceptible host and COVID pathogens must be
transmitted in some way to this host. These events are captured by corresponding
subtrees: the purplepurple OR-gate CP/R refines the existence of COVID pathogens/-
COVID infected objects, the OR-gate MoT in tealteal refines modes of transmission
and the AND-gate SH in orangeorange details the presence of a susceptible host.
Properties. Following, we specify some properties using natural language and
present the corresponding PFL formulae:
1) What are all the mcss for the modes of transmission that include errors in

objects and surfaces disinfection? �MCS(MoT) ∧ H4 ∧ H5 �T;
2) Is the probability of TLE smaller than 0.03, if physical proximity occurred?

Pr≤0.03(IWoS)[PP �→ 1];
3) Assume that the probability of an infected worker on the team equals 0.25.

How does that affect the probability of TLE? Pr(IWoS)[IW �→ 0.25];
4) Assume that both COVID-19 pathogens and a vulnerable worker exist. Does

this imply that P (IWoS) ≥ 0.15? Pr=1(CP) ∧ Pr=1(VW) ⇒ Pr≥0.15(IWoS).

4.2 Oil/Gas Pipeline FT

Fig. 3. Oil/gas pipeline ft.

PFL: A Probabilistic Logic for Fault Trees 207

The tle represents the failure of an oil/gas pipeline, abbreviated O/GPF . As
shown in Fig. 3, the ft considers events in several categories: failures like rup-
tures and punctures; third party interference; different kinds of corrosion; incor-
rect performance of some operations (e.g., maintenance); unreasonable design
choices; as well as defects on pipes. Figure 3 contains several repeated basic
events (again, marked with a dashed border): WW , H2S , O2 , CO2 and IAC .
Furthermore, multiple sub-trees are referenced/repeated in different places: those
are marked using labelled triangles. The tle O/GPF is refined via an OR-gate
with two children, in blueblue. Thus, for the TLE to occur either a rupture or a
puncture must happen. These two events are captured by corresponding sub-
trees. The rupturerupture subtree (top-right of Fig. 3) is refined by an OR-gate with
six children: the greengreen OR-gate TPI refines possible interference by third par-
ties; the violetviolet OR-gate Cor refines modes of pipes corrosion; the yellowyellow sub-
tree B refines modes in which pipes could be defective; the dove graydove gray OR-gate
IO details possible incorrect operations; the lime greenlime green OR-gate UD details
unreasonable design choices; and the pinkpink OR-gate GH refines possible geolog-
ical hazards. Similarly, the puncturepuncture subtree (bottom of Fig. 3) is refined by an
OR-gate with two children: the orangeorange OR-gate CoT refines modes in which
corrosion can make pipes thinner—with a detailed subtree in light bluelight blue refining
medium corrosion; and the OR-gate DoP in yellowyellow that refines modes in which
pipes could be defective.

Properties. We specify some properties using natural language and present the
corresponding PFL formulae:

1) What are all the mpss for pipes rupture that include the absence of water
as a corrosive medium, H2S , O2 and CO2 ? �MPS(Rup) ∧ ¬WW ∧ ¬H2S∧
¬O2 ∧ ¬CO2 �T;

2) Assume that H2S shows up in the pipes with 0.25% probability. What is
the probability of pipes corrosion, if corrosion happens with water with 2%
probability and that pressure surges with 1% probability? Pr(Cor)[H2S �→
0.0025, WW �→ 0.02, PS �→ 0.01];

3) Assume that the probability of pipes corrosion with acid is equal to 0.005.
Assume also that pipes present defects in their construction material with
0.2% probability. Is the probability of TLE happening lower than 1.2%?
Pr≤0.012 (O/GPF)[AcM �→ 0.005, MaD �→ 0.02].

5 LangPFL: A Domain Specific Language for PFL

Design of LangPFL. To ease usability of PFL, we present LangPFL, a Domain
Specific Language (DSL) to specify properties in PFL. The need for a simple
way to specify properties involving probability on ft was uncovered via inter-
views with a domain expert from industry [36]. Defining languages and tools for
properties and requirements specification is common practice: in [17] the authors
capture high-level requirements for a steam boiler system in a human readable

208 S. M. Nicoletti et al.

Table 1. Properties in natural language, PFL and LangPFL.

Natural Language Property in PFL LangPFL

What are all the mcss for the modes of
transmission that include errors in
objects and surfaces disinfection?

�MCS(MoT) ∧ H4 ∧ H5�T

assume:
computeall:

mcs[MoT] and
H4 and H5

Is the probability of TLE smaller than
0.03, if physical proximity occurred? Pr

≤0.03
(IWoS)[PP �→ 1]

assume:
setp PP = 1

check:
P[IWoS] ≤ 0.03

Assume that the probability of an
infected worker on the team equals 0.25.

How does that affect the probability
of TLE?

Pr(IWoS)[IW �→ 0.25]

assume:
setp IW = 0.25

compute:
P[IWoS]

Assume that both COVID-19 pathogens
and a vulnerable worker exist. Does this

imply that P (IWoS) ≥ 0.15?

Pr
=1

(CP) ∧ Pr
=1

(VW)

⇒ Pr
≥0.15

(IWoS)

assume:
setp CP = 1
setp VW = 1

check:
P[IWoS] ≥ 0.15

What are all the mpss for pipes rupture
that include the absence of water as a
corrosive medium, H2S ,O2 and CO2?

�MPS(Rup) ∧ ¬WW∧
¬H2S ∧ ¬O2 ∧ ¬CO2 �T

assume:
computeall:

mps [Rup] and
not WW and
not H2S
and not O2
and not CO2

Assume that H2S shows up in the pipes
with 0.25% probability. What is the

probability of pipes corrosion, if
corrosion happens with water with
2% probability and that pressure

surges with 1% probability?

Pr(Cor)[H2S �→ 0.0025,

WW �→ 0.02, PS �→ 0.01]

assume:
setp H2S = 0.0025
setp WW = 0.02
setp PS = 0.01

compute:
P[Cor]

Assume that the probability of pipes
corrosion with acid is equal to 0.005.

Assume also that pipes present defects in
their construction material with 0.2%

probability. Is the probability of
TLE lower than 1.2%?

Pr
≤0.012

(O/GPF)[AcM

�→ 0.005, MaD �→ 0.02]

assume:
setp AcM = 0.005
setp MaD = 0.02

check:
P[O/GPF]≤0.012

form by presenting SADL, a controlled English requirements capturing language,
alongside its tool suite ASSERT. Other controlled natural languages for knowl-
edge representation include Processable English (PENG) [49], Controlled English
to Logic Translation (CELT) [39] and Computer Processable Language (CPL)
[13]. LangPFL is inspired by these languages for their ease of use and close prox-
imity to natural language. Finally, another notable example is FRETish [15], a
structured natural language capturing Linear Temporal Logic (LTL). FRETish
was developed at NASA and is supported by the FRET tool [23]. Other than for
its usability, FRETish inspired us with the clear way in which the scope, condi-
tions and component of specified properties are clearly separated from desired
behaviours on timing and responses. LangPFL expresses only a fragment of PFL:

PFL: A Probabilistic Logic for Fault Trees 209

most notably, nesting of formulae is disallowed. By doing so, we retain most of the
expressiveness of PFL while making property specification easier. In LangPFL,
ft elements are referred to with their label and each operator in PFL has a
counterpart in the DSL: Boolean operators, not, and, or, impl . . .; setting the
value of ft elements to Boolean or probability values, set, setp; mcss and
mpss, MCS[. . .], MPS[. . .]; operators to check (conditional) probability thresh-
olds/compute (conditional) probability values, P[. . . | . . .] �	 . . .,P[. . . | . . .]; and
to check for independence between ft elements IDP[. . . , . . .].

LangPFL Templates. Properties can be specified in LangPFL by utilizing opera-
tors inside structured templates. Assumptions on the status of ft elements can
be specified under the assume keyword. These assumptions will be automat-
ically integrated in the translated formula accordingly, e.g., set or setp will be
translated with the according operators to set evidence, while other assumptions
will be the antecedent of an implication. A second keyword separates specified
formulae from the assumptions and dictates the desired result: compute and
computeall compute and return desired values, i.e., probability values and lists
of mcss/mpss respectively, while check establishes if a specified property holds.

Case studies. In Table 1 we showcase the properties specified in Sect. 4 and
their respective translation in LangPFL.

6 Model Checking Algorithms

Layer-One Formulae. With PFL extending previous work [37], algorithms to
compute satisfiability of layer-one formulae remain unchanged. In particular,
it is possible to model check PFL over a ft and a Boolean vector b when
considering layer-one formulae. Furthermore, we can collect all Boolean vectors
b such that b , T |= φ. As noted in [37], checking if b , T |= φ holds is trivial
if φ is a layer-one formula that does not contain an MCS or MPS operator. In
that case, we can simply substitute the values of b in φ and see if the Boolean
expression evaluates to true. This also works to check whether ρ , T |= θ holds
for a probabilistic vector ρ , a tree-shaped ft and a layer-two/three formula
θ without operators for MCS or MPS. In this case, values can be computed
following usual probability laws. For the other cases, the computation becomes
more complex, and procedures involving binary decision diagrams (bdds) are
necessary. Algorithms for the Boolean scenarios are described in Appendix A.3
and Appendix A.4 respectively.

Layer-Two/Three Formulae. When reasoning about satisfiability of second
layer formulae, algorithms present differences. As such, we present three novel
algorithms for PFL: 1. Given a vector ρ , a ft T and a formula ψ, check if
ρ , T |= ψ (Sect. 6.4), 2. Given T and ψ, compute regions of the parameter space
where T |= ψ (Sect. 6.5), 3. Given a ft T and a formula ψ, check whether T |= ψ
for all ρ (Sect. 6.6). In continuity with previous work, all three algorithms are
based on bdds: first, ft elements that appear in a given layer-one formula
are identified. Then, bdds for these elements are selectively constructed (see

210 S. M. Nicoletti et al.

Algorithm 5) and stored to reduce computation time. Finally, these bdds are
manipulated and equipped with probabilities (see Algorithm 1) to reflect the
semantics of the operators in PFL. Probability values in layer-three formulae are
computed with slight variations on layer-two algorithms (see Sect. 6.4). As in
standard FTA [43], we assume that bes fail independently. A brief overview of
each algorithm is given in Sect. 6.4, Sect. 6.5 and Sect. 6.6 respectively.

6.1 (Reduced Ordered) Binary Decision Diagrams

bdds are directed acyclic graphs (dags) that compactly represent Boolean
functions [2] by reducing redundancy. Depending on variable’s ordering, bdd’s
size can grow linearly in the number of variables and at worst exponentially.
In practice, bdds are heavily used, including in ft analysis [4,42] and in their
security-related counterpart, attack trees (ats) [12]. Formally, a bdd is a rooted
dag Bf that represents a Boolean function f : B

n → B over variables Vars =
{xi}n

i=1. Each nonleaf w has two outgoing arrows, labeled 0 and 1, and a label
Lab(w) ∈ Vars; furthermore, each leaf has a label 0 or 1. Given a b in B

n, the
BDD is used to compute f(b) as follows: starting from the top, upon arriving at a
node w with Lab(w) = xi, one takes the 0-edge if bi = 0 and the 1-edge if bi = 1.
The label of the leaf one ends up in, is then equal to f(b). A function f can be
represented by multiple BDDs, but has a unique reduced ordered representative,
or ROBDD [5,10], where the xi occur in ascending order, and the BDD is reduced
as much as possible by removing irrelevant nodes and merging duplicates. This
is formally defined below; we let Low(w) (resp. High(w)) be the endpoint of w’s
0-edge (resp. 1-edge) and let RB be the bdd root.

Definition 5 (Reduced Ordered Binary Decision Diagram
((RO)BDD)). Let Vars be a set. A BDD over Vars is a tuple B = (W, A,
Lab, u) where (W, A) is a rooted directed acyclic graph, and Lab : W → Vars

{0, 1}, u : A → {0, 1} are maps such that: 1. Every nonleaf w has exactly two
outgoing edges a, a′ with u(a) �= u(a′), and Lab(w) ∈ Vars; 2. Every leaf w has
Lab(w) ∈ {0, 1}. 3. Vars are equipped with a total order, Bf is thus defined over
a pair 〈Vars, <〉; 4. the variable of a node is of lower order than its children, that
is: ∀ w ∈ Wn . Lab(w) < Lab(Low(w)), Lab(High(w)); 5. the children of nonleaf
nodes are distinct nodes; 6. nodes are uniquely determined by their label, low
child and high child.

6.2 Translating FTs/Formulae to BDDs

Translations. We shortly sketch the idea of translating a layer-one formula
and a (sub)tree to bdds. As mentioned, to translate formulae to bdds, ft
elements that appear in a given formula are identified. Then, bdds representing
these elements are selectively constructed and stored to reduce computation
time. Finally, operations on these bdds are performed to reflect semantics of
the operators in PFL.

PFL: A Probabilistic Logic for Fault Trees 211

Translating FTs to BDDs. As a first step, a translation from fts to bdds is
needed [37]. These bdds represent exactly the structure function of (sub)trees.
In the following, we assume Vars = V ∪̇ V′, where the set of variables V = BE and
the set of primed variables V′ = {e′|e ∈ BE} (used for the bdd translation of the
mcs operator, see Appendix A.2). Furthermore, we keep VarB : BDD → Vars
to be a function that returns variables occurring in a bdd [37]. Then, our
translation function ΨFT : E → BDD takes elements of a ft as input and maps
them to bdds. For an exact definition of ΨFT see Appendix A.1.

Translating Formulae. With bdds for fts, the next step consists in manip-
ulating them to mirror PFL operators in layer-one. I.e., given ΨFT and a ft T,
for every PFL formula φ in the set of PFL layer-one formulae X1 there exists
a translation to bdds BT : X1 → BDD in Algorithm 5 (see Appendix A.2).
The implementation of this procedure abides the dynamic programming stan-
dards: by caching, we would reuse the translation of (sub)trees and (sub)formulae
between different analyses without recomputing them each time anew.

6.3 Equipping BDDs with Probabilities

Algorithm 1. Obtain Φ∗
T(μx , φ) for BT(φ).

Input: ft T, formula φ
Output: function Φ∗

T(μx , φ) : [0, 1]n → [0, 1]
where x1, . . . , xn ∈ x are function parameters
Method:
BT(φ) ← Algorithm 5(T, φ)
poly(BT(φ)) ← value(RBT(φ)), where:

- value(wi �∈ Wt) = (1 − xi) · value(Low(wi))
+xi · value(High(wi))

- value(�) = 1 and value(⊥) = 0
return poly(BT(φ))

Once we obtain bdds for
fts/φ-formulae, we can con-
struct a function Φ∗

T(μx , φ)
from [0, 1]n to [0, 1] that com-
putes the probability value of
φ given probability values in
x , where x can be substituted
with any ρ . Algorithm 1 shows
this procedure: first, we com-
pute BT(φ) via Algorithm 5,
we then obtain a polynomial
poly(BT(φ)) representing BT(φ)
via value(RBT(φ)), where value(wi �∈ Wt) = (1 − xi) · value(Low(wi)) + xi ·
value(High(wi)), value(�) = 1 and value(⊥) = 0. x1, . . . , xn ∈ x are param-
eters of the constructed function and can be substituted in poly(BT(φ)) with
values from an arbitrary ρ to compute the overall probability value of the bdd
for ft/φ-formula.

6.4 Algorithm 2: Model Checking PFL over a FT and a ρ

Overview. Given a specific vector ρ , a ft T and a PFL layer-two formula ψ, we
want to check if ρ , T |= ψ. To do so, if we come across a layer-one formula φ we
translate it to a bdd, we equip the resulting bdd with probabilities obtained
from ρ and we compute whether the resulting value respects the threshold set
in the given layer-two formula ψ. Boolean connectives are resolved as usual and
independence is checked according to probability laws once the value for the
respective bdd is computed. For the corresponding layer-three formulae ξ, we

212 S. M. Nicoletti et al.

would simply return the value computed from the bdd instead of comparing it
to the given layer-two threshold.

Algorithm 2. This algorithm shows a procedure to check if ρ , T |= ψ, given ρ , T
and ψ. Boolean connectives are handled as usual via case distinction. In the same
way, probability values in ρ are replaced by mappings in ψ, if any. For Pr��p(φ |
φ′), we compute the bddBT(φn) for each φn of the respective layer-one formulae
via Algorithm 1. Finally, we compute the conditional probability P (φ | φ′). If the
returned value respects the threshold set in ψ we return True, False otherwise.
For IDP we follow an analogous procedure: we compute probability values of
needed layer-one inner formulae and we return True if they are stochastically
independent. An algorithm for layer-three formulae ξ would simply return the
conditional probability value for Pr(φ | φ′), after potentially modifying ρ and
computing P (BT(φn)).

Example. Let us consider the subtree in Fig. 1 and a vector with probability val-
ues for WW , H2S , O2 and CO2 respectively: ρ = (0.002, 0.001, 0.0015, 0.002).
Suppose we want to know if P (MeC) is lower or equal to 0.0001, assuming
the scenario where P (H2S) = 0.0023 and P (WW) = 0.015, i.e., formally with
ψ = Pr≤0.0001(MeC)[H2S �→ 0.0023, WW �→ 0.015]. First, ρ would be modified
as per the new assignments in ψ: ρ = (0.015, 0.0023, 0.0015, 0.002). Then, Algo-
rithm 2 is called again with the modified ρ and the bdd BT(MeC) for MeC is
constructed (see Fig. 4). The value for the bdd is computed via Algorithm 1.
The result (0.000087) is lower than the threshold in ψ, the formula is satisfied
and the algorithm returns True.

Algorithm 2. Check if ρ , T |= ψ, given ρ , T and ψ.
Input: prob. vector ρ , ft T, formula ψ
Output: True iff ρ ,T |= ψ, False otherwise.
Method:
if ψ = ¬ψ′ then return not(Algorithm 2(ρ ,T, ψ′))
else if ψ = ψ′ ∧ ψ′′ then return Algorithm 2(ρ ,T, ψ′) and Algorithm 2(ρ ,T, ψ′′)
else if ψ = Pr��p(φ | φ′) then

P(BT(φ)),P(BT(φ′)) ← Algorithm 1(T, φ)(ρ), Algorithm 1(T, φ′)(ρ)
P(φ | φ′) = P(BT(φ))·P(BT(φ′))

P(BT(φ′))
return P(φ | φ′) �� p

else if ψ = ψ′[ei �→ q] then return Algorithm 2(ρ [ρi �→ q],T, ψ′)
else if ψ = IDP(φ, φ′) then

P(BT(φ)),P(BT(φ′)),P(BT(φ ∧ φ′)) ← Algorithm 1(T, φ)(ρ), Algorithm 1(T, φ′)(ρ),
Algorithm 1(T, φ ∧ φ′)(ρ)
return P(BT(φ)) · P(BT(φ′)) = P(BT(φ ∧ φ′))

end if

PFL: A Probabilistic Logic for Fault Trees 213

6.5 Algorithm 3: Computing regions where ψ-formulae are satisfied

Overview. Given a FT T and a layer-two formula ψ, we want

Fig. 4. bdd for
Fig. 1.

to find the region Syes in [0, 1]n of all ρ that satisfy ψ. Typi-
cally, such a region is defined by large polynomials, and there-
fore difficult to describe analytically. Instead, we provide an
algorithm that approximates this region up to a given level
of precision. Such an approximation is given in the definition
below: it consists of a region Syes where ψ is known to hold, a
region Sno where ψ does not hold, and the remainder Smaybe
is of limited volume.

Definition 6. Let T be a FT, let ε ∈ (0, 1], and let ψ be a layer-two formula. A
ε-partition for ψ is a partition (Syes, Sno, Smaybe) of [0, 1]n such that: 1. ρ , T |= ψ
for all ρ ∈ Syes; 2. ρ , T �|= ψ for all ρ ∈ Sno; 3. Vol(Smaybe) ≤ ε, where Vol
denotes n-dimensional volume.

Algorithm 3. Given T , find ε-partition for Pr≥p(φ|φ′).
Input: FT T , formulae φ, φ′, reals p, ε ∈ (0, 1].
Output: ε-partition (Syes, Sno, Smaybe) for Pr≥p(φ|φ′).
Method:
Bmaybe ← {[0, 1]n}; Vmaybe ← 1; Syes, Sno ← ∅

while Vmaybe > ε do
Pick B =

∏n

i=1[li, ui] from Bmaybe with maximal volume
Bmaybe ← Bmaybe \ {B}
Vmaybe ← Vmaybe − Vol(B)
Btest ←

{∏n

i=1 Ii

∣
∣ ∀i.Ii ∈ {[li,

li+ui
2], [li+ui

2 , ui]}
}

for each B′ =
∏n

i=1[l′
i, u′

i] ∈ Btest do
A ← {ρ ∈ [0, 1]n | ∀i.ρi ∈ {l′

i, u′
i}}

pmin ← minρ ∈A
Algorithm 1(T,φ∧φ′)(ρ)

Algorithm 1(T,φ)(ρ)

pmax ← maxρ ∈A
Algorithm 1(T,φ∧φ′)(ρ)

Algorithm 1(T,φ)(ρ)
if p ≤ pmin then Syes ← Syes ∪ B′

else if p > pmax then Sno ← Sno ∪ B′

else Bmaybe ← Bmaybe ∪ {B′}; Vmaybe = Vmaybe + Vol(B′)
end if

end for
end while
Smaybe ← ⋃

Bmaybe
return (Syes, Sno, Smaybe)

Algorithm 3. An algorithm finding a ε-partition for formulae of the form ψ =
Pr≥p(φ|φ′) is given in Algorithm 3; it works as follows. We have a set Bmaybe
of candidate hypercubes, which starts as the singleton {[0, 1]n}. One by one, we
take hypercubes B from Bmaybe, and divide them into 2n smaller hypercubes.
For each of the smaller hypercubes B′, we check whether ρ , T |= ψ for all ψ ∈ B′;
if so, we add B′ to Syes. If ρ , T �|= ψ for all ψ ∈ B′, we add B′ to Sno. If neither is
true, then we add B′ to Bmaybe, so that later it is split up again. The algorithm

214 S. M. Nicoletti et al.

stops when the joint volume of all hypercubes in Bmaybe is at most ε. Algorithm
3 has the argument ε to ensure that it terminates, as one can go on partitioning
hypercubes indefinitely. The algorithm can easily be adapted to other stopping
conditions, such as a maximal number of hypercubes. Literature in the area of
parametric model checking explored this technique, also w.r.t. Markov decision
processes (MDPs) [18,22,24,30,31]. However, we leverage the specific situation
presented here to devise a less generic but more convenient algorithm. In fact,
to check ∀ρ ∈ B′.ρ , T |= ψ, we use Theorem 1 (proof in Appendix B.1), which
says that the minimum of Φ∗

T(ρ ,φ∧φ′)
Φ∗

T(ρ ,φ′)

(
computed as Algorithm1(T,φ∧φ′)(ρ)

Algorithm1(T,φ)(ρ)

)
on

B′ is attained at one of its vertices. This means that we only need to check
whether ρ , T |= ψ for the set A of vertices of B′. The same holds for checking
∀ρ ∈ B′.ρ , T �|= ψ.

Theorem 1. Let φ, φ′ be layer-one formulae, and let B ⊆ [0, 1]n be a hyperrect-
angle. Then Φ∗

T(ρ ,φ∧φ′)
Φ∗

T(ρ ,φ′) attains its minimum and maximum (as a function of ρ)
at one of the vertices of B.

So far, we have assumed ψ = Pr≥p(φ|φ′). Formulae of the form Pr=p(φ|φ′) and
IDP(φ, φ′) generally define hypersurfaces in [0, 1]n rather than regions; these can
be approximated by considering the set Smaybe of a ε-partition, which forms an
open neighborhood of the actual hypersurface. Furthermore, one finds regions
for ¬ψ and ψ ∧ ψ′ by considering complements and intersections, respectively.

6.6 Algorithm 4: Checking PFL ψ-formulae over a FT for all ρ

Overview. Given a ft T a layer-two formula ψ, we want to check if T |= ψ for
all ρ . In this section we discuss two different approaches to answer this question,
one derived from Algorithm 3 and one employing SAT solving.

Algorithm 4. Leveraging Algorithm 3, one could check whether T |= ψ for all ρ
by checking the parameter space in order to show that the negated formula ¬ψ
is unsatisfiable. If, on the other hand, we manage to find a candidate hypercube
B′ from Bmaybe such that ∀ρ ∈ B′.ρ , T |= ¬ψ then we can exhibit a region
that serves as a counterexample for our initial question. This procedure would
be bound to approximate to a given level of precision, as previously discussed.

The second possibility is to resort to SMT solving. Again, our aim is to check
if the negation of the given formula is unsatisfiable. First, we translate each of the
inner φn layer-one formulae (e.g., inside Pr��p(φ | φ′) or IDP(φ, φ′) operators)
to bdds, to then obtain representations of these bdds as polynomials (see
Algorithm 1). By comparing these to bounds set in Pr��p(φ | φ′) operators or
to the semantics of IDP(φ, φ′), one can represent the original negated formula
¬ψ via (in)equalities between polynomials. We then use already available SMT
solvers - such as SMT-RAT [16] - as a black box to handle such an encoding.
If the input representation is satisfiable, the SMT solver returns an assignment
of variables to values, i.e., a counterexample probability vector for our original
question.

PFL: A Probabilistic Logic for Fault Trees 215

7 Conclusion and Future Work

Conclusion. We presented PFL, a probabilistic logic for fts that enables the
construction of complex queries that capture many relevant scenarios. Further-
more, we introduced LangPFL, a domain specific language for PFL to ease prop-
erty specification. We showcased their usefulness with an application of PFL and
LangPFL to a COVID19-related ft and to a ft for an oil/gas pipeline. Speci-
fied properties can then be checked via the model checking algorithms, that we
presented alongside relevant theorems.
Future Work. Our work opens several relevant perspectives for future research.
First, it would be interesting to extend PFL to consider timed behaviours to
further extend quantitative analysis capabilities. Secondly, it would be possible to
extend PFL in order to consider dynamic gates in fts. This further validates our
first point: to handle dynamic gates in dynamic fts it would be very natural to
have a logic that can express temporal properties, moving more in the direction of
LTL [40] or CTL [14] or their timed variants TLTL [41] and TCTL [1]. Moreover,
it is foreseeable to extend the proposed framework to security variants of fts,
attack trees (ats) [7,12,27,44], and to their combinations, e.g., attack-fault trees
(AFTs) [32]. Another relevant area is concerned with automatic inference of fts:
further research could explore inference on PFL formulae, e.g. based on genetic
algorithms [29] or dedicated methods [35]. Lastly, developing an implementation
of this logic could further propel usability of PFL and LangPFL by providing
hands-on feedback from domain experts acquainted with FTA.

A Appendix: Algorithms and Additional Definitions
for Layer One Formulae

Following, operations between bdds are represented by bold operands e.g.,
∧, ∨. Algorithms to conduct these operations on bdds can be found in [2,5].
Given a set of variables V = {v1, . . . , vn}, existential quantification (needed to
translate part of the semantics of MCS operator) can be defined as follows:
∃v.B = Restrict(B, v, 0) ∨ Restrict(B, v, 1); ∃V.B = ∃v1.∃v2. . . . ∃vn.B.

A.1 Translating FTs to BDDs
ΨFT is defined as follows:
Definition 7. The translation function of a FT T is a function ΨFTT : E → BDD
that takes as input an element e ∈ E. With e′ ∈ ch(e), we can define ΨFTT :

ΨFTT(e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B(e) if e ∈ BE
∨

ΨFTT(e′) if e ∈ IE and t(e) = OR
∧

ΨFTT(e′) if e ∈ IE and t(e) = AND
∨

n1,...,nk

n1<...<nk

k∧

i=1
ΨFTT(e′

ni
) if e ∈ IE and t(e)=VOT(k/N)

where B(v) is a BDD with a single node in which Low(v) = 0 and High(v) = 1.

216 S. M. Nicoletti et al.

A.2 Algorithm 5: Translating FTs/Formulae to BDDs

Following, the recursion scheme taken from [37] to translate fts and layer one
formulae is presented.

Algorithm 5. Given φ and T, compute BT(φ)
Input: ft T, formula φ
Output: BT(φ)
Method: Compute BT(φ) according to the recursion scheme below. Store
intermediate results BT(· · ·) and ΨFTT(· · ·) in a cache in case they are used
several times.

Recursion scheme:
BT(e) : ΨF TT(e)
BT(¬φ) : ¬(BT(φ))
BT(φ ∧ φ′) : BT(φ) ∧ BT(φ′)
BT(φ[ei �→ 0]) : Restrict(BT(φ), ei, 0)
BT(φ[ei �→ 1]) : Restrict(BT(φ), ei, 1)
BT(MCS(φ)) : BT(φ) ∧ (¬∃V′.BT(V′ ⊂ V)∧

BT(φ)[V � V′]) where:

BT(V′ ⊂ V) ≡ BT(
∧

k

v′
k ⇒ vk)∧

BT(
∨

k

v′
k �= vk)

where BT(φ)[V � V′] indicates the bdd BT(φ) in which every variable vk ∈ V
is renamed to its primed v′

k ∈ V′.

A.3 Algorithm 6: Model Checking PFL over a FT and a b

Overview. As per [37], given a specific vector b, a ft T and a layer one formula
φ, this algorithm showcases how to check if b , T |= φ. To do so, we translate the
given formula to a bdd and then we walk down the bdd from the root node
following truth assignments given in the specific vector b .

Algorithm 6. Algorithm 6 shows an algorithm to check whether b , T |= φ, given
a status vector b , a ft T and a formula φ. A bdd for the formula φ is computed
with regard to the structure function of the given ft T i.e., we compute BT(φ)
as per Algorithm 5. Subsequently, the algorithm walks down the bdd following
the Boolean assignments given in b : if the i-th element of b is set to 0 then the
next node in the path will be given by Low(wi), if it is set to 1 then the next
node will be High(wi). When the algorithm reaches a terminal node it returns
True if its value is one - i.e., if b , T |= φ - and False otherwise.

PFL: A Probabilistic Logic for Fault Trees 217

Algorithm 6. Check if b , T |= φ, given b, T and φ.
Input: boolean vector b, ft T and a formula φ
Output: True iff b,T |= φ, False otherwise.
Method: compute BT(φ)
Starting from bdd root,
while current node wi of BT(φ) �∈ Wt do:

if bi ∈ b = 0 then:
wi = Low(wi)

else if bi ∈ b = 1 then:
wi = High(wi)

end if
end while
if wi = 0 then:

return False
else if wi = 1 then:

return True
end if

A.4 Algorithm 7: Computing all Satisfying Vectors

Overview. Given a ft T and a formula φ, we now want to compute all vectors b
such that b , T |= φ. In this scenario no Boolean vector is given. Thus, we need to
construct the bdd for the given formula and then collect every path that leads
to the terminal 1 to compute all satisfying vectors �b �T for the given formula.

Algorithm 7. To achieve the desired outcome we will construct the bdd BT(φ)
for the given formula following Algorithm 5. Then, the algorithm will walk down
the bdd and store all the paths that lead to the terminal node 1. These paths
represent all the status vectors that satisfy our formula φ. The value for the
elements of each vector is set to 0 or 1 if the stored path follows respectively
the low or high edge of the collected elements of the bdd. After computing the
bdd for a given φ, AllSat [2] will achieve the desired outcome. This algorithm
returns exactly all the satisfying assignments for a given bdd, i.e., in our case,
all the Boolean vectors that satisfy our formula.

B Appendix: Proofs

B.1 Proof for Theorem 1

Proof. For a layer one formula φ and ρ ∈ B, one can express

Φ∗
T(μρ , φ) =

∑

b∈B
n :

ΦT (b,φ)=1

n∏

i=1
ρbi

i (1 − ρi)1−bi . (1)

218 S. M. Nicoletti et al.

This is a polynomial in the n variables ρi. Each summand has degree 1 in each
ρi, hence Φ∗

T(μρ , φ) can be written as

Φ∗
T(μρ , φ) =

∑

w∈{0,1}n

ch
w

n∏

i=1
ρwi

i (2)

for some constants ch
w ∈ R. Now fix an i, and let φ, φ′ be two Boolean formulae;

then we can write Φ∗
T(μρ ,φ∧φ′)
Φ∗

T(μρ ,φ′) = Aρi+B
Cρi+D for some polynomials A, B, C, D in the

variables ρ1, . . . , ρi−1, ρi+1, . . . , ρn. In particular, we have

∂

∂ρi

Φ∗
T(μρ , φ ∧ φ′)
Φ∗
T(μρ , φ′) = AD − BC

(Cρi + D)2 . (3)

The sign of this partial derivative does not depend on the value of ρi. In par-
ticular, when all other ρi′ are fixed, this expression is maximized on an interval
when ρi is at one of the boundary points of that interval.

Now let us return to the setting of the Theorem; we will prove it for the
maximum only as the minimum is proved analogously. Let Let B =

∏
i[li, ui]

and let ρ ∈ ∏
i[l

−1
i , l+i]; our aim is to find a vertex ρ ′ such that Φ∗

T(μρ ,φ∧φ′)
Φ∗

T(μρ ,φ′) ≤
Φ∗

T(μρ ′ ,φ∧φ′)
Φ∗

T(μρ ′ ,φ′) . To do so, we construct a sequence ρ 0, ρ 1, . . . , ρ n with the following
properties:

1. ρ 0 = ρ ;
2. Φ∗

T(μρ i
,φ∧φ′)

Φ∗
T(μρ i

,φ′) ≤ Φ∗
T(μρ i+1 ,φ∧φ′)
Φ∗

T(μρ i+1 ,φ′) for i < n;
3. ρi,i′ ∈ {li′ , ui′} for i′ ≤ i ≤ n.

This ensures that ρ ′ := ρ n has the required property. We define each ρ i from
ρ i−1 as follows: define ρ −

i , ρ +
i ∈ [li, ui] by

ρ •
i,i′ =

⎧
⎪⎨

⎪⎩

li, if • = − and i′ = i,

ui, if • = + and i′ = i,

ρi−1,i′ , if i′ �= i.

By the discussion following (3), one has Φ∗
T(μρ i

,φ∧φ′)
Φ∗

T(μρ i
,φ′) ≤ max

{
Φ∗

T(μρ
−
i+1

,φ∧φ′)

Φ∗
T(μρ

−
i+1

,φ′) ,
Φ∗

T(μρ
+
i+1

,φ∧φ′)

Φ∗
T(μρ

+
i+1

,φ′)

}

. Take ρ i+1 ∈ {ρ −
i+1, ρ +

i+1} to maximize

Φ∗
T(μρ i+1 ,φ∧φ′)
Φ∗

T(μρ i+1 ,φ′) , then this satisfies conditions 1–3 above.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

PFL: A Probabilistic Logic for Fault Trees 219

2. Andersen, H.R.: An introduction to binary decision diagrams. Lecture notes, avail-
able online, IT University of Copenhagen, p. 5 (1997)

3. Bakeli, T., Hafidi, A.A., et al.: COVID-19 infection risk management during con-
struction activities: an approach based on fault tree analysis (FTA). J. Emerg.
Manage. 18(7), 161–176 (2020)

4. Basgöze, D., Volk, M., Katoen, J., Khan, S., Stoelinga, M.: BDDs strike back -
efficient analysis of static and dynamic fault trees. In: Deshmukh, J.V., Havelund,
K., Perez, I. (eds.) NFM 2022. LNCS, vol. 13260, pp. 713–732. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-06773-0_38

5. Ben-Ari, M.: Mathematical Logic for Computer Science. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-1-4471-4129-7

6. Bieber, P., Castel, C., Seguin, C.: Combination of fault tree analysis and model
checking for safety assessment of complex system. In: Bondavalli, A., Thevenod-
Fosse, P. (eds.) EDCC 2002. LNCS, vol. 2485, pp. 19–31. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36080-8_3

7. Bobbio, A., Egidi, L., Terruggia, R.: A methodology for qualitative/quantitative
analysis of weighted attack trees. IFAC Proc. Vol. 46(22), 133–138 (2013). https://
doi.org/10.3182/20130904-3-UK-4041.00007

8. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using
input/output interactive Markov chains. In: DSN, pp. 708–717. IEEE Computer
Society (2007). https://doi.org/10.1109/DSN.2007.37

9. Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. Comput. J.
54(5), 754–775 (2011). https://doi.org/10.1093/comjnl/bxq024

10. Brace, K., Rudell, R., Bryant, R.: Efficient implementation of a BDD package. In:
27th ACM/IEEE Design Automation Conference, pp. 40–45 (1990). https://doi.
org/10.1109/DAC.1990.114826

11. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5_9

12. Budde, C.E., Stoelinga, M.: Efficient algorithms for quantitative attack tree anal-
ysis. In: 2021 IEEE 34th Computer Security Foundations Symposium (CSF), pp.
1–15 (2021). https://doi.org/10.1109/CSF51468.2021.00041

13. Clark, P., Harrison, P., Jenkins, T., Thompson, J.A., Wojcik, R.H., et al.: Acquir-
ing and using world knowledge using a restricted subset of English. In: Flairs
Conference, pp. 506–511 (2005)

14. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

15. Conrad, E., Titolo, L., Giannakopoulou, D., Pressburger, T., Dutle, A.: A compo-
sitional proof framework for FRETish requirements. In: Proceedings of the 11th
ACM SIGPLAN International Conference on Certified Programs and Proofs, pp.
68–81 (2022)

16. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an open
source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver,
S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24318-4_26

https://doi.org/10.1007/978-3-031-06773-0_38
https://doi.org/10.1007/978-1-4471-4129-7
https://doi.org/10.1007/3-540-36080-8_3
https://doi.org/10.3182/20130904-3-UK-4041.00007
https://doi.org/10.3182/20130904-3-UK-4041.00007
https://doi.org/10.1109/DSN.2007.37
https://doi.org/10.1093/comjnl/bxq024
https://doi.org/10.1109/DAC.1990.114826
https://doi.org/10.1109/DAC.1990.114826
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1109/CSF51468.2021.00041
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-319-24318-4_26

220 S. M. Nicoletti et al.

17. Crapo, A., Moitra, A., McMillan, C., Russell, D.: Requirements capture and analy-
sis in ASSERT (TM). In: 2017 IEEE 25th International Requirements Engineering
Conference (RE), pp. 283–291. IEEE (2017)

18. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.P., Topcu, U.: Convex optimiza-
tion for parameter synthesis in MDPs. IEEE Trans. Autom. Control 67, 6333–6348
(2021)

19. Déharbe, D., Shankar, S., Clarke, E.M.: Model checking VHDL with CV. In:
Gopalakrishnan, G., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 508–
514. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49519-3_33

20. Dutuit, Y., Rauzy, A.: A linear-time algorithm to find modules of fault trees. IEEE
Trans. Reliab. 45(3), 422–425 (1996)

21. Ericson, C.A.: Fault tree analysis. In: System Safety Conference, vol. 1, pp. 1–9
(1999)

22. Gainer, P., Hahn, E.M., Schewe, S.: Accelerated model checking of parametric
Markov chains. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
300–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_18

23. Giannakopoulou, D., Mavridou, A., Rhein, J., Pressburger, T., Schumann, J., Shi,
N.: Formal requirements elicitation with FRET. In: International Working Con-
ference on Requirements Engineering: Foundation for Software Quality (REFSQ-
2020). No. ARC-E-DAA-TN77785 (2020)

24. Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision
processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-20398-5_12

25. Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software require-
ments. IEEE Trans. Software Eng. 24(7), 573–584 (1998)

26. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

27. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence
diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp.
163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-
0_9

28. International Standardization Organization: ISO/DIS 26262: Road vehicles, func-
tional safety (2018). https://www.iso.org/standard/68383.html

29. Jimenez-Roa, L., Heskes, T., Tinga, T., Stoelinga, M.: Automatic inference of fault
tree models via multi-objective evolutionary algorithms. IEEE Trans. Dependable
Secure Comput., 1–12 (2021). https://doi.org/10.1109/TDSC.2022.3203805

30. Junges, S., et al.: Parameter synthesis for Markov models. arXiv preprint
arXiv:1903.07993 (2019)

31. Katoen, J.P.: The probabilistic model checking landscape. In: Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 31–45
(2016)

32. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: Proceedings of the 18th IEEE International Symposium on High
Assurance Systems Engineering (HASE 2017), pp. 25–32. HASE, IEEE, USA
(2017). https://doi.org/10.1109/HASE.2017.12

33. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

https://doi.org/10.1007/3-540-49519-3_33
https://doi.org/10.1007/978-3-030-01090-4_18
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/978-3-662-49635-0_9
https://www.iso.org/standard/68383.html
https://doi.org/10.1109/TDSC.2022.3203805
http://arxiv.org/abs/1903.07993
https://doi.org/10.1109/HASE.2017.12
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

PFL: A Probabilistic Logic for Fault Trees 221

34. Moszkowski, B.: A temporal logic for multi-level reasoning about hardware. Tech-
nical report, STANFORD UNIV CA (1982)

35. Nauta, M., Bucur, D., Stoelinga, M.: LIFT: learning fault trees from observational
data. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 306–
322. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2_19

36. Nicoletti, S., Hahn, E., Stoelinga, M.: A logic to reason about fault trees.
Interview Report. https://www.utwente.nl/en/eemcs/fmt/research/files/ft-logic-
interview-domain-expert.pdf

37. Nicoletti, S., Hahn, E., Stoelinga, M.: BFL: a logic to reason about fault trees.
In: (DSN), pp. 441–452. IEEE/EUCA (2022). https://doi.org/10.1109/DSN53405.
2022.00051

38. Ognjanovic, Z.: Discrete linear-time probabilistic logics: completeness, decidability
and complexity. J. Log. Comput. 16(2), 257–285 (2006). https://doi.org/10.1093/
logcom/exi077

39. Pease, A., Murray, W.: An English to logic translator for ontology-based knowledge
representation languages. In: 2003 Proceedings of the International Conference
on Natural Language Processing and Knowledge Engineering, pp. 777–783. IEEE
(2003)

40. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

41. Raskin, J.F.: Logics, automata and classical theories for deciding real time. Ph.D.
thesis, Facultés universitaires Notre-Dame de la Paix, Namur (1999)

42. Rauzy, A.: New algorithms for fault trees analysis. Reliab. Eng. Syst. Saf. 40(3),
203–211 (1993). https://doi.org/10.1016/0951-8320(93)90060-C

43. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015). https://doi.
org/10.1016/j.cosrev.2015.03.001

44. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
45. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:

Fault tree handbook with aerospace applications. Prepared for NASA Office of
Safety and Mission Assurance (2002)

46. Thums, A., Schellhorn, G.: Model checking FTA. In: Araki, K., Gnesi, S., Man-
drioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 739–757. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2_40

47. Volk, M., Junges, S., Katoen, J.: Fast dynamic fault tree analysis by model checking
techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018). https://doi.org/10.
1109/TII.2017.2710316

48. Walker, M.D.: Pandora: a logic for the qualitative analysis of temporal fault trees.
Ph.D. thesis, The University of Hull (2009)

49. White, C., Schwitter, R.: An update on PENG light. In: Proceedings of the Aus-
tralasian Language Technology Association Workshop 2009, pp. 80–88 (2009)

50. Yuhua, D., Datao, Y.: Estimation of failure probability of oil and gas transmission
pipelines by fuzzy fault tree analysis. J. Loss Prev. Process Ind. 18(2), 83–88 (2005)

https://doi.org/10.1007/978-3-319-99154-2_19
https://www.utwente.nl/en/eemcs/fmt/research/files/ft-logic-interview-domain-expert.pdf
https://www.utwente.nl/en/eemcs/fmt/research/files/ft-logic-interview-domain-expert.pdf
https://doi.org/10.1109/DSN53405.2022.00051
https://doi.org/10.1109/DSN53405.2022.00051
https://doi.org/10.1093/logcom/exi077
https://doi.org/10.1093/logcom/exi077
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/0951-8320(93)90060-C
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1007/978-3-540-45236-2_40
https://doi.org/10.1109/TII.2017.2710316
https://doi.org/10.1109/TII.2017.2710316

	PFL: A Probabilistic Logic for Fault Trees
	1 Introduction
	2 Fault Trees: Background
	3 A Probabilistic Logic to Reason About FTs
	3.1 Syntax
	3.2 Semantics

	4 Case Study: Examples
	4.1 COVID-19 FT
	4.2 Oil/Gas Pipeline FT

	5 LangPFL: A Domain Specific Language for PFL
	6 Model Checking Algorithms
	6.1 (Reduced Ordered) Binary Decision Diagrams
	6.2 Translating FTs/Formulae to BDDs
	6.3 Equipping BDDs with Probabilities
	6.4 Algorithm 2: Model Checking PFL over a FT and a
	6.5 Algorithm 3: Computing regions where -formulae are satisfied
	6.6 Algorithm 4: Checking PFL -formulae over a FT for all

	7 Conclusion and Future Work
	A Appendix: Algorithms and Additional Definitions for Layer One Formulae
	A.1 Translating FTs to BDDs
	A.2 Algorithm 5: Translating FTs/Formulae to BDDs
	A.3 Algorithm 6: Model Checking PFL over a FT and a b
	A.4 Algorithm 7: Computing all Satisfying Vectors

	B Appendix: Proofs
	B.1 Proof for Theorem 1

	References

