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We present SAFEST, the Static And dynamic Fault trEe analySis Tool. While standard (or static) fault trees (SFT)
appeal as a relatively simple tool, they are limited in their modeling capabilities. Dynamic fault trees (DFT) extend
SFT by support for faithfully modeling spare management, order-dependent failures and functional dependencies.
While various analysis approaches for DFTs exist in the literature, tool support is scarce.
During the last years, we developed SAFEST, a modern, state-of-the-art tool for modeling and analysing (SFTs and)
DFTs. SAFEST’s web-based interface offers a drag-and-drop editor for creating fault trees. A step-by-step simulator
visualizes how failures – given by the user – affect the state of DFT elements.
SAFEST employs a plethora of analysis approaches. SFTs are best analyzed using binary decision diagrams (BDD)
and SAFEST performs comparable to existing SFT tools. DFTs are analyzed via state-based techniques by translation
into a Markov model. SAFEST can analyze these models via probabilistic model checking, yielding exact results
efficiently. It also provides an approximation approach that builds only the most “important” parts of the DFT’s
behaviour. This enables the analysis of gigantic DFTs at the expense of exactness of results. This approximation
provides upper and lower bounds on the reliability measure of interest. The precision can be tuned according to the
user’s needs.
The modeling and analysis capabilities of DFTs as well as the performance of our tool has been demonstrated in
several practical and industrial case studies. DFTs with up to several hundreds of elements have been successfully
analyzed with SAFEST.
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1. Introduction

Probabilistic risk assessment (PRA) is a vital task

in ensuring the security of mission- and safety-

critical fault-tolerant/fail-operational systems. Its

importance increased due to the tighter restric-

tions set by international standards – such as

ISO 26262 for autonomous driving – and the

increasing prevalence of AI/ML components in

crucial systems. This motivates considering PRA

methods throughout all system design and devel-

opment phases, eventually leading to a full inte-

gration of PRA with model-based systems engi-

neering (MBSE) methodology.

Fault trees Stamatelatos et al. (2002); Ruijters

and Stoelinga (2015) are widely used in indus-

try to perform PRA of complex systems. Their

use is required for instance by the Federal Avi-
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ation Authority (FAA), the Nuclear Regulatory

Commission (NRC) and space agencies such as

NASA and ESA. While standard (or static) fault

trees (SFT) appeal as a relatively simple tool,

they are limited in their modeling capabilities.

To express more complex dependability scenar-

ios, Dugan’s dynamic fault trees (DFT) Dugan

et al. (1990) have been developed which extend

SFTs by support for modeling spare management,

order-dependent failures and (probabilistic) func-

tional dependencies e.g., common cause failures

(CCF). While various analysis approaches for

DFTs have been developed Ruijters and Stoelinga

(2015) – e.g., via Markov models, Bayesian net-

works, Petri nets or Monte Carlo simulation – tool

support for DFTs is scarce.

The SAFEST tool We developed SAFEST, a mod-

ern, state-of-the-art tool for modeling and analyz-

ing DFTs. The web-based interface of SAFEST

provides a graphical editor to create fault trees

as well as simplify and simulate them. The tool

also allows to automatically extract DFTs from

SysML 2.0 models annotated with safety infor-

mation, e.g., redundancy, functional dependency,

etc., and therefore integrates PRA with MBSE.

SAFEST provides several efficient analysis tech-

niques for DFTs based on probabilistic model

checking, a dedicated analysis for SFTs based on

binary decision diagrams (BDDs), as well as a

hybrid technique combining both of them.

The modeling capabilities of DFTs as well as

the performance of our tool has been demon-

strated in several practical and industrial case

studies. Examples include DFT models for vehicle

guidance systems in the automotive domain Ghad-

hab et al. (2019), and analyzing infrastructure fail-

ures in railway station areas Weik et al. (2022).

DFTs with up to several hundred elements have

been successfully analyzed with SAFEST.

SAFEST and its documentation is publicly

available at www.safest.dgbtek.com.

Outline Sect. 2 briefly introduces (dynamic) fault

trees. Sect. 3 presents the major features of

SAFEST for modeling with DFTs; Sect. 4 presents

its analysis approaches. Sect. 5 presents industrial

case studies which have been performed using

SAFEST. Sect. 6 compares SAFEST to various ex-

isting fault tree analysis tools. Sect. 7 concludes.

2. Dynamic fault trees

Fault trees (FT) Ruijters and Stoelinga (2015)

model how component failures propagate through

a system and yield a system failure. FTs are di-

rected acyclic graphs. Leaves (without children)

correspond to basic events (BE) which fail ac-

cording to an associated failure distribution. Inner

nodes correspond to gates which propagate the

failure. Static fault trees (SFT) have gates of type

AND, OR and VOTk which fail if all, at least one

or at least k children have failed, respectively.

Dynamic fault trees (DFT) Dugan et al. (1990)

extend SFTs by dynamic gates modeling spare

management, ordered failures and functional de-

pendencies. Fig. 1 depicts an example DFT mod-

eling the rotor failures in a floating offshore wind

turbine and is based on Zhang et al. (2016). The

top-level element RotorSystemFailure is repre-

sented by an OR-gate and occurs when for exam-

ple BE BladeFailure occurs. The gates in orange

color are the three main dynamic gates which we

will introduce by example. For a detailed presen-

tation of the DFT semantics, we refer to Junges

et al. (2018).

SPARE The SPARE-gate PowerFailure mod-

els spare management. First, the primary child

Power1Failure is actively used and the spare com-

ponent Power2Failure is in standby, i.e., it has a

reduced failure probability. If Power1Failure fails,

the spare Power2Failure starts to be activly used.

If it also fails, the SPARE-gate fails.

Priority-AND Switching from one power source

to another can also fail. This is modeled by

the Priority-AND (PAND) gate SwitchFailure. A

PAND only fails if its children fail in order from

left-to-right. For instance, first PowerSwitch fails

and then Power1Failure. At this time point, the

power source cannot be switched, because the

switching mechanism already failed before. In

contrast, if first Power1Failure fails, the switching

can still be performed.
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RotorSystemFailure

BladeFailurePitchingFailureHubFailure

FaultLocation

SafetyChainCutOff

DriverAlarm

Encoder2FailureEncoder1Failure LimitSwitchFailure LightningProtectionFailure

PowerFailureSwitchFailure

Power1Failure Power2FailurePowerSwitch

Dependency

Figure 1. DFT modeling a rotor in an offshore wind turbine

Functional dependency The functional depen-

dency (FDEP) models dependencies by forward-

ing a failure from one component to others.

FDEP Dependency models the dependency of the

encoders on the power source. If PowerFailure

occurs, both encoders cannot function anymore,

because the power source is unavailable.

3. Modeling with SAFEST

Graphical editor The drag-and-drop fault tree

editor in SAFEST’s web-based interface allows

for the graphical construction and updating of

fault trees. Fig. 2 shows the DFT from Fig. 1 in

SAFEST’s editor. The editor allows for hierarchi-

cal modeling and reuse of sub-trees. Moreover,

fault trees can also be presented in tabular form or

Figure 2. Graphical editor for fault trees

the Galileo format. The latter can also be used as

input format when importing existing DFT. Note

that SAFEST supports static gates (AND, OR,

VOT) as well as all dynamic gates described in

the literature (FDEP, PAND, SEQ, SPARE).

SysML import SAFEST can automatically pro-

duce DFTs from SysML 2.0 modelsa that have

been annotated with safety data, such as func-

tional dependencies, redundancies, etc. This en-

ables reliability study of systems to take place

concurrently with their design and development,

assisting with the exploration of design space to

determine the optimal design in relation to various

metrics. Fig. 3 shows an example SysML model

(right) and its corresponding DFT (left).

ahttps://www.omgsysml.org/SysML-2.htm

Figure 3. Translation from a SysML model to a DFT
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Figure 4. Empirical distributions

Model parameters SAFEST allows to generate

different variants of DFTs by changing the val-

ues of model parameters, e.g., failure distributions

of BEs. The model parameters can be constants,

real-valued expressions, and probability distribu-

tions. The model parameters allow easy compari-

son of different model variants by simply chang-

ing the parameter values during the analysis step.

Failure distributions SAFEST supports expo-

nential, Erlang, Weibull and Log-normal distribu-

tions for SFTs, and exponential and Erlang dis-

tributions for DFTs. Failure distributions can be

(1) provided explicitly, (2) can be automatically

generated from given failure data of components

via statistical methods, or (3) can be composed as

a mixture distributions, i.e., the weighted average

of other distributions. Fig. 4 shows how distribu-

tions are generated from existing data (right) or as

a mixture distribution (bottom).

Figure 5. Interactive simulator

Interactive simulator To improve understanding

of the fault tree model, SAFEST offers an inter-

active DFT simulator. The step-by-step simulator

allows users to select which BE should fail next. It

then shows how the failures affect the state of all

DFT elements. An example is depicted in Fig. 5

where the failure of BE F7 (marked in red color)

propagates through the system and yields a failure

of OWTFailed. Yellow color indicates irrelevant

DFT elements whose (future) failure does not

have an impact anymore. The interactive simulator

allows users to get a better understanding of their

model and helps detect modeling errors early on.

DFT simplification SAFEST can automatically

simplify the structure of a DFT while still pre-

serving its behavior. The simplification is based

on Junges et al. (2017) and transforms the DFT

such that it is better suited for efficient analysis.

4. Fault tree analysis

SAFEST supports different approaches to analyze

fault trees. Given a fault tree and a metric of in-

terest, the corresponding results are calculated in

a fully automated manner. Fig. 6 exemplary shows

the failure probability over time for different sys-

tem variants modeled as DFTs. The analysis in

SAFEST is performed in the backend by the open-

source STORM-DFT library of the STORM model

checker Hensel et al. (2022). Depending on the

given fault tree, metric to check, and user needs,

the best suited analysis approach can be selected.
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Figure 6. Analysis results for DFT variants

Metrics SAFEST supports analysis with regard to

all significant quantitative dependability metrics,

including system reliability, mean-time-to-failure

(MTTF), and component criticality based on im-

portance. Experienced user also have the freedom

to specify their own unique measures of interest,

up to the point of expressing intricate measures in

mathematical logics.

Static fault trees Classical (static) fault trees

are best analyzed using binary decision diagrams

(BDD). The approach supports BE with arbitrary

probability distributions – going far beyond ex-

ponential failure distributions. SAFEST allows to

obtain the minimal cut sets (MCS) of an SFT.

The unreliability can be directly computed on the

BDD, yielding precise values. Moreover, the un-

reliability over time – for hundreds of time points

– can efficiently be computed via dedicated meth-

ods Basgöze et al. (2022). Evaluations have shown

that our BDD-based analysis performs compa-

rable to existing academic tools for SFT analy-

sis Basgöze et al. (2022).

Dynamic fault trees DFTs are analyzed via

state-based techniques by translation into a

Markov model Boudali et al. (2010); Volk et al.

(2018). Our automated translation yields small

models by exploiting – among others – irrele-

vant failures and symmetries in the DFT. These

optimization are crucial to mitigate the state

space explosion problem. The generated Markov

model is analyzed with the state-of-the-art prob-

abilistic model checker STORM Hensel et al.

(2022). Probabilistic model checking allows to

efficiently calculate a broad range of metrics –

far beyond simple reliability calculations – in-

cluding mean-time-to-failure, conditional proba-

bilities and performance under degradation. Most

importantly, model checking yields exact results

– which is crucial when analyzing safety-critical

system. Comparison to existing tools such as

DFTCALC Arnold et al. (2013) and the original

GALILEO tool Sullivan et al. (1999) has shown

that our tool significantly outperforms its competi-

tors – up to orders of magnitude Volk et al. (2018).

Modular analysis SAFEST allows modular anal-

ysis of fault trees based on the modularization

technique of Gulati and Dugan (1997). Instead of

analyzing the complete system at once, different

parts of a fault tree – called modules – which

represent individual subsystems are analyzed in-

dependently. The analysis of each module is per-

formed via the technique best suited for them,

e.g., SFTs are analyzed via BDDs while DFTs are

translated into Markov models.

Approximation via partial state space Lastly,

the tool provides an approximation approach that

builds only the most “important” parts of the

DFT’s behavior Volk et al. (2018). By only build-

ing parts of the state space, this approach requires

significantly less computational resources than

building the full state space. This approximation

provides an upper and lower bound on the exact

measure of interest. The approach therefore still

provides correctness guarantees – in contrast to

other approaches such as Monte Carlo simulation

which only provide confidence intervals. The pre-



198 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Figure 7. Approximative analysis

cision of our approximation can be increased by

exploring larger parts of the state space. SAFEST

allows the users to interactively tune this precision

according to their needs. Fig. 7 shows the approx-

imation approach. In the first iterations, the dif-

ference between upper and lower bounds is large,

but by exploring more parts of the state space,

the bounds quickly become tight. For instance, the

fifth iteration only builds half of the total state

space while already providing tight bounds.

5. Case studies

We showed the modeling capabilities of DFTs as

well as the performance of our tool in several

practical and industrial case studies. We refer to

the FFORT benchmark suiteb for an extensive list

of DFT models from the literature.

In Ghadhab et al. (2019), we built DFT models

for a vehicle guidance system in the automotive

domain. We modeled different safety concepts and

different partitioning of functions on hardware.

Our DFT models allowed us to compare the dif-

ferent designs and find the best one. The DFTs

consisted of up to 300 elements and are, to the

best of our knowledge, the largest real ones in

the literature. Nevertheless, the DFTs could be

evaluated within minutes.

In Khan et al. (2021), we modeled fire sprinkler

systems in malls using DFTs and validated metrics

beyond standard reliability, e.g., the likelihood

of failing without previous degradation and the

worst-case reliability obtained after degradation.

In Weik et al. (2022), we considered train rout-

ing options in railway station areas w.r.t. the avail-

bhttps://dftbenchmarks.utwente.nl/ffort.php

able infrastructure elements. The DFTs were auto-

matically generated from infrastructure and rout-

ing data. Our analysis showed, for example, the

impact of switch failures on train routes and also

identified the most critical infrastructure elements.

In a recent industrial case study, we automat-

ically derived DFTs from SysML 2.0 models of

electric devices after annotating them with safety

data. In model-based systems engineering, this

opened the door for model-based safety analysis.

6. Related tools

A number of tools for fault tree analysis exists,

both academic and commercial. We refer to Rui-

jters and Stoelinga (2015), Baklouti et al. (2017)

and Aslansefat et al. (2020) for overviews of such

tools. The vast majority of these tools however

only support SFTs. Only a few tools support the

analysis of DFTs, most of them academic tools.

These tools only implement dedicated analysis

algorithms, but do not provide a complete frame-

work for modeling and analyzing DFTs in all

their aspects. SAFEST in contrast provides such an

integrated framework for DFT analysis as well as

for modeling DFTs in a hierarchical manner.

We provide a comparison of SAFEST with com-

monly used tools for fault tree analysis in Tab. 1.

For each tool, we indicate which operating sys-

tems are supported, which type of fault tree is

supported, which analysis techniques are available

– via minimal cut sets, binary decision diagrams,

model checking of Markov models, and Monte

Carlo simulation – and which steps of the work-

flow are supported by a graphical user interface.

We gathered the data for each tool from publicly

available information on the respective websites.
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Tool OS FT type Analysis technique GUI Notes

SAFEST � � � � � � � � � � analysis via STORM tool

DFTCALC � � � � � � � academic

HiP-HOPS � � * � � �

Isograph FaultTree+ � � * � � � � BE as Markov model

RAM Commander’s FTA � � � � � � part of RAM Commander

RiskSpectrum PSA � � * � � � � part of RiskSpectrum

Saphire � � � � � BE as Markov model

Windchill FTA � � � � � � � part of Windchill

XFTA � � � � � � � from AltaRica Association

From Tab. 1, we can see that most tools are

only available on Windows. Apart from SAFEST,

only the academic tools DFTCALC and XFTA are

available on all platforms. As stated before, most

tools only support SFTs. DFTs are only fully sup-

ported by SAFEST, DFTCALC and WINDCHILL

FTA. Other tools such as FAULTTREE+, HIP-

HOPS and RISKSPECTRUM support only some

dynamic gates, e.g., PANDs. As most tools only

support SFTs, their main analysis technique is

based on determining MCS. Both DFTCALC and

SAFEST support analysis via model checking of

Markov models. ISOGRAPH FAULT TREE+ and

WINDCHILL FTA also support Markov models.

SAFEST supports the broadest range of analysis

techniques, combining efficient approaches for

both static and dynamic fault trees. All com-

mercial tools provide a graphical user interface

shipped with a fault tree editor and visualization of

analysis results. Both academic tools DFTCALC

and XFTA lack in this regard.

In summary, the tools most closely related to

SAFEST are DFTCALC and WINDCHILL FTA

as both also support DFTs. DFTCALC – as an

academic tool – is fully focused on DFTs and no

explicit support for SFTs exists. It only provides

a rudimentary GUI without any FT editor and

supports only a small set of DFT analysis capabil-

ities. WINDCHILL FTA from PTC is most likely

the closest competitor to SAFEST. As part of the

WINDCHILL tool ecosystem it supports a broad

range of input formats, metrics and GUI features.

Besides DFTs, there exist other extensions

of SFTs such as Boolean-logic Driven Markov

decision Processes (BDMP) Bouissou and Bon

(2003), State/Event Fault Trees (SEFT) Kaiser

et al. (2007) and Pandora temporal fault

trees Walker and Papadopoulos (2009). We refer

to Ruijters and Stoelinga (2015) for an overview

of related models and corresponding tool support.

7. Conclusion

We presented the SAFEST tool for modeling and

analyzing static and dynamic fault trees. SAFEST

provides an easy-to-use interface for modeling,

adapting, simplifying and interactively simulating

DFT. Fault tree analysis is performed through ded-

icated, powerful approaches based on binary de-

cision diagrams (for SFT) and probabilistic model

checking (for DFT). The latter allows to efficiently

calculate a broad range of metrics going far be-

yond simple unreliability. An approximation ap-

proach building only the most “important” parts of

the Markov model allows to fine-tune the trade-off

between computational resources and precision

of the result. SAFEST and its DFT analysis have

been successfully applied in practical and indus-

trial case studies, allowing to handle DFTs with

several hundreds elements. SAFEST is available at

www.safest.dgbtek.com.

Future work In the future, we aim to further

improve the usability of the user interface, based

on feedback by industrial practitioners. We also

plan to provide better integration with existing

workflows, e.g., by supporting import and export

from common file formats used by other tools.
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