5 research outputs found

    Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay

    No full text
    We present a highly efficient omnidirectional color filter that takes advantage of an Ag-TiO2-Ag nano-resonator integrated with a phase-compensating TiO2 overlay. The dielectric overlay substantially improves the angular sensitivity by appropriately compensating for the phase pertaining to the structure and suppresses unwanted optical reflection so as to elevate the transmission efficiency. The filter is thoroughly designed, and it is analyzed in terms of its reflection, optical admittance, and phase shift, thereby highlighting the origin of the omnidirectional resonance leading to angle-invariant characteristics. The polarization dependence of the filter is explored, specifically with respect to the incident angle, by performing experiments as well as by providing the relevant theoretical explanation. We could succeed in demonstrating the omnidirectional resonance for the incident angles ranging to up to 70°, over which the center wavelength is shifted by below 3.5% and the peak transmission efficiency is slightly degraded from 69%. The proposed filters incorporate a simple multi-layered structure and are expected to be utilized as tri-color pixels for applications that include image sensors and display devices. These devices are expected to allow good scalability, not requiring complex lithographic processes.This work was supported by a National Research Foundation of Korea grant funded by the Korean government (MEST) (No. 2013-008672 and 2013-067321), and also by a research grant from Kwangwoon University in 2014. The work was partly supported by the Australian Research Council Future Fellowship (FT110100853, Dr. Duk-Yong Choi) and was performed in part at the ACT node of the Australian National Fabrication Facilit

    Aplikace metapovrchů pro strukturální zbarvení

    Get PDF
    Barevné filtry umožňují fotosenzorům získat informace o spektrálním složení dopadajícího záření, ať už za účelem napodobení lidského zraku nebo separace analytického signálu. Snaha o zvýšení rozlišení senzorů vede k snižování velikosti jednotlivých obrazových elementů – pixelů, což klade stále vyšší požadavky na technologii barevných filtrů. Konvenční barevné filtry založené na principu absorpce záření v organických barvivech jsou velice rozšířené, ale již přestávají vyhovovat rostoucím nárokům na rozlišení senzorů. Na pomoc přichází pole metapovrchů, které pomocí svých elementů – nanostruktur – umožňují separovat barvy a vytvářet tak strukturální zbarvení. Existuje již mnoho přístupů, jak pomocí metapovrchů barvy separovat, avšak každý kromě svých výhod s sebou nese i jisté nevýhody. V této práci představujeme nový přístup k separaci barev s vysokou účinností využívající manipulace s polarizací záření. Barevný filtr je nejdříve modelován a optimalizován prostřednictvím numerických simulací a poté je v čistých prostorách vyroben pomocí nanofabrikačních metod. Na závěr jsou vlastnosti barevného filtru ověřeny vybranými optickými spektroskopickými metodami.Color filters enable photosensors to obtain spectral composition of incoming radiation, be it to mimic human vision or to separate analytical signals. Efforts to increase the resolution of these photosensors lead to decrease in size of individual picture elements – pixels, which places increasing demands on the color filter technology. Conventional color filters operating on the principle of absorption of light in organic pigments are frequently used, but they are no longer meeting growing requirements of increasing sensor resolution. Here, metasurfaces comes to an aid, utilizing nanostructures to separate colors and thus creating structural coloration. There are many approaches to separate colors using metasurfaces, but each carries certain disadvantages with their principle of operation. In this thesis, we present a novel approach to separate colors which utilizes manipulation of radiation polarization. The presented color filter is first modeled and optimizes through numerical simulations and then manufactured using nanofabrication methods. Finally, the optical response of nanostructures is verified by several optical spectroscopy methods.

    Filtrage spectral plasmonique à base de nanostructures métalliques adaptées aux capteurs d'image CMOS

    Get PDF
    Image sensors have experienced a renewed interest with the prominent market growth of wireless communication, together with a diversification of functionalities. In particular, a recent application known as Ambient Light Sensing (ALS) has emerged for a smarter screen backlight management of display-based handheld devices. Technological progress has led to the fabrication of thinner handsets, which imposes a severe constraint on light sensors' heights. This thickness reduction can be achieved with the use of an innovative, thinnest and entirely on-chip spectral filter. In this work, we present the investigation and the demonstration of plasmonic filters aimed for commercial ALS products. The most-efficient filtering structures are identified with strong emphasis on the stability with respect to the light angle of incidence and polarization state. Integration schemes are proposed according to CMOS compatibility and wafer-scale fabrication concerns. Plasmon resonances are studied to reach optimal optical properties and a dedicated methodology was used to propose optimized ALS performance based on actual customers' specifications. The robustness of plasmonic filters to process dispersions is addressed through the identification and the simulation of typical 300 mm fabrication inaccuracies and defects. In the light of these studies, an experimental demonstration of ALS plasmonic filters is performed with the development of a wafer-level integration and with the characterization and performance evaluation of the fabricated structures to validate the plasmonic solution.Les capteurs d'image connaissent un regain d'intérêt grâce à la croissance remarquable du secteur de la communication sans fil, et leurs fonctionnalités tendent à se diversifier. Plus particulièrement, une application récente connue sous le nom de capteur de luminosité ambiante (ALS de l'acronyme anglais) est apparue dans le but de proposer un ajustement intelligent du rétro-éclairage dans les appareils mobiles pourvus d'écrans. Les avancées technologiques ont permis la fabrication de smartphones toujours plus fins, ce qui impose une contrainte importante sur la hauteur des capteurs de lumière. Cette réduction d'épaisseur peut être réalisée grâce à l'utilisation de filtres spectraux innovants, plus fins et entièrement sur puce. Dans cette thèse, nous présentons l'étude et la démonstration de filtres plasmoniques adaptés à une intégration dans des produits ALS commerciaux. Les structures de filtrage les plus performantes sont identifiées avec une importance particulière accordée à la stabilité des filtres par rapport à l'angle d'incidence de la lumière et à son état de polarisation. Des schémas d'intégration compatibles CMOS et respectant les contraintes d'une fabrication à l'échelle du wafer sont proposés. Les résonances de plasmon sont étudiées afin d'atteindre des propriétés optiques optimales et une méthodologie spécifique à partir d'un véritable cahier des charges client a été utilisée pour obtenir des performances ALS optimisées. La robustesse des filtres plasmoniques aux dispersions de procédé est analysée à travers l'identification et la modélisation des imprécisions et des défauts typiques d'une fabrication sur wafer 300 mm. A la lumière de ces travaux, une démonstration expérimentale de filtres ALS plasmoniques est réalisée avec le développement d'une intégration à l'échelle du wafer et avec la caractérisation et l'évaluation des performances des structures fabriquées afin de valider la solution plasmonique
    corecore