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Introduction 

The microelectronics industry is one of the technological sectors experiencing the fastest market 

progressions. Combined with the considerable development of nanotechnologies, the continuation of the 

Moore’s law [1], which describes the constant miniaturization rate of electronic components, has led to 

an explosion of the demand for embedded sensors with various functions. Those on which we will focus 

in this thesis constitute the family of light sensors in general. Among them, image sensors are the most 

widespread and have been omnipresent in our environment for a while, with for instance cameras, 

webcams or surveillance systems. More recently, the exponential growth of the wireless communication 

market has greatly renewed the demand for such sensors (Figure 1). In particular, the emergence of 

handheld device such as smartphones or tablets has generated a constantly rising interest for 

miniaturized image sensors with the embedding of camera functions. Ambient Light Sensor applications 

have been developed, which purpose is to smartly manage the screen backlight as a function of the 

surrounding brightness in order to improve the visual experience of the user and to reduce the energy 

consumption of the device. These sensors share a similar integration, characterized by the filtering of the 

photons useful to their respective functions, performed with organic resists in most cases. These resists 

however impose strict restrictions on the sensor integration due to their sensitivity to thermal treatments 

and require the use of an additional and thick IR-cut filter since they cannot filter the undesired infrared 

signal. The necessity of this external IR-cut glass increases the thickness of these sensors in a context 

where the market is motivated by the reduction of the costs and by the demonstration of technology 

showcase with always thinner devices. It has thus become important to find out innovative filtering 

solutions able to follow these market trends in order to propose competitive image or light sensors. 

  In recent years, there has been a growing interest in literature for an emerging field of photonics 

that allows for the manipulation of light at nanoscale with periodically structured metallic layers: 

Plasmonics. This domain owes its name from the engineering of confined electromagnetic waves located 

at a metal-dielectic interface known as plasmons. A surface plasmon is defined as a collective excitation 

of the free-electron gas at the surface of the metal that can be excited from a coupling with incident 

photons in proper conditions. In the case of periodic metallic array, an essential property of plasmons is 

that they are excited and resonate for specific wavelengths related to characteristic dimensions of the 

structures. This phenomenon makes plasmonics particularly suited for filtering applications, for which 

the operating wavelengths can be simply tuned by varying the size of the structures. In particular, since 

metals such as aluminum, silver or gold sustain plasmons in the visible and NIR ranges, many works 

have demonstrated the realization of color filters that would present the huge advantage of requiring a 

single lithography step only. Thanks to the electromagnetic properties of metals, these filters are 

furthermore able to cut the undesired infrared signal by themselves. However, most studies use materials 

that are avoided in industrial clean rooms and fabricate filters with processes that are not compatible 

with the high-throughput constraint of commercial productions. Very little information is thereby 

available in terms of integration and performance to envision a technological transfer of plasmonic filters 

from laboratories to industrial products. 
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 Consequently, this thesis aims to assess the potential of plasmonic filters to provide an efficient 

and viable alternative to current filtering solutions in view of a future transfer towards industrial 

applications. In this PhD work, the targeted applications consist of image sensors and ambient light 

sensors. This objective is split into two major axes. The first one is the study and the selection among 

different plasmonic structures of those providing the best theoretical performance for light sensor 

applications, while fitting in the same time their associated technological challenges and the industrial 

constraints. The second axis is to assess the viability of the fabrication of such structures with respect to 

the integration issues inherent to plasmonic filters and to the process dispersions that have to be expected 

for a wafer-scale production. To achieve this, the thesis is articulated according to the outline presented 

below. 

 

 
 

 

FIG. 1. 2014 CMOS image sensor market landscape [2]. 

 
 First of all, we will describe in Chapter 1 the interest of plasmonic filtering for light sensors. First 

we will present the respective structures and principles of both CMOS image sensors and ambient light 

sensors, leading to the challenges of spectral filtering. A focus will be made on the filtering part of these 

devices with a review of the most widespread kinds of filters, with their advantages and their limits. The 

principle of plasmonic filtering will then be introduced. The potential of this solution for light sensor 

applications will be presented. The related challenges will be explained and the methodology chosen in 

this thesis work will be described. 

 Chapter 2 consists in the identification of plasmonic structures that would fulfill light sensor 

requirements. First, the simulation and evaluation software used in this work will be detailed. The 

specifications related to image sensors and ambient light sensors will be explained. From this, the 

selection of the most suited plasmonic structures will be performed through the evaluation of their ease 

of fabrication, optical properties and angular stability. A direct integration of filters respecting the 

CMOS compatibility required in industrial fabs will be proposed. This chapter will permit to identify the 

best CMOS-compatible structures and materials able to solve the targeted application-related issues. 

 In Chapter 3, the best plasmonic structures for ambient light sensor application will be evidenced. 

First, a comprehensive investigation of the angular properties of cross-shaped-hole array will be 

presented in order to limit the sensitivity of our plasmonic filters to the angles of incidence and to 
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polarization. From these results, the evaluation of plasmonic filters envisioned for ambient light sensors 

will be performed. We will be able at the end of this chapter to assess the theoretical potential of 

plasmonic filters and to propose optimal performances for this application. 

  In Chapter 4, the potential impact of process-related factors on plasmonic filters performance will 

be simulated.  Since the plasmon resonances depend on the size and the shape of the structures, we will 

first evaluate the sensitivity of plasmonics filters to process inaccuracies. The main defects that can be 

expected at each step of the fabrication will be modeled. The variations on the main parameters will be 

studied according to typical dispersions of a 300-mm-wafer production for the deposition and the 

lithography step, together with the possible rounding of the cruciform holes. The respective impact of 

sloped profiles in the metal after the etching and of air gaps during holes filling will be evaluated. The 

critical steps of the fabrication will thus be identified and evaluated. 

 Chapter 5 is dedicated to the process and measurement of plasmonic structures. First, the process 

development of the plasmonic filters selected from Chapter 3 will be presented in the light of the 

previous studies with wafer-scale equipment. The main issues and dispersions of each fabrication step 

will be observed and compared with the simulation work of Chapter 4. The obtained filters will be 

optically characterized to evaluate their performance and to compare them to those calculated from the 

theoretical development of previous chapters. The viability of the plasmonic solution in terms of 

performance and integration will thus be assessed. 

 Finally, a conclusion will be made on the ability of plasmonic filters to propose efficient optical 

performance and to be transferred to industrial fabrication lines envisioned for commercial applications. 

A few thoughts on the prospective of this thesis will also be discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





   

  

 

Chapter 1 

Introduction to CMOS imaging applications 
and spectral filtering 

Digital image sensors have experienced a significant development since their first emergence in the late 

60’s and currently constitute a US$10B market [2]. They have now reached a very attractive 

cost/performance ratio that makes them usable in various applications, from high-tech mobile device to 

spatial or medical equipment. Image sensors have thus quickly become a major technological issue in the 

microelectronics industry, with a forecast growth rate of 10.6 % from 2014 to 2020 and a US$16.2B 

market to be reached in 2020. From the beginning of digital imagery, two distinct types of sensors have 

been coexisting: the CCD sensors (for Charge-Coupled Device) and the CMOS sensors. They mainly 

differ by the mechanism of the charges reading after the photo-conversion. In our case, we only focus on 

CMOS sensors, which give nowadays performance similar to CCD ones and are generally preferred for 

mobile electronic consumer goods owing to their low production costs and energy consumption [3]. In 

these sensors, the use of organic resists to perform filtering functions has progressively reached its limits 

due to two major issues. First, the thermal sensitivity of the resists blocks their position at the very last 

level of the sensors, letting very few options to consider more advanced integrations. Secondly, their 

inability to filter the infrared signal imposes the use of an external IR-cut glass. This glass has a 

thickness of about one millimeter, in a context where the thinnest flagship smartphones on the market 

fall below 5 mm. Moreover, recent trend in light sensors is the manufacturing of combined sensors, 

which feature two or more functions on the same chip, such as visible and infrared detections for 

instance (Figure 1.1). In such sensors, the IR-cut glass has to be patterned so that it covers only the 

corresponding areas of the sensors, and this patterning is expensive. These limitations nowadays 

represent an obstacle to the development of innovative integrations that would ensure the 

competitiveness of these sensors. 

 The first part of this chapter constitutes an introduction to the principle of color sensing and to the 

general structure of CMOS image sensors, where mainly the light travel is described from the incidence 

on the optical system to the photons conversion in the photodiodes. In a second part, we will describe 

this work’s main concern which is another application of optical sensors in the visible range that has 

recently experienced a huge gain of interest in mobile device featuring a screen, since it allows for the 

automatic adjustment of the display’s backlight: the Ambient Light Sensors (ALS). We will then 

specifically introduce the issue of the thesis regarding the spectral filtering step by first presenting the 

main existing filtering solutions that are used in images sensors. The plasmonic theory will finally be 

introduced to explain how it can provide an alternative filtering solution to organic resists.   
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FIG. 1.1. CMOS image sensors’ technological evolution, including the combined sensors (multi-sensing) 

[2]. 

1. 1 CMOS image sensors 

1. 1.1 Principle of image sensing 

A general schematic of the main steps of image sensing and image processing allowing for the capture 

and the conversion of the photons of a given scene into a digital image is presented in Figure 1.2. The 

operating principle of an image sensor can be explained by making the distinction between two different 

parts. The first one is the macro-scale complete device which features the packaging element of the 

sensor, the focusing lens, an infrared-cut glass filter and then the CMOS chip, which constitutes the 

second part. This micro-scale system on chip can itself be subdivided into two functions that are the 

analogic guidance and photo-conversion of the photons, and the digital treatment of the converted signal. 

We propose in the following section a brief description of the light path from the scene capture to the 

digitally processed image. 

 At first, the photons coming from the light source (i.e. the sun or an artificial lightning) are 

reflected by the elements of the scene. Depending on the properties of the materials composing these 

elements, only a portion of the impinging photons are re-emitted, whose wavelengths define the color 

that we see from these objects. These reflected photons are captured by the global sensor and pass 

through an optical system, namely the main lens that focuses them on the chip located at the end of the 

sensor. Before reaching this chip, the light also encounters an IR-cut filter and a low-pass antialiasing 

filter (denoted AA filter). 

 On top of the photosensitive area of the chip, an array of microlenses focuses the light towards 

each photo-site, which corresponds to the photosensitive area of one pixel. On each pixel, the photons 

are then filtered according to one given wavelength (or color), generally among the blue, green or red 

colors. They finally reach the silicon photodiodes where they are converted into electrical charges in the 

form of electron-hole pairs thanks to the photoelectric effect, themselves converted into an electrical 

tension. An analog-to-digital conversion of this electrical quantity is performed and several different 

processing are then realized to reconstruct the final image, including the color interpolation, the white 

balance and the color correction. More details on the role and the principle of each of these main steps 

are given in the following sub-sections. 
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FIG. 1.2. General principle of image sensing. The main parts of an image sensor are summarized, from the 

capture of the scene photons to the reconstitution of the digital final image [4], [5].  

1. 1.2 Structure of a CMOS image sensor 

The useful signal for an image sensor is exclusively within the visible range, which is defined between 

380 nm and 780 nm. As we will see later, the silicon that constitutes the photodiodes absorb photons 

with wavelengths up to 1.1 µm, meaning that photons with wavelengths in-between 780 nm and 1.1 µm 

do not contain any color information and thus disturb the desired signal. That is why once the light has 

impinged the sensor and has been focused by the main lens, it first goes through an IR-cut filter to 

remove the near-infrared (NIR) signal that will not be filtered by the color filters. An additional filter is 

also required, known as a low-pass anti-aliasing filter whose purpose is to remove the high spatial 

frequencies components to avoid the spectral folding phenomenon, characterized by the appearance of 

moiré patterns.  

 Photons then hit the photosensitive area of the silicon-based CMOS chip, which contains the 

pixels array. Each pixel is itself composed of a microlens, a filter and a photosensitive site, the 

photodiode, surrounded by many transistors used to collect, to convert and to read the photo-generated 

electrons. The ratio of the photodiode area to the total area of a pixel is called its fill factor, typically in-

between 30 % and 50%. The structure stack of one pixel is provided in Figure 1.3 and detailed in the 

following. 
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FIG. 1.3. Schematic and actual SEM cross section of a CMOS image sensor chip structure. The right picture 

represents a STMicroelectronics 2.2 µm pixel, fabricated with a 0.13 µm process technology. 

1. 1.2.1 Microlenses 

As we have seen in the introduction of section 1.1.2, the fill factor of the sensitive part of the pixels is 

inferior to half their total area, which means that a significant portion of the incoming light would not 

reach the photodiodes and would thus be lost. To increase the photons collection, an array of microlenses 

is fabricated on top of the structure to focus the incident light on the photodiodes. The presence of 

micro-lenses increases the photons absorption and can then raise the photodiode effective fill factor to 80 

%, as explained in Figure 1.4. The fabrication of microlenses is performed with a photosensitive resist 

periodically patterned by photolithography and annealed to give them their drop-like shape. 

 

 
 

FIG. 1.4. Role of the microlenses array for the photons collection: photons collection without (left) and with 

microlens (right). 

1. 1.2.2 Color filters 

In 1802, Thomas Young hypothesized that the human vision was permitted by the existence of three 

elementary receptors, each sensitive to one particular color (these receptors are nowadays known as the 

blue, green and red cones). Pursuing Young’s work, Helmholtz, and especially Maxwell demonstrated in 

1855 that any visual light can be decomposed according to three particular colors (or wavelengths): the 

primaries. This Young-Helmholtz theory, also called the trichromatic invariance constitutes, with the 

proof that any color can be reproduced with the combination of three primary colors, the origin of our 

modern colorimetry. 
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FIG. 1.5. a) Additive synthesis with R (red), G (green) and B (blue) components. b) Subtractive synthesis 

with M (magenta), Y (yellow) and C (cyan) components. 

 
 From this principle, two kinds of color synthesis are derived: the additive and the subtractive 

syntheses (Figure 1.5). The subtractive synthesis is used in painting or in printing since it relies on the 

selective absorption of the light by the materials (pigment, ink…). Conversely, the additive synthesis is 

used with the addition of light sources, where the absence of any primary colors results in the black 

color, whereas their addition in equal quantities results in the white color. This method is particularly 

used in display applications or in image sensing. In image sensors, we thus aim to collect only the 

primary color components of the scene by using a Color Filters Array (CFA) beneath the microlenses 

matrix. The global signal is thereby spatially sampled, with each pixel only filtering a single wavelength 

band, generally around the blue (about 460 nm), green (about 540 nm) and red colors (about 610 nm). 

Although several different arrangements exist, the most common pixel array in image sensors is the 

Bayer’s matrix [6], from the name of the inventor who patented it (Figure 1.6). One can notice there are 

twice as many green pixels as the blue or the red ones. This specificity provides a high resolution on the 

green information, to which the human eye is particularly sensitive. The filters are generally realized 

with organic color resists. The filtering step of image sensors being the central part of this thesis, we will 

go into more details about it throughout this chapter.  
 

 
FIG. 1.6. Schematic of the Bayer’s color filters pattern [7]. A distinction is made between the green pixels 

GR in a red line and GB in a blue line. 

1. 1.2.3 Photodiodes: the photoelectric effect 

Beneath the metal interconnections wiring the transistors with each other, the silicon photodiodes collect 

the information related to luminance, i.e. the quantity of light (photons) that hit the pixels. The 

photodiodes are conceived around the PN junction principle, where a silicon area doped with electrons 

(N-doped) is put in contact with a silicon area doped with holes (P-doped). The absorption mechanism of 

light by matter in semi-conductors is due to the capture of photons by the electrons of the atoms 

composing the material, which elevates the electrons from their ground state in the valence band to 

excited states with higher energy in the conduction band (Figure 1.7). This excitation is only possible if 

the energy of the incoming photon hν is superior to the forbidden band gap Eg, corresponding to the 

energy difference between the lowest energy level of the conduction band Ec and the highest energy 

level of the valence band Ev (see Eq. 1.1, where h stands for the Planck constant in m².kg.s-1 and ν is the 
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frequency of the photon in Hz). In this situation, the photon absorption thus creates an electron-hole pair: 

this phenomenon constitutes the photoelectric effect [8]. The induced electric field Ei in the depletion 

region of the PN junction separates the holes from the electrons, which leads to the production of an 

electric current. The electrons being all identical, the potential exceeding energy (hν – Eg) is dissipated 

into the materials in the form of heat.  

 

 ℎ𝜈 > 𝐸𝑔 , with 𝐸𝑔 = 𝐸𝑐 − 𝐸𝑣 (Eq. 1.1) 
 

 
 

FIG. 1.7. Principle of the photoelectric effect: energy bands around the PN junction [4], [9]. 

 
 From Eq. 1.1, the maximum wavelength λmax at which the photoelectric effect occurs in a 

semiconductor can be deduced from the band gap energy (Eq. 1.2, with c the celerity of light in m.s-1). 

Silicon has a band gap of 1.12 eV, and thereby absorbs photons with wavelengths up to 1.1 µm, which 

explains why a filter cutting the infrared signal is required above the sensor. The absorption of light in 

silicon occurs at different depths according to the photons wavelength. The light penetration is governed 

by a Beer-Lambert absorption law (Eq. 1.3), where I0 stands for the intensity of the incident light, I(z) for 

the intensity of the radiation at depth z and kSi(λ) for the absorption coefficient of silicon. There are 

different ways of managing the storage and the transfer of the created charges (CMOS, CCD), but they 

won’t be discussed in this thesis. 

 

𝜆𝑚𝑎𝑥 =
ℎ𝑐

𝐸𝑔
 

(Eq. 1.2) 

 

𝐼(𝑧) = 𝐼0 ∙ exp (−
4𝜋𝑘𝑆𝑖(𝜆)

𝜆
𝑧) 

(Eq. 1.3) 

1. 1.2.4 Case of back-side illumination 

The image sensors market has been more and more demanding for the fabrication of higher resolution 

sensors at competitive price, which implies a high fabrication throughput. Yet, with the constant shrink 

of pixel size, less light is being captured in each pixel, which deteriorates the performance of the sensors, 

especially in low-light conditions. The most widespread structure presented in Figure 1.3 is known as the 

front-side illumination (FSI). We have seen that in this case, the fill factor of the active area is small 

(inferior to 50 %) due to the presence of the metal wiring and the transistors between the filters and the 

photodiodes, that take up a lot of space and hinder light propagation. 
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FIG. 1.8. Comparison of a FSI sensor (left schematic) with a BSI sensor (right schematic). 

 
 An innovative alternative was thus introduced by Sony in 2006 [10], called the back-side 

illumination (BSI). The principle of this structure is to place the photodiodes directly under the filters 

and to wire the transistors beneath the photodiodes, where they do not hinder light propagation. A 

description of the BSI principle is given in Figure 1.8. In practice, BSI and FSI sensors own the same 

elements, but the FSI ones are sequentially fabricated on the front on the silicon wafer, hence their name. 

Conversely in the BSI case, after the photodiodes then the metal interconnections are realized, the wafer 

is flipped and thinned so that the filters and the microlenses can be fabricated directly above the 

photodiodes, on the back-side of the wafer. This Sony development was made on SOI and demonstrated 

an increase on the quantum efficiency of the sensor (e.g. a 38 % increase at 540 nm) and a significant 

improvement of the angular response compared with the conventional FSI solution since the 

interconnections are not in the optical path [11]. STMicroelectronics and the CEA Leti-MINATEC also 

demonstrated in 2007 a BSI solution on SOI with a high level of miniaturization (1.45 µm pixel size) 

with a very low noise level [12]. In our case, BSI structures could provide interesting performance 

improvements, but they are a bit more expensive to fabricate. 

1. 1.3 Image reconstruction 

After the electrical charges have been collected and transferred, the corresponding tension at each pixel’s 

output (CMOS) or pixels column’s output (CCD) is digitally sampled. This analog-to-digital conversion 

allows for an easier processing of the captured image and can be directly done on the chip with its logic 

elements. The first processing from the raw image is the offset correction, which consists in removing 

the spatial noise by subtracting a black image obtained with hidden pixels to each color plane. 

Afterwards, there are three main treatment steps to go from the collected signal to the final image. The 

three steps consist of: the color interpolation, the white balance and the color correction. Other additional 

steps can be added for the image correction and for the image display on a screen. 

1. 1.3.1 Color interpolation 

Since each pixel only detects one color, the sensor signal does not contain any color information and the 

raw image is thus monochrome (blue, green and red pixels each return a single value related to their 

respective number of collected photons, which leads to a greyscale information: white for a high signal 

level and black for a theoretically null signal). As we have seen it with the trichromatic invariance, a 

color is defined with its combination of the three primary colors. In order to display a colored image on a 
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screen, each pixel has thus to contain not one, but three values corresponding to its red, green and blue 

components. For example, a red pixel only contains its red components, but lacks the blue and green 

information to reproduce the actual color of the scene. 

 The determination of the lacking information is performed with the color interpolation. This 

algorithm consists in interpolating the color information of the closest neighboring pixels, as shown in 

Figure 1.9. The most common method for a Bayer matrix is the bi-linear interpolation which calculates 

the lacking components simply as the mean of the components of the surrounding pixels. Each color is 

generally encoded in 8 bits, which corresponds to 256 shades (the human eye can distinguish about 250 

shades). Each pixel is thus encoded in 24 bits after the color interpolation step (8 bits for each primary 

color), which leads to the possible restitution of more than 16 million colors. 
 

 
 

FIG. 1.9. Example of a bi-linear interpolation made on a red pixel of a Bayer matrix. Original schematic 

from [4]. 

1. 1.3.2 White balance 

The term “light source” does not provide any quantifiable information regarding the spectral power 

distribution enlightening the scene (i.e. the amount of energy received at each wavelength). For 

colorimetric considerations, we rather talk about illuminant, which refer to a mathematical spectral 

power distribution instead of solely the nature of the source (sun, lamp, etc.) (Figure 1.10). An 

illuminant may represent an existing light source or only a theoretical spectral power distribution. The 

'Commission Internationale de l’Eclairage' (CIE, from the French acronym) defined a set of reference 

illuminants that will be used later in this thesis. Since no illuminant has a constant spectral distribution, 

the spectrum of the illuminant enlightening the scene thereby has a substantial impact on the way the 

colors are sensed by the pixels. Furthermore, the sensor does not have the same sensibility for each 

color. In order to correct these effects, we use a correction called the white balance whose purpose is to 

make sure that a white object in the scene will indeed be white after the color correction. The correction 

is performed with a diagonal matrix given in Eq. 1.4. 

 

 [
𝑅
𝐺
𝐵
]

𝑊𝐵

= [

𝑅𝑊𝐵 0 0
0 𝐺𝑊𝐵 0
0 0 𝐵𝑊𝐵

] ∙ [
𝑅
𝐺
𝐵
]

𝐼𝑛𝑡𝑒𝑟𝑝

  (Eq. 1.4) 
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FIG. 1.10. Examples of relative spectral power distributions for 3 different illuminants as defined by the CIE 

(D65 sunlight, A incandescent lamp and F2 fluorescent lightning) [13]. 

1. 1.3.3 Color correction 

The filters are not perfect and a portion of photons with undesired wavelengths can still reach the 

photodiode of a given pixel (spectral cross-talk) during the exposure. Photons can also reach the 

neighboring photodiodes due to the reflections and diffractions that may occur on the optical path 

(optical cross-talk). Similarly after the photo-conversion, some electrons can diffuse towards the 

neighboring photodiodes (electrical cross-talk). These phenomena induce additional color errors for the 

image restitution. For example, red pixels would still capture photons even if there is no red color in the 

scene. To compensate for these effects, a color correction is applied to the three color planes with a color 

correction matrix (CCM) given in Eq. 1.5. 

 

 [
𝑅
𝐺
𝐵
]

𝐶𝑜𝑟𝑟𝑒𝑐

= [

𝑐𝑅𝑅 𝑐𝐺𝑅 𝑐𝐵𝑅
𝑐𝑅𝐺 𝑐𝐺𝐺 𝑐𝐵𝐺
𝑐𝑅𝐵 𝑐𝐺𝐵 𝑐𝐵𝐵

] ∙ [
𝑅
𝐺
𝐵
]

𝑊𝐵

  (Eq. 1. 5) 

1. 1.4 Main figures of merit 

We provide below the definition of the main electrical and optical parameters of an image sensor that 

will be used or referred to throughout this thesis to quantify the performance of the filtering structures 

that will be presented later. The reader can refer to the thesis of Arnaud Tournier [4] for further 

information regarding the various noise sources in image sensors, and to the thesis of Clemence Jamin 

[9] for an extensive reading on optical performance and photometry. 

 

Dark current: This value is defined as the current generated by the sensor in the absence of incident 

light. It is produced by the charge generation in different areas of a photodiode or a MOS capacity. The 

thermal energy is absorbed by the material and can create hole-electron pairs that can be collected and 

added to the signal. The dark current is very sensitive to the morphological defects of silicon and to the 

temperature. It is generally given in e−/s. 

 

Quantum efficiency (QE): The quantum efficiency of a sensor is defined as the ratio of the number of 

collected electrons to the total number of incident photons. The components that lead to a QE decrease in 

a pixel are: the fill factor, the reflection or the absorption of light in the optical path or the recombination 

of the photo-generated electrons. 

 

Sensitivity: The sensitivity S of an image sensor is defined as the signal quantity at the pixel output 

under a given illumination and per unit exposure time. It is given in V/(lx.s) or in e−/(lx.s). In the case of 

a Bayer matrix, the sensitivity for one color i = R,GR,GB,B can be calculated according to Eq. 1.6, where 

Apix stands for the increment distance of the pixel (m), h for the Planck constant (J.s), c for the celerity of 

S(λ) S(λ)S(λ)
D65 A F2
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light in vacuum (m/s), Ill for the illuminant spectrum, QE for the quantum efficiency, for the wavelength 

(m) and V the luminous efficacy of the human eye. 

 

 𝑆𝑖 =
𝐴𝑝𝑖𝑥²

ℎ𝑐
∙
∫ 𝐼𝑙𝑙(𝜆) ∙ 𝑄𝐸(𝜆) ∙ 𝜆 ∙ 𝑑𝜆
𝜆

∫ 𝑉(𝜆) ∙ 𝐼𝑙𝑙(𝜆) ∙ 𝑑𝜆
𝜆

 (Eq. 1.6) 

 

Signal-to-noise ratio (SNR): The signal-to-noise ratio is defined as the ratio of the number of electrons 

of the useful signal to the number of electrons coming from the various noise sources of an image 

sensor, not described in this thesis. It is often given in dB according to Eq. 1.7. 

 

 𝑆𝑁𝑅𝑑𝐵 = 20 ∙ log (
𝑆𝑖𝑔𝑛𝑎𝑙

𝑁𝑜𝑖𝑠𝑒
) (Eq. 1.7) 

1. 2 Ambient Light Sensors 

1. 2.1 Background 

An ambient light sensor (ALS) consists of a device used to sense and to measure the brightness of the 

incident light coming from the surrounding environment under a given illuminant. Although this kind of 

sensor has existed for some time in industrial tools requiring photometric measurements, the brightness 

information they provide has nowadays found applications in many current consumer goods with the 

emergence of handheld and mobile device such as smartphones, netbooks, tablets or PDAs (personal 

digital assistants) (Figure 1.11). In particular, the measured brightness level is used to improve the digital 

post-treatments of pictures taken with the device and to make the screen reading more comfortable with 

a smart adjustment of the backlight. In parallel, this latter functionality features the remarkable 

advantage of reducing the power consumption of the device. Indeed, the battery life currently constitutes 

one of the main limiting factors of these mobile devices since it is critical for a long-time use away from 

any power outlet, which is precisely what they are intended for. Power consumption has become a major 

technological concern in the conception of mobile device, especially with the introduction of energy-

consuming color displays with larger sizes and higher resolutions. Several improvements are thus in 

progress throughout various levels of the microelectronic components manufacturing to reach a better 

power management. Among all the system functions, the display and especially the backlight were 

shown to be the most power-consuming elements [14], [15], with an exponential increase of the 

consumption when the brightness level of the screen is increased.  

 These results highlight the importance of controlling the backlight as a function of the outside 

brightness and thus explain the key role of ambient light sensors, which enable an automatic and 

immediate adjustment of the backlight level without requiring any user input. In broad sunlight 

conditions, the ALS sensor detects the high level of brightness and thus increases the backlight for a 

better readability of the screen. Conversely in low-light conditions at night or with moderate indoor 

lightning, it reduces the backlight to a sufficient level adapted to the low ambient brightness, thus 

limiting the user’s eye strain and substantially saving the battery life of the device. We thereby 

understand that although ALS sensors constitute a significant asset to limit the power consumption of the 

backlight, they are also designed to offer considerable improvement to the visual experience of the user.  
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FIG. 1.11. Examples of ALS sensors in the Samsung Galaxy S6 Edge and in the Apple iPhone 6. 

1. 2.2 Market trends 

The market of ambient light sensors has experienced a significant growth since 2007, especially thanks 

to their first integration in smartphones with the first iPhone. One can see that the global ALS revenue is 

about to reach 1 000 M$ within the next two years (Figure 1.12(a)). In the chart, a distinction is made 

between conventional ALS and what we will call here RGB-ALS. ALS are the sensors we will focus on 

for the whole study. We will see in the following sub-sections that it only consists of a single “green” 

photodiode, whereas RGB-ALS consist of a combination of red, green, blue and potentially infrared 

photodiodes. The RGB-ALS purpose is the same than conventional ALS, but they also allow for the 

white balance of the displays. The use of three color photodiodes indeed brings more information 

regarding the color spectrum of the illuminant and the sensor’s output can thus be used to adjust the 

display’s backlighting to the color temperature of the ambient light. We can notice from Figure 1.12(a) 

that RGB-ALS tend to grow at the expense of ALS. Actually, it is likely that the market shares between 

the two types of sensors are quickly going to reach a steady state since RGB-ALS tend to be used in mid 

to high-end device, whereas ALS remain a cheaper and sufficient solutions for low to mid-end handsets. 

The chart takes into account both single ALS and combined ALS solutions, i.e. ALS combined with one 

or two additional functions (proximity sensor, etc.) on the same chip (see multi-sensing in Figure 1.1). 
  

 
 

FIG. 1.12. (a) Global revenue of ALS and RGB-ALS. (b) Global revenue by application categories, 

regardless of the ALS type (Source: IHS). 

 
 As previously mentioned, the use of ALS in general has skyrocketed thanks to their integration 

in smartphones: nowadays, wireless communication constitutes 85 % of the global revenue of ALS 

(Figure 1.12(b)). Consumer electronics have also shown interest for ALS in laptops, tablets, PDAs, 

TVs, monitors, cameras and even in high-end white goods such as washing-machines or fridges. 
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Although their respective market shares are much lower, there is an increasing number of potential 

applications in the industrial and medical sectors (professional or diagnostic display-based 

equipment, etc.), the automotive field (electrochromic mirrors, brightness of central head units, etc.) 

and the street and office lightning management. For the following, ALS will only refer to 

conventional green ALS. 

1. 2.3 Principle 

In order to properly adapt the backlight of the screen for the user, ambient light sensors must sense 

exactly what the human eye senses. The ALS operating function is thus to mimic the daytime human eye 

sensitivity. This sensitivity is called the photopic response, which is opposed to the scotopic vision that 

occurs in low-light conditions. The photopic response constitutes the luminous efficacy function of the 

eye, defined within the range from 380 nm to 750 nm and characterized by a maximum sensitivity in the 

green spectral range at 555 nm (Figure 1.13). Anatomically, the existence of these two different visual 

regimes is due to the presence of two different kinds of photoreceptors inhomogeneously located on the 

retina: the cones and the rods. The cones are mainly located at the center of the optical axe and are 

sensitive to the color information since three types of cones exist, each one for blue, green or red 

wavelengths. They are however not very sensitive, but are well-adapted for a daylight vision and are thus 

at the origin of the photopic vision. With a higher sensitivity than the cones, the rods are more suited for 

night-time conditions and are thus responsible for the scotopic vision. The rods are located in the 

peripheral area and are monochrome, which explains why our night vision is a peripheral vision and why 

we cannot discern colors in the dark. 
 

 
FIG. 1.13. Luminous efficacies of the human eye in the scotopic V’(λ) and photopic V(λ) regimes according 

to CIE standards. ALS have to reproduce the photopic vision. Original figure from [16]. 

 
 As complementary information, we provide in Table 1.1 the correspondence between the main 

radiometric and photometric units. The energy of an electromagnetic radiation is called the radiant 

energy Q and is measured in J. Its power in W is defined as the radiant flux Φ. The electromagnetic 

power by unit area (W/m2) is called the irradiance. These quantities are called radiometric units. Now, 

the principle of photometry is to weight these quantities with the eye luminous efficacy (the photopic 

response in lm/W of Figure 1.13) so that the human sensitivity is taken into account in the measurements.

 By reminding that a lumen unit corresponds to a luminous intensity (cd) through a unit solid angle 

(sr), one obtains the equivalent photometric units given in Table 1.1. In particular, an ALS quantifies the 

surrounding illuminance, which is homogeneous to a luminous power incident on a surface and is thus 

measured in lm/m² or lx. It is important to keep in mind that we deal with luminous efficacy in 

photometric units, which corresponds to the portion of the total emitted electromagnetic radiation 
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actually usable for human vision (ratio of the luminous flux Φv to the radiant flux Φ). It should not be 

confused with the luminous efficiency, which stands for the efficiency of the conversion of input power 

into luminous flux. 

 
 RADIOMETRY PHOTOMETRY 

 Denomination Unit Denomination Unit 

Energy Radiant energy Q J Luminous energy Qv lm.s 

Power Radiant flux Φ W Luminous flux Φv lm 

Power/area Irradiance E W/m² Illuminance Ev lx 

 

TABLE 1.1. Correspondence between the main radiometric and photometric units. 

1. 2.4 Structure and integration 

The ALS solution of this PhD work is a green ALS combined with an IR proximity sensor. The 

integration of the ALS is made so that the sensor’s aperture allows for the entrance of a light cone of ± 

30° of incidence. Above the packaging of the chip, a black window is deposited upon customer request 

so that the sensor is not visible to the user. In the current device, the filtering system used to reproduce 

the photopic response is performed with the association of an on-chip green organic resist and of an 

external IR-cut filter to remove the NIR signal that is not filtered by the resist (Figure 1.14). In practice, 

the chip structure is very similar to the structure previously described of an image sensor with two major 

differences. The first one is the lack of the main lens and of the microlenses above the color filter since 

we don’t need to focus the light beam as in the case of an image reconstitution. The second one is the 

absence of pixels, since we don’t want to sense an image: the photodetector is made of a large single 

photodiode which aim is to collect the photons corresponding to the photopic response, thus quantifying 

the level of brightness. The dimensions of the photodiode are in the order of 3x3 µm². A complete 

description of the sensor elements is provided in Figure 1.15. The materials stack above the photodiode 

is similar to the case of image sensors, with the intermetallic dielectric (IMD), the metallic 

interconnections and the passivation layers. 

 

 
FIG. 1.14. Current filtering solution to reproduce the photopic response (red curve): a green organic resist 

(green curve) and an additional IR-cut filter (black curve). 
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FIG. 1.15. Structure of the ALS chip and optical elements of the sensor’s packaging. 

 
 The filtering system currently in use presents two drawbacks, both related to the necessary use of 

an additional IR-cut filter. First, this external filter is as thick (about 1mm [17], [18]) as the chip 

composing the sensor (about 1 mm), since the IR-cut filter is fabricated on a glass substrate. It can then 

constitute 50 % of the total thickness of the sensor, or 80 % in the case where the silicon substrate of the 

CMOS chip is thinned. It means that the integration of ALS with this filtering solution becomes 

problematic and hindering when the trend is to make handheld devices always thinner: the thickness of 

common smartphones nowadays can be below 7 mm, and even below 5 mm for the thinnest ones. 

Finally, this IR-cut filter can generate an additional cost to the sensor fabrication if it has to be patterned, 

with a manufacturer dependence on the filter supplier, which is in contradiction with the trend for this 

kind of sensors to be implemented in low to mid-end device. In order to remain competitive on this 

sector, it is thus necessary to find another entirely on-chip filtering solution allowing for the removal of 

the NIR signal without the help of an additional IR-cut filter. After having presented the image sensor 

and ALS applications, we will now focus on the filtering part of these devices. 

1. 3 Review on spectral filtering solutions 

In this section, we will present a succinct overview of the main existing optical filtering techniques than 

have been considered for the realization of color filters. The three major principles described below are 

the filtering by absorption, by interference and by diffraction. 

1. 3.1 Organic resists 

The main marketed types of filters in the image or light sensors sector are the color organic resists. They 

are generally made of pigments or dispersive dyes and thus work by light absorption. For example, a 

green resist is composed of pigments or solvents that absorb the blue and red components of the 

incoming light, but that are transparent to green wavelengths. In most cases, the blue and green filters 

have a band-pass function centered at 450 nm and 540 nm respectively, whereas the red filter consists of 

a high-pass function with a steep slope and a transmission maximum reached around 610 nm. The red 

band-pass function is then obtained with the addition of an IR-cut filter (Figure 1.16). Organic filters 

present a few advantages when it comes to optical performance. They feature high transmission maxima 

(above 80 % or even 90 %), a low-sensitivity to the angle of incidence up to 35° and also low full widths 

at half maximum (FWHM) of around 100 nm with a filter overlap occurring at 50 %, which is beneficial 

to limit the amount of color correction required in post-processing. 
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FIG. 1.16. Typical spectral responses of RGB organic resists for different thicknesses [19]. IR-cut’s typical 

response added. 

 
 Color resists however have difficulties to filter the infrared signal as it can be seen in Figure 1.16. 

This parasitical signal is highly detrimental to a correct color reproduction and thereby imposes the use 

of an additional filter removing the IR wavelengths between 700 nm to 1.1 µm at which silicon is still 

absorbing. The IR-cut filter thus has a double objective: realizing the red filtering function and removing 

the undesired IR signal. Although the IR-cut filter requirement is our main concern here because of the 

significant thickness and the possible additional cost it can imply, organic filters also feature a few weak 

points. First, their thickness is between 700 nm and 1.1 µm, corresponding to half the total thickness of 

the dielectric stack above the photodiodes. It can hardly be reduced because the consequent decrease of 

pigments or solvent quantities on the optical path would deteriorate the resists’ properties. Another 

serious limitation is their sensitivity to thermal treatment owing to their organic nature [20]. Studies 

showed that these resists flow and blacken when they undergo a treatment above 200°C, whereas the 

dielectric materials of the sensors including the passivation layers are deposited at around 400°C. This 

property is a major drawback since the process is locked once the resists are deposited, which removes 

any freedom of integration whereas the filtering element should ideally be as close as possible to the 

photodiodes to limit the spectral and the optical cross-talks [21]. Finally, a last disadvantage is their bad 

ageing. Color resists degrade when they are exposed to strong illuminations or to high temperatures, 

which modify their spectral profiles and thus misrepresent the colors of the reproduced images. 

1. 3.2 Interference filters 

The filtering function can be performed by interference filters, for instance based on the Fabry-Perot 

(FP) interferometer principle. A FB interferometer consists of a cavity delimited by two mirrors, which 

principle is drawn in Figure 1.17. At each index discontinuity, the light is partially reflected or 

transmitted [22]. This back-and-forth propagation of light inside the spacer generates destructive or 

constructive interferences depending on the wavelength of the incoming light, on the angle of incidence 

and on the thicknesses and refractive indices of the layers (Figure 1.17(a)). With a proper tuning of these 

parameters, one can thus allow for the propagation of a specific wavelength and attenuate the undesired 

signal (Figure 1.17(b)), which can be applied to optical wavelengths in image sensors. The semi-

reflective surfaces can be made with metallic layers or with a stack of alternating thin dielectric layers 

with high and low refractive indices. Two kinds of interference filters are thus obtained: the all-dielectric 

filters and the metal-dielectric ones. 
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FIG. 1.17. (a) Schematic of light propagation and interferences generation in an example of Fabry-Perot 

filter with two spacers. (b) Visual representation of the wavelength selection mechanism. 

 
 These two solutions applied to image sensors can be found in literature. For all-dielectric filters, 

the semi-reflective media delimiting the spacer (or defect layer or cavity) are each realized with a stack 

of quarter-waves layer with alternating indices (Bragg mirror). The thickness of the defect layer 

determines the wavelength of the filter. Inaba et al. [20] and Koyama et al. [23] both demonstrated the 

optical performance of such RGB filters with a total thickness inferior to 1.5 µm and with better lifetime 

than organic resists by using TiO2-SiO2 stacks. On another hand, metal-dielectric multilayered filters 

have also been proposed to perform filters in the visible range, where the thickness of the inter-metal 

cavity is used to tune the operating wavelength in the same way, and where the metal plays the role of 

mirror instead of alternating Bragg layers. A first demonstration of RGB filtering with a single Ag-SiO2-

Ag cavity was published by Yoon and Lee [24]. In 2011, Frey et al.  proposed a similar approach with a 

refined Ag-SiN-AlN structure using two defect layers to improve the quality factor and the transmission 

of the filters [25], for half the thickness of organic resists. Although metal-dielectric filters suffer from 

lower transmission efficiencies than all-dielectric ones due to metal absorption, the resulting color errors 

applied to 1.75 µm pitch CMOS sensor of the Fabry-Perot fabricated by Frey et al. show performance 

comparable to color resists. 

 Interference filters have been shown to be able to provide very interesting optical performance 

without IR-cut filter and with a lifetime higher than organic resists, but they are not flawless. The Fabry-

Perot interferences are by nature quite sensitive to the angle of incidence, while typical image sensors 

can receive light with angles of incidence up to 30°. Fabry-Perot filters use a stack of several layers 

which optical indices and thicknesses are decisive for wavelength selection and the quality of the filters. 

A major issue with this solution is thus the necessity to have a severe control of all the layer deposition 

steps to correctly reproduce their optical thickness, which is critical with the small thicknesses of thin-

film filters. At wafer level, it would require a very low dispersion that is difficult to reach on 300-mm 

wafers with current industrial deposition tools. Moreover, the metal-dielectric filters found in literature 

use silver, which is not CMOS-compatible and which deposition process at small thickness is 

challenging. Eventually, a final drawback in the case of image sensors is the need to pattern in a staircase 

shape the pixels in order to have three different cavity lengths for the three colors [26]. The use of 

several lithography steps is a constraint that complicates the fabrication and increases its costs. 

 Recent works proposed to solve the issue of the staircase structure and the multiple lithography 

steps by using a 2D nanostructuration of the optical cavity by horizontally alternating the low and high 

index dielectrics [27]. In this case, the optical thickness of the spacer is only tune by the modulation of 

the effective index in the cavity with the adjustment of the volume ratio between the two dielectrics [28]. 

This technique applied to image sensors would make the three RGB pixels have the same spacer 

thickness and would thus facilitate the integration of such filters [29]. A progressive nanostructuration 
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pitch from the center to the edges of the pixels has also been proposed with promising results to limit in 

the same time the angular sensitivity of interference filters [30], although the thickness control still 

remains a serious concern with this solution. 

1. 3.3 Diffractive filters 

Diffractive filtering is widespread in longer wavelength ranges where it is mainly used for 

telecommunications applications. Nowadays, the technological progress of CMOS fabrication processes 

has allowed for the shift of this filtering solution towards visible wavelengths with the use of semi-

conducting or dielectric materials. Although the following is not applied to the actual image sensors 

technology, it demonstrates the possibility to perform frequency selective structures adapted to red, 

green and blue colors. As an illustration, we can for example mention the work of Kanamori [31] and 

Yoon [32] for 1D silicon-based transmission filters, and the work of Fehrembach [33] or Magnusson 

[34] for reflective filters. These filters remain however rather uncommon in color sensors sector and 

present the huge disadvantage of being extremely sensitive to the angle of incidence, which is crippling 

for this kind of application. 

1. 4 The plasmonic alternative 

A recently developed nanophotonic domain called Plasmonics may provide an interesting solution in our 

research for a new filtering concept that matches the requirement of CMOS image sensors. The first 

observation of plasmons is attributed to Wood, who noticed in 1902 fast intensity variations in the 

spectra of continuous light sources diffracted by optical gratings that have been for a long time known as 

the Wood’s anomalies [35]. If many works were led to understand the nature of these anomalies and to 

eventually relate them to the concept of surface plasmons [36]–[39], it is only since the nineties that this 

emerging field nowadays widely known as Plasmonics has experienced a significant interest in various 

application sectors. The reader can refer to [40], [41] for extensive descriptions of the history of 

Plasmonics. We shall progressively present in this section the concept and the key properties for our 

applications of surface plasmons, starting with a brief overview of the electromagnetic and optical 

properties of metals. The articulation of this section is partly based on Maier’s book [42]. 

1. 4.1 Electromagnetic waves propagation  

The propagation of electromagnetic waves in a given medium is fundamentally described with the four 

Maxwell’s equations by linking the spatial and the temporal variations of the electric field E, the 

magnetic field H, the electric displacement D and the magnetic induction B (Eq. 1.8–1.11). The electric 

displacement and the magnetic induction can themselves be derived from the electric field and the 

magnetic field respectively with the following relations: D = εE = ε0εrE and B = μH = μ0μrH. In these 

equations, ε0 and μ0 stand for the permittivity and the permeability of free space respectively, εr and μr 

for the relative permittivity and the relative permeability of the medium respectively, and since we 

consider metallic media, the free currents density Jfree and the free charges density ρfree are also taken 

into account. In the context of our study, the system can be simplified by assuming a neutral non-

magnetic metal (ρfree = 0 and μr = 1) and by using Ohm’s law relating the free current density to the 

electric field with the electric conductivity σ in the form Jfree = σE. 
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 ∇ ∙ 𝑫 = 𝜌𝑓𝑟𝑒𝑒  (Eq. 1.8) 

 ∇ ∙ 𝑩 = 0 (Eq. 1.9) 

 ∇ × 𝑬 = − 
𝜕𝑩

𝜕𝑡
 (Eq. 1.10) 

 ∇ × 𝑯 = 𝑱𝑓𝑟𝑒𝑒 +
𝜕𝑫

𝜕𝑡
 (Eq. 1.11) 

  

 The electric and magnetic fields of a plane wave can be described in the complex form as given in 

Eq. 1.12–1.13 with k its wave vector in the reciprocal space associated to its wavelength λ (k = 2π/λ) and 

ω the angular frequency of the wave. By combining these equations of propagation with Maxwell’s 

equations, one obtains the general dispersion relation inside the considered medium (Eq. 1.14), with ε(ω) 

the complex dielectric function which may depend on the frequency. Note that this relation can be 

simplified in ω² = c²k² in free-space with c²=1/μ0ε0, which defines the light line in dispersion diagrams 

(see 1. 4.3 Surface plasmon resonances). 
  

 𝑬 = 𝑬𝟎 exp 𝑖(𝒌 ∙ 𝒓 −  𝜔𝑡) (Eq. 1.12) 

 𝑩 = 𝑩𝟎 exp 𝑖(𝒌 ∙ 𝒓 −  𝜔𝑡) (Eq. 1.13) 

 𝑘² =  휀(𝜔)𝜇0𝜔² (Eq. 1.14) 

 

 The dielectric function being complex, it can be written as follows: ε(ω) = ε’(ω) + iε”(ω). 

Consequently, the wave vector modulus in the general case is also complex and can be written with a 

similar decomposition k = k’ + ik”. Considering a propagation of the wave along the z direction, the 

electric field of the plane wave in the metal of Eq. 1.12 can be decomposed as in Eq. 1.15 (the same 

calculation can be made with the magnetic field). In this new equation, the first exponential term 

corresponds to phase propagation along the z direction, whereas the second exponential term stands for 

the damping of wave amplitude due to the absorption of the material. 

 Two remarkable cases appear from Eq. 1.15. If ε(ω) is real and positive (ideal dielectric case), 

then the modulus of the wave vector k is also real (k = k’) and the plane wave thus preserves its free-

space properties without attenuation (but dispersion can occur). On another hand, if ε(ω) is real and 

negative (ideal metallic case), then k is purely imaginary (k = ik”). In this case, the amplitude of the 

electric field decreases exponentially in the direction of propagation until the wave disappears.  We will 

see thereafter that a metal-dielectric interface can support the propagation a special surface wave called 

plasmon which is evanescent (transverse exponential attenuation) in both metallic and dielectric 

surrounding materials. In the direction of propagation, surface plasmons propagate without attenuation in 

ideal metals but are attenuated in real ones. In the next sub-sections, we will explain the metal properties 

and the characteristics of plasmon waves and plasmon resonances. 
 

 𝑬 = 𝑬𝟎 exp(𝑖(𝑘′𝑧 −  𝜔𝑡)) ∙ exp (−𝑘"𝑧) (Eq. 1.15) 

1. 4.2 Optical properties of metals 

A simple treatment of the plasmonic phenomenon can be achieved with a classical approach. Paul Drude 

proposed a microscopic description of the optical and electrical properties of metals by considering the 

electronic plasma as an ideal gas and by adapting the kinetics theory of gas to electrons. In this model, 

the electron plasma is represented as a sea of classic point particles freely moving inside the atom 

matrix, defined by the heavier and motionless ions. The Drude-Sommerfeld description for a free 

electron gas is modeled according to the equation of motion of a damped oscillator given in Eq. 1.16, 

with me the effective free electron mass, e the free electron charge, γ a phenomenological damping term, 
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E0 and ω the amplitude and the angular frequency of the applied electric field. The first order partial 

derivative stands for the damping effect corresponding to the collision of electrons with each other, with 

phonons or any other defect (γ = 1/τ, with τ the mean time between two successive collisions). 

 

 𝑚𝑒

𝜕²𝒓

𝜕𝑡²
+ 𝑚𝑒𝛾

𝜕𝒓

𝜕𝑡
= 𝑒𝑬𝟎𝑒

−𝑖𝜔𝑡 (Eq. 1.16) 

  

 Resolving this equation with a complex harmonic solution leads to the expression of the Drude 

dielectric function of a metal (Eq. 1.17), which also introduces the quantity ωp known as the bulk plasma 

frequency (Eq. 1.18) with ne the plasma density. This angular frequency corresponds to the 

eigenfrequency of the collective oscillation of the electron gas in a bulk infinite metal, also called the 

volume or bulk plasmon. Typical energies for bulk plasmon quanta ħωp of noble metals such as gold and 

silver are 9.03 eV and 9.01 eV respectively, and 10.8 eV and 14.8 eV for copper and aluminum 

respectively [43], [44]. Bearing in mind that our work focuses on visible and NIR ranges (ħω between 1 

eV and 3.5 eV), one can notice that these energies are much higher than the damping ħγ of these metals 

(0.08 eV for aluminum for example). If we neglect the damping term in Eq. 1.17, the dielectric function 

of a metal in the visible range can thereby be approximated by Eq. 1.19. 
 

 휀(𝜔) = 1 − 
𝜔𝑝²

𝜔² + 𝑖𝛾𝜔
 (Eq. 1.17) 

 𝜔𝑝 = √
𝑛𝑒𝑒²

𝑚𝑒휀0
 (Eq. 1.18) 

 휀(𝜔) = 1 − 
𝜔𝑝²

𝜔²
 (Eq. 1.19) 

  

 Two frequency regimes are thus noticeable from Eq. 1.19 and make the link between the light 

frequency and the wave propagation in metals (1. 4.1 Electromagnetic waves propagation). If ω is above 

ωp, the refractive index of the metal n = √ε is a real number. However if ω is smaller than ωp, then the 

dielectric function is negative, and n becomes imaginary, which means the electromagnetic wave cannot 

propagate through the metal. This relation directly explains the optical behavior of metals. We have seen 

that noble metals typically have their respective bulk plasmon frequencies in the ultraviolet (UV) range, 

that is why metals look shiny in the visible range: visible and IR radiations are reflected due to the 

screen effect created by the free electron gas (ω < ωp). Conversely beyond the UV range (ω > ωp), the 

metal is transparent to electromagnetic waves because the electrons of the metal cannot react fast enough 

to the electromagnetic excitation. 

 This model is sufficiently accurate to describe the optical properties of metals with the intraband 

transitions mechanisms, especially for alkali metals or for noble metals up to the NIR range. In the 

visible range and beyond however, discrepancies have been observed from optical measurements, 

especially regarding the imaginary part of the dielectric function. This difference is due to interband 

transitions that may occur for some metals below 1 µm. This is the case for instance for gold (330 nm 

and 470 nm), for silver (320 nm) or for aluminum (850 nm) [45], [46]. The Drude-Lorentz model takes 

these effects into account, but its description is far beyond the scope of this thesis. In practice we 

preferred to use measured and tabulated values of the dielectric constant of the metals we considered 

[47].  
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1. 4.3 Surface plasmon resonances 

We have seen how the optical properties of bulk metals are related to their dielectric function and to their 

volume plasma frequency. We shall now look at the case where the metal is spatially confined and how 

this configuration gives rise to new optical properties thanks to interfacial phenomena: the surface 

plasmon resonances (SPR). 

1. 4.3.1 Surface plasmon polaritons 

Let’s consider the case where the metal is only semi-infinite. The existence of a metal-dielectric 

interface allows for a new possible excitation of the surface metal electrons. The physical properties of 

these excitations can be directly calculated from Maxwell’s equations and from their continuity 

conditions at the interface. In particular, the kx component of the incident wave vector is conserved at the 

interface for a plane wave. We consider an electric field under the form given in Eq. 1.20 for z ≥ 0 (in 

the dielectric) and in Eq. 1.21 for z ≤ 0 (in the metal). The development of the electromagnetic solution 

for surface modes is not described here, but the reader can refer to [40], [42], [48] for comprehensive 

theoretical studies of the phenomenon.  
 

 𝑬 =  𝑬𝟎
𝒅 exp[𝑖(𝑘𝑥𝑥 + 𝑘𝑧,𝑑𝑧 −  𝜔𝑡)],   for 𝑧 ≥ 0 (Eq. 1.20) 

 𝑬 = 𝑬𝟎
𝒎 exp[𝑖(𝑘𝑥𝑥 − 𝑘𝑧,𝑚𝑧 −  𝜔𝑡)],   for 𝑧 ≤ 0 (Eq. 1.21) 

 

 By denoting εd and εm the respective dielectric functions of the dielectric medium and the metal, 

one can then demonstrate that such a surface excitation is ruled by the fundamental dispersion relation 

given in Eq. 1.22 which is valid for both real and imaginary εm (i.e. without or with attenuation) [42], 

[48]. A set of equations is obtained for the components perpendicular to the interface of the wave vectors 

in the metal kz,m and in the dielectric kz,d (Eq. 1.23). The electromagnetic excitation corresponding to this 

dispersion is known as a surface plasmon. More accurately, since the excitation results from a strong 

coupling with a luminous wave, it is also called a surface plasmon polariton (SPP). A surface plasmon 

polariton consists of a collective oscillation of the surface free electron gas under the form of a 

longitudinal wave propagating along the metal-dielectric interface with a wave vector kspp defined along 

the x-axis (Figure 1.18). 
 

 𝑘𝑠𝑝𝑝 = 
𝜔

𝑐
√
휀𝑑(𝜔) ∙ 휀𝑚(𝜔)

휀𝑑(𝜔) + 휀𝑚(𝜔)
 (Eq. 1.22) 

 𝑘𝑧,𝑖 = 
𝜔

𝑐
√

휀𝑗(𝜔)²

휀𝑑(𝜔) + 휀𝑚(𝜔)
   ,   𝑤𝑖𝑡ℎ   

𝑘𝑧,𝑑
𝑘𝑧,𝑚

= −
휀𝑑
휀𝑚

 𝑎𝑛𝑑 𝑗 = 𝑚, 𝑑 (Eq. 1.23) 

 

 A few properties of SPPs can be derived from Eq. 1.22 and Eq. 1.23. We consider the case of 

ideal metals for the sake of simplicity (Im(εm) = 0). From the latter one, it can be seen that if εd > 0, then 

εm has to be negative with the sign convention of Eq. 1.20-1.21, which is true for metals in our 

considered wavelength range (ω < ωp) and confirms that SPP can only occur at metal-dielectric 

interfaces. Furthermore, since we deal with a propagating mode along the metal surface, kspp has to be a 

real number. The condition εd ∙ εm < 0 thereby implies that εd + εm < 0. The components kz,m and kz,d are 

thus purely imaginary, which means that SPPs are evanescent in the direction perpendicular to the 

interface in the metal and in the dielectric medium and are thus bound to the interface. Finally, the 

dispersion relation implies that SPPs lie at the right of the light line ω = ck on the dispersion diagram, 
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meaning that they cannot be directly excited by incident photons since the momentum of light is too 

small to cross the SPP dispersion curve (Figure 1.19). The excitation of SPP requires a coupling system 

that will be presented in the next sub-section. For large wave vectors kx, the frequency of the SPP 

approaches an asymptotical value called the surface plasmon angular frequency 𝜔𝑠𝑝 = 𝜔𝑝/√1 + 휀𝑑 . In 

the case of a real metal (εm complex), this frequency is reached for a finite wave vector that gives the 

lower possible wavelength of a surface plasmon λSP = 2π/Re(kSPP) for a given metal-dielectric interface 

[42]. 
 
  

 
FIG. 1.18. Visual representation of a surface plasmon polariton propagating along a metal-dielectric 

interface. The excitation corresponds to a longitudinal oscillation of the surface charge density in the metal. 

The associated electromagnetic field exponentially decreases in the direction perpendicular to the interface. 

Schematic inspired from [49]. 

 

 
FIG. 1.19. Dispersion diagram of plasmons for an ideal metal with the frequency as a function of the parallel 

component kx of the incident wave vector kinc. Above the plasma frequency, light can excite bulk plasmons. 

When ω < ωp, we are in the regime of surface excitations. Since the SPP dispersion curve is always at the 

right of the light line, an incident plane wave on a metal surface cannot directly excite SPP.  

1. 4.3.2 SPP excitation conditions 

The excitation of surface plasmons with a plane wave is permitted if the conditions of energy 

conservation (ω) and wave vector conservation (k) are fulfilled. We have seen that whatever the 

wavelength, the SPP dispersion curve is always beneath the light line and never intersects it. In other 

words, we always have kSPP > k0, with k0 = ω/c being the magnitude of the wave vector kinc of incident 

free-space photons. In order to achieve the phase matching condition, an additional momentum must be 
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brought to the incident kx, i.e. the component parallel to the interface of kinc, so that incoming light can 

couple to a SPP. 

 There are in particular two known methods to overcome this wave vector mismatch. The first one 

consists in the use of frustrated total reflection of light inside a prism. We won’t use this method and its 

principle is thereby not presented here, but the reader can find the two reference prism uses in [50] for 

the Otto configuration and in [51] for the Kretschmann-Raether configuration. The second method that 

will be used throughout this thesis is the coupling via diffraction effects with a periodical structuration of 

the metal surface (Figure 1.20(a)) [40], [42], [48]. In this case, the incident wave vector is perturbed by 

the grating structure and the diffracted orders whose parallel component of their wave vectors kx,m 

matches kSPP will couple to SPPs (Figure 1.20(b)). In the case of a 1D grating, the wave vector matching 

is given by Eq. 1.24, where k0sinθ = kx  is the parallel component of the incident wave vector kinc, Px the 

period of the grating, θ the angle of incidence of the impinging light and m an integer corresponding to 

the diffraction order. 

 𝑘𝑠𝑝𝑝 = 𝑘0 sin 𝜃 +𝑚
2𝜋

𝑃𝑥
  , 𝑚 ∈ ℤ (Eq. 1.24) 

 This plasmonic property of structured metallic layers make them especially interesting for 

frequency selective applications since the operating wavelength can simply be tuned by changing the 

period of the grating. In particular, it demonstrates how plasmons can be used for filtering applications. 

We will see in Chapter 2 how SPPs can couple back to free-space photons in the case of subwavelength 

holes arrays.     

 

 
 

FIG. 1.20. (a) Schematic of the excitation of SPP with the diffracted orders generated by a grating. (b) 

Dispersion diagram with a representation of the phase-matching conditions between kSPP and the parallel 

component of the wave vectors kx,m of the diffracted orders. 

1. 4.3.3 Plasmons properties in the visible range 

We have seen that the kz component of an SPP is imaginary in both the metal and the dielectric medium. 

From the exponential decrease of the electric field in the z direction, the spatial confinement of the SPP 

at the interface can be calculated and is known as the penetration depth. The SPP penetration depth δj in 

a medium j is defined as the distance z at which the exponential factor exp(-ikz,jz) corresponding to the 

evanescent nature of the wave in the z direction equals 1/e (with e the Euler’s number), that is: δj = 

1/Im(kz,j) (Eq. 1.25) [40]. Typical values of δ are given in Figure 1.21 for silver, aluminum, gold and 

copper in the visible range in contact with SiO2, which will be widely used in the next chapters. The 

penetration depth in the metal is much lower than in the dielectric medium. This spatial confinement 

makes SPP very sensitive to interface conditions. One can also notice how the interband transitions are 

highlighted for each metal. 
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 𝛿𝑗 =  Im(
𝜆

2𝜋
√
휀𝑚 + 휀𝑑

휀𝑗²
) , with  𝑗 = 𝑚, 𝑑 (Eq. 1.25) 

  

 When losses are taken into account (non-zero Im(εm)), kSPP is complex and SPPs are also 

characterized by their propagation length LSPP along the metal-dielectric interface. This propagation 

length is defined as the distance at which the intensity of the electromagnetic field is reduced by a factor 

1/e. The distance is thus given by LSPP = 1/(2Im(kSPP)) [48]. Typical values of LSPP for metals in the 

visible range are between 10 µm and 100 µm [42]. 

 

 
 

FIG. 1.21. Penetration depths in SiO2 (δd) (n = 1.46) and in four metals (δm) (Ag, Al, Au and Cu) in the 

visible and NIR ranges. Refractive indices of the metals extracted from Palik [47].  

1. 4.3.4 Localized plasmon resonances 

In addition to surface plasmon polaritons which propagate along the metal surface, another kind of 

plasmon resonance can occur at a metal-dielectric interface: the localized surface plasmons (LSP). These 

resonances are confined inside nanostructures like a nanoparticle or a nanohole with a substantial 

increase of electromagnetic field in their vicinity compared with the excitatory field. We will talk more 

about localized plasmons in Chapter 3 where we will see how these are especially sensitive to the nano-

aperture shape and dimensions.   
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1. 5 Thesis objectives: the challenges of plasmonic filtering 

After having presented the general structure and operating principle of the two main light sensor types 

on which we will focus during this thesis (image sensors and ALS), we have seen how the filtering 

system have become critical for a further but cheaper integration of such sensors in thinner devices. The 

organic resists present the major drawback of requiring an external IR-cut filter that drastically enlarges 

its thickness. Maintaining the competitiveness on the market of light sensors in low to mid-end handset 

device imposes the development of an entirely on-chip filtering solution that does not need any 

additional filter to remove the infrared signal. One of the most serious known alternatives is the use of 

Fabry-Perot filters. We have however seen that their fabrication may necessitate several deposition and 

lithography steps, and especially requires a tough control of the thickness and of the optical properties of 

the deposited layers which may ask for dedicated and expensive tools. 

 As exposed in the previous section, plasmonics offers a few advantages regarding the 

technological challenges that we want to meet. The mechanism of plasmon resonances allows for a 

filtering function in the optical range with the simple use of a patterned metallic layer, the operating 

wavelength being tuned by the dimensions of the nanostructures. In practice, it means that the active 

element of a plasmonic filter (i.e. the metallic layer) is feasible with a single metal deposition and a 

single lithography step, even in sensors with pixels. Furthermore, the optical properties of metals 

naturally permit the suppression of the unwanted IR signal and thus remove the need for an IR-cut filter. 

Plasmonic filters, because of their structure and principle, however bring their own intrinsic 

technological challenges to meet the application requirements compared with the currently most 

widespread filtering solution, the organic resists. Indeed, their in-plane structuration inherently makes 

them sensitive to the angle of incidence (polar and azimuth), but also to the polarization, which were not 

issues with pigment-based resist. Similarly, the spectral response is directly dependent on the 

characteristic dimensions of the structures, namely, the period of the array, the size and the shape of the 

patterns. All these parameters induce reproducibility concerns with respect to the process dispersions 

related to the accuracy of the fabrication tools at each critical step of the filters realization, especially 

considering the fact that filtering visible wavelengths makes the structures dimensions fall to nanoscale. 

Furthermore, we are interested here in CMOS process, materials and equipment compatible with an 

industrial 300 mm wafer-scale production with high throughput requirements. 

 The aim of this work is thus to evaluate the potential of plasmonic filters to respond to the 

technological challenges specific to the considered applications, but also to the performance and 

fabrication concerns related to their working principle. This manuscript is thus articulated around the 

following issues: 

- Determining the best plasmonic structures for our targeted applications in terms of angular 

stability and identifying the most direct integration into a conventional sensor fabrication route. 

The integration has to take into account the industrial and CMOS compatibilities (Chapter 2). 

- Understanding the optical properties of the selected structures and evaluating their application-

related performance to propose optimal filter designs (Chapter 3) 

- Modeling process dispersions on the critical geometrical parameters to evaluate their impact on 

plasmon resonances and to approve the viability of plasmonic filters fabrication with respect to 

their sensitivity to the inaccuracies of industrial process tools (Chapter 4) 

- Developing a process route to realize experimentally the optimized filters and to validate the 

plasmonic solution for industrial visible filtering applications (Chapter 5) 

 



   

  

 

Chapter 2 

CMOS integration of nanostructures for 
plasmonic filtering 

We exposed in the first chapter how the principle of plasmonic filters makes them a theoretically 

attractive solution to perform wavelength-selective functions such as color filtering [52]–[55] or color 

sorting [56], [57] in various types of sensors. Their appealing advantages result from two main 

characteristics. The first one is the manipulation of the operating bandwidth with the nanostructures 

dimensions instead of using exclusively the optical properties of materials. The second one is their 

simple structure that allows for a fabrication of a filtering system with very few technological steps, 

especially regarding the patterning process. In our case, we want to investigate the ability of the 

plasmonic solution to provide exclusively on-chip filters for device such as image sensors where external 

filters (e.g. an additional IR-cut glass above the chip as discussed in 1. 5 Thesis objectives: the 

challenges of plasmonic filtering) are not required anymore. This removal of any external filter is 

beneficial in terms of height reduction and cost decrease. The objective of our work is however not 

limited to the single optical performance of the potential plasmonic structures that can be considered to 

realize such filters. By mainly focusing on visible applications, we aim to identify the ability of 

plasmonic structures to perform efficient filtering functions such as color filters or ambient light sensors 

in the context of a mass production, and with a view to leading to industrial products meeting customers' 

expectations. 

 On this basis, the context of the study is to evaluate the performance of plasmonic filters by taking 

into account various considerations, from the structures’ performances to the viability of their wafer-

scale fabrication, including the fabrication costs and the potential process issues. Regarding the 

performance specifications, we are looking for a plasmonic solution that provides transmission 

efficiencies and quality factors comparable or better than those of color resists for the considered 

applications, image sensors or ALS sensors. The angular stability is of primary importance, especially in 

the case of ALS since no lens is used to focus the light beam. Customers' specifications impose a 

tolerance to polar angles of incidence up to at least 30°, although a tolerance to incidences of 60° would 

be preferred. One of our major concerns is also to envision a production in an industrial environment, 

which implies several constraints. Industrial clean rooms generally have a severe monitoring of the 

contamination of the wafers and inside the equipments, which leads to a restriction in the allowed 

materials. Our materials choice thus concentrates only on CMOS-compatible metals and dielectric for 

the structures selection. If we consider a compliance with standard 300mm-CMOS fabs, we also have to 

ensure that the filters can be fabricated with industrial techniques able to sustain a high throughput. 

Moreover, the fabrication at wafer-scale imposes a homogeneity of the optical performance on the whole 

surface of the wafer, and from wafer to wafer too, which implies a high robustness of the filters to 

process dispersions. Finally, we are interested in a low-cost integration that minimizes the changes 
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brought to the front-end process route, so that the technology can be directly transferrable to industrial 

clean rooms. 

 In this chapter, we mainly focus on the search for plasmonic structures that provide the best 

optical properties according to our expectations and on the identification of the applications that could 

make the most of the plasmonic filters. The simulation method and the performance evaluation tools will 

be presented for the main applications of visible sensing. Different kinds of filters will be simulated and 

evaluated among the major families of plasmonic structures with emphasis on their angular stability, 

which constitutes a major issue for light sensors. Their agreement with the CMOS materials constraint 

and the ease of fabrication with respect to industrial processes will also be taken into account. Once the 

best applications are discussed, we will thus propose an optimal integration of the plasmonic filters 

taking into account the CMOS compatibility and the low-cost transfer to industrial fabs. 

2. 1 Method for optical simulations: RCWA 

2. 1.1 Numerical methods for periodic structures 

The simulation of the interaction between light and sub-wavelength structures imposes specific 

constraints in the choice of the calculation method. The small dimensions of the structures compared to 

the wavelength make the scalar theory of light propagation inappropriate and require the rigorous 

solving of Maxwell's equations. However, their analytical solutions are difficult to obtain, and new 

numerical methods were thus developed to solve such electromagnetic problems at the wavelength scale 

where resonances are expected to occur [58]–[60]. These methods are called rigorous vector theories as 

they take into account the polarization of the light [61]. They can use different operating principles to 

numerically solve Maxwell's equations, but it is generally the geometry of the problem that makes some 

more appropriate than others. In our case, we are strictly interested in periodical structures, be they 1D or 

2D. The algorithms fitting with our needs can be divided in two main categories: the finite difference 

methods and the modal methods. 

 The differential algorithms are mainly represented by the finite-difference time-domain method 

(widely known as FDTD), introduced by Yee in 1966 [62]. Its principle relies on the spatial and time 

discretizations of the partial derivatives of the electric and magnetic fields (E, H) obtained from 

Maxwell's equations. It comes from the observation that each time derivative of the electric (magnetic, 

respectively) field components are governed by the spatial derivatives of the magnetic (electric, 

respectively) field components. The time-domain and spatial-domain discretizations are then performed 

so that the components of the electromagnetic field (Ex, Ey, Ez, Hx, Hy, Hz) are approached according to 

their second-order limited development. The wave propagation is thus calculated in a leapfrog manner 

where the solving of the electric (magnetic, respectively) at a given instant time t leads to the solving of 

the magnetic (electric, respectively) field at the next instant t + Δt/2, where Δt is the time step of the 

simulations. The advantage of the FDTD method is that it doesn't have theoretical restrictions, meaning 

that it is able to calculate waves propagation in any medium (metals, dielectrics, plasmas...) and with 

very complex geometries. Its main drawbacks however are the long calculation times and the large 

memory size it requires to solve the problems. 

 With the modal algorithms, the computation of the electromagnetic field is performed in the 

frequency-domain using a slicing of the structure along the vertical axis z (slices perpendicular to the 

direction of propagation in normal incidence) so that the permittivity ε is constant in each slice along the 

z direction (see Figure 2.1 in next section). For each slice, this z-invariance of ε reduces the calculation 

of the waves propagation to a system of equations solved as an eigen-value problem (hence the name of 

these algorithms). The overall solution is then obtained from the calculation of the energy exchanges at 

the slices interfaces by matching the tangential fields with the boundary conditions. The most-known 
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modal algorithm is the Rigorous Coupled Wave Analysis (RCWA): we will exclusively use this method 

in our work and its principle will be detailed in the next sub-section. Note that other known variants of 

modal methods can be found such as the Exact Modal Method (EMM) [63]–[65] or the C method [66], 

[67], whose specificities are not discussed in the scope of this thesis. 

2. 1.2 The RCWA principle 

The RCWA method was popularized in the early eighties by Moharam and Gaylord [68], [69] 

considering first dielectric or metallic planar gratings sinusoidally modulated, and quickly generalized to 

surface-relief gratings [70] and to the tridimensional case [71]. They based their algorithm on the 

previous work of three physicists regarding the Fourier decomposition of the dielectric permittivity: 

Burckhardt [72], Knop [73] and Kaspar [74]. In addition to this technique, they defined the 

electromagnetic field in the modulated (inhomogeneous) layer in the form of coupled waves propagating 

along the z-axis and corresponding to the diffracted orders outside the array. The RCWA is thus a modal 

method that specifically relies on the Fourier expansion of the modes, hence its other denomination: the 

Modal Method by Fourier Expansion (MMFE). Note that although this property should inherently limit 

this method to periodical problems, new variations were also developed to deal with a-periodic situations 

[75]–[77], that will not be used in this work.  

 

The solving principle of the RCWA can be decomposed in four main steps whose principles are 

explained below. 

- The first one is to slice the structures along the z-axis so that in each layer the permittivity is 

periodically modulated along the x-y plane and constant along z. (Figure 2.1). In practice, it means that 

the shape of the periodic pattern is approximated with successive rectangles in order to delimit the 

refractive index change in each slice. If we consider the case of biperiodic arrays (as it will be the case in 

our work) with Px and Py the periods along the x-axis and y-axis, this slicing in piecewise z-invariant 

layers thus leads to the following properties of the permittivity in one given modulated layer j (Eq. 2.1): 
 

 {
 휀𝑗(𝑥, 𝑦, 𝑧) =  휀𝑗(𝑥, 𝑦)   for  𝑧 ∈ [𝑧𝑗 , 𝑧𝑗+1]                                         

 휀𝑗(𝑥 + 𝑚𝑃𝑥, 𝑦 + 𝑛𝑃𝑦, 𝑧) =  휀𝑗(𝑥, 𝑦, 𝑧)    with   (𝑚, 𝑛) ∈ ℤ²      
 (Eq. 2.1) 

 

- Thanks to this construction, the dielectric permittivity will depend on x and y in each horizontal slice in 

the situation of biperiodic arrays. Therefore, it can be expanded in Fourier series with a 2π/Px and a 

2π/Py factors in the exponential functions to take into account the periodicity (Eq. 2.2). The eigen-values 

in the frequency-domain are then calculated in each modulated layer j from Maxwell's equations. 
 

 휀𝑗(𝑥, 𝑦) =  ∑ 휀𝑗(𝑚,𝑛)𝑒
𝑖(𝑚

2𝜋
𝑃𝑥
𝑥 + 𝑛 

2𝜋
𝑃𝑦
𝑦)

+∞

𝑚,𝑛=−∞

 (Eq. 2.2) 

 

- The coupling between the different layers is then computed with the boundary conditions, where the 

tangential fields are matched at every interface. 

- The last step consists in calculating the resulting diffraction efficiencies and the total electromagnetic 

field. 
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FIG. 2.1. Scheme of the principle of horizontal slicing of a periodical structure used with the RCWA 

algorithm. The dielectric permittivity is invariant in each slice along the z direction. 

 
 In practice, it is necessary for numerical computations to truncate the infinite Fourier expansion. 

The number at which we decide to truncate the expansion corresponds to the numbers of harmonics of 

the calculation. The choice of the truncation is made according to the problem that has to be solved, 

because the convergence and the accuracy of the calculations depend on this number. Continuous 

improvements brought to the numerical solving part from the mid-nineties [78]–[80] have contributed to 

make the RCWA one of the most-used algorithms for diffraction problems, applicable to a wide range of 

multilayered array structures.  

 One of the main advantages of this method is that it is considered as rigorous since no 

approximation is made in its mathematical development and since the calculations tend towards the 

exact solution when the number of terms in the Fourier expansion increases. It can be applied to model 

any motif and does not require advanced numerical methods. For our work, the RCWA constitutes also 

an interesting choice because it is able to easily handle oblique angles, which is crucial for our 

specifications regarding the angular stability of plasmonic filters.   

2. 1.3 Information about the code used 

The execution of the RCWA method for our plasmonic structures is performed with a CEA in-house 

code built and developed by Jérôme Hazart, researcher at the CEA Leti Grenoble, France. This code was 

written in Matlab, by which the simulations are computed. It is available for infinite 1D or 2D arrays. 

The main running file contains the definition of the materials stack, the geometry of the periodic 

structures, the definition of the refractive indices and all information regarding the light source, such as 

the polarization state, the angles of incidence and the wavelength range. The number of harmonics taken 

into account in the field expansion is also chosen in this file. This code returns the absorption, the 

reflection and the transmission efficiencies of the structures. A similar version is also used to calculate 

field maps around and inside the structures. 

 

 The properties of the RCWA described in this part explain why it is particularly advantageous for 

our work since it is specifically dedicated to periodic structures and able to handle large angles of 

incidence. The fast computation of this algorithm constitutes also a significant assess for the simulation 

of several structures types and dimensions. We will now present the criteria used for the evaluation of 

the structures with respect to the targeted applications. 
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2. 2 Performance evaluation tools 

2. 2.1 Ambient Light Sensors 

We present in this section the methodology dedicated to the evaluation of filters aimed for the ALS 

application. The objective is to build software tools that take all the elements of the sensor involved in 

the optical path and return specific criteria that will allow for a quantitative evaluation of the impact of 

the different plasmonic filtering structures on the ALS sensor performance. 

2. 2.1.1 The global ALS sensitivity 

The sole optical data contained in the spectral responses that are obtained from the RCWA simulations 

of the filters do not provide enough relevant information allowing for the proper evaluation of the 

performance of the global ALS device. The ALS performance calculation has to take into account the 

whole path of the light in the sensors, from the light incidence outside the sensor to the photons 

absorption in the Si photodiode, which is described in Figure 2.2.  

 We must first consider the different types of illuminant that can irradiate the sensors. For our 

calculations, we use a set of 18 illuminants supposed to represent the typical illuminations that are 

encountered in various situations. For example in indoor conditions, we use typical lightning such as 

fluorescent light sources, LEDs or the 3200 K blackbody, which emission is close to those of quartz-

halogen light bulbs. To simulate outdoor conditions, we use the D65 illuminant which represents the 

emission of the sun [81]. The other illuminants are determined according to general specifications of 

STMicroelectronics’s customers: the following calculations are still relevant for any number n of 

illuminants. 

 

 
 

FIG. 2.2. Scheme of all the elements taken into account in the performance evaluation of ambient light 

sensors. The sensitivity of the device SALS (Eq. 2.1) is defined from: the type of illuminant, the black housing 

included in the packaging of the sensor, the filtering system (includes all the dielectric layers constituting 

the passivation layers and the back-end (BE) stack) and the quantum efficiency (QE) of the Si photodiode.  
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 Thereafter, the methodology consists in taking into account all the sensor’s elements located in 

the optical path. The first element encountered by the impinging light is a black housing included in the 

packaging of the sensors. This black housing is added owing to specific customers’ request whose 

purpose is to make the sensors invisible to the users, especially in the case of smartphones. In practice, 

this black housing can be realized from a black window or a black resist which hinders the visible signal 

but has high transmissions in the NIR range. A typical spectral response of this black housing is given in 

Figure 2.3. This packaging thus does not facilitate the realization of ALS filters since the useful signal is 

centered at 550 nm. Secondly, the light impinges the filtering system. In our case, we consider the 

filtering element to be exclusively on-chip and is thereby composed of the plasmonic structures and of 

all the dielectric layers located above the photodiode, including the passivation layers (see 1. 2.4 

Structure and integration). The spectral responses of the filters are extracted from the RCWA 

simulations. Finally, the last element taken into account is the absorption of the light in the photodiode, 

which is derived from the silicon quantum efficiency whose typical spectral response is shown in Figure 

2.3.   

 Considering all these elements, we define the sensitivity of the sensors for a given illuminant i 

with the global ALS sensitivity SALS in e-/(lx.s), which is proportional to the spectrally integrated product 

of the relative spectral power distribution of the illuminant (defined as Ill), the black housing 

transmission (defined as Black), the filter spectral response (defined as Filter) and the photodiode 

quantum efficiency (defined as QE), relatively to the theoretical photopic response (Eq. 2.3). In this 

calculation, a denotes the size of the photodiode (m), hc/λ the photon energy (J), Fphotopic the photopic 

function and Km its maximum sensitivity at 555 nm (Km = 683 lm/W). 

 

 𝑆𝐴𝐿𝑆(𝑖) =
𝑎²

ℎ𝑐
∙
∫ 𝐼𝑙𝑙(𝑖, 𝜆) ∙ 𝐵𝑙𝑎𝑐𝑘(𝜆) ∙ 𝐹𝑖𝑙𝑡𝑒𝑟(𝜆) ∙ 𝑄𝐸(𝜆) ∙ 𝜆 ∙ 𝑑𝜆
𝜆

𝐾𝑚 ∙ ∫ 𝐹𝑝ℎ𝑜𝑡𝑜𝑝𝑖𝑐(𝜆) ∙ 𝐼𝑙𝑙(𝑖, 𝜆) ∙ 𝑑𝜆𝜆

 (Eq. 2.3) 

 
 

 
 

FIG. 2.3. Rough description of the silicon photodiode QE (brown curve) and of the black housing spectral 

response (black dashed curve). Only the trends are shown because the exact data are confidential. All the 

calculations in this thesis use the accurate data though. 

2. 2.1.2 The performance criteria 

From the ALS sensitivity that we defined in the previous sub-section, we derive two criteria in order to 

quantitatively position the different studied structures relatively to each other and to optimize the best 

designs according to the specifications of the global device. In practice, the integrated signal measured 

over the integration time on the ambient light sensor (in e-) is multiplied by a calibration factor FC. This 
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calibration factor aims to work with a photons flow instead of an electrons flow: it is then dimensionally 

equivalent to the inverse of a sensitivity (in lx.s/e-). The calibration factor is calculated from two 

reference light sources i = (REF1; REF2), chosen with an incandescent and a LED sources. More 

precisely, it corresponds to the geometric mean of the inverse of the two sensitivities SALS(i) calculated 

under each reference illuminant (Eq. 2.4). 

 

 𝐹𝐶 = √(
1

𝑆𝐴𝐿𝑆(𝑅𝐸𝐹1)
) ∙ (

1

𝑆𝐴𝐿𝑆(𝑅𝐸𝐹2)
) (Eq. 2.4) 

 

 The first criterion is the ALS error. The purpose of this criterion is to quantify the stability of the 

sensitivity SALS of the ALS sensors with respect to the 18 different illuminants considered. It is defined as 

the relative variation of the dimensionless product of the sensitivity SALS and of the calibration factor FC 

within the set of 18 illuminants, with respect to the two reference illuminants (Eq. 2.5). It is measured in 

decibel units. The relevant value of interest in our specifications is the maximum ALS error, which has to 

be inferior to 2.2 dB over the whole set of illuminants. The maximum ALS error is the main criterion 

that has to be respected. This 2.2 dB value corresponds to the maximum ALS error that was obtained on 

STMicroelectronics ALS sensors with a green resist associated with an external IR-cut filter at the 

beginning of this PhD work in 2012. This maximum 2.2 dB value constituted the objective of the thesis. 

In 2015, the maximum value obtained on STMicroelectronics sensors reached 1 dB with the use of a 

new IR-cut filter. In next chapters, these two reference values will be displayed in the evaluation charts, 

but the performance will only be compared to the 2.2 dB value. We show in Figure 2.4 an example of 

ALS error evaluation for a random filter structure. In this case, the filter does not fulfill our criterion 

since the ALS error exceeds 2.2 dB for 9 illuminants. 

 

 ALS ErrordB(𝑖) =  10 ∙ log10(𝐹𝐶 ∙ 𝑆𝐴𝐿𝑆(𝑖)) (Eq. 2.5) 

 
 

 
FIG. 2.4. Example of the ALS error evaluation over the set of 18 illuminants for a random filter. The 

relevant value for our study is the maximum ALS error obtained over the whole set. 

 
 The second criterion is the ALS dark. The aim of this criterion is to quantify the sensor sensitivity 

in low light conditions. It is defined as the signal given by the sensor in the dark at a given temperature 

T. This signal is calculated from the dark current of the photodiode CDark (in e-/s) converted in lux with 

the calibration factor FC of the sensor (Eq. 2.6). The constraint on this criterion is less severe than for the 

ALS error since no absolute value has to be respected in the specifications. For the filters optimization, 

the ALS dark simply has to be minimized. In order to fix a reasonable limit for the calculations, we 
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choose an arbitrary value of 100 lx as the maximum tolerable ALS dark (6 times the value of the current 

solution with the green resist and a new IR-cut filter (16.4 lx)). Metallic filters present the advantage of 

relieving the constraint on this ALS dark criterion compared with organic resists. Indeed, metallic filters 

are not degraded by thermal treatments and STMicroelectronics’ studies demonstrated that a final 

annealing of the sensor could improve the photodiode quantum efficiency thanks to the thermal 

activation of the silicon dopants. Although the magnitude of this improvement is not accurately 

determined, it is expected to decrease the ALS dark value with a factor between 2 and 5.  

 We give in Figure 2.5 an example of the complete ALS evaluation of a random filter structure in a 

2D scatter plot featuring the ALS dark and the ALS error. Bear in mind that although we draw the mean, 

the RMS and the maximum ALS errors for this example, the only relevant value for our evaluation that 

will be drawn in the following studies is the maximum error. The green area stands for the ranges in 

which the ALS performances meet the previously defined specifications (maximum ALS error < 2.2 dB 

and ALS dark < 100 lx). In other words, a dot in the green area means that the corresponding filter 

matches the ALS requirements. 

 

 ALS Darklx(𝑇) =  𝐹𝐶 ∙ 𝐶𝐷𝑎𝑟𝑘(𝑇) (Eq. 2.6) 
 

  

 
 

FIG. 2.5. Example of a complete ALS evaluation with the ALS dark and the ALS error on a random filter 

(blue, green and red dots). The green area delimits the ranges within which the specifications are respected 

(based on the maximum ALS error of the 2012 sensors at 2.2 dB (black dot)). The orange dot represents the 

performance (maximum ALS error) of the 2015 solution using a green resist combined with a new IR-cut 

filter. In the following work, only the maximum error will be used. 

 
 In order to estimate the sensitivity of these two ALS criteria with respect to the filter, we 

reproduce different theoretical spectral responses by using Gaussian bells (Figure 2.6). The green curve 

corresponds to the theoretical photopic response. Each other curve represents a single particular 

deviation from the photopic response: the blue curve and the red curve simulate a blueshift and a redshift 

of the peak respectively; the brown curve simulates a half transmission loss from the photopic response 

and the yellow and purple curves stand for a signal loss with a thinner FWHM or a signal gain with a 

wider FWHM respectively. It can be clearly seen from this chart that the ALS dark is directly related to 

the transmission efficiency of the filter. Any signal loss (half transmission for the brown curve or thinner 

peak for the yellow curve) induces an increase of the ALS dark. Conversely, any signal gain leads to a 

decrease of the ALS dark (wider peak for purple curve). Finally, the calculations also reveal that the 

ALS error is very sensitive to the wavelength range of the filtered signal. The performances 

corresponding to the blue and to the red curves indeed show a substantial increase of the ALS error once 
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the filtered signal deviates from the photopic response. In particular, we see that ALS filters require a 

strong rejection in the NIR range to prevent this ALS error increase. 

 This first analysis shows that the criterion of strong rejection in the NIR range constitutes a high 

constraint on the plasmonic filters’ design since silicon absorbs photons with a wavelength up to 1.1 µm. 

 

 
 

FIG. 2.6. (a) Theoretical Gaussian spectra corresponding to the photopic response (green curve) and to 

specific deviations. (b) Corresponding ALS performance evaluation. 

2. 2.2 RGB image sensors 

The major part of this work is devoted to ALS sensors. However as the state of the art is essentially 

based on RGB sensors, some plasmonic structures were also evaluated for RGB sensors applications for 

reference. The evaluation of the RGB performances of plasmonic filters is performed with a dedicated 

tool developed internally in STMicroelectronics. This algorithm returns the RGB quality parameters 

from simulated images, and takes into account the whole imaging system, including the type of 

illuminant, the imaging optics and image sensor characteristics. An extensive description of the 

operating principle of the tool can be found in [9], [82]. Namely, the first factor that we consider is the 

color error ΔE2000 as defined in the CIELAB colorimetric space [83], which is calculated from the 24 

color patches of the Gretag-MacBeth colorchecker [84]. A noise indicator is also evaluated through the 

SNR10Y, which corresponds to the value of scene illuminance in lux required to have a signal-to-noise 

ratio (SNR) equal to 10, considered as the lowest acceptable value with camera-phones in low light 
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conditions. The SNR10Y and the color error ΔE2000 must be as low as possible. We also compute the 

noise gain NG, which gives the noise level brought only by the color correction matrix, whereas the SNR 

also takes into account the noises induces by the pixels and the signal level [9].  Its definition is given in 

Eq. 2.7, where βi are the conversion factors of the luminance channel and cij the coefficients of the color 

correction matrix defined in Chapter 1, with i, j = [R, G, B]. The noise gain indicates the filtering 

quality, and especially the amount of correction required to compensate the color cross-talk. The ideal 

value of noise gain is NG = 1, which means that the color correction matrix would be the unity matrix (no 

color correction needed).  

 

 𝑁𝐺 =
√∑ 𝛽𝑖² ∙ (∑ 𝑐𝑖𝑗²

𝐵
𝑗=𝑅 )𝐵

𝑖=𝑅

√∑ 𝛽𝑖²
𝐵
𝑖=𝑅

 (Eq. 2.7) 

 

 For our calculations, we consider a 3 Mpixels sensor with 1.4 µm pixel size under a 3200K 

incandescent light source, a scene reflectance of 18 %, a transmission of the optical system of 80 %, an 

aperture f# = 2.8, the monochrome response of a 3µm-thick silicon layer, a frame rate of 15 fps, a noise 

floor of 3 e- and a photo-response non-uniformity of 1 % [9], [25], [82].  

 The evaluation tools have now been presented for the two targeted applications. They have 

allowed us to establish accurate criteria defining the specifications that have to be met by the filters. We 

can now proceed to the evaluation of various plasmonic structures to identify those which best fit with 

the technological challenges of this work. 
 

2. 3 Plasmonic structures for spectral filtering 

Now that the optical and integration requirements are fully established and that the numerical evaluation 

methods are described, we can focus on the core of the thesis issue: which plasmonic structures better 

address the specifications we are looking for? We explained in Chapter 1 that the condition of EOT 

phenomenon with plasmonic resonances can be obtained with periodic arrays of metallic nanostructures. 

There are different kinds of structural color filters that can be found in literature. Depending on their 

structures, they each feature different optical properties and spectral responses that make some more 

appropriate for specific applications than others, such as color sorters [56], [57], color filters [52]–[54], 

[85], absorbers [86]–[89], waveguides [90]–[92] or displays [93]. In our case, we are only interested in a 

filtering solution involving transmissive filters since they can be equivalently used as a direct 

replacement of resist-like or Fabry-Perot-like filters in their principle of integration. Three major 

structures categories are investigated for such an application. The holes arrays constitute the most 

widespread solution [52], [53], [55], [85], [94], [95], but a few works on metallic patch arrays [96], [97] 

and metal-insulator-metal (MIM) structures [57], [98] also demonstrated transmissive filtering 

properties. Although a few recent papers seem to focus on CMOS-compatible materials [85], [94], [99]–

[102], most do not take into account these considerations and propose studies using fabrication 

techniques and materials such as silver, gold or optical materials that are not found in industrial CMOS 

front-end fabs.  

 In this section, we present our results regarding the achievable performance of these main 

structures types when they are simulated by taking into account the CMOS-compliance constraint on the 

materials choice and the industrial integration constraint. In each of the following sub-sections, the only 

materials that we use are aluminum or copper for the metallic layers, and SiO2 or Si3N4 for the dielectric 

medium, although TiO2 is sometimes used as a comparison with a high refractive index dielectric. The 
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arrays are infinite in the x and y directions. The specifications of the targeted applications in the visible 

range, i.e. the angular stability and the performance of image sensors and ambient light sensors, are also 

considered to estimate which designs feature the most required properties. 

2. 3.1 Metal-Insulator-Metal structures 

2. 3.1.1 Generalities on MIM arrays 

MIM stacks are widespread structures in the field of nanophotonics. Two noticeable applications in 

particular can be cited: plasmonic waveguides and photon absorbers, which are generally able to provide 

high absorption efficiency all over the IR spectrum, depending on the dimensions of the structures and 

on the dielectric cavity thickness [88], [99], [103]. These devices are generally fabricated with an array 

of metal-insulator patches lying onto a continuous metallic layer [89], [104]. In 2010, Xu et al. 

demonstrated the color filtering effect of MIM gratings composed of aluminum and ZnSe for the 

dielectric core [98], [105]. MIM planar structures are known to sustain two plasmonic eigenmodes, 

called the antisymmetric mode and the symmetric mode according to the symmetry of the longitudinal 

electric field Ex (Figure 2.7) [106]. Xu et al. reported that the antisymmetric mode has a near-linear 

dispersion across the visible range, making the design of transmissive filters easy for any color. The 

simulation and the fabrication of such RGB filters showed transmission efficiencies up to 60 % and a 

FWHM of about 100 nm. 

 

 
FIG. 2.7. (a) Scheme of a typical MIM filter with a square array (period P) of square patches (size a). (b) 

Slice view of the elementary cell with a MIM stack composed of two metallic layers of thickness hm, 

separated with a dielectric core of thickness hi. The surrounding of the patches, the superstrate and the 

substrate are made of SiO2.  

 
 Although this work demonstrated promising results, its limits are quickly reached when it comes 

to its use in an industrial context of the applications we are aiming for. The structures consist of 1D 

gratings that are inherently polarization-dependent, which make them interesting for the fabrication of 

polarizers, but not for high-yield sensors since almost half of the signal of unpolarized lights is lost 

[100], [103], [107], [108]. Furthermore, the optical performances are obtained with a high-RI dielectric 

(ZnSe) which use would not be possible in industrial CMOS front-end clean rooms. In this section, we 

investigate the main optical properties of MIM structures by simulating 2D arrays of MIM patches to 

overcome the polarization-dependency and by using CMOS-compatible materials only. The structure of 

the filters is given in Figure 2.7. Here, we only consider a square array of period P of square patches of 

size a. We define the fill factor of the structure as the ratio ff = a/P. The metal thickness hm is considered 

the same on the top and at the bottom of the dielectric core, whose thickness is denoted hi. The substrate, 
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the superstrate and the inter-patch dielectric are all made of SiO2 (with a constant refractive index n = 

1.46). The superstrate and the substrate are considered infinite. The dielectrics are considered as lossless 

materials (n” = 0). In order to evaluate the angular stability of MIM structures, the filters responses are 

calculated at different polar and azimuthal incidence angles θ and φ. The azimuth φ is defined as the 

angle between the x-axis and the incidence plane. The filters are also simulated with both TM and TE 

polarizations to evaluate their dependence on polarization. TE polarization is defined with the electric 

field E along the y-axis and H in the (xz) plane when φ = 0. Consequently, TM polarization is defined 

with E in the (xz) plane and H along the y-axis for φ = 0. Due to the symmetry of the array, the response 

of the filters at normal incidence is the same under TM and TE polarizations. 

2. 3.1.2 Material for the dielectric core 

Given the high number of parameters that can be studied for such structures, the materials used for the 

metallic layer and for the dielectric surrounding the MIM patches are fixed. Aluminum is chosen for its 

optical properties in the visible range [45], [46], [109], and SiO2 is chosen for the dielectric surrounding 

owing to its general use in optical structures and in the CMOS industry. The selection of the remaining 

dielectric core included between the two metallic layers is of prime importance for the optical response 

the filter [98], [105]. Typically, the resonance occurs in the visible region when hi is in the range of a 

few hundreds of nanometers. The effective index theory neff has to be used to account for the coupling of 

the plasmons of each metallic layer. It is related at first order to the skin depth of the metal and to the 

cavity thickness hi (Eq. 2.8) [91]. 

 
 

 𝑛𝑒𝑓𝑓 = 𝑛𝑐𝑎𝑣𝑖𝑡𝑦 ∙ (1 + 
𝛿

ℎ𝑖
) (Eq. 2.8) 

 
 

 
 

FIG. 2.8. Impact of the refractive index of the dielectric core of the MIM stacks on the spectral response. 

The filter’s dimensions are: hm = 50 nm, hi = 50 nm, P = 200 nm and a = 150 nm. 

 
 The impact of the refractive index of the dielectric core is thus studied by simulating three 

different dielectrics. SiO2 and Si3N4 are used respectively as low and medium RI dielectrics (nSiO2 = 1.46 

and nSiN = 2). Although its integration in CMOS clean rooms is not common, TiO2 is also used to model 

a higher RI dielectric (nTiO2 = 2.5). The results are drawn in Figure 2.8. First, we can verify here that this 

kind of structures is able to provide optical filtering properties with a strong rejection outside of the 

resonance peak. In addition to the spectral redshift of the resonance, it is noticeable that a high refractive 

index of the dielectric core significantly increases the transmission efficiency. We note however that this 
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improvement only raises the transmission to 40 % for the simulated filter. This observation suggests that 

the performance of CMOS-compatible MIM structures will be limited in terms of transmission level. For 

the following studies, Si3N4 will be used for the dielectric core in order to maximize the transmission 

while respecting the CMOS compliance constraint. 

2. 3.1.3 Structures investigation 

These MIM structures are characterized by different parameters that can be used to tune the optical 

response of the filters. Although the results in the state-of-the-art have confirmed their filtering 

properties, they also revealed a weak performance in transmission. In this sub-section, we want to study 

how MIM filters behave with respect to each geometrical parameter in order to see if the transmission 

can be improved. First, the effect of the array periodicity on the resonance is plotted in Figure 2.9(a). 

The linear redshift of the resonance as P increases is well noticed. It can however be seen that the 

transmission efficiency hardly exceeds 35 %, which is far too weak for an image sensor application. On 

Figure 2.9(b), we show that an increase of the fill factor leads to higher transmissions, but at the cost of a 

significant degradation of the rejection, especially in the NIR range for low fill factors. This bad IR 

rejection would require the use of an external IR-cut filter as it is the case for organic resists. This would 

thus reduce the interest of plasmonic filters regarding the removal of any additional filters above the 

sensors.  
 

 
 

FIG. 2.9. (a) Evolution of the resonance with the period of the array P. (b) Evolution of the filter’s response 

with the fill factor ff; (c) with the insulator thickness hi. (d) with the metallic thickness hm. The filter’s 

dimensions are: hm = 50 nm, hi = 50 nm, P = 200 nm and a = 150 nm. 
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 The effect of the thicknesses of the different layers composing the MIM stacks is described in 

Figure 2.9(c)-9(d). The insulator thickness has a weak impact on the transmission efficiency and on the 

FWHM, but we can observe a slight redshift of the resonance when hi decreases (Figure 2.9(c)). This 

redshift is due to the higher coupling between the plasmons of the two metallic layers, leading to an 

increase of the effective index neff as shown in Eq. 2.8. Conversely, the filter response is substantially 

impacted by the thickness of the two metallic layers (Figure 2.9(d)). The results suggest that there is an 

optimal value of hm for which the transmission and the quality factor of the filter are maximized (50 nm 

in our case). When hm is increased, the decrease in transmission can be attributed to higher metallic 

losses. Although it has to be investigated in details, the theoretically predicted lowering of the 

transmission when hm is decreased may be attributed to a stronger coupling between the plasmons of the 

SiO2 – Al and the Si3N4 – Al interfaces through tunnel effect across the thinner metallic layers.  

 In the hypothetical case where TiO2 could be used in industrial clean rooms to maximize MIM 

performances, one can obtain, with a finer tune of the geometrical parameters, RGB spectra 

corresponding to the wavelength of each color pixel (B: 460 nm, G: 540 nm and R: 610 nm 

approximately) as shown in Figure 2.10. Note that the presented spectra could not be considered as an 

optimal parameters study to perform RGB filters. As mentioned earlier, MIM filters suffer from low 

transmissions with a maximum of 42 % for the blue pixel, when current organic resists provide 

transmissions nearing 90 %. Moreover, the blue filter shows a drastic increase of the transmission above 

800 nm in the NIR region that would impose the use of an additional IR filter, which we would precisely 

like to avoid. The analysis of the color accuracy with such filters can be performed with the RGB 

evaluation tool, described in the previous section 2. 2.2. The results are given in Table 2.1 and compared 

to a model of RGB color resists [9], [19]. We can see that the color error is 74 % higher and the noise 

gain 18 % higher for the MIM arrays. Moreover, the SNR10Y is severely degraded with a 250 % 

increase compared with the resists. MIM structures thus do not present any interesting RGB performance 

compared with the color resists currently in-use. 

 

 
FIG. 2.10. (a) Example of a RGB filters set using MIM with TiO2 as the dielectric core. The filter’s 

dimensions are: hm = 50 nm, hi = 50 nm and P = 170 nm and a = 110 nm for the blue filter; P = 210 nm and 

a = 170 nm for the green filter; P = 280 nm and a = 210 nm for the red filter. (b) Comparison of the RGB 

performances obtained with the set of RGB MIM arrays and with color resists. 

 

 
ΔE2000 RMS ΔE2000 Max Noise Gain SNR10Y 

Color resists 2.75 6.25 1.39 89.6 

MIM arrays 4.79 8.71 1.65 314.4 
 

TABLE 2.1. Corresponding performances calculated with the RGB evaluation tool. 
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2. 3.1.4 Angular stability 

In addition to the global response of the filters, one of the main specifications for filters on chip without 

lens system is the robustness of the structures to severe off-normal incidence conditions. Specifically, the 

structures are simulated at different polar angles of incidence θ, but also at different azimuths φ. The 

nature of the filters with the 2D structuration of the metallic layer indeed makes them inherently 

sensitive to the azimuthal angle, which is seldom taken into consideration in the investigation of 

plasmonic filters to our knowledge. Typically, the structures have to provide a stable response until θ = 

60° in our specifications for RGB filters, and until θ = 30° for the ALS sensor as detailed in Chapter 1. 

Both filter types have to be insensitive to the azimuth φ, which is only simulated in the [0°; 45°] range, 

owing to the symmetries of square arrays. 

 We present the angular responses with varying θ of the red filter defined in the previous sub-

section for both TE and TM polarizations, at azimuth φ = 0° (Figure 2.11(a)) and φ = 45° (Figure 

2.11(b)). Note that the values of polar angles θ are given in air as if there was a very thick SiO2 

superstrate between the metallic patches and the air above the sensor. At φ = 0°, a stronger sensitivity is 

noticed with respect to the TM polarization with significant variations of the transmission and a 

noticeable redshift of the resonance, when the TE polarization remains stable and only experiences a 

decrease in transmission for θ = 60°. At φ = 45°, the two polarizations behave similarly with progressive 

transmission loss and redshift when θ is increased. 

 The last results have demonstrated the difficulty of MIM structures to provide transmission 

exceeding 40 %, together with poor polarization robustness and angular stability, which rapidly degrades 

the filters’ response even for low angles of incidence. Other structures have thus to be investigated to 

answer our technological challenges. 
 

 
FIG. 2.11. (a) Evolution of a MIM filter response with increasing θ for both TE and TM polarizations at φ = 

0°. (b) Same evolution at φ = 45°. The filter’s dimensions are: hm = 50 nm, hi = 25 nm, P = 200 nm and a = 

150 nm. 

2. 3.2 Metallic patch arrays 

2. 3.2.1 Introduction to metallic patch arrays 

As discussed previously, the MIM arrays have shown their limits in terms of optical performance and 

ease of fabrication for the application requirements we are targeting. In literature, simpler structures 

made of a single metallic layer can be used to excite plasmon resonances and to realize optical filtering. 

These structures consist of periodical arrays of metallic patches in a dielectric medium and are thus 
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easier to fabricate, since a single lithography step is sufficient to perform the nanostructuration of the 

metallic filters. Unlike MIM structures, the optical phenomenon behind metallic patch arrays is related to 

the physics of metallic nanoparticles. Although the use of metallic particles to realize colorful textures 

has been known for centuries (a famous example of this technique is the Roman Lycurgus cup [110]), 

the underlying theory has only been explained recently thanks to the development of Plasmonics. In this 

case, the color filtering effect is due to the excitation of localized surface plasmon (LSP) resonances at 

the metal-dielectric interface that leads to strong absorption and scattering of the incoming light by the 

particles. The theoretical background of metallic nanoparticles is not in the scope of this thesis, but the 

reader can find more information about this plasmonic effect with the Mie scattering [111]. Such 

structures have been widely investigated for light absorption, especially in the NIR range [112], [113]. 

Since 2012, a few studies have also investigated in more detail the potential use of metallic patch arrays 

to perform filtering applications in the visible range, even with 1D arrays [114]. With 2D arrays, 

different patch shapes have been studied, from squares [97] to asymmetric crosses [96]. Those works 

demonstrate a potential filtering application with complementary colors (CMY instead of RGB color 

filters), but little information is found on the angular dependence of these structures or on their ability to 

realize a green filter as in the case of the ALS application. 

 In this sub-section, we aim to properly evaluate the performance of metallic patch arrays 

relatively to the specifications of our targeted applications, especially regarding the angular stability of 

such structures. In our simulations, we use 2D square arrays of aluminum patches of thickness hm in an 

infinite lossless SiO2 surrounding (n = 1.46). Two shapes are studied for the metallic patches: squares 

with size a (Figure 2.12(a)) and crosses with arm length a and arm width b (Figure 2.12(b)). The angular 

stability of the metallic patch arrays is calculated under different polar and azimuthal incidence angles θ 

and φ. The azimuth φ is defined as the angle between the x-axis and the incidence plane. They are also 

simulated with both TM and TE polarizations to evaluate their dependence on polarization. As in the 

case of MIM structures, TE polarization is defined with the electric field E along the y-axis and H in the 

(xz) plane when φ = 0. Consequently, TM polarization is defined with E in the (xz) plane and H along 

the y-axis for φ = 0. Due to the symmetry of the array, the response of the filters at normal incidence is 

the same under TM and TE polarizations. 
 

 
FIG. 2.12. (a) Scheme of a typical metallic-patches filter with a square array (period P) of square patches 

(size a) with thickness hm. (b) Scheme of a metallic-patches filter with a square array (period P) of cruciform 

patches (arm length a and arm width b) with thickness hm. 

2. 3.2.2 Square patches 

The results found in literature suggest a difficulty to realize transmissive RGB filters with arrays of 

square patches [97]. The spectral responses of such structures indeed have the characteristics of 

complementary color filters with a transmission dip rather than a transmission peak. It can be seen in 

Figure 2.13(a) that the transmission of the simulated filter (hm = 200 nm, P = 200 nm and a = 100 nm) 

has a dip in the blue wavelengths and experiences a quick increase in the green and the red wavelengths, 

which would approximately correspond to a yellow filter in a CMY pixels matrix. Conversely, a distinct 
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reflection peak can be observed around 500 nm, which implies that metallic patch arrays can be used as 

RGB reflective filters.      

 The angular and polarization dependencies of the same filter are then studied similarly to the 

MIM structures. The filter is simulated for both polarizations TM and TE with different polar angles of 

incidence θ up to 60°, at azimuth φ = 0° (Figure 2.13(b)) and φ = 45° (Figure 2.13(c)). The values of 

polar angles θ are given in air as if there was a very thick SiO2 superstrate between the metallic patches 

and the air. There is not obvious distinction between the case φ = 0° and φ = 45°. In both situations, there 

is a progressive signal loss between 400 nm and 500 nm and a decrease of about 10% in transmission 

over the whole spectrum when θ is increased up to 60°, for both polarizations. It is difficult to estimate 

the angular stability of these structures from such spectra, but the sole transmission line shape at normal 

incidence makes them inadequate for our applications anyway. 

 

 
 

FIG. 2.13. (a) Transmission and reflection spectra of a square metallic patches filter. (b) Evolution of the 

filter response with increasing θ for both TE and TM polarizations at φ = 0°. (c) Same evolution at φ = 45°. 

The filter’s dimensions are: hm = 200 nm, P = 200 nm and a = 100 nm. 

2. 3.2.3 Cruciform patches 

A different shape of metallic patches was investigated in literature with asymmetric crosses, which 

showed interesting polarizing effects [96]. This property is however an undesired effect that we precisely 

want to avoid for our applications. We thus propose a study of a more basic shape with symmetric 

cruciform metallic patches as described in Figure 2.12 so that the polarization dependency of the filters 

is suppressed at normal incidence. Unlike square patches, our simulations show that it is possible with a 

proper tuning of the geometrical parameters to obtain a transmission peak allowing for a RGB filtering 

(Figure 2.14(a)). Although the rejection could be improved with a higher metal thickness, the spectral 
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response of the presented filter (hm = 50nm, P = 300 nm, a = 240 nm and b = 96 nm) exhibits a well-

defined peak at 520 nm reaching a transmission of 65 % and a FWHM of about 150 nm. In this case, the 

reflection curve does not feature remarkable properties. 

 As in the case of square patches, we simulate the angular and polarization sensitivities of this 

filter for the two azimuths φ = 0° (Figure 2.14(b)) and φ = 45° (Figure 2.14(c)). The results show that 

this kind of structure is also drastically sensitive to off-normal incidence conditions even for low polar 

angles of incidence (θ = 15°). Unlike MIM structures, it can be seen that the behavior of the two 

polarizations is inverted at φ = 0° and φ = 45°. At φ = 0°, the spectral response of the TE polarization 

severely deteriorates with θ, whereas the TM polarization is less impacted, and conversely for φ = 45°. 

Even if the cruciform patches are able to provide refined transmission peaks, their strong angular and 

polarization sensitivities make them unusable relatively to our specifications. Further work is thus 

required to find out better structures fitting our needs. 

 

 
 

FIG. 2.14. (a) Transmission and reflection spectra of a cruciform metallic patches filter. (b) Evolution of the 

filter response with increasing θ for both TE and TM polarizations at φ = 0°. (c) Same evolution at φ = 45°. 

The filter’s dimensions are: hm = 50 nm, P = 300 nm, a = 240 nm and b = 96 nm. 
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2. 3.3 Hole arrays in a metallic layer 

2. 3.3.1 Extraordinary Optical Transmission in subwavelength hole arrays 

The most widespread structures for plasmonic filtering are definitely the dielectric hole arrays in a 

metallic layer. In 1998, T.W. Ebbesen et al. published the first experimental evidence of the role of 

surface plasmons in the transmission of light through sub-wavelength apertures [115]. With transmission 

measurements through arrays of circular holes in a 200-nm-thick Ag layer, they observed transmission 

peaks occurring at wavelengths larger than the holes diameter, and with intensities much higher than the 

theoretical signal normalized to the total aperture area. These results quickly appeared as groundbreaking 

in the field of nanophotonics since it contradicted the previously established diffraction theory of light 

through small apertures [53], [116]. This theory stated than in the case of a hole in an infinitely thin and 

perfect metal sheet, the transmission efficiency would be extremely weak, decreasing with the 

wavelength to the fourth power below the cutoff wavelength of the aperture. The work of Ebbesen et al. 

thus demonstrated the high potential of plasmonics to manipulate light propagation at nanoscale, which 

they called the Extraordinary Optical Transmission (EOT). 

 This optical phenomenon exists thanks to the resonance of plasmons inside the structures. When 

the incoming light impinges the periodically structured metallic layer, a coupling between the 

electromagnetic field and the free electron gas of the metal is created by the diffraction of the light on 

the array. These diffraction effects add an additional momentum to the parallel component k// of the light 

wavevector k0 which allows for the momentum matching with the surface plasmon wavevector kspp (see 

1. 4 The plasmonic alternative). This coupling thus generates a collective oscillation of the electron 

plasma propagating at the metal-dielectric interface, known as a surface plasmon polariton (SPP). In the 

case of 2D hole arrays, the plasmon wavevector kspp can be written as presented in Eq. 2.9, with θ the 

polar angle of incidence, φ the azimuthal angle defined as the angle between the parallel wavevector k// 

and the x-axis, Px and Py the periods of the array along the x- and y-axes respectively, and i,j two integers 

corresponding to the scattering orders of the array [53], [117]–[119]. This equation directly highlights 

the dependency of the surface plasmon polaritons on the angle of incidence and on the azimuth.   

 

 𝑘𝑆𝑃𝑃 = √(𝑘0 sin 𝜃 cos𝜑 + 𝑖
2𝜋

𝑃𝑥
) ² + (𝑘0 sin 𝜃 sin𝜑 + 𝑗

2𝜋

𝑃𝑦
) ² (Eq. 2.9) 

 

 In such structures, the surface plasmons generated at the top metallic surface resonate at a specific 

wavelength directly related to the dimensions of the array, and can couple back to radiative modes on the 

opposite surface. The EOT discovery has since raised a growing interest in the study of hole arrays in a 

metallic layer for applications such as color sorters or color filters. Many works have investigated 

theoretically and experimentally the properties of gratings at first [100], [120]–[122], then those of 2D 

arrays with different hole shapes or types of array in order to understand the mechanisms of the plasmon 

resonances in these structures. Around the apertures, the localized plasmon resonances are also strongly 

dependent on the hole shape and dimensions, and the optical behavior of single apertures has also been 

studied [123]–[126]. In particular, the most studied shapes are basic geometries such as squares [127]–

[129], rectangles [129]–[133], circles [101], [131]–[133], triangles [101] or crosses [134]–[137], each 

arranged either with a square or a triangular arrangement [101], [118]. Although hole arrays are 

generally able to reach higher transmission efficiencies than MIM structures and to give spectral 

responses well-suited to transmissive filters compared to patch arrays, their angular and polarization 

sensitivities are seldom considered in literature. Only a couple of papers deal with these considerations, 

but the studied structures are not exactly hole arrays [138]–[140]. Yet, the future integration of 

plasmonic filters in typical industrial products such as image sensors or light sensors will only be 
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possible if they meet the technological specifications of each application. Namely, sensors must provide 

a signal stable with respect to the incidence and to the polarization state of the light. In the following 

sub-sections, we summarize our work on these different potential structures with a strong accentuation 

on the sensitivity to the light incidence, by taking into account, in the same time, the stability with 

respect to the angle of incidence θ, the azimuth φ and the polarization state. 

2. 3.3.2 Impact of the material properties 

Most authors generally work with materials as gold or silver, but some of them also take into account the 

concern of CMOS-compatibility by using aluminum or copper for the metallic layer. The choice of the 

used metal is crucial to the plasmonic effect since the resonance wavelength is related to its dielectric 

permittivity, thus determining the energy range in which it can be used as an effective transmissive filter 

(Eq. 2.10). Actually, this equation does not provide the position of the transmission maxima, unlike what 

was originally supposed [42], [117]. This is due to the fact that it does not account for the whole 

transmission phenomenon, which is not solely due to the surface plasmon polaritons. Experiments have 

indeed evidenced a redshift of the resonant peak position compared with the predictions obtained with 

this equation [53], [141], [142]. Both theoretical and experimental work have shown that this equation is 

in fact more related to the location of the transmission minima of the Fano-like resonance, resulting from 

destructive interferences between the SPP and the incident or emerging light in the holes [109], [143], 

[144]. The respective role of the SPP and the LSP will be discussed more in Chapter 3. 

 

 𝜆𝑆𝑃𝑃 = 
2𝜋

𝑘𝑆𝑃𝑃
∙ √

휀𝑚휀𝑑
휀𝑚 + 휀𝑑

 (Eq. 2.10) 

 

 Our simulations show that among the potential CMOS-compatible metals, aluminum gives the 

best results in the visible range with the highest transmissions reached around blue wavelengths, whereas 

copper is better for the NIR range and is only able to provide distinct transmission peaks from 600 nm 

(Figure 2.15(a)). These results are in agreement with the different studies on the metals properties for 

plasmonic applications which relate their optical properties to the real and imaginary parts of their 

dielectric constants or to additional effects such as interband transitions and loss mechanisms [45], [46], 

[109], [145]. With respect to our targeted applications and their respective operating wavelengths located 

in the visible range, aluminum will then be our favored material for this whole study. Despite an 

interband transition located at 825 nm which implies a substantial increase of the absorption for 

wavelengths longer than 550 nm, aluminum is indeed the best metal fitting with our optical and 

fabrication specifications. 

 Similarly, the dielectric material around the aluminum layer and inside the holes is changed with a 

progressive refractive index increase to study the best materials configuration (Figure 2.15(b)). The 

tested dielectric are air (n = 1), SiO2 (n = 1.46), Si3N4 (n = 2) and TiO2 (n = 2.5). They all are considered 

lossless. It can immediately be noticed that at constant metal thickness and aperture dimensions, a lower 

index dielectric induces a higher transmission and a sharper resonance. Since we want to favor the 

transmission efficiency and the quality factor of the filters, we will mainly use SiO2 as dielectric medium 

around the metal layer and inside the holes. Moreover, this material is widely used in microelectronics; 

its properties and its fabrication processes are thus well known and will be profitable in the realization of 

our filters. The use of air would require thinking about an integration of the filters in a free-standing 

configuration which is not the scope of this work, and will not be considered. 
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FIG. 2.15. (a) Transmission spectra for the same hole array filter obtained with aluminum (blue curve) and 

copper (red curve). (b) Transmission spectra for the same filter with aluminum for different refractive 

indices of the dielectric material around the metal and inside the holes. The filter consists of a square array 

of square holes with the following dimensions: hm = 175 nm, P = 200 nm, a = 130 nm. 

2. 3.3.3 Square arrays of holes 

The simpler structures studied in literature are square arrays. We simulated such structures with different 

hole shapes such as squares, circles and crosses, according to the schemes presented in Figure 2.16. The 

metal thickness is denoted hm, the metallic layer being embedded in an infinite SiO2 medium. The period 

is the same in the x and y directions and is denoted P. For square and circular holes, a corresponds to the 

size or the diameter of the holes respectively. For cruciform holes, a is the arm length of the crosses and 

b their arm width. The TE polarization is defined with the electric field E along the y-axis and H in the 

(xz) plane when φ = 0. Consequently, the TM polarization is defined with E in the (xz) plane and H 

along the y-axis for φ = 0. The response of the filters is the same under TM and TE polarizations at 

normal incidence, owing to the symmetry of square arrays. 
 

 
FIG. 2.16. Schemes of typical hole array filters with a square array (period P) of square holes (size a), 

circular holes (diameter a) and cruciform holes (arm length a and arm width b), with thickness hm. The SiO2 

superstrate and substrate are considered infinite. 
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FIG. 2.17. Spectral responses of a filter with square holes under two different polarizations and with 

different incidence angles for (a) φ = 0° and (b) φ = 45°. Same evolution for a filter with circular holes with 

(c) φ = 0° and (d) φ = 45°. Same evolution for a filter with cruciform holes with (e) φ = 0°and (f) φ = 45°. 

The filters’ dimensions are: hm = 100 nm, P = 150 nm, a = 105 nm (squares), a = 120 nm (circles), a = 125 

nm and b = 60 nm (crosses).  

  
 We gather in Figure 2.17 our results regarding the polarization sensitivity and the angular stability 

with respect to the polar angle of incidence θ and to the azimuth φ for the three different hole shapes. 

The evolution of the spectral responses with increasing θ for the TM and the TE polarizations is given 

each time for φ = 0° and φ = 45°, which correspond to the extreme azimuth values, given the symmetries 

of the arrays. Remember that θ is given in air as if there was a finite but very thick SiO2 layer between 

the aluminum layer and the air. For each shape, one can notice that the behavior of the TE and the TM 

polarization at φ = 0° and φ = 45° is inverted compared with the metallic patch arrays. Here the stable 

polarization at φ = 0° is the TE one and not the TM one. For circular and square shapes (Figure 2.17(a)-

17(d)), the spectral responses at φ = 0° under TE polarization are stable up to θ = 30° and only 

experience slight redshift and transmission loss (about 5 %) for θ = 60°. Under the TM polarization, the 

transmission quickly decreases even for low angles of incidence. The above observations on the 

polarizations are inverted when φ = 45°. The cruciform shapes however reveal a different behavior 

(Figure 2.17(e)-17(f)). In this case, no obvious difference between the TE and TM polarizations is 
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observed, and the spectral responses remain exactly similar to the normal incidence situation for the two 

azimuths and for a polar angle of incidence up to 30°. For a larger angle (θ = 60°), a low transmission 

loss (5 %) is noticed, together with a slight shift towards larger wavelength (40 nm) for the TM (TE) 

polarization at φ = 0° (φ = 45°). Square arrays of crosses thus demonstrate a very high potential for 

filtering applications requiring a significant robustness to large incidence angles and to the polarization 

state, namely, both the ALS and the RGB sensors could benefit from this property. We note however in 

our simulations that the transmissions (50 % – 60 %) are still lower than those of color resists (> 80 %). 

Higher transmissions are possible with hole-array filters, but this signal gain generally implies at the 

same time a wider FWHM and a worse rejection. 

2. 3.3.4 Hexagonal arrays of holes 

A common alternative in the study of plasmonic filters is the hexagonal (or triangular) array of holes 

[101], [118]. In this case, the arrangement is made so that each hole is equidistant from its six closest 

neighbors, which correspond to the angles of a regular hexagonal pattern (see Figure 2.18). Although 

this structure might limit the dependence of the filter to the azimuth, it also features a mismatch between 

the periodicities along the x- and the y-axes which induces a more noticeable difference in behavior with 

respect to the TM and TE polarizations, even at normal incidence (Figure 2.18(a)). In order to keep the 

symmetry of the filter for TE and TM polarizations at normal incidence, we propose to slightly distort 

the arrangement so that the structure has the same periodicity along the x and the y directions (Figure 

2.18(b)). Basically, this new structure is equivalent to a square array with a 45° rotation of the hole 

patterns, and allows for the same behavior of the filter with respect to TE and TM polarizations at 

normal incidence. The materials and the polarizations are defined in the same conditions than with the 

square arrays. In the following, we thus focus on this particular arrangement. Despite the slight deviation 

from the regular hexagonal arrays found in literature, we will call this particular arrangement 

“hexagonal” in this thesis, whereas the regular one will be referred as “triangular”. 

 

 
 

 

FIG. 2.18. (a) Top view of a triangular-array filter (hm = 100 nm, Px = 300 nm, Py = Px/√3, a = 120 nm) and 

corresponding spectral responses under two different polarizations at normal incidence. (b) Top view of the 

modified hexagonal-array filter (hm =100 nm, Px = Py = 300 nm, a = 120 nm) and corresponding spectral 

responses under two different polarizations at normal incidence. Scale of the arrays not respected. 
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FIG. 2.19. Spectral responses of a filter made of a hexagonal array of square holes under two different 

polarizations and with different incidence angles for (a) φ = 0° and (b) φ = 45°. Same evolution for a filter 

with circular holes with (c) φ = 0° and (d) φ = 45°. Same evolution for a filter with cruciform holes with (e) 

φ = 0°and (f) φ = 45°. The filters’ dimensions are: hm = 100 nm, P = 300 nm, a = 180 nm (circles), a = 185 

nm and b = 90 nm (crosses) and hm = 50 nm, P = 200 nm and a = 90 nm (squares). 

  
 As in the case of square arrays, we summarize here our results regarding the polarization 

dependency and the angular stability of hexagonal arrays according to the hole shapes such as squares, 

circles and crosses (Figure 2.19). At first, one can notice that the TE and TM polarizations still have this 

symmetric behavior between the φ = 0° and φ = 45° configurations. However, hexagonal arrays have a 

stable response at φ = 0° (φ = 45°) for the TM (TE respectively) polarization, which is the opposite 

behavior from square arrays. This is attributable to the fact that in our modified hexagonal configuration, 

the holes arrangement is equivalent to a square array with the hole shapes rotated by an angle of 45° as 

explained before, which thus explains this behavior difference of the polarizations between our square 

and hexagonal arrays. Regarding the impact of the shapes, circular holes are still highly sensitive to 

polarization and to off-normal incidence conditions. In this case of hexagonal array, it appears that 

crosses lose the stability properties that we have seen in square arrays. Finally, squares designed in a 
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hexagonal array seem to feature an angular stability comparable to the one observed for square arrays of 

crosses. This structure could then also be of major interest for ambient light sensor applications. We 

however notice in our simulations more difficulty to find such stable designs over the whole visible 

range compared with the square arrays of holes, which are more easily tunable thanks to the arm width 

that provides further design possibilities. 

2. 3.3.5 RGB filters 

An example of RGB set obtained with cross-shaped-hole arrays is simulated (Figure 2.20) and evaluated 

in Table 2.2. Note again that these filters cannot be considered as an optimized RGB set. When 

compared with the organic resists, the color error increases by 40 % and the noise again is doubled; that 

can be explained by the high level of color cross-talk that can be observed in Figure 2.20. As for MIM 

structures, the SNR10Y (see 2. 2.2 RGB image sensors) is very high compared to the resists, with a 293 

% increase. Although they feature interesting angular properties, cross-shaped-hole arrays do not suggest 

any performance gain in the view of realizing RGB filters for CMOS sensors. However the recent 

tendency of light sensors is leaning towards RGB-ALS sensors that would allow the identification of the 

color temperature of the scene illumination (see 1. 2.2 Market trends). Specifications for such an 

application are not yet well defined, but they noticeably differ from the requirements of image sensors. 

In the case of RGB-ALS sensors only, plasmonic filters could thus provide an interesting alternative to 

RGB color resists for this application since the three color filters could be patterned with a single 

lithography step. 

 

 
FIG. 2.20. (a) Example of a RGB filters set using cross-shaped-hole arrays with SiO2 and aluminum. The 

filter’s dimensions are: hm = 100 nm, P = 200 nm, a = 140 nm and b = 98 nm for the blue filter; hm = 200 

nm, P = 250 nm and a = 200 nm and b = 120 nm for the green filter; hm = 70 nm, P = 350 nm, a = 175 nm 

and b = 158 nm for the red filter. (b) Comparison of the RGB performances obtained with the set of RGB 

cross-hole arrays, with the set of RGB MIM arrays and with color resists. 

 

 
ΔE2000 RMS ΔE2000 Max Noise Gain SNR10Y 

Color resists 2.75 6.25 1.39 89.6 

MIM arrays 4.79 8.71 1.65 314.4 

Cross-hole arrays 3.85 7.93 2.77 352.7 
 

TABLE 2.2. Corresponding performances calculated with the RGB evaluation tool. 
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2. 3.4 Conclusion on plasmonic structures 

The three dominant plasmonic structures for optical filtering found in literature have been reviewed with 

an emphasis on the specifications that would be asked for their industrial integration in image or light 

sensors. The sensitivities to the polarization and to the incidence angles constitute the major concern we 

look after. For MIM structures, the transmission efficiencies are too low and the color errors too 

important to compete with current RGB filters. Furthermore, they do not show satisfying angular 

stability for their use in such sensors. Metallic patch arrays have demonstrated a very high sensitivity to 

light incidence that immediately disqualifies them for our applications. 

 Hole arrays feature the best compromise in terms of ease of fabrication and of optical 

performance. Plasmonic filters in general do not reach the transmission levels of organic resists, which 

prevents them from being serious candidate to replace the resists in high-quality CMOS image sensors. 

However, some structures such as the square arrays of crosses or the hexagonal arrays of square have a 

very high stability with respect to the incidence conditions, even for large angles of incidence. The 

crosses present the advantage of having more possibilities to tune their spectral response thanks to their 

shape that provides an additional geometrical parameter. These characteristics make these cruciform 

structures particularly interesting for the ALS application, which does not require as much transmission 

efficiency as RGB sensors, but needs a high angular stability. The following studies will thus focus on 

the integration of aluminum cross-hole-array in an ALS device and on the search for optimized 

performance. 

2. 4 Optimal integration solution for plasmonic ALS 

2. 4.1 Integration level of plasmonic filters 

One of our objectives in this work is to find an integration solution that is not only compatible with the 

CMOS environment and with the proper functioning of the ALS device, but that is also easily 

transferrable in the standard process routes of sensors in general, be they color sensors or ALS in our 

case. In practice, it means that the implementation of the filters in the device structure has to minimize 

the number of changes brought in already existing front-end fabrication flows. In addition to facilitating 

the technological transfer of plasmonic filters to industrial clean rooms, this would also greatly reduce 

the development costs of the technology. 

 Before performing an in-depth study of the integration solutions of plasmonic filters, we have to 

identify at which level of the fabrication process of image sensors their implementation is the most 

convenient. We present below in Figure 2.21 a rough description of the main bricks constituting the 

fabrication route of an image sensor in the case of front-side illumination. Above the front-end level 

where the transistors and the photodiodes are located, three metallic levels of interconnections based on 

a standard image sensor technology of STMicroelectronics are fabricated with copper according to a 

dual-damascene method, that consists of an additive patterning of the metal (the trenches are filled with 

the metal, instead of etching the pattern in a full metallic layer) [146]–[149]. Copper is restrained 

between diffusion barriers (generally Ta/TaN barriers) and the interconnections lines are embedded in a 

silicon dioxide called IMD (intra-metallic dielectric). This brick requires a consequent number of 

deposition, etching, Chemical-Mechanical Planarization (CMP) and lithography steps, and the 

integration of plasmonic filters in such a flow would not be direct. The filters could however be 

fabricated before the realization of the aluminum bond pads. Once the pads have been added, the chips 

are recovered with the passivation layers (Phosphorous Silicon Glass (PSG) and Si3N4) and a SiON top 

coat to preserve the sensor from the external moisture. These are the last steps when the plasmonics 

filters can be integrated without heavy change in the process flow, right before the pad opening. 
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 The easiest potential integrations of plasmonic filters seem thus to be either before the first 

etching step of the realization of the bond pads, or between the end of the pads fabrication and their 

opening, which corresponds to the brick where the passivation layers and the top coat are deposited. 

  

 
 

FIG. 2.21. Rough description of the main process bricks involved in the standard fabrication of the front-end 

part of an image sensors. The most direct integrations of plasmonic filters are directly after brick 1 or 

directly during brick 3. 

2. 4.2 Location of the metallic layer 

We have seen in the previous sub-section that plasmonic filters could easily be integrated in a CIS 

process flow right before the realization of the bond pads or during the deposition of the passivation 

layers. From this conclusion, we have thus a few different options regarding the deposition of the 

metallic layer. If we decide to realize the filters right before the bond pads, the metallic layer will be 

embedded in SiO2 (the IMD is a silicon dioxide). On the other hand, if we decide to fabricate the filters 

at the same level than the passivation layers, we have thereby the choice to use the PSG layer, the Si3N4 

layer or the SiON top coat as the dielectric medium around the metallic layer. The refractive indices of 

PSG is very close to those of standard SiO2 [150] and we will consider them to be the same material. 

Among the four potential levels of integration, we are thus left with three dielectric materials: the 

metallic layer can be embedded in SiO2 (n = 1.46), SiON or Si3N4 (n = 2). The top-coat is a low-index 

SiON whose refractive index was measured internally at STMicroelectronics (n = 1.48 at λ = 550 nm). 
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FIG. 2.22. Stacks considered for the evaluation of the impact of the dielectric refractive indices on the ALS 

performances. The plasmonic filters are simulated in an infinite dielectric medium such as SiO2, SiON or 

Si3N4, which also fills the holes. The structure used is a cross-shape-hole array in aluminum. 

 
 Although we have shown in the previous part that a low dielectric index was preferable around 

the metal to maximize the transmission efficiency, we don't know the impact of the refractive index on 

the ALS performance. We decide to evaluate its impact by simulating an aluminum cross-shaped-hole 

array embedded in an infinite dielectric medium corresponding to each material we are considering: 

SiO2, SiON and Si3N4 (Figure 2.22). The corresponding spectral response are then inputted in the ALS 

evaluation tool which returns the values of ALS dark and ALS error related to each situation (Figure 

2.23). The first data that were initially asked by the customers were the ALS dark and the mean ALS 

error. At this stage, the integration was thus thought relatively to the mean ALS error (Figure 2.23(a)), 

but we add here the evaluation for the maximum ALS error (Figure 2.23(b)). While the maximum values 

are logically higher than the mean ones, we can see that the conclusions are unchanged considering 

mean or maximum ALS errors: embedding the filters in an infinite SiON layer gives the lowest ALS 

error, which represents our major concern compared with the ALS dark. Given the very slight difference 

between the SiON layer and the SiO2 layer (0.03 dB in maximum ALS error), one could consider both 

solutions for the integration of the filters. We choose to make use of this little performance improvement 

for our latter design optimization and then to use the SiON layer. Note however that a dielectric with a 

higher refractive index such as Si3N4 severely deteriorates the performance. We attribute this to the trend 

that we observed in 2. 3.3.2 Impact of the materials properties: a dielectric with a high RI widens the 

resonance, which make the filters catch undesired signal, especially in the NIR range. 

 

 
 

FIG. 2.23. (a) Evolution of ALS performance with the mean ALS error when the refractive indices of the 

dielectric surrounding are changed among those of SiO2, SiON and Si3N4. (b) Same evaluation with the 

maximum ALS error. The plasmonic filter is a cross-shaped-hole array with the following dimensions: hm = 

275 nm, P = 225 nm, a = 190 nm and b = 105 nm. 
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2. 4.3 Distance of the filters to the passivation layers 

We have shown that hole-array filters give slightly better ALS performances when the metallic layer is 

surrounded by SiON rather than SiO2. We now know that it would be more efficient to place the 

plasmonic filters fabrication at the SiON top coat level in order to have at the same time a direct 

implementation in the CIS standard process route and an integration promoting the best possible 

performances. The calculations of the previous sub-section have been made in an infinite dielectric 

surrounding and do not take into account the whole materials stack the light has to travel through before 

it reaches the photodiode. Although the PSG, the IMD and the PMD (Pre-Metal Dielectric) can be 

assimilated to the same material, the Si3N4 layer has a distinct refractive index from SiO2 and SiON. 

This difference may create undesired optical phenomena such as a lessening of the device performance 

or Fabry-Perot-like interferences. In this sub-section, we aim to determine whether we can find an 

optimal distance between the metallic layer and the Si3N4, so that the impact of the latter one on the ALS 

performances is minimized.  

 Since we want to take into account the whole path of the light inside the sensor before it impinges 

the photodiode, we consider the stack described in Figure 2.24. From above the photodiode, then all 

along the metallic interconnections until the passivation layers, we have different successive kinds of 

SiO2 such as the PMD, the IMD and the PSG. Given their close refractive indices [150], they are all 

considered as optically identical and to behave like the standard SiO2 used in previous simulations. The 

thickness of this silicon dioxide is simulated as an infinite substrate in our RCWA code. Above it, we 

place the 500 nm thick Si3N4 corresponding to the second passivation layer (the first one being the PSG 

layer). There is then a first SiON layer between the Si3N4 and the metallic layer constituting our 

plasmonic filter. We call it the "intermediate" layer and we aim to determine its optimal thickness. The 

following layer is the aluminum layer of the filter. The holes are filled with SiON. Finally, we place a 

last SiON layer above the aluminum layer which purpose is to protect our filter and the sensor from the 

external atmosphere. Its thickness is not critical in the sensor fabrication and we consider it as an infinite 

superstrate to avoid any unwanted optical effect due to the air – SiON interface that would be present in 

an experimental device. 

 

 
 

FIG. 2. 24. Stack considered for the simulation of the plasmonic filters where all the dielectric materials 

above the photodiode are taken into account in the case of an ALS sensor. The ALS performances are 

evaluated for different thicknesses of the intermediate SiON layer. The scale is not respected. 
 

Patterned aluminum layer

Intermediate layer

2nd passivation layer

PSG 
(1st passivation layer) 

IMD

PMD

Infinite SiO2 substrate

Si3N4

Infinite SiON superstrate

SiON

Top coat

500 nm

?

300 nm

Materials Functions

Al



 

CHAPTER 2 

58 

 

 The results given in Figure 2.25 represent the evolution of the ALS performance of such a stack 

for different thicknesses of the intermediate SiON layer. Similarly to Figure 2.23, the integration was 

first thought according to the mean ALS error due to customer request. We also provide the evaluation 

with the maximum ALS error for comparison in Figure 2.25(b). In this situation, the results are slightly 

different but the trend is similar. Indeed, we see that although the types of ALS criteria do not 

substantially impact the device's performances, there exists an optimal value of intermediate layer 

thickness for which the ALS error, our primary criterion, is minimized. With the mean values, this 

optimum is reached at 325 nm, whereas it is reached at 350 nm with the maximum values. This 

difference is not aberrant given the thickness dispersion induced by the deposition tools during the 

fabrication, with a measured standard deviation of about 2 % at 3 σ. Compared with the theoretical case 

where the filter is embedded in an infinite SiON medium, we notice a 0.07 dB decrease in mean ALS 

error for only a 0.6 lx loss in ALS dark at 325 nm. We can thus deduce from these calculations that the 

optimal integration of plasmonic filters in an ALS device without modifying the front-end process 

consists in using the structure given in Figure 2.25 with a thickness of 325 nm for the intermediate SiON 

layer. This integration in which the plasmonic filters are embedded in the SiON top coat is directly 

transferable to a standard industrial fabrication of image sensors while ensuring the best reachable 

performance at lowest manufacturing cost. 

 

 
 

FIG. 2.25. (a) Evolution of the ALS performance with the mean ALS error for the considered stack when the 

thickness of the intermediate SiON layer is changed. (b) Same evolution with the maximum ALS error. The 

plasmonic filter is a cross-shaped-hole array with the following dimensions: hm = 275 nm, P = 225 nm, a = 

190 nm and b = 105 nm. 

2. 5 Conclusion on Chapter 2 

Throughout this chapter, we have described the simulation and evaluation tools we use to answer the 

technological challenges intrinsic to plasmonics and we have defined the specifications that will allow 

for the comprehensive evaluation and optimization of filters. The RCWA is particularly suited to our 

situation since we will only consider periodical structures and since the calculations are fast enough to 

allow for the study of many structures and parameters. Regarding the applications, the ALS filters have 

to meet two performance criteria. The first and most important one is the maximum ALS error, which is 

directly related to the quality of the filtered signal and thus to the quality factor and to the rejection of the 

filter. It must not exceed 2.2 dB. On the other hand, the ALS dark is more related to the performance of 

the sensor in low-light conditions, which is linked to the transmission of the filter. Its upper limit is fixed 

at 100 lx. 
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 We ran the simulations of the major structure types of plasmonic filters with strong emphasis on 

the sensitivity to polarization and on the angular stability in the same time, including the angle of 

incidence and the azimuth. These properties are fundamental to seriously consider a potential integration 

of plasmonic filters in industrial products as a replacement of organic resists combined with IR filters. In 

addition to the process difficulties of their fabrication, MIM structures have not shown any advantage in 

terms of transmission efficiency or of angular stability. Metal patch arrays, while easy to fabricate, 

feature a drastic sensitivity to the incidence of the light which is crippling for their use in the applications 

that are considered in this thesis. The best combination of the ease of fabrication and of the optical 

performance is obtained with hole-array filters. Although none of these three plasmonic structures can 

achieve the same transmission performance as organic resists, hole arrays distinguish themselves with 

the possibility to obtain a very high angular stability. Crosses give the best results when it comes to the 

robustness to the polarization and to the light incidence, besides providing more tuning possibility due to 

their additional geometrical parameter: the arm width. The low transmissions generally obtained with 

plasmonic filters (or higher transmissions with very poor quality factors) complicates their integration in 

high-end CMOS image sensors, but these angular properties however make hole arrays, and especially 

cross-hole-array filters, a very promising solution to perform ALS filters. The rest of the study will thus 

be focused on the optimization of the performance and on the fabrication concerns of cross-hole-array 

plasmonic filters. We will especially present in Chapter 3 how their angular behavior can be improved. 

In the light of this work, we patented a solution to limit the sensitivity of plasmonic filters in general to 

azimuth on image sensor applications [151]. 

 Finally, the integration of this kind of plasmonic filters has been studied with the aim to obtain the 

most direct integration in a standard imagers flow. The configuration that we defined is thus to fabricate 

the filters above the Si3N4 and SiO2 passivation layers located above the metallic interconnections, just 

before the pads opening. The solution that gives optimal ALS performance consists in the embedment of 

the aluminum nanostructured sheet inside the SiON layer, which is used as the surrounding dielectric 

material for the plasmonic filter. To limit the optical impact of the underlying Si3N4 layer, the 

intermediate SiON layer in-between the nitride and the aluminum must have a thickness of 325 nm. This 

configuration thus defines the complete optical stack that has to be considered in the simulations to 

evaluate plasmonic filters in an actual ALS sensor.  
  

 

 
 

FIG. 2.26. (a) Description of the “standard stack”, where the filter is embedded in an infinite SiO2 medium 

and where the holes are also filled with SiO2. (b) Description of the ALS stack, including all the dielectric 

layers (passivation, Back-End-of-Line (BEOL)) and the filter located above the photosensitive area of an 

ALS sensor. 
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 As a consequence of the previous studies, we define in Figure 2.26(a) and in Figure 2.26(b) the 

two reference stacks that will be used in the following chapters. The “standard stack” corresponds to the 

nanostructured aluminum layer embedded in an infinite SiO2 medium. It will be used for theoretical 

studies of the plasmon resonances in our structures. On the other hand, the “ALS stack” refers to the 

complete stack including every material located above the photodiode in an ALS sensors, which includes 

the SiON-embedded aluminum filter, the passivation layer and the BEOL dielectric. It will be used for 

the evaluation and the optimization of the plasmonic ALS device. 

 



   

  

 

Chapter 3 

Evaluation of plasmonic filters for Ambient 
Light Sensors 

This chapter is split into two main parts. In the first section, the resonances of cross-shaped-hole arrays 

are comprehensively investigated in order to connect the geometrical characteristics of the structures to 

their optical properties in general. The results are used to determine the proper design rules required to 

obtain angularly stable and polarization insensitive filters. In the second part, the simulation tools 

described in Chapter 2 are used to evaluate and optimize the performance of the selected plasmonic 

structures relatively to the Ambient Light Sensors (ALS) criteria. The conditions of angular stability 

defined in the former part are taken into account in the evaluation. At the end of this chapter, we will be 

able to propose plasmonic designs fitting with every optical requirement of ALS. 

 
 

3. A – Resonance and angular properties of cross-shaped-

hole arrays 
 
It has been seen in Chapter 2 that square arrays of cruciform holes have a better robustness to incidence 

angles (polar angle θ and azimuthal angle φ) and polarization states than more basic hole shapes like 

square and circle (2. 3.3 Hole arrays in a metallic layer). Yet, this property appears to be dependent on 

the design’s dimensions [152]. Simulations show that some cross-shaped-hole arrays may not guarantee 

the angular and polarization stability we are looking for, as shown in Figure 3.1(b). In part A, we thus 

investigate in detail how the geometry of cross-shaped-hole arrays influences the plasmon resonances 

and subsequently, how the angular and polarization properties are affected. All the simulations included 

in part A are performed with infinite arrays and 8x8-harmonic RCWA method using the generic stack 

(infinite SiO2 substrate and superstrate), all defined in Chapter 2. This study will provide us accurate 

geometrical criteria to design stable filters that will be used in the evaluation of plasmonic ALS. This 

work resulted in a publication [153] and a poster in conference [154]. 

 In this part, the simulated structure corresponds to the standard stack defined in 2. 5. Conclusion 

on Chapter 2 with an aluminum layer surrounded by infinite SiO2 superstrate and substrate. A filter 

consisting of a square array of cruciform holes (Figure 3.1(a)) with period P = 150 nm, arm length a = 

120 nm and arm width b = 72 nm, is used as a reference filter around which a given parameter is 

changed so that its influence on the angular stability can be clearly identified. The main parameters 

investigated throughout the following reading are the metal thickness hm, the crosses size relatively to 

the period with the ratio a/P, the shape factor b/a, and eventually the distance d between crosses.  
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FIG. 3.1. (a) Scheme of the studied cross-hole array structure. (b) Example of a cross-shaped-hole array 

presenting a substantial sensitivity to the polar angle of incidence θ with constant φ. Filter dimensions: hm = 

75 nm, P = 190 nm, a = 125 nm and b = 85 nm. 

3. A.1 Review on the impact of geometrical parameters 

3. A.1.1 Metal thickness hm 

Since the discovery of the Extraordinary Optical Transmission phenomenon (see 2. 3.3.1 EOT in 

subwavelength hole arrays), many computational and experimental studies have been led to observe the 

effect of the geometrical parameters involved in the design of metallic nanostructures. The objectives of 

these works were to explore the properties and potential applications of such devices, but also to 

understand the underlying physics of plasmon resonances in the EOT, which describes the high level of 

transmission of light through holes smaller than the wavelength in an opaque film. In particular, the 

sensitivity of EOT to the thickness of the metallic layer was addressed in the early years of its discovery 

with the description of the resonance mechanism of plasmons inside the holes. 

 In 2001, Martìn-Moreno et al. proposed an analytical model to study the transmission of light 

with 2D hole arrays in thick metallic films [127]. It shows that the transmission of photons in thick films 

lies on a two-regimes mechanism due to the competition between two quantities: the lifetime trad of a 

Surface Plasmon (SP) on an isolated surface to couple into a radiative mode, and the time tres required 

for two SPs of opposite surface to couple. For thin metallic layers, tres<<trad and photons can travel back 

and forth several times in the holes creating constructive interferences and thus leading to a highly 

enhanced transmission and a redshift of the resonance. Conversely for thick films, photons trapped in a 

SP on the incoming surface simply tunnel through the holes to the SP of the opposite surface and radiate 

(sequential tunneling), implying smaller transmission levels. Experimental results have confirmed the 

relevance of this model by revealing the two regimes and their characteristics [155]: thick layers exhibit 

an exponential decrease of the transmittance with hm, whereas the peak broadens and levels-off going to 

small thicknesses. 

 In our case, we propose to deepen the analysis of the thickness impact by taking into account the 

sensitivity of cross-hole arrays to incidence angles and polarization in the analysis. 
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 The filter of reference, now described with P = 150 nm, a/P = 0.8, b/a = 0.6 and d = 30 nm 

according to the parameters used in this study is simulated for various thicknesses ranging from 25 nm to 

300 nm. In this way, the transition from the case of thin films to the case of thick films is covered. The 

spectra corresponding to a thin Al layer (50 nm) and a thick one (200 nm) are given in Figure 3.2 with 

different polar and azimuthal angles of incidence (θ and φ respectively) and for two polarization states 

TM and TE. The definitions of the angles of incidence and of the polarizations are the same as in 2. 3 

Plasmonic structures for spectral filtering. The angular stability shows no obvious reduction between the 

two thicknesses, although a faster decrease of the transmission is noticed in the 200 nm case when θ is 

increased. It can be seen however that there is a symmetric behavior of the TM and TE polarizations at φ 

= 0° and φ = 45° respectively. At φ = 0°, the filter under TM polarization is shown to be sensitive to the 

polar angle of incidence θ, whereas it remains very stable under TE polarization. This result corroborates 

the work of Lin and Roberts on crosses [152]. In our case, we also show that for an azimuth φ = 45°, the 

stabilities of the TM and TE polarizations are inverted compared to the case φ = 0°. 
 

 
 

FIG. 3.2. Spectral responses of filters (P = 150 nm, a/P = 0.8, b/a = 0.6, and thus d = 30 nm) under two 

different polarizations and with different incidence angles for (a) φ = 0° and (b) φ = 45°, with hm = 50 nm. 

Spectral responses for (c) φ = 0° and (d) φ = 45° with hm = 200 nm. 

 
 In order to go deeper into the analysis, the shifts of the resonance wavelength as a function of the 

polar angle θ and of the thickness are given in Figure 3.3, for two azimuth values φ = 0° and φ = 45°. As 

we saw in Chapter 2, a shift of the resonance can lead to significant ALS error increases and has thus to 

be avoided. In this figure, the spectral responses are calculated from the average of the two polarizations 

states TE and TM. It can clearly be observed here that the resonance at normal incidence is redshifted 

going from thick films to thinner films around 25 nm or 50 nm. This is explained by the coupling of the 

SPs of each opposite surface that is allowed only for thicknesses inferior to three times the skin depth 

[155], the latter corresponding to 12 nm for aluminum in the visible range. Furthermore, the charts 
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demonstrate that for thin metallic films, the resonance is substantially shifted towards longer 

wavelengths when the polar angle θ is increased. This redshift is explained in literature by the fact that 

the LSP resonance gets closer to the (-1,0) SPP mode when increasing the polar angle [152]. For 

thicknesses superior to 200 nm however, the resonance remains stable even for high values of θ.  

 

 
 

FIG. 3.3. Resonance peak position as a function of the incident angle for increasing metal thicknesses at (a) 

φ = 0° and (b) φ = 45° calculated for the average response between TE and TM polarizations responses. (P = 

150 nm, a/P = 0.8, b/a = 0.6, and thus d = 30 nm). 

 
 We have seen that although the metal thickness has not a significant impact on the stability of 

cross-hole plasmonic filters, it is preferable to have a thick enough metallic layer (typically, superior to 

150 nm) to avoid any coupling between the SP of the opposite surfaces and to reduce the sensitivity to 

the polar incident angle. Given this result, it is worth noting however the existence of a trade-off 

between the stability, the transmission level and the rejection quality of the filter. If a high metal 

thickness improves the stability of the filter and its rejection, it also implies a limited transmission, and 

the opposite is true for thin metallic films. The metal thickness has thus to be carefully chosen depending 

on the targeted applications. For the remaining part of this section A, the metal thickness of the reference 

filter is set to 75 nm in order to avoid any coupling effect and also to have acceptable transmission and 

rejection when studying the other parameters. 

3. A.1.2 Effect of the a/P ratio 

In this sub-section, we now focus on the influence of the size of the crosses relatively to the period P, 

described with the ratio a/P. This ratio is scanned by varying only the arm length a and by keeping the 

other parameters constant (the period P = 150 nm, the metal thickness hm = 75 nm and the shape factor 

b/a = 0.6 are those of the reference filter). In Figure 3.4 are presented the spectral responses of a small 

cross (a/P = 0.53) and a wider one (a/P = 0.8) with different polar angles of incidence, for φ = 0° and φ 

= 45° and under the two polarization states TE and TM. No obvious change is observed in the evolution 

of the angular stability for the two cross sizes, whatever the azimuth. The only effect that can be noticed 

is that the a/P ratio can be tuned to monitor the transmission efficiency and the quality factor of the 

resonator, related to the Full-Width at Half Maximum (FWHM): a filter with small crosses (low a/P) 

will have a high selectivity but a poor transmission because of the decrease of the aperture area: 28 % for 

a/P = 0.53 and 64 % for a/P = 0.8. 

 The resonance shift is also presented in Figure 3.5 as a function of the polar angle of incidence for 

various a/P ratios. At normal incidence, it can be seen, with the average polarization, that the resonance 

is significantly redshifted when a/P is increased, since it also depends on the arm length of the crosses 

[135]. Out of normal incidence however, the evolution of the stability when comparing filters with low 

and high-a/P ratios is very weak. 

b)a)φ=0° φ=45°
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 There is thus no restriction on the choice of a/P to get stable filters, but a compromise is still 

required between the rejection of the filters and their transmission level. In the following sub-sections, a 

ratio a/P = 0.8 is kept to favor a sufficient transmission efficiency of the filters between 40 % and 60 %. 

The quality of the rejection is not our main concern for the study of the angular behavior of crosses. 

 

 
 

FIG. 3.4. Spectral responses of filters (hm= 75 nm, P = 150 nm, b/a = 0.6) under two different polarizations 

and with different incidence angles for (a) φ = 0° and (b) for φ = 45° with a/P = 0.53. Spectral responses for 

(c) φ = 0° and (d) φ = 45° with a/P = 0.8. 

 

 

 
 

FIG. 3.5. Resonance peak position as a function of the incident polar angle for increasing a/P ratios at (a) φ 

= 0° and (b) φ = 45° calculated for average polarization. 
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3. A.1.3 Shape factor b/a 

One interesting point about crosses compared to squares and circles is that they feature a second 

parameter in addition to the cross size: the cross width b. This additional dimension allows for the design 

of distinct cross shapes even for a given size, leading to different optical properties. It has been seen for 

example in our simulations and also in literature that decreasing the width of the crosses induces a 

substantial redshift of the resonance and a lowering of the maximum transmittance [135]. This can be 

directly related to the results obtained with rectangular holes, where a much higher field enhancement 

and an increase of the normalized transmission are observed when increasing their aspect ratio [125], 

[132], [133]. In order to identify the potential impact of the crosses width on their angular and 

polarization properties, we study the effect at different angles of incidence of the geometrical parameter 

b/a, previously defined as the shape factor (SF), to depict all the possible shapes of the crosses: from the 

theoretical case where the arms of the crosses are infinitely thin (b/a = 0) to the particular case where the 

crosses become squares (b/a = 1). 

 

 
 

FIG. 3.6. Spectral responses of filters (P = 150 nm, hm = 75 nm, a/P = 0.8 and thus d = 30 nm) under two 

different polarizations and with different polar incident angles for (a) b/a = 0.4 and φ = 0°. (b) b/a = 0.6 and 

φ = 0°. (c) b/a = 0.8 and φ = 0°. (d) b/a = 0.4 and φ = 45°. (e) b/a = 0.6 and φ = 45°. (f) b/a = 0.8 and φ = 

45°. 
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  In Figure 3.6, we show the spectral responses of three variations of the reference filter 

characterized by different shape factors b/a = 0.4, b/a = 0.6 and b/a = 0.8 for the azimuths φ = 0° (Figure 

3.6(a)-(c) respectively) and φ = 45° (Figure 3.6(d)-(f) respectively). The two polarization states TE and 

TM are displayed in each chart. The symmetry previously observed in sections 3. A.1.1 and 3. A.1.2 for 

the two polarizations at φ = 0° and φ = 45° is still noticed, but it can be seen this time that varying the 

shape factor greatly impacts this behavior. The spectral response under TM polarization at φ = 0° is 

severely affected when θ is increased for b/a = 0.8, but it tends to experience less deterioration under the 

same illumination conditions when the shape factor gets smaller. In the case where b/a = 0.4, the spectral 

responses of both polarizations at angles of incidence up to 60° are very close to the normal incidence 

situation. The same observations can be done for the TE polarization at φ = 45°. 

 Those results under b/a variation clearly demonstrate the relevance of investigating the 

geometrical dimensions of the cross-shaped-hole arrays to properly tune their optical properties. This 

behavior shows that these structures can be made nearly insensitive to the polarization state of the light 

and to its incidence angles by changing the b/a ratio. From the computations, the condition of stability is 

reached for values of shape factor inferior or equal to 0.5. No obvious improvement of the stability was 

noticed when decreasing the shape factor to excessively low values (e.g., b/a = 0.2) compared to the case 

b/a = 0.4 presented in Figure 3.6. Furthermore, such a low ratio would lead to very weak transmission 

levels and considerable technological difficulties that make it of low interest for image sensor 

applications. 

 

 Normalized electric field maps on the top surface of the aluminum layer have been calculated 

with a RCWA code to comprehend this property of cruciform holes. They are shown in Figure 3.7 for 

four shape factors (b/a = 0.2, b/a = 0.4, b/a = 0.6 and b/a = 0.8) at their resonance wavelengths (λ = 580 

nm, λ = 475 nm, λ = 400 nm and λ = 330 nm respectively). The calculations are done at normal incidence 

and for TE polarization. The results for the TM polarization can be deduced by a 90° rotation. 

 The electric field intensity and location significantly change when the shape factor sweeps from 

low to high values. In the stable case presented above where b/a = 0.4, the field is highly localized in the 

internal corners of the crosses. This particular field enhancement may explain the stability of crosses 

with small shape factors since it can directly be related to localized surface plasmons. Localized 

resonances are known to depend mostly on the geometrical shape of the holes and not on the 

illumination conditions [86], [152]. When the shape factor is increased, the field intensity is reduced and 

the location of the resonances becomes more scattered. For large shape factors (e.g., b/a = 0.8), the field 

distribution gets closer to a cavity resonance where the field intensity is decreased and mainly located on 

two opposite long edges of the crosses perpendicular to the incident electric field for TE polarization. 

The loss of stability for large crosses may thus be attributed to the delocalization of the resonance, 

related to the delocalized propagating surface plasmons. Eventually, one can notice that the field 

distribution of large-b/a crosses becomes similar to that of square or rectangular holes [125], [156], 

where the little internal corners have no specific impact on the resonance. This study thereby brings 

additional contributions to the understanding of the transmission process and of the electromagnetic 

properties of hole arrays, and also confirms the importance of localized plasmon resonances in the 

extraordinary optical transmission phenomenon [136], [144], [157]. 

 

 As for this work, we have shown that a shape factor below 0.5 is required for the realization of 

stable cross-shaped-hole filters owing to the high enhancement of the localized plasmon resonances in 

the internal angles of the crosses. 
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FIG. 3.7. Electric field norm |E| normalized to the incident one |E0| on top surface of the metallic filter (P = 

150 nm, hm = 75 nm, a/P = 0.8 and thus d = 30nm), for normal incidence and TE polarization and for (a) b/a 

= 0.2 and λ = 580 nm.  (b)  b/a = 0.4 and λ = 475 nm. (c)  b/a = 0.6 and λ =  400 nm. (d)  b/a = 0.8 and λ = 

330 nm. The x and y axes are given in nm. 

3. A.1.4 Intercrosses distance d 

In the previous sub-section, we have seen that the width of the crosses has a significant impact on the 

plasmon resonances, and thus that the stability properties of these structures can be widely and simply 

controlled by changing one characteristic dimension. In the case of 2D arrays, it is also relevant to 

consider how the holes interact with each other and how this may affect the sensitivity of these filters to 

the light incidence. We focus now on the effect of the spacing between crosses that we defined earlier as 

d = P-a. Since a is kept constant, this can be assimilated to a variation of the period P, although the main 

effects can be attributed to the change of d.  

 In Figure 3.8, the impact of the intercrosses distance is illustrated with the dimensions of the 

reference filter (P = 150 nm, a = 120 nm and b = 72 nm) with three spacing values. The spectral 

responses for TE and TM polarizations are given for angles of incidence up to 60° and only for an 

azimuth φ = 0°. The charts put in evidence that the arrays with the closest distances between crosses tend 

to get a more stable response under off-normal incidences as the case d = 20 nm presents the lowest 

resonance shift and transmission losses when θ is increased. The deterioration of the spectral response is 

more severe when d is progressively increased to 50 nm and 100 nm. This observation implies that 

arrays with crosses close to each other are preferred to obtain filters with angular and polarization 

stabilities.  
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 To complete these results, the evolution of the behavior of near-crosses arrays with the azimuth is 

presented in Figure 3.9 with d = 20nm. The symmetry of the TE and TM polarizations is still observed 

for φ = 0° and φ = 45°. We can also see that the response of the two polarizations are very similar in the 

case φ = 22.5°, and that their deterioration when θ increases is lower than in the two extreme cases (φ = 

0° and φ = 45°).  

 

 
  

FIG. 3.8. Spectral responses of the reference filter (hm = 75 nm, a = 120 nm, b/a = 0.6) for both TM and TE 

polarizations at different polar incident angles for φ = 0° and (a) d = 20 nm. (b) d = 50 nm. (c) d = 100 nm. 

The schematics actually correspond in the simulations to infinite arrays of crosses.  

 

 
 

FIG. 3.9. Spectral responses of the reference filter (hm = 75 nm, a = 120 nm, b/a = 0.6) with d = 20 nm for 

both TM and TE polarizations at different polar incident angles and for (a) φ = 0°. (b) φ = 22.5°. (c) φ = 45°.  

 

 
 In order to go further in the analysis, the evolution of the resonant wavelength of the main 

transmission peak is given in Figure 3.10 as a function of polar angle of incidence with different 

intercrosses spacing d and for three azimuths. The data that we present in Figure 3.10 are calculated with 

8 harmonics, with a 2 nm wavelength step and averaged over the TE and the TM responses. 

Furthermore, this evolution is calculated in the cases of two arrays, one with a small shape factor (b/a = 

0.4) and the other one with a larger shape factor (b/a = 0.6). The other dimensions of the filters presented 

in the charts are those of the reference filter. 

 At first glance, one can notice that the filters are more sensitive to the polar angle of incidence for 

large intercrosses distances, as their spectral responses experience more substantial shift towards long 

wavelengths when θ increases. The redshift is however considerably reduced for small values of 

intercrosses distances, which is especially visible in the case b/a = 0.4 where the resonance occurs at the 
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same wavelength whatever the angle of incidence for d ≤ 50 nm. One can notice that the sensitivity to θ 

for large intercrosses distances is progressively reduced when the azimuth φ is swept from 0° to 22.5° 

and from 22.5° to 45°. For example, in the case b/a = 0.4 and d =150 nm, the resonance shift between 

normal incidence and θ = 60° is 122 nm for φ = 0°, 98 nm for φ = 22.5° and 45 nm for φ = 45°.  

 

 
 

FIG. 3.10. Evolution of the resonance peak shift induced with the polar incident angle θ and calculated from 

the average of the TM and TE response, for different intercrosses distance d, and for different azimuths and 

two distinct shape factors b/a = 0.4 and b/a = 0.6. Filter dimensions are:  hm = 75 nm and a = 120 nm. 
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 Here is a potential explication to this impact of the intercrosses distance. When crosses are close 

to each other, the metal layer becomes almost discontinuous and thus the surface plasmon polaritons can 

hardly propagate along the metal surface, leading to the predominance of localized resonances. 

Localized plasmon resonances are known to be nearly insensitive to the light incidence and are more 

related to the shape and to the geometry of the apertures [144]. That would explain the stability of low-d 

filters regardless of the light incidence and azimuth. On the other hand, when crosses get farther from 

each other, the "corridors" between crosses are widened and the propagation of surface plasmon 

polaritons (SPPs) is progressively facilitated. For high values of intercrosses spacing (e.g., d ≥ 100 nm), 

the contribution of surface plasmon polaritons becomes predominant. This would explain the 

deterioration of the filters stability, owing to their sensitivity to light incidence. These results highlight 

the coexistence of these two types of resonance of LSPs and SPPs and their respective contribution to 

the optical properties at off-normal incidence of these structures as a function of the spacing between 

patterns. These findings also support the work done by Lin and Roberts on cross-shaped-hole arrays at 

normal incidence [136], [144]. In their work, the spectral behavior of closely packed crosses is shown to 

be mainly dictated by the localized resonance related to the apertures themselves, whereas for large 

spacings, the excitation wavelength of the surface plasmon polaritons gets closer to that of the localized 

plasmons, making the surface plasmon polaritons contribution predominant. The competition between 

propagating and localized plasmons and their relative importance according to the spacing between 

apertures have also been pointed out in a similar way for square holes [156], rectangular holes [130] and 

coaxial apertures [158], [159], but their respective influence on the angular and polarization sensitivity 

had not been clearly established yet. 

 We propose here an explanation on the angular and polarization sensitivities: we have noticed in 

Figure 3.10 that the degradation of the stability with θ for large intercrosses distances is more severe at φ 

= 0° and then decreases when φ increases. This could be explained by the fact that the propagation of 

surface plasmon polaritons is facilitated in the directions of the pathways between two adjacent crosses, 

which correspond in our case to the x and y axes for φ = 0°, via the (0,1) and (1,0) diffraction orders. We 

attribute the gain in stability when the illumination deviates from φ = 0° to the increasing number of  

dielectric apertures encountered by the surface plasmon polariton on the way, which hinder its 

propagation, thus limiting its impact to the benefit of localized resonances. The stability of the filter thus 

progressively improves until reaching its maximum at φ = 45°, because the corridor, available via the 

(1,1) diffraction order, is thinner than for φ = 0°. A rough visual description of this phenomenon is 

proposed in Figure 3.11. Note that for a given configuration with an optical system, the stability should 

be studied with a sum of all the possible incidences over a solid angle. This study of the behavior of the 

spectral responses of the filters with the angles of incidence and the polarization is thus of prime 

importance for actual sensors, especially if no optical system is used as it is the case for ALS sensors.  

 We note that even for very small intercrosses distances, a worse stability is observed for the large 

shape factor (b/a = 0.6) than for the smaller one (b/a = 0.4), where the resonance wavelength is stable 

regardless of the polar angle of incidence. This demonstrates that the shape factor is the main criterion of 

stability for cross-shaped-hole array filters. As for this sub-section, it can thus be concluded from these 

simulations that realizing a structure with crosses close to each other is preferable to make filters nearly 

insensitive to the incident angles and to the polarization state of the impinging light. The best case can be 

summed up as an array of crosses with a thickness superior to 150 nm, a shape factor b/a below 0.5 and 

an intercrosses distance inferior to 50 nm.  
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FIG. 3.11. Impact of localized resonances (purple areas) and SPPs (arrows) depending on the intercrosses 

distance d and azimuth φ. The crosses all have the same dimensions, only the scale and the intercrosses 

distances are changed between the two schemes. 

3. A.2 Illustration with color filters 

We have demonstrated in section 3. A.1 that it is possible to considerably tune the optical properties of 

cross-shaped-hole arrays with proper geometrical designs. The main parameters that impact the angular 

and polarization sensitivities of these structures are the shape factor of the crosses b/a and the distance 

between crosses d. In the following section, we will illustrate how these results can be exploited to 

realize a stable filter in the case of a RGB sensor whose response does not depend on the illumination 

conditions and can support a wide range of incidence angles. 

3. A.2.1 RGB filters selection 

The realization of an image sensor requires a set of three color filters (red, green and blue filters at 460 

nm, 540 nm and 610 nm respectively) in the case of the standard Bayer arrangement. In our example, we 

focus on the angular and polarization dependency of the filters rather than in their transmission and color 

accuracy. In addition to the stability criteria that we have found out in the previous section 3. A.1, we 

added other constraints to the set of RGB filters.  

 The material used for the three filters is aluminum. For an easy process, the metal thickness is 

fixed for the three filters. It is set to 50 nm to favor the level of transmission and to facilitate the 

fabrication of crosses with small shape factor, as the aspect-ratio is reduced for the etching step. We 

have chosen to design the blue and the green filters with the same period P = 150 nm, but a higher period 

P = 250 nm was necessary to obtain the red filter. The shape factors for the three color filters are inferior 

to 0.5 to fit the stability condition: b/a = 0.4 for the blue filter, b/a = 0.25 for the green one and b/a = 0.3 

for the red one. All of these parameters ensure to the extent possible low intercrosses distance with d = 

60 nm (blue filter), d = 45 nm (green filter) and d = 100 nm (red filter). The spectral responses of the 

three filters are presented in Figure 3.12 with resonances at 430 nm, 530 nm and 640 nm for the blue, 

green and red filters respectively. It can already be noticed with the spectra that producing pure colors 

with aluminum structures may be hard, especially when the wavelength of the filter gets closer to the 

near-infrared region. This will be explained in the next sub-section.  

 We have now defined our three RGB filters with geometries that meet the stability criteria 

established in section 3. A.1. 
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FIG. 3.12. Example of RGB filters at normal incidence using cruciform-holes arrays with small shape 

factors. Blue filter: P = 150 nm, hm = 50 nm, a/P = 0.6, b/a = 0.4. Green filter: P = 150 nm, hm = 50 nm, a/P 

= 0.7, b/a  = 0.25. Red filter: P = 250 nm, hm = 50 nm, a/P = 0.6, b/a = 0.3. 

3. A.2.2 Color errors and illumination conditions 

In order to illustrate the applicability of the stability results to an image sensor application, we want to 

evaluate how much the variations of the spectral response of the filters upon different illumination 

conditions impact their chromatic signal. The CIE diagrams [83], [84] provide a useful tool to represent 

visually the variation of the chromatic components of a filter. 

 For each color filter defined in section 3. A.2.1, the spectral response is simulated in every 

potential illumination conditions all combined, which means: for several values φ in the interval [0°; 

45°], for several polar angles of incidence θ in the interval [0°; 60°] and for both TE and TM 

polarizations. For each combination, the chromatic components of the corresponding spectral response 

are extracted and reported on a chromaticity diagram by a dark dot. In Figure 3.13, we gather all these 

calculations for the three color filters. The white crosses give the chromatic components of the blue, 

green and red filters at normal incidence. The dark dots around the crosses give the chromatic 

components of all the possible off-normal incidence conditions, i.e. all the couple of values (θ ; φ) for 

both TE and TM polarizations. The results are given on three chromaticity diagrams for better clarity, 

each one featuring a more or less severe range of polar angles of incidence θ: [0°; 15°], [0°; 30°] and [0°; 

60°]. On Figure 3.13(a), the CIE diagram shows the color variations of the three color filters for the 

different possible illuminations resulting from the chosen range of azimuths and polarizations with polar 

angles of incidence θ up to 15° only. This presentation helps to see how the signal of the image sensor is 

progressively impacted going from angles close to normal incidence to larger ones. 
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FIG. 3.13. (a) CIE diagram representing the color variations of each R,G and B filters when simulated with 

TM or TE polarizations, with all possible azimuth values and for  θ ∈ [0°,15°] range. (b) for θ ∈ [0°,30°]. (c) 

for θ ∈ [0°,60]. 

 
 The CIE diagrams evidence that the blue and green filters remain very stable up to 30° with slight 

color variations when the incidence and the polarization of light are changed. The blue filter is the most 

stable with chromatic components stable even for large polar angles of incidence (up to 60° in the third 

diagram). The red filter, although respecting the design criteria, presents more variations even for low 

and medium angles of incidence. For θ = 60°, its chromatic components severely deviate from the 

original red color and even approaches the white color. We attribute the progressive deterioration of the 

stability when approaching the near-infrared wavelengths to the significant increase of the absorption of 

aluminum in this wavelength range as shown in Figure 3.14 [45]–[47]. The peak of absorption in the 

ε’’(ω) structure is related to interband transitions occurring at energy close to 1.5 eV (825 nm) [113], 

[160], which negatively affects the transmission efficiency and plasmonic properties of localized 

resonances. The use of another compatible metal for the red filter such as copper, silver or gold, which 

all have better optical properties in this wavelength range, with the same geometrical criteria, may 

improve the stability of the spectral response and allow for low color errors even for large angles of 

incidence. Note however that the use of different metals on a pixel matrix would complicate the 

fabrication of the image sensors. We deposited two patents allowing for an easy integration of plasmonic 

filters in the standard process flow of an image sensors and that also facilitate the use of different metals 

for each pixel color [161], [162].  

 

 
FIG. 3.14. (a) Real parts of the refractive index and of the dielectric permittivity of aluminum. (b) Imaginary 

parts of the refractive index and of the dielectric permittivity of aluminum. Data extracted from Palik 

Handbook [47]. 
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3. A.3 Conclusion on optimal design rules 

We have demonstrated in part A that the optical properties of cross-shaped-hole arrays such as their 

angular and polarization sensitivities can be accurately tuned by changing characteristics dimensions of 

these structures. The two major parameters governing their electromagnetic behavior are the shape 

factor, defined as the ratio of the arm width to the arm length of crosses b/a, and the spacing between 

crosses d. A low shape factor (inferior to 0.5) and a short intercrosses distance below 75 nm enhances 

the localized plasmon resonances on the apertures to the detriment of the propagating plasmons, which 

ensures less dependence of the filters on the illumination conditions. The metal thickness has to be 

superior to 150 nm to provide an improved stability, but its influence is small compared to the shape 

factor and the intercrosses distance. The impact of the azimuth for 2D arrays and the ways to limit it 

have been investigated, which is very seldom taken into account for hole arrays in literature to our 

knowledge. We believe that this study brings a further contribution to the understanding of the respective 

roles of localized plasmons and surface plasmon polaritons in the EOT process. Moreover, it 

demonstrates the ability of cross-hole arrays to make filters with a high angular stability and a 

polarization insensitivity, provided that the established design rules are respected and that the choices of 

materials are coherent with the targeted wavelength range. 

 

 

 

3. B – ALS filters evaluation and optimization with the 

constraints of the study 
 
We have seen in the previous part that cross-shaped-hole arrays are able to give a stable spectral 

response regardless of the polarization and of the incidence angle of the illuminating light, as long as 

their geometry respects specific criteria that have been identified and quantified. These properties of 

crosses can be used to fabricate stable filters targeted for a wide range of applications where the 

sensitivity to polarization and light incidence are critical for the device performance. In this second part, 

we aim to assess quantitatively if plasmonic filters can provide an efficient alternative to standard 

filtering solutions in the case of Ambient Light Sensors (ALS). Remember that we defined two ALS 

criteria in section 2. 2.1. Basically, the ALS error stands for the deviation of the filter’s spectral response 

with respect to the theoretical photopic response, whereas the ALS dark indicates the sensitivity of the 

filter in low-light conditions. A filter with low transmission will have a high ALS dark value.  

 In addition to the evaluation tool that was described in Chapter 2, the filters evaluation will be 

done by taking into account the stability results of the former part in order to respond to all the 

requirements of Ambient Light Sensors. The performance of potential designs will be optimized to 

obtain the best sets of dimensions. Finally, plasmonic structures different from cross-shaped-hole arrays 

and advanced solutions with noble metals will also be presented. This part will allow us to propose ALS 

filters that meet all the specifications of the application in terms of performances and angular robustness. 

A portion of the following results was published and presented in conference [163]. 

 In this part, all the simulations and optimizations are performed with the ALS stack defined in 

section 2. 5 Conclusion on Chapter 2 where the aluminum layer is embedded in a SiON layer, which is 

itself above a 500 nm Si3N4 layer and an infinite SiO2 substrate. The aluminum layer is patterned with an 

array of cruciform apertures filled with SiON and the filter simulations are made with a 5x5-harmonics 

RCWA method. 
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3. B.1 Positioning of plasmonic filters 

3. B.1.1 Evaluation of plasmonic filters performance 

This section will put in evidence whether the plasmonic structures with crosses can give satisfying ALS 

performances, i.e. an ALS Dark inferior to 100 lx and a maximum ALS error inferior to 2.2 dB (which 

corresponds to the green area in the (ALS error ; ALS dark) plot defined in Chapter 2). Several filter 

designs are thus simulated with RCWA to find the set of parameters P, a, b and hm that best fits to the 

specifications of the ALS sensor. This wide scan is made on the metal thickness hm, the period P and the 

arm length a within the following ranges: i) 125 nm < hm < 300 nm (25 nm step), ii) 125 nm < P < 300 

nm (25 nm step) and iii) 0.5 < a/P < 0.9 (0.05 step). a/P is chosen superior to 0.5 to avoid small 

apertures and provide sufficient transmittance, thus lowering the ALS dark. All those parameters 

generate as much as 576 filters designs per simulation run.  

 In order to take into account the angular stability of the filters, the geometrical conditions defined 

in part A are also used as a constraint in the evaluation tool. The scans are thereby performed for five 

values of the shape factor b/a, with 0.4 < b/a < 0.6 with a 0.05 step. Smaller values would result in a 

high ALS dark due to the narrowness of the crosses whereas higher values would imply a dramatic loss 

of the stability properties of cross-hole filters. The data for the shape factors 0.4, 0.5 and 0.6 are gathered 

in Figure 3.15 as scatter plots of 576 filters each. Note that the intercrosses distance d = P-a is not 

implemented as a condition to avoid too much restriction on the performance evaluation and because the 

shape factor is predominant in the stability of these structures. 

 The spectral responses of all the filters are then extracted and inputted in the ALS evaluation code 

defined in section 2. 2.1 Ambient light sensors. For every filter, the corresponding maximum ALS error 

and ALS dark are obtained. The evaluation results can then be gathered and plotted on 2D-graphs, with 

the ALS error Max on the x-axis and the ALS dark on the y-axis. Five scatter plots are thus obtained for 

the five b/a values, each one containing 576 filter designs which performances are compared to the 2.2 

dB reference consisting of a green resist and an IR-cut, represented with a black square as shown in 

Figure 3.15. Only 3 plots are presented here, with b/a = 0.4, b/a = 0.5 and b/a = 0.6. Only the filters 

having an ALS dark below 100 lx are shown for easier reading and to focus on potentially interesting 

designs. 

 The first relevant information that we can learn from Figure 3.15 is that for a given set of filters 

with one b/a value, we can find a few designs close to the reference and inside the specifications range. 

The filters whose ALS error Max is above 2.2 dB should be abandoned since it is our most critical 

criterion (see Chapter 2). On the other hand, filters with a low ALS error Max but with a high ALS dark 

(above 30 lx) can nevertheless be considered. Indeed, we explained in Chapter 2 that apart from this 

thesis, STMicroelectronics in-house calculations revealed that a final annealing of the ALS sensor could 

improve the Quantum Efficiency (QE) of the photodiode, which should lead to a decrease of ALS dark 

by a factor from 2 to 5. While this anneal step cannot be considered with organic resists, it could be 

possible for plasmonic filters. We will address this aspect in Chapter 5.  
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FIG. 3.15. (a) ALS performances for several designs with b/a = 0.4, each dot corresponding to one filter. (b) 

With b/a = 0.5. (c) With b/a = 0.6. Only filters with reasonable ALS dark (< 100 lx) are given. ALS filters 

must have an ALS error Max < 2.2 dB corresponding to the performance of the 2012 STMicroelectronics 

reference (green area). The 2012 and 2015 references are plotted with a black square and an orange square 

respectively. 

 
 This ALS plots representation gives us additional information. One can see a significant trend in 

the charts: the lower the b/a ratio (i.e. the higher the angular stability), the worse the ALS performances. 

Both the ALS dark and the ALS error are increased, i.e. deteriorated when the crosses are made with a 

thinner arm width, which may imply that small crosses are more sensitive to illuminants than large ones. 

The ALS dark increase is most probably due to the lower transmission efficiencies of small crosses. 

Similarly, the ALS error Max increase would be due to the difficulty to approach the photopic response 

with small aperture areas. These results thus show us that a trade-off has to be made between strong 

angular stability and high ALS performance. Although not highlighted on the charts, the results indicate 

that the best filters generally have a thickness superior to 225 nm, which means that the rejection of the 

filters is primordial to get a low ALS error, according to section 2. 1.2.2. We can also note that the filters 

fitting the specifications have their dimensions confined in narrow ranges, with a period between 250 nm 

and 300 nm and a a/P ratio between 0.6 and 0.75. We saw in Chapter 2 that the ALS error criterion is 

highly sensitive to the rejection in the near-infrared range. For the following studies on the robustness of 

ALS filters, we choose an ALS filter of reference in the intermediate case b/a = 0.5 which combines both 

the angular stability and the ALS performance. A low ALS error Max is favoured rather than a low ALS 

dark. The dimensions of this ALS reference filter are hm = 300 nm, P = 275 nm, and a/P = 0.655. Its 

ALS dark is 61 lx and its maximum ALS error is 1.12 dB. 
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3. B.1.2 Angular tolerance 

Now that we have shown that plasmonic designs can be found in the specifications range of Ambient 

Light Sensors, it is worth evaluating how the performance are impacted in off-normal incidence. This 

challenge is important since we saw in Chapter 1 that ALS sensors do not use any optical system. Even 

with the b/a constraint, we must ensure that the sensitivities to angles of incidence and to polarization do 

not lead to a critical dispersion in terms of ALS criteria. 

 In Figure 3.16, we provide a global representation of the angular stability for three b/a values, 

each one with a scan over 175 filters. The parameters scans have been reduced to: i) 200 nm < hm < 300 

nm (25 nm step), ii) 200 nm < P < 300 nm (25 nm step) and iii) 0.55 < a/P < 0.85 (0.05 step). This 

allows for a better readability of the charts. The performance of every filter is calculated with a spectral 

response averaged over the TE and the TM polarization states and for three polar angles of incidence θ 

(15°, 30° and 60°). The scatter plots of each angle θ are drawn with a different color to highlight the 

performance dispersion due to the sensitivity to θ and to the polarization.  

 

 
 

FIG. 3.16.  (a) ALS performance dispersion for 175 designs with b/a = 0.4  but various geometrical 

parameters such as period, thickness and hole size, for different angles of incidence θ, each dot 

corresponding to one filter. The spectral response are averaged over the TE and the TM polarization. (b) 

With b/a = 0.5. (c) With b/a = 0.6. The 2012 and 2015 references are plotted with a black square and an 

orange square respectively. The green area represents the specifications range. 

 
 First, the charts show that the dispersion of the performance is more significant when b/a is 

increased. This result, while expected owing to the work realized in part A, confirms the sensitivity of 

the performance criteria to light incidence and thus the relevance of the b/a constraints in the evaluation 

of the ALS filters to ensure the respect of the specifications range of the application. Another 

information from these charts is that the performance dispersion is low until θ = 30°, which means that 

the filters’ performances are quite stable except for large angles of incidence such as θ = 60° in our case, 

which is a drastic incidence condition. 
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 The azimuth is not taken into account in the previous scatter plots and the study of the impact of 

the light incidence on the ALS performance cannot be considered as complete yet. In order to gather the 

influence of the polar angle θ, the azimuth φ and the polarization state of the light on the same chart 

without overcrowding the data, we focus on the complete angular sensitivity of the ALS reference filter 

defined in the previous sub-section, since the general sensitivity to θ has been demonstrated with the 

parameters scans. The performance of this filter (b/a = 0.5) are extracted from its spectral response 

calculated for different polar angles θ, azimuths φ and averaged over the TE and the TM polarizations. 

The results are plotted in Figure 3.17 where each color corresponds to a polar angle value θ and the 

points of the same color to different azimuth values φ (0°, 9°, 18°, 27°, 36° and 45°). The chart puts in 

evidence that the ALS performances remain in the specifications range even when the azimuth and the 

polar angle up to 30° are combined. Large incidence angles (θ = 60°) are too severe to fit with the ALS 

criteria and show the limits of the angular stability of the ALS cross-shaped-hole arrays. 

 

 
FIG. 3.17. ALS performances obtained at normal incidence θ = 0°, θ = 15°, θ = 30° and θ = 60° for the ALS 

reference filter (hm = 300 nm, P = 275 nm, a = 180 nm and b = 90 nm). For the same polar angle of 

incidence θ, 6 azimuthal angles φ are taken into account (0°, 9°, 18°, 27°, 36° and 45°). The 2012 and 2015 

references are plotted with a black square and an orange square respectively. The green area represents the 

specifications range. 

3. B.1.3 Other potential ALS structures 

We have seen that in spite of the benefits of the design rules used for cruciform holes, the angular and 

polarization stabilities can reach their limits for high angles of incidence such as θ = 60°. Given the 

relative difficulty to accurately fabricate crosses compared to square and circular apertures, we want to 

check the potential use of more basic shapes such as squares and circles as ALS filters targeting the case 

where the angular stability requirement is of lesser importance. Hexagonal arrays of crosses are 

constructed similarly to those presented in section 2. 3.3.4. As in section 3. B.1.1, we scan the 

characteristics dimensions of those structures and calculate their ALS performance to verify if they can 

meet the specifications of the application. The parameters ranges used are: i) 125 nm < hm < 300 nm (25 

nm step), ii) 125 nm < P < 300 nm (25 nm step) and iii) 0.4 < a/P < 0.9 (0.05 step) (with a being either 

the square size or the diameter in the case of circular apertures), implying a total of 704 designs tested 

per shape. For the hexagonal arrays, the period is calculated from the smallest distance between crosses 

d which is scanned from 40 nm to 125 nm (see sections 2. 3.3.3 and 2. 3.3.4 for more details regarding 

the structures). 
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FIG. 3.18. (a) ALS performances for several designs with square arrays of square holes (b/a = 1), each dot 

corresponding to one filter. (b) With square arrays of circular holes. (c) With hexagonal arrays of crosses 

(b/a = 0.5). 

 
 The corresponding scatter plots are given in Figure 3.18. It appears that circular holes are not able 

to provide sufficient ALS performance as nearly no design falls into the specifications range. This may 

be due to the specific resonances of circular apertures which are not governed by localized plasmon 

resonances, and thus cannot provide a well-defined peak approaching the photopic response. On the 

contrary, squares come close to the performances of the green resist combined with an IR-cut. At 

equivalent maximum ALS error, some designs give a lower ALS dark than those with cruciform holes. 

However, the angular stability of square apertures cannot compete with crosses as shown in Chapter 2. 

No obvious improvement is noticed with hexagonal arrays of crosses with b/a = 0.5 compared with the 

equivalent square arrays. These results show that not all hole-array structures are capable of fitting the 

ALS performance, and that the shape of the apertures has a predominant role in this task. It can be 

assumed that this shape-dependent behavior is related to the resonances occurring in the structures, and 

especially to their properties to enhance localized plasmons at the holes (section 2. 3.3). 

3. B.2 Noble metals alternative 

The previous study was limited to materials allowed in CMOS front-end fabs in view of a direct 

integration of the filters in standard image sensors. We present here the evaluation of other metals such 

as silver or gold in the case where the fabrication could be realized in an area compatible with 

contaminant materials. 

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9

A
LS

 D
ar

k 
(l

x)

ALS Error MAX (dB)

Circular holes

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9

A
LS

 D
ar

k 
(l

x)

ALS Error MAX (dB)

Squares (b/a = 1)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9

A
LS

 D
ar

k 
(l

x)

ALS Error MAX (dB)

Hexagonal array of crosses (b/a = 0.5)

a) b)

c)

aP hm
aP hm

a

P

hmb

d



     

EVALUATION OF PLASMONIC FILTERS FOR AMBIENT LIGHT SENSORS 

81 

 

3. B.2.1 Silver-based filters 

Although its presence in CMOS front-end clean rooms is severely restricted for contamination purpose, 

silver can be studied as an upstream solution to make high-performance Ambient Light Sensors due to 

its ideal plasmonic properties in the visible region [45], [46]. If the performances of sliver-based ALS 

filters are attractive, it may be assumed that its introduction in the very last steps of the fabrication could 

be envisioned. The same approach is used as in section 3. B.1 to evaluate the silver ALS designs with 

similar scans over the different geometrical parameters of the structures. We focus here on the square 

arrays of cruciform (Figures 3.19(a)–(b)) or square apertures (Figure 3.19(c)). 

 

 
 

FIG. 3.19. (a) ALS performances for several designs with square arrays of cruciform holes fabricated with 

silver instead of aluminium (b/a = 0.5), each dot corresponding to one filter. (b) With square arrays of 

cruciform holes (b/a = 0.8). (c) With square arrays of square holes (b/a = 1).  

 
 Silver-based filters using cross-shaped-hole arrays are not able to match both the ALS 

performance and the stability requirement. With a constraint b/a = 0.5, no design can be found in the 

specifications range unlike the same structures with aluminum. However, increasing the shape factor 

drastically improves the filters performances, and results similar to the aluminum structures (for both 

crosses and squares) are obtained with b/a = 0.7. It can be seen that for b/a = 0.8, the performances of 

plasmonic filters reach those of the green resist and IR-cut used as reference. The angular stability 

conditions of silver-based cross-shaped-hole arrays have to be investigated to see if they behave 

similarly to the case of aluminum-based filters though. Square apertures provide very efficient ALS 

filters and would be easier to process than crosses with high shape factors. It may even be assumed that 

an optimization could potentially lead to a slightly better performance that the 2015 reference (orange 

dot). Regarding the dimensions of these filters, the closest design to the reference with square holes has a 

metal thickness of 300 nm, a period of 200 nm and a hole size of 130 nm. These results demonstrate the 

ability of silver to provide high-performance ALS filters at normal incidence. However, there is a 
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blocking point regarding the issue of the mass production of such structures since the etching of silver is 

hard to realize. Indeed, it is generally performed in literature with Focus Ion Beam (FIB) [114] or lift-off 

techniques [137], and for very thin films. Further improvements on the etching of thick silver films are 

required before considering an industrial production of silver-based ALS filters. 

3. B.2.2 Gold-based filters 

Gold is also a metal whose use in clean rooms is severely restricted for contamination issues. Like the 

silver study, the same computations on the geometrical parameters were made by replacing aluminum 

with gold in order to evaluate its potential to give efficient ALS filters. The results are shown in Figure 

3.20. Similarly to silver, crosses with small shape factors return performances far from the specifications 

range (more than 4 dB in maximum ALS error). In the gold case however, increasing the shape factor 

until reaching square apertures does not give interesting ALS filters; the performances, while improved 

compared to small shape factors, do not meet the specifications of the application at all. This result is 

explained owing to the optical properties of gold which make it more appropriate for the infrared range 

than for the visible range [45], [46]. 

 

 
 

FIG. 3.20. (a) ALS performances for several designs with square arrays of cruciform holes fabricated with 

gold instead of aluminium (b/a = 0.5), each dot corresponding to one filter. (b) With square arrays of square 

holes (b/a = 1).  

3. B.3 Conclusion on ALS performances 

The work presented in part B shows that plasmonic filters are able to meet the specifications of the ALS 

specifications and to come close to the ALS error of the combination of a green resist and an IR-cut 

glass (2012). They can also approach the maximum ALS error value of the 2015 reference, but they 

present higher ALS dark values between 40 lx and 50 lx. This is expected to be lowered due to a final 

annealing of the device that plasmonic filters can support unlike organic resists, which will be 

experimentally verified in Chapter 5. Only specific holes shapes such as arrays of square or cruciform 

holes are able to reach competitive performance, which leads us to assume that localized plasmon 

resonances play a key role in obtaining a well-defined spectral response fitting with the photopic one. 

The application requires the filters to have a thick aluminum layer generally superior to 225 nm, which 

implies a very good rejection around the useful signal, and a period between 250 nm and 300 nm 

together with a a/P ratio between 0.6 and 0.75. The dispersion of the performance due to the sensitivity 

to the polar angle, the azimuth, and the polarization are proven to be limited and contained in the 

specification ranges with small shape factors. The limits of the stability of crosses are however reached 
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for θ = 60° where the performance are more or less out of range depending on the filter design. More 

advanced solutions have been proposed with silver or gold instead of aluminum. Although gold is not 

appropriate for transmission filters in the visible range, silver is able to provide highly efficient ALS 

filters comparable to the 2015 reference for square holes or for crosses with a high shape factor (b/a ≥ 

0.7). This implies that silver is a promising alternative to aluminum for filtering although the conditions 

of stability of crosses may not be fulfilled. The nanostructuration of silver thin films with industrial 

equipment is also a significant issue for the introduction of this metal in clean rooms.  

 

3. B.4.  Conclusion on Chapter 3 

The study of the relation between the geometrical parameters of cross-shaped-hole arrays and their 

optical properties has demonstrated that these structures can be made nearly insensitive to the 

polarization and incidence angle of light, including the azimuth which has never actually been 

investigated to our knowledge for hole arrays. The two major parameters that are the shape factor b/a 

and the intercrosses distance d have to be low to favor the localized plasmon resonance in the 

transmission process and thus to ensure the non-dependence of the filter response to the illumination 

conditions. This work provides accurate geometrical criteria to design filters whose stability properties 

may potentially be used in a wide range of applications, even beyond the visible range if the materials 

are adequately chosen. In the same time, it also tends to support the theory that localized resonances at 

the apertures have a predominant role in the transmission process, unlike propagating plasmons which 

rather negatively affect the optical properties of cross-shaped-hole arrays [144]. 

 In our case, these results could be applied to the ALS applications by using the established 

geometrical criteria in the design and the evaluation of the filters. Although a trade-off has to be made 

between high ALS performances and a high angular stability, we have shown that plasmonic structures 

can fulfill the ALS specifications and that respecting the geometrical rules allows for lower variations of 

the performance when the incidence and the polarization are changed. Despite this angular robustness, it 

has appeared however that when the polar angle of incidence gets too large (θ = 60°) the dispersion is 

wide enough to obtain ALS errors out of the specifications range. Silver-based ALS filters have been 

proposed as an upstream solution and have shown very good performances to the detriment of the 

angular stability since only squares or high-b/a crosses are working. Moreover, further developments of 

the nanostructuration of thick silver films would be required for a robust industrial production of silver-

based ALS filters. 

   





   

  

 

Chapter 4 

Robustness of plasmonic filters to process 
variations and Front-End fabs limitations 

The work presented in Chapter 3 has demonstrated that cross-shaped-hole arrays can provide ALS filters 

with competitive performances and that they can support different illumination conditions with different 

polarizations and angles of incidence. In addition to their appealing optical properties and performance, 

such plasmonic structures may also present a financial interest. Their simple structure only consists in a 

single patterned metallic layer even for multi-colors filtering. It implies a few number of fabrication 

steps, unlike Fabry-Perot filters which are made of several layers with varying thicknesses requiring 

different lithographic steps [25], [164]. Cross-shaped-hole arrays also do not require any external 

infrared filter thanks to their infrared rejection capability, unlike color resists. All these features make 

these plasmonic filters particularly attractive for industrial fabs. However, the integration of plasmonic 

structures in industrial products requires a reliable fabrication guaranteeing drastic dispersions 

specifications. In the visible range though, the holes dimensions are small and fabricating such structures 

while keeping an accurate shape definition may be challenging, especially working at wafer level, on 

300-mm silicon wafers. In practice, the final processed shapes may substantially deviate from the 

targeted ones due to process limitations at each critical step of the fabrication route. A very recent trend 

in literature demonstrates a growing interest for the effect of process inaccuracies related to different 

stages of the fabrication of nanophotonic and plasmonic devices [57], [165]–[167]. 

 In this chapter, we aim to identify the main critical weaknesses of each step of the fabrication of 

aluminum-based cross-shape-hole arrays and to estimate how they impact the performance of the 

plasmonic structures. Each section of this chapter corresponds to one fabrication step. We first present 

the influence of the film thickness and optical index standard deviations. The presence of a native oxide 

on the metal surface is also simulated. Then, we consider lithography inaccuracies using optical 

proximity calculations. In particular, the effect of rounded corners on the filter performances is studied. 

A strategy is presented to obtain the best performances after the lithography step. The influence of 

sloped profiles of the metal holes due to the etching step is investigated. Finally, we see how the holes 

filling can affect the responses of the filters by simulating the presence of voids.  

 For each fabrication step, the impact of the process dispersions is studied both on the spectral 

response of plasmonic filters in general, and on the variations of ALS performance more specifically. In 

the first case, the simulated stack corresponds to the standard stack defined in 2. 5 Conclusion on 

Chapter 2, where the aluminum layer is in-between two infinite SiO2 media. This will lead to a further 

understanding of the plasmon resonances in such structures and will show how they can be impacted by 

process variations through the study of the spectral responses. In the ALS case, we use the optimal 

integration also described in 2. 5 Conclusion on Chapter 2 where the aluminum filter is embedded in a 

SiON layer, which lays on a Si3N4 layer and an infinite SiO2 substrate. The effect of the process 
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variations on the ALS performance of these plasmonic structures is thus directly estimated with the 

evaluation tool and the interest of the plasmonic solution for ALS can be discussed. In both cases, the 

process dispersions are simulated on two reference plasmonic filters with cruciform apertures with an 

intermediate shape factor b/a = 0.5. One is taken with a low ALS error max (1 dB) and the other one 

with a higher ALS error max (2 dB) in order to observe whether their behaviors are comparable. The 

dimensions of the 1dB reference filter are hm = 300 nm, P = 275 nm, a = 180 nm and b = 90 nm (ALS 

error = 1.12 dB and ALS dark = 61 lx). The dimensions of the 2dB reference filter are hm = 300 nm, P = 

250 nm, a = 200 nm and b = 100 nm (ALS error = 2.14 dB and ALS dark = 19 lx). 
  

 This chapter will establish which steps are critical in the reliable fabrication of plasmonic filters 

and how the process dispersions can be limited to provide an efficient filtering solution, especially for 

ambient light sensors. The obtained results were published [168] and presented in conferences [163], 

[169]. 

4. 1 Identification of the process limitations 

4. 1.1 Simplified process route 

One of the advantages of hole-arrays plasmonic filters is their simple structure: a single periodically 

patterned metallic layer embedded in a dielectric medium. However, the dimensions of the structures can 

fall below 100 nm for applications in the visible range, which raises some technological issues regarding 

the nanostructuration of filters. These issues also depend on the materials chosen for the filters 

realization, especially regarding the metallic layer. One can find several ways to pattern the metal. 

Below is a non-exhaustive list of solutions. 

 The most common one would be to first deposit the metallic layer and to pattern it thereafter with 

a lithography step and an etching step. We will name it the metal etching technique. In this case, the 

main limitations for the development of such filters in a semiconductor fab are the accuracy of the 

lithography resist patterning, which depends on the CMOS technology node used, and on the ability of 

the etching technique to selectively and accurately etch the metal with small dimensions (which depends 

on the chemistry or on the type of plasma used). This technique implies the use of a metal that can be 

patterned with a dry etching, that is anisotropic and thus better to perform straight hole profiles. Dry 

etching can be done with aluminum, but not with copper. In the case where the nanostructures have to be 

filled with a dielectric material, we must also ensure that we can find a deposition technique able to 

properly fill the apertures.  

 A second method to obtain a patterned metal layer consists as first step in depositing a thin film 

dielectric material, then patterning it, filling the gaps with the metal and finally planarizing the metal 

layer using a Chemical-Mechanical Planarization (CMP) technique. This method is known as the 

damascene process [146]. This technique has two main limitations: the capability of the deposition tool 

to fill small gaps with the metal thin film and the requirement of a CMP step to remove the undesired 

metallic layer above the dielectric apertures.  

 Another method to get patterned metal layers is the nano-imprint process [134], [170], [171]. In 

this case, a stamp is pressed on the resist to print the patterns and the metallic layer is then etched above 

the dielectric apertures. This method is similar to the etching technique but requires the fabrication of the 

stamp beforehand, which is generally patterned with an electron beam. It is more convenient to pattern a 

lot of nanostructures with a high throughput, but this method is not common in semiconductor fabs. 

 In the case of the work described here, we are interested in a fabrication method directly 

transferable to an industrial semiconductor clean room and we thus only consider the first two methods 

(the etching technique and the damascene one). The metal required for the fabrication of the ALS filters 
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is aluminum owing to its properties for making filters in the visible range. The damascene process would 

probably allow for a better control of the holes dimensions since the etching of a dielectric material such 

as SiO2 or SiON is very accurate even for small dimensions. However, the filling of the nanostructures 

with aluminum may be challenging using the deposition tools available either at CEA-LETI or at 

STMicroelectronics Crolles, which are essentially Physical Vapor Deposition (PVD) tools. According to 

our previous analysis (see Chapter 3), the spacing between two adjacent crosses should be smaller than 

100 nm with high aspect-ratios up to 4 depending on the filter requirements. Besides the issue of 

aluminum holes filling, the CMP step may require an adhesive layer between aluminum and the 

dielectric material. This layer, that can be a 50-nm-thick Ti/TiN barrier for example [172], [173], would 

suppress the plasmonic resonances of the filters because these types of metals have poor plasmonic 

properties according to our simulations and to literature [45], [46]. 

 

 
FIG. 4.1. Schematic view of the main steps of the fabrication of aluminum-based hole-array filters with 

aluminum etching. 

 
   Based on the previous considerations, we choose the etching method as the most appropriate 

way for the fabrication of aluminum-based plasmonic filters. A schematic description of this method is 

proposed in Figure 4.1. It is composed of the following main process bricks: i) the aluminum thin film 

deposition, ii) the lithography resist patterning, iii) the aluminum layer etching and iv) the nanostructures 

filling with dielectric material. By using this process route, the metal thickness is better controlled since 

there is no CMP step and the nanostructures filling with SiO2 is achievable with standard deposition 

techniques such as Plasma-Enhanced Chemical Vapor Deposition (PECVD) or with deposition 

techniques more suited to high-aspect-ratio nanometric structures, such as Plasma-Enhanced Atomic 

Layer Deposition (PEALD) or High-Density Plasma Chemical Vapor Deposition (HDPCVD) (see 

Chapter 5). 

4. 1.2 Expected hard points 

In the previous sub-section, the process route for the fabrication of plasmonic filters with aluminum was 

selected to be via metallic etching. In order to evaluate the potential blocking points preventing the 

reliable fabrication of plasmonic filters at wafer scale, we first need to identify the main weaknesses of 

each process step and then study how they potentially impact the filters performance. The dispersion on 

the main relevant parameters related to each process step is thus thoroughly investigated. These process 

dispersions are gathered in Figure 4.2. 

 Metal and dielectric thin films deposition leads to non-uniformities of the metal thickness and of 

the dielectric material refractive indices across the substrate’s surface, to which the plasmon’s wave 

vector and the transmission of the filters are directly related. The variations of the refractive indices of 

aluminum are not considered here. Regarding the material stability, a native aluminum oxide is likely to 

form at the Al – air, Al – SiO2 or Al – SiON interfaces. The presence of this oxide on the metallic 

surface will affect the plasmon excitation at the metal-dielectric interfaces. The second issue comes from 

the patterning of the photoresist and the metallic layer. With the inherent relation between the plasmonic 

effect and the structures’ dimensions, the photolithography is of primary importance in the fabrication of 

the filters. Given the nanometric scale of the structures, variations of the holes’ dimensions and shape 

Al
SiO2

1. Aluminum deposition 2. Resist patterning
3. Aluminum etching

4. Holes filling
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deformations (corners rounding especially for cruciform apertures) need to be taken into consideration 

and their respective impact have to be quantified. In addition to these potential issues, the etching of 

aluminum could be not perfectly straight and may thus create holes with sloped profiles which can be 

problematic given the narrowness of the apertures. This effect has never been studied in the case of 

image sensors to our knowledge. Finally, the last expected difficulty is the partial filling of the 

nanostructures with the dielectric material. While the metal-dielectric interface would fit the aperture 

design requirements, the presence of voids would change the effective refractive index inside the holes 

and this effect has never yet been studied to our knowledge. 

 

 
 

FIG. 4.2. Respective process dispersions expected in the main process bricks for the fabrication of 

plasmonic filters using the metallic etching method. 

 

  The following sections will now comprehensively investigate the impact of all the above-

mentioned process dispersions in terms of plasmonic resonances in general and observe how the 

performance of ALS sensors is influenced. Each section corresponds to one process brick. All charts are 

drawn from 300 nm to 800 nm, but the ALS performance calculations take into account the signal from 

300 nm to 1000 nm, except in the case of the native oxidation of aluminum (our experimental data at 

CEA Leti on the Al2O3 refractive index stop at 800 nm). In each chart, the 2012 and 2015 references are 

plotted with a black square and an orange square respectively. The green area stands for the ALS 

specifications range (see section 2. 2.1). 

4. 2 Materials-related dispersions 

4. 2.1 Thicknesses and refractive index dispersions 

Thin films deposition steps can induce two kinds of process dispersions at wafer-scale: deviations from 

the targeted thicknesses and fluctuations of the materials refractive indices, which are of primary 

importance for the dielectrics surrounding the metallic layer. The wave vector of a surface plasmon is 

indeed directly related to the refractive index of the media surrounding the metal, as shown in Eq. (1.4). 

These two effects are taken into account in our study. With the standard stack, we consider here typical 

process dispersions that can be found in 300-mm CMOS front-end foundries by using the data of the 

corresponding deposition tools of the clean room of STMicroelectronics Crolles: the standard deviation 

on the metal thickness σhm is chosen at 3 % and the standard deviation on the refractive index of silica σRI 

is taken at 1.6 % [174].  

 We observe here the effect of thickness dispersion on the spectral response. In Figure 4.3, the 2dB 

reference filter is simulated with maximum dispersions of ±3σ as generally considered in statistical 
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process controls for the metallic thickness alone (blue curves), for the silica refractive index alone (green 

curves) and for the combination of the two dispersions (orange curves). These three configurations show 

the trend of the most extreme cases of the possible combinations of process dispersions on the filters. 

This representation does not take into account the statistical probability of such combinations of 

dispersion on a given wafer [174]. The results show that these process variations have a moderate impact 

on plasmonic filters. Typically, the variations of the metal thickness only induce a change in the 

transmission efficiency without shifting the resonance. As expected, the decrease (increase) of the 

dielectric refractive index leads to a blueshift (redshift respectively) of the resonance wavelength, but 

also to an increase (decrease respectively) of the transmission level (see section 2. 3.3.2 Impact of the 

materials properties). When the two parameters variations are combined, the corresponding spectral 

responses show that the individual effects of each parameters are simply added: the spectral shifts are the 

same than those induced by the variations of the refractive index, and the transmission level increase or 

decrease correspond to the sum of the transmission gain or loss induced by the refractive index 

dispersion and by the metal thickness dispersion. The same observations are obtained for the 1dB 

reference filter.    

 

 
 

FIG. 4.3. Spectral response variations of the 2dB reference filter with the standard stack induced by process 

dispersions at ±3σ for metal thickness with σhm = 3 % (blue), silica refractive index with σRI = 1.6 % (green) 

and both combined (orange). Filter dimensions are: P = 250 nm, a = 200 nm, b = 100 nm, hm = 300 nm. 

 
 The effect of the process deviations on the spectral response of the 2dB reference plasmonic filter 

(P = 250 nm, a = 200 nm, b = 100 nm, hm = 300 nm) does not provide a direct information regarding their 

impact on an ALS filter’s performance, which are defined in section 2. 2.1. Remember that basically, the 

ALS error quantifies the deviation of the filter’s spectral response relatively to the theoretical photopic 

response. The ALS dark criterion is related to the sensitivity of the sensor in low-light conditions, which 

implies that a filter with low transmission leads to a high ALS dark value. We now want to see whether 

the variations of the films thicknesses and refractive indices are critical in the case of a plasmonic ALS. 

Based on the ALS integration scheme proposed previously (section 2. 5 Conclusion on Chapter 2), we 

take into account the dispersion on the thickness σdiel and on the refractive index σRI for the SiON around 

the filter, the Si3N4 and SiO2 passivation layers, which we consider to be the same for the three materials 

(gathered as a common dielectric dispersion). The thickness variations σAl are taken into account for the 

aluminium layer only since this is the only layer directly related to the plasmonic effect. Based upon 

internal data and estimations, three levels of process dispersion are considered, with increasing severity 

in terms of process development: 
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- level 1: σAl = 3 % , σdiel = 2.7 %, σRI = 1.6 % 

- level 2: σAl = 2.2 5% , σdiel = 2 %, σRI = 0.16 % 

- level 3: σAl = 1.5 % , σdiel = 1.35 %, σRI = 0.13 % 

 

 Level 1 corresponds to the process dispersions that are generally obtained in a fab on 300-mm 

wafers and are the same than those used with the standard stack, whereas level 2 is an estimation of the 

dispersions that can be reached with a severe optimization of the process conditions. Level 3 represents 

optimistic dispersions that are most probably unlikely to be achieved in a 300-mm semiconductor fab 

with standard deposition tools, but that can show what profit could be theoretically gained with ideally 

low dispersions. 

 The robustness of the filters is evaluated for the three levels, each one with all possible 

combinations of thicknesses and refractive index errors in a range of ±3σ as generally considered in 

statistical process control. This allows for the simulations of more than 99 % of the potential 

combinations that can be created with the considered process dispersions. Figure 4.4 shows the ALS 

performance dispersions obtained with the three levels of dispersion for both the 1dB and the 2dB 

plasmonic reference filters so that we can compare their respective behavior. We define the maximum 

amplitude of performance dispersion relative to an ALS criterion as the gap between the most distant 

dots in a given scatter plot along the corresponding axis of ALS performance charts. Considering the 

1dB reference filter, it can be noticed that the performance dispersion is low for the three process 

dispersion cases and remains within the specifications, especially regarding the ALS error. From process 

dispersion level 1 to level 3, the ALS dark maximum dispersion is decreased by 15.2 lx and the ALS 

error maximum dispersion by 0.17 dB. 

 Regarding the 2dB filter, the dispersion scatter plots have a different shape from the 1dB filter. 

Whereas the 1dB filter experiences more dispersion on the ALS dark than on the ALS error, the 2dB 

filter shows low variations for the ALS dark and stronger ones for the ALS error, which is comparable to 

what has been noticed with interferential filters [174]. From level 1 to level 3, the ALS dark maximum 

dispersion is decreased by 11.7 lx and the ALS error maximum dispersion is decreased by 1.16 dB. 

 We attribute this difference of ALS performance dispersion to the fact that nominal filters with a 

high ALS error have a higher transmission compared with filters with a high constraint on the ALS error 

(close to 1dB). The dispersion on the metal thickness for high ALS error filters is thus less critical and 

induces small variations of the ALS dark. On the contrary, their higher transmission efficiency tends to 

make any resonance shift have a more substantial impact since more useful signal is lost or more 

unwanted signal is gained depending on the spectral shift of the filter’s response. 

 We thus show that a better control on the standard deviation on materials thickness and optical 

parameters would be profitable to avoid fluctuations of the transmission efficiency and the resonance 

wavelength, and therefore to limit the dispersions of the ALS performance. Although high ALS error 

filters are more sensitive, the impact of the process dispersions are however not critical for the ALS 

application targeted in this work. This result is mainly due to the low effect of the metal thickness on the 

transmission efficiency and to the slight resonance shift induced by the variations of the dielectric 

refractive indices, as show in Figure 4.3. This is an advantage compared to Fabry-Perot filters which are 

more sensitive to these process dispersions [174]. 
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FIG. 4.4. Dispersion of the ALS performances taking into account the thicknesses and the refractive index 

dispersions shown the 1dB reference plasmonic filter (hm = 300 nm, P = 275 nm, a = 180 nm and b = 90 nm) 

and for the 2dB reference plasmonic filter (hm = 300 nm, P = 250 nm, a = 200 nm and b = 100 nm), for three 

gradual levels of dispersions. The 2012 and 2015 references are plotted with a black square and an orange 

square respectively. The green area stands for the ALS specification ranges. 

4. 2.2 Metal oxidation 

Another effect regarding the material deviations is the potential oxidation of the metallic layer. Several 

studies regarding plasmonic filters use aluminum as metallic layer [85], [94], [101], [102], [118], but do 

not take into account a possible oxidation of the aluminum film on its surface. The effect of aluminum 

oxidation was investigated in Al nanodisks [175] or nanoparticles [176], and only recently in the case of 

Al hole arrays [177]. Indeed, either a formation of a native oxide passivating Al2O3 layer occurs at the Al 

surface when the metal layer is in contact with air, as for example during chamber changing between two 

process steps, or a formation of an aluminum oxide when it is in contact with another oxide such as 

SiO2. In both cases, a few-nanometers-thick interfacial layer is formed with a stoichiometry close to 

Al2O3. The thickness of alumina generally grows up to a maximum of 10 nm under room temperature 

[177], [178]. In this work, different values of alumina thickness are simulated to observe the evolution of 

the spectral response first and then observe its influence on the ALS performance.  

 Theoretically, the stoichiometry of the aluminum oxide is not the same depending on the 

oxidizing material the metal is in contact with. For modeling simplification, we consider that the 

oxidation thickness is the same on all sides of aluminum, including the bottom and the top of the Al 

layer and at the holes sidewalls as well. We also approximate that a 1 nm growth of alumina leads to a 1 

nm loss of aluminum, although their lattice parameters are not exactly the same [177]–[180]. The 

refractive index of Al2O3 is taken from CEA in-house measurements on stoichiometric Al2O3 (n = 1.666 

+ 0.0032i at λ = 633 nm). We now study the impact of this native oxide on the 2dB reference filter with 

the standard stack. The study of the 1dB filter leads to identical conclusions. The simulation results 

presented in Figure 4.5 show that the oxidation of aluminum leads to an increase of the transmission 

efficiency, a substantial widening of the spectrum and also a red-shift of the resonance, the latter being 

due to the higher refractive index of alumina compared to SiO2. There is however a bias in these results: 

the transmittance increase and the peak broadening may be partly due to the fact that the simulations 

take into account that the oxidation process removes metallic atomic layers at the metal-dielectric 

interface, as shown in the filter cross section scheme in Figure 4.5(a). This consideration makes the 

obtained metallic filter different from the reference design in dimensions, with larger aperture area and 

thinner metal, thus leading to higher transmission efficiencies. 
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FIG. 4.5. (a) Case of oxidation leading to a reduction of aluminum dimensions. (b) Corresponding spectral 

response evolution of the 2dB SiO2-Al filter with different Al2O3 thicknesses around the aluminum layer. 

Filter dimensions are: P = 250 nm, a = 200 nm, b = 100 nm, hm = 300 nm.  

 

 
 

FIG. 4.6. (a) Case of oxidation with no modifications of aluminum dimensions (anticipation of metal 

dimensions through deposition and mask design). (b) Corresponding spectral response evolution of the 2dB 

SiO2-Al filter with different Al2O3 thicknesses around the aluminum layer. 2dB plasmonic filter dimensions 

are: P = 250 nm, a = 200 nm, b = 100 nm, hm = 300 nm.  (c) Corresponding spectral response evolution of 

the 1dB filter. 1dB plasmonic filter dimensions are: P = 275 nm, a = 180 nm, b = 90 nm, hm = 300 nm. 
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  In order to understand the actual effect of alumina at the aluminum-dielectric interfaces, it is 

necessary to dissociate from its effect the geometrical changes induced by the oxidation process. This 

can be easily done in practice by tailoring the aluminum thickness deposition specification and the 

masks design so that the aluminum shape initially targeted is obtained after oxidation, as shown in 

Figure 4.6(a). In practice, we would increase the metal thickness and tighten the holes dimensions so that 

the formation of the native oxide retrofits the filter to its desired dimensions. In these conditions, it can 

be observed in Figure 4.6(b) that the alumina layer itself does not have a significant impact on the filter 

spectrum when the holes size and the metal thickness are kept constant. Increasing the oxide thickness 

nearly does not change the transmission of the filter. A slight red-shift is observed though, since 

plasmons are interface phenomena related to the refractive index of the dielectric directly in contact with 

the metal, the alumina having a higher refractive index than silica. This red-shift is consistent with the 

observations of Schwind et al. on the corrosion of aluminum-based nanohole arrays [177]. 
 

 We have identified the impact of the oxidation of the aluminum layer in terms of plasmonic 

resonances with the evolution of the spectral response. We have shown that the dimensions variations 

induced by the aluminum oxidation can be anticipated with deposition and mask tailoring to limit the 

alteration of the filter response. 

 
 As in the previous sub-section, we are now interested in the evaluation of the ALS performance 

variations induced by the presence of this native oxide. Both the 1dB and the 2dB reference filters are 

studied by using the ALS stack with the SiON and the passivation layers. We only consider the case 

where the aluminum oxidation adjusts the filter dimensions to the targeted ones (like in Figure 4.6 but 

with SiON and the passivation layers). The results are drawn in Figure 4.7. 

 

 
 

FIG. 4.7. Evolution of the ALS performances when different thicknesses of aluminum native oxide are taken 

into account for the 1dB reference filter (blue dots) (hm = 300 nm, P = 275 nm, a = 180 nm and b = 90 nm) 

and for the 2dB reference filter (red dots) (hm = 300 nm, P = 250 nm, a = 200 nm and b = 100 nm). The 2012 

and 2015 references are plotted with a grey square and an orange square respectively. 

 
 It can immediately be noticed that the two filters are not equivalently impacted by the presence of 

the aluminum oxide. The 1dB filter undergoes a slight decrease of the ALS error when the alumina 

thickness is increased, whereas the opposite trend is observed with the 2dB filter, for which the error 

variations are wider than those of the 1dB filter. We note however that the ALS dark remains almost 

unchanged for the two filters. These differences may be explained as follows: for the 2dB filter, it can be 

seen in Figure 4.6 that the presence of alumina not only shifts but also reduces the resonance peak, 

which implies a loss of the useful signal compared with the photopic response that is used as a reference 
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in the calculations of the ALS criteria. Moreover, we have shown that a redshift of the resonance 

drastically impacts the ALS performance (see Chapter 2). These variations of the filter response in the 

NIR region are more significant in the case of the 2dB filter than for the 1dB filter as shown in Figure 

4.6(c). We believe that the low transmission of the filters with low ALS error but high ALS dark makes 

the relative variations of the spectral response induced by the oxidation lower than in the case of filters 

with higher transmission, therefore explaining the difference in their behavior regarding the ALS 

performance. 

4. 3 Lithography inaccuracies 

4. 3.1 Rounding of the crosses 

The step following the metal deposition is the lithography pattern to print the hole shape that will be 

etched in the metal layer. For a filtering application in the visible range, the dimensions of the holes are 

approximately between 50nm and 250nm. For such small dimensions with current lithography 

techniques as 193 nm deep-UV, the internal and external right angles of the crosses are expected to be 

rounded after the photoresist reveal, and subsequently on the final etched patterns. The rounding of sharp 

patterns constitutes an issue that progressively raises interest regarding the manufacturing of plasmonic 

structures [57], [166].  

  

 
 

FIG. 4.8. Optical proximity effects calculations for the array of crosses of the 2dB filter. The left scheme 

shows the difference between the targeted shape (green) and the obtained shape with a single patterning 

(red). The right scheme show the shape obtained with a double patterning with 193 nm deep-UV lithography 

and 28nm CMOS technology node, from the same targeted shape. Filter dimensions are: P = 250 nm, a = 

200 nm, b = 100 nm, hm = 300 nm. 

 
 We have used optical proximity calculations tools to predict the actual shape of cruciform holes 

after lithography. A few options have been investigated to decrease the deviation from the targeted 

design based on different lithography strategies with various technological nodes available in industrial 

clean rooms. Because of the underlying aluminum layer, significant reflections of the electrons are 

generated, leading to detrimental optical effects for the realization of the patterns. Namely, thin film 

interferences effects are produced, resulting in standing waves or swing curves [181] that create 

sinusoidal variations of critical lithographic parameters with the resist thickness, such as the linewidth of 

the pattern. The use of a Bottom Anti-Reflective Coating (BARC) was thus necessary beneath the 
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photoresist to avoid these optical issues. In particular, a BARC limits reflections from the metal layer 

and thus limits or suppresses standing waves effects. Through different Optical Proximity Corrections 

(OPC) calculations, we found that the strategy using a BARC combined with a double patterning, where 

the two arms of the crosses are exposed sequentially, constitutes the best solution. For instance, the 

shape obtained for the 2dB reference filter with a double patterning in 28nm CMOS technology with a 

193 nm deep-UV lithography is given in Figure 4.8 (right scheme) and is compared with the single 

patterning result (Figure 4.8, left scheme). 

 

 These results help us to anticipate the main defaults of the actual shape that can be obtained after 

UV exposure and etching. The effect of rounded corners on cross-holes plasmon resonances had not 

been investigated yet to our knowledge. We have performed here a dedicated simulation study with 

crosses rounded with different radii R, in both internal and external angles. The modeling of the corners 

rounding is described in Figure 4.9. The dielectric area of the RCWA model is decreased in the external 

angles and is increased in the internal angles according to circles of radius R tangent to the crosses 

edges. The spectral responses are first examined to conclude on the impact of rounded crosses on the 

filters properties and then input into the evaluation tool in order to quantify this effect on the ALS 

performance.  
 

 
FIG. 4.9. RCWA modeling of the rounding of the internal and external angles of the crosses. The figure only 

represents the elementary cell of the simulated arrays. The blue area corresponds to the metal and the red 

one corresponds to the dielectric material inside the hole. The case presented here is for R = 20 nm. 

 
 The study is conducted for both the 1dB and the 2dB reference filters and the results are presented 

in Figure 4.10. With the 2dB filter (Figure 4.10(b)), we see that curving the crosses corners alters the 

optical properties of the filter, especially with a decrease of the transmission efficiency but also with a 

blueshift of the plasmon resonance. A different behavior is observed with the 1dB filter where the 

transmission first experiences an increase until R = 15 nm, before dropping for higher radii of curvature. 

The blueshift is still noticed though. We then compare the spectral responses of each filter with an 

equivalent circular-hole array with the same diameter a than the nominal filters to observe how it 

compares with rounded crosses. While the spectral responses of the circular holes seem to support the 

blueshift noticed for highly rounded crosses, it may be tricky to clearly assimilate the properties of the 

rounded corners to those of the circles since the aperture areas of crosses are not the same and 

diminishes when the radius of curvature increases, which may also affect spectra and explain the 

decrease of the transmission.  
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FIG. 4.10. (a) Evolution of the spectral responses of the 1dB filter with increasing corners rounding 

(increasing radii). Filter dimensions are: P = 275 nm, a = 180 nm, b = 90 nm, hm = 300 nm. (b) Same study 

for the 2dB filter. Filter dimensions are: P = 250 nm, a = 200 nm, b = 100 nm, hm = 300 nm. In each case, 

the spectra are compared to an equivalent circular-hole array with diameter a (a = 180 nm for the 1dB filter 

and a = 200 nm for the 2dB filter), period P (P = 275 nm for the 1dB filter and P = 250 nm for the 2dB 

filter) and metal thickness hm = 300 nm. 

 

In order to dissociate the effect of the aperture area variation from the roundness effect, simulations are 

made with adaptive crosses dimensions to compensate for the loss of aperture induced by rounded 

corners, so that the aperture area is the same whatever the R value (keeping the b/a ratio constant). For 

both filters, the results are very similar to previous ones, with slightly less transmittance losses as shown 

in Figure 4.11. This means that the loss of transmission efficiency is not exclusively attributable to the 

decrease of aperture area. When comparing the evolution of these two filters with a circular-hole array of 

equivalent aperture area (circles diameters of 175.9 nm for the 1dB filter and of 195.5 nm for the 2dB 

filter), it can however be confirmed that the blue-shift and part of the decrease of transmittance are due 

to the progressive loss of crosses' specific resonance properties, coming close to those of circular holes 

when R increases. This may also explain why the transmission is slightly increased above R = 20 nm: the 

resonance mode of the crosses is changed to the circular-hole resonance mode.  

 

 
FIG. 4.11. (a) Evolution of the spectral responses of the 1dB filter with increasing corners rounding, keeping 

constant the cross aperture area. Filter dimensions are: P = 275 nm, a = (180 nm, 180.08 nm, 180.32 nm, 

180.71 nm, 181.27 nm and 181.98 nm), b = 0.5*a, hm = 300 nm. (b) Same evolution for the 2dB filter. Filter 

dimensions are: P = 250 nm, a = (180 nm, 200.07 nm, 200.29 nm, 200.64 nm, 201.14 nm and 201.78 nm), b 

= 0.5*a, hm = 300 nm. For each filter, the spectra are compared with a circular-hole array with equivalent 

aperture area (diameter 175.9 nm in the 1dB case and diameter 195.5 nm in the 2dB case). 

a) b) 2dB filter1dB filter

a) b) 2dB filter1dB filter
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 To further explore the impact of rounded corners on the plasmonic effect of crosses, we have 

separated the effect of the internal angles from the effect of the external angles. We thus simulated the 

2dB filter in two different cases: one with rounded external angles and right internal angles, and another 

with the opposite situation. We present these results in Figure 4.12. In the first case (rounded external 

angles, see Figure 4.12(a)), we can see a notable decrease of transmission and no resonance shift except 

for the case R = 25 nm, where a very slight blueshift is observed. On the other hand, the case where only 

internal angles are rounded shows opposite effects (Figure 4.12(b)). Indeed, the transmission is increased 

by a smaller amount but a more significant blueshift is noticed even for small radii. The blueshift being 

more pronounced in the latter case than in the former one, it can be assumed that the internal angles of 

the crosses are predominant to obtain the specific resonance mode of crosses. This is in good agreement 

with the electric field maps calculated in 3. A.1.3 Shape factor b/a where the field is shown to be highly 

localized in the internal corners. On the contrary, we can deduce from these results that the transmission 

decrease is more related to the loss of aperture area in the external angles (the aperture area in the 

external angles decreases twice faster as a function of the rounding than it increases in the internal 

corners). We calculate the spectral response of the 2dB filter obtained with the average over the spectral 

responses of the external case and the internal case in Figure 4.12(c). The trend is similar to what is 

obtained with direct simulations of the “all-rounded” crosses shown in Figure 4.10, with a decrease in 

transmission and a blueshift when R is increased. These effects are however less pronounced in the 

averaged case than in the global one.  
 

 
FIG. 4.12. (a) Evolution of the spectral responses of the 2dB filter with increasing corners rounding in the 

external angles only. (b) In the internal angles only. (c) Calculated average spectral responses of the two 

former cases, which give similar results to the simulated case in Figure 4.10(b). Filter dimensions are: P = 

250 nm, a = 200 nm, b = 100 nm, hm = 300 nm. 
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 We now want to see how these changes in the optical properties of the filters would affect their 

performance in the case of the ALS application. We still consider the two reference filters but we now 

use the ALS stack with the SiON and the passivation layers. In addition to the simple purpose of 

quantifying the dispersion of the ALS performance with corners rounding, we propose to perform these 

calculations for three cases to improve our understanding of the rounding impact: i) with rounded 

external corners only, ii) with rounded internal angles only and iii) with all angles rounded. Note that in 

the latter case, we simulate the filters with all crosses rounded at the same time and we do not use an 

average response of the two previous cases. The results are given in Figure 4.13. 

  

 
 

FIG. 4.13. (a) Evolution of the ALS criteria of the two reference filters with increasing corners rounding in 

the external angles only. (b) In the internal angles only. (c) With all angles rounded simulated. The 1dB 

filter dimensions are: P = 275 nm, a = 180 nm, b = 90 nm, hm = 300 nm. The 2dB filter dimensions are: P = 

250 nm, a = 200 nm, b = 100 nm, hm = 300 nm. The insets represents the different rounding configurations 

with R = 20 nm. The 2012 and 2015 references are plotted with a grey square and an orange square 

respectively. 

 
 In the external case (Figure 4.13(a)), we see that for both filters, the corners rounding mainly 

impact the ALS dark rather than the ALS error, with a more significant ALS dark increase for the 1dB 

filter than for the 2dB filter. This proves that the external angles are more related to the transmission 

efficiency of the filters than to their resonance wavelength. Conversely, the rounding of the internal 

angles induces very low ALS dark variations with slight ALS error variations (Figure 4.13(b)). These 

results are consistent with the observations made on the spectral responses in both cases. When all the 

corners are rounded (Figure 4.13(c)), the trend is similar to the external case with a sensitive increase of 

the ALS dark, but also with a higher dispersion on the ALS error, most likely related to the effect of the 

internal corners rounding. One can also notice that when R tends towards higher values, we are likely to 

find similar ALS performances than those obtained with circular holes, described in 3. B.1.3 Other 

potential ALS structures. This study reveals that in the case of ALS filters, it is more important to limit 
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the rounding of the external corners so that the related transmission decrease and the corresponding ALS 

dark increase are avoided, especially for low ALS error filters. The impact of the rounding of the internal 

corners is not critical (Figure 4.13(b)) since it only induces a low ALS error variation (< 0.35 dB). It is 

worth noting that all the performance variations remain low when R < 15 nm. Such rounding effects may 

be limited in the external corners with proximity effect corrections (PEC) and in the internal corners with 

double patterning. 

4. 3.2 Impact of rounded corners on angular stability 

The results described in the previous sub-section show that rounding the corners of cruciform apertures 

may alter the specific resonance modes of the perfect cross shape. More precisely, the blueshift observed 

in Figure 4.12(b) and the electric field localization calculated in Chapter 3 suggest that the internal 

angles are determinant to get the specific properties of crosses. These findings thus question an essential 

property of cross required for an ALS application that we investigated in Chapter 3: the angular and the 

polarization stability of crosses with small shape factors. We have shown that arrays of crosses with a 

ratio b/a ≤ 0.5 are nearly insensitive to the illumination conditions and can sustain polar incidence angles 

θ up to 60°. We now want to see if these properties are impacted by the rounding of the crosses’ corners. 

  

 
 

FIG. 4.14. (a) Evolution of the spectral response of a reference filter for angular stability simulated with 

different polar angles of incidence θ and for the TM and the TE polarization, with R = 0 nm. (b) With R = 10 

nm. (c) With R = 20 nm. The filter’s dimensions are: hm = 75 nm, P = 150 nm, a = 120 nm and b = 48 nm 

(b/a = 0.4). 
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 We consider the reference filter of Chapter 3 with a shape factor b/a = 0.4 and with the following 

dimensions: hm = 75 nm, P = 150 nm, a = 120 nm and b = 48 nm. This particular filter has been 

demonstrated to give nearly identical spectral responses for θ ≤ 60° and for both the TM and the TE 

polarization states. We thus simulate the filter with the same conditions with corners rounding of radii of 

curvature R = 10 nm and R = 20 nm and the results are compared with the nominal filter with R = 0 nm 

(Figure 4.14). As we can see, the gradual decrease of the transmission and the blueshift observed with 

the corners rounding in the previous sub-section are still present. Regarding our primary concern, no 

obvious deterioration of the angular and the polarization stabilities can be seen when crosses are 

progressively rounded, even for wide angles. Very slight redshifts can be noticed for the TM polarization 

at θ = 30° (10 nm shift) and at θ = 60° (30 nm shift) when R = 20 nm, but the filter remains widely 

robust to the illuminations conditions. The rounding of the crosses’ angles is thus not critical for the 

angular properties of cross arrays. 

4. 3.3 Variations of the apertures dimensions 

Another determinant step in view of the manufacturing of the plasmonic filter is the formation of the 

cross-shaped patterns in the metallic layer. Variations of the crosses size are also expected due to the 

process dispersions of the lithographic and etching steps, especially given the small dimensions of the 

holes. The impact of the errors on dimensions has to be carefully estimated since the wavelength filtered 

with a plasmonic effect is directly linked to the shape and to the characteristic dimensions of the 

structure. We only study this effect on the ALS performance with the ALS stack as the effect of the 

variations of the holes size on the spectral responses has already been investigated in Chapter 3. As in 

sub-section 4. 2.1 Thicknesses and refractive index dispersions, we use a statistical approach to evaluate 

the impact of the variations of the crosses size. Typical wafer-scale dispersions on the dimensions of 

100-nm-large patterns using a 193nm UV lithography in 28nm CMOS technology are approximately 

between 3 % and 4 %. Four levels of size dispersion are considered in this sub-section, each one with a 

maximal process dispersion of 0 %, + 2.5 %, + 5 % and + 10 % respectively on the arm length a and the 

arm width b. We decide to make a and b vary with the same dispersion at the same time. Only cross size 

increases are studied because the dimensions of the holes are small and hard to reach, thus it is more 

likely to be in an overetch situation rather than in a shrinkage of the targeted designs. Note that for each 

level of dispersion, the standard dispersions on the thickness and the refractive index calculated in 4. 2.1 

Thicknesses and refractive index dispersions (level 1) are also taken into account. For example in Figure 

4.15, all the dots of the green scatter plot corresponds to the blue scatter plot of Figure 4.4 where filters 

have been simulated with an increase of 2.5 % for a and b.  

 The dispersions of ALS performance for the two reference filters are represented in Figure 4.15 

for the four size cases. One can immediately notice that the dispersion on the crosses size has a more 

drastic impact on the ALS performance of the filter, even for the less pessimistic case (+ 2.5 %), than the 

materials dispersion. This result is due to the fact that the resonance properties of a plasmonic structure 

are directly related to its dimensions and are modified even for low variations due to their nanometric 

scale. Similarly to what is observed with the materials dispersion, the 1dB and 2dB reference filters 

show a distinct behavior. The dispersion on the holes dimensions mainly impacts the ALS dark for the 

1dB filter, whereas it mainly affects the ALS error for the 2dB filter. In the 1dB case, the maximum 

amplitudes in performance due to overetches up to 10 % are 1.16 dB in ALS error and 35 lx in ALS 

dark. Conversely for the 2dB filter, the maximum amplitudes are 3.3 dB in ALS error  and 20 lx in ALS 

dark. This distinct behavior is explained by their different transmission efficiencies. The 1dB filter has a 

low transmission ensuring a strong rejection out of the useful wavelength range. When the holes 

dimensions are increased, the rejection outside of the resonance remains strong despite the transmission 

increase (which leads to a decrease of the ALS dark), and the consequent resonance shift is not sufficient 

to capture unwanted signal (such as in the NIR region), thus leading to low ALS error variations. On the 
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contrary, the 2dB filter has a higher transmission and a wider resonance peak. When the holes size is 

increased, it is more likely to capture unwanted signal and to deteriorate the ALS error. The transmission 

increase is proportionally lower than that of the 1dB filter, and the ALS dark thereby experiences less 

variations. In both cases, the results show that the control of the holes dimensions is of primary 

importance to consider the mass production of plasmonic filters, especially in the case of light sensors 

applications. 

 

 
FIG. 4.15. Evolution of the ALS performances when the dispersions on the crosses dimensions are taken 

into account for the 1dB reference filter (hm = 300 nm, P = 275 nm, a = 180 nm and b = 90 nm) and for the 

2dB reference filter (hm = 300 nm, P = 250 nm, a = 200 nm and b = 100 nm), for four gradual levels of 

dispersions. For each level, the standard dispersions on the thickness and the refractive index are also 

calculated (level 1 in sub-section 4. 2.1). The 2012 and 2015 references are plotted with a grey square and 

an orange square respectively. 

4. 4 Filter nanostructuration 

4. 4.1 RCWA modeling of etching slopes 

Once the lithography step is performed, the metal has to be etched to create periodic patterns. A sloped 

profile of the holes may be formed at the aluminum etching step, which can be detrimental to the optical 

properties of the device given the small dimensions and thicknesses of the filters. Similarly to corners 

rounding, a few studies have recently started to take into account the possible sloped profile of the 

plasmonic structures they consider [57], [166], [167]. We have simulated the 2dB reference filter, which 

is designed with a 300nm-thick Al layer, with different slopes to evaluate the effect of slanted hole 

profiles on the filter spectral response. The slopes are modelled with RCWA, using a decomposition of 

the metallic layer into N elementary layers of equal thickness hm/N to create steps reproducing the sloped 

profile. All the following results are obtained with 25 elementary layers, which give similar results to 

finer modeling. The slope is defined by the angle α relatively to the vertical direction (α = 0° 

corresponding to a perfect etching), as shown in Figure 4.16. 
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FIG. 4.16. Modeling of sloped etching profiles with N steps in an aluminum filter. The angle α defines the 

slope of the slanted profile with respect to perfectly straight sidewalls. 

4. 4.2 Impact of sloped profiles 

Non-perfect etching of holes can lead to two different hole apertures. Either the bottom of the hole is 

completely open leading to over-etching at the top of the hole: this will be referred as the wout = a 

(bottom) case. Or in case of stop etch due to polymerization during etching, the bottom of the hole is not 

completely open. This will be referred as the win= a (top) case. The plasmons resonances may differ for 

win = a (top) or wout = a (bottom) in the case of cross-shaped-hole arrays. We propose to study both 

situations to understand the impact of slopes on plasmons in the case of the 2dB reference filter with the 

standard infinite SiO2 stack. Different slopes from 0° to 7.5° are simulated and the results are given in 

Figure 4.17. 

 

 
 

FIG. 4.17. (a) Evolution of the spectral response simulated with etching slopes of 0°, 2.5°, 5° and 7.5° in the 

case where a is fixed at the bottom of the 2dB filter with the Al-SiO2 stack. (b) Same graph in the case 

where a is fixed at the top of the filter. The filter dimensions are: P = 250 nm, a = 200nm, b = 100nm, hm = 

300nm. 

 
 It can be observed in Figure 4.17(a) that the transmission efficiency increases and the spectra 

broaden with increasing slopes, when the exit section is fixed. This highlights a kind of "funnel" effect 

where the widening of the hole induces a higher collection of light in the aperture, leading to a stronger 

confinement of the electromagnetic field at the exit of the filter. These results are in good agreement 

with the work of Shen and Maes on tapered metallic gratings [182]. Mahros and Tharwart also showed a 

slight redshift when the slope is increased [167], but their simulations used slope values twice higher 

(14°) than in our work, which may explain why it does not clearly appear in Figure 4.17(a).  Note that 

for a 7.5° slope, the arm length of the crosses on the top of the filter exceeds the period value by a few 

α win

wout

whm/2 hm

N 
layers

a) b)

a

P

Al

a

P

Al



     

ROBUSTNESS OF PLASMONIC FILTERS TO PROCESS VARIATIONS AND FRONT-END FABS LIMITATIONS 

103 

 

nanometers. In practice, fixing the exit section can be realized with proper anticipation on masks design 

and with a good knowledge of the etching chemistry or of the plasma used. On the other hand, the 

spectra on Figure 4.17(b) show that in the case where the entrance section is fixed, sloped profiles lead 

to a dramatic loss of transmission efficiency. This can be simply explained by the fact that increasing the 

slope progressively obstructs the holes in this case, the complete obstruction occurring at about α = 9.5° 

in Figure 4.17. 

 In order to evaluate which of these two effects is prevalent on the filter response, we study a third 

situation where both the entrance and the exit sections vary with the slope (Figure 4.18), and the nominal 

width is set at the middle of the metallic layer so that whm/2 = a. As it can be seen, the two effects 

partially compensate, but the trend is nevertheless rather a decrease of the transmission efficiency with 

the slope increase. This proves that the impact of the minimal section is predominant in the response of 

the filter. It is therefore more interesting to adjust the lithography masks so that the targeted dimensions 

are satisfied at the bottom of the filter. Note that the effect of sloped profiles would be significantly 

limited for thinner filters, but thin filters would have a worse rejection than thicker ones. 

 As an additional reading on this aspect, we can mention that Mahros and Tharwat proposed the 

study of the effect of exponential tapered profiles, which constitutes an interesting complement to our 

work [167]. They demonstrate for example a blue-shift (red-shift) of the resonance when the profile of 

the aperture gets more concave (convex).  

 

 
 

FIG. 4.18. Evolution of the spectral response simulated with slopes of 0°, 2.5°, 5° and 7.5° in the case where 

a is fixed at the middle of the metallic layer whm/2 with the 2dB reference filter with the standard stack. The 

filter dimensions are: P = 250 nm, a = 200 nm, b = 100 nm, hm = 300 nm. 

 
 We now consider the three previous configurations with a targeted dimension respected either at 

the bottom, middle or top of the hole in the case of the ALS application. We simulate the 1dB and 2dB 

reference filters using the ALS stack and we evaluate the evolution of the performance when wout = a 

(Figure 4.19(a)), when win = a (Figure 4.19(b)) and when whm/2 = a (Figure 4.19(c)). At first, it can 

immediately be noticed that the behavior of the 1dB and 2dB filters are similar in all the configurations, 

although the 1dB filter experiences larger ALS dark variation due to its lower transmission. In the case 

wout = a, increasing the slopes decreases the ALS dark, but also leads to a drastic increase of the ALS 

error. As a consequence, while the 1dB filter remains in the specification ranges for α ≤ 5°, its 

performances significantly deviate from the nominal filter with both a 26 lx decrease in ALS dark and a 

0.25 dB increase in ALS error for α = 2.5°, and with a 39 lx decrease in ALS dark and a 0.75 dB 

increase in ALS error for α = 5°. These results can directly be related to the observations made in Figure 
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4.17(a): although the funneling effect provides higher transmissions, it also deteriorates the rejection of 

the filters that thus receive signal in the NIR region, which explains the quick deterioration of the ALS 

error. This funneling effect being harmful for the filters’ performances, it can be concluded that reaching 

the targeted dimensions at the exit of the filters is not a good strategy for the fabrication of ALS filters. 

In the second case (win = a), it appears clearly that even low slopes are sufficient to make the ALS dark 

skyrocket when the apertures dimensions are fixed at the top of the filters. Despite the beneficial 

decrease of the ALS error, this configuration is not appropriate due to the huge losses of transmission 

induced by the obstruction of the holes. Finally, the case where whm/2 = a gives the most promising 

results. Indeed, for the two reference filters, the variations when the slopes are increased are very low for 

the ALS error and moderate for the ALS dark. For the 1dB filter, a slope up to 5° leads to an ALS error 

increase inferior to 0.08 dB with a 16 lx ALS dark increase . The 2dB filter is even more robust with 

only a 0.09 dB decrease in ALS error and a 10 lx ALS dark increase for a slope up to 7.5°. This is 

consistent with the variations of the spectral responses plotted in Figure 4.18 where only low reductions 

of the transmission are observed. We thus show that reaching the targeted apertures dimensions at the 

middle of the metal thickness is the best strategy to limit the impact of sloped etching profiles, which can 

be done with a proper knowledge of the etching method and with an anticipation of the dimensions 

directly on the masks. 

 

 
 

FIG. 4.19. (a) Evolution of the ALS criteria of the two reference filters with increasing etching slopes in the 

case wout = a. (b) In the case win = a. For the 1dB filter, the performances corresponding to the slopes 2.5° 

(ALS error = 1.03 dB, ALS dark = 136 lx), 5° (ALS error = 1.16 dB, ALS dark = 356 lx) and 7.5° (ALS 

error = 1.04 dB, ALS dark = 1869 lx) are not shown on the chart because of scaling issues. The slope 7.5° is 

not shown for the 2dB filter for the same reason (ALS error = 1.42 dB, ALS dark = 234 lx). (c) In the case 

whm/2 = a. The 1dB filter dimensions are: P = 275 nm, a = 180 nm, b = 90 nm, hm = 300 nm. The 2dB filter 

dimensions are: P = 250 nm, a = 200 nm, b = 100 nm, hm = 300 nm. The 2012 and 2015 references are 

plotted with a grey square and an orange square respectively. 
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4. 5 Holes filling 

4. 5.1 Importance of the dielectric surrounding 

We have seen in Chapter 2 how the dielectric medium around the metallic layer affects the plasmon 

resonances by comparing the spectral responses obtained with SiO2, Si3N4 and TiO2. Before evaluating 

the potential impact of the presence of voids on the filters properties, we want to clarify how 

inhomogeneities in the dielectric surrounding may affect the spectral responses. We propose to study 

these inhomogeneities throughout four simple configurations described in Figure 4.20. The first 

configuration consists of an aluminum layer embedded in an infinite SiO2 layer as in the case of the 

standard stack that we have used in the previous calculations. In the second one, we replace the SiO2 in 

the holes by another dielectric with a distinct refractive index: we choose to use air (nair ≈ 1). In the third 

case, the aluminum layer lays on an infinite SiO2 substrate but the holes and the top of the metallic layer 

are exposed to air. Finally, the last configuration corresponds to a free-standing aluminum layer only 

surrounded by air. 

 

 
 

FIG. 4.20. Schematic view of the four configurations considered to study the effect of the dielectric 

inhomogeneities around the metallic layer. 

 
 The spectral responses of the four configurations are simulated by using the dimensions of the 

2dB filter and are given in Figure 4.21. With pure SiO2 surrounding (case 1), we obtain the nominal 

spectral response of our reference filter with a single plasmon resonance at 550 nm and a transmission of 

35 %. The peak located around 380 nm corresponds to an increase of transmission due to the apparition 

of diffracted orders as P becomes equal to /nSiO2 at this wavelength. In the opposite configuration where 

all the SiO2 is replaced by air (case 4), the peak is blueshifted at 370 nm with a slight increase in 

transmission, corresponding to the plasmon resonance occurring at the interface between aluminum and 

air. When only the SiO2 in the holes is replaced by air (case 2), the main resonance at 550 nm splits in 

two distinct peaks with weaker transmissions, each one corresponding to a different plasmonic 

resonance: the peak located at 330 nm is related to the Al – air plasmon whereas the peak located at 470 

nm is related to the Al – SiO2 one. The coexistence of the two surface plasmons is also found in case 3 

where the metallic filter lays on the SiO2 substrate: the peak corresponding to the Al – air plasmon has a 

higher transmission than in the previous configuration since there is more aluminum surface in contact 

with air. This splitting of the resonance peak when the metal is in contact with two different dielectric 

materials considerably changes the filter's properties and has thus absolutely to be avoided [118], [183].  
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FIG. 4.21. Evolution of the spectral response of the 2dB filter when the surrounding dielectric medium is 

changed according to the four configurations described in Figure 4.20. The filter dimensions are: P = 250 

nm, a = 200 nm, b = 100 nm, hm = 300 nm. 

4. 5.2 Impact of air gaps during holes filling 

The fabrication of plasmonic filters operating in the visible range imposes very tight apertures whose 

filling may be tricky without appropriate deposition tools. The conformal filling of such filters gets even 

more complicated when using thick metallic layers leading to high-aspect-ratio nanostructures, as in the 

case of ALS filters. With such tough conditions, the presence of voids in the filled apertures is a risk that 

has to be expected.  In the four configurations studied in the previous sub-section, we have seen that 

having two different dielectric materials in contact with the metal severely alters the filter's response. 

While the air gaps resulting from a bad filling are not directly in contact with the metallic layer, it is 

worth investigating how their presence may affect the spectral responses of the filters and their 

performance in the case of the ALS application. 

 In the following study, the modeling of the voids is made according to a first approximation using 

coaxial air gaps inside the cruciform SiO2 holes, as shown in Figure 4.22. We consider here that the air 

gaps are as large as the metallic layer, which is the worst case that can be obtained in practice. In the 

simulations, the size of the voids is progressively increased by 0.2a steps and the volumetric fraction Vf  

of the air gap over the SiO2 hole is used to define its proportion. 

 We first simulate the impact of the different sizes of air gaps with the standard stack using the 

2dB reference filter, whose corresponding spectral responses are drawn in Figure 4.23. For small voids 

(Vf = 4 %), we only observe a very slight decrease of the transmission efficiency. When the size of the 

air gaps is progressively increased, the spectral response is however significantly impacted with a 

substantial decrease of the transmission, a notable blueshift of the main Al – SiO2 resonance and with the 

raise of a second peak located around 350 nm. Actually, we can notice that these changes gradually join 

the spectral response of the second configuration of the previous sub-section where the aluminum is 

surrounded by SiO2 but the holes are filled with air, which is obtained in the case Vf = 1. We thus 

demonstrated with these results that even if the air gaps are not in contact with the metallic layer, the 

induced change in the effective refractive index of the holes is sufficient to alter the filter properties. It 

means that in addition to the constraint of having a homogeneous dielectric medium around the metal 

[118], [183], we must also ensure that the presence of voids inside the holes is severely limited. 
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FIG. 4.22. Modeling of the air gaps inside the SiO2 holes with coaxial cruciform voids. The air gaps are 

simulated with the same thickness than the metallic layer. (a) Top view of an elementary cell of the RCWA 

simulation. (b) Sectional view. 

 

 
 

FIG. 4.23. Evolution of the spectral response of the 2dB filter when the volumetric fraction of the air gap is 

increased inside the SiO2 hole as described in Figure 4.22. The filter dimensions are: P = 250 nm, a = 200 

nm, b = 100 nm, hm = 300 nm. 

 
 We now perform the simulations of the two reference filters with the ALS stack to evaluate the 

impact of air gaps on the ALS performance. The results presented in Figure 4.24 indicate that the 

presence of air gaps drastically alter the performance above Vf = 16 % with a substantial increase of the 

ALS dark when Vf is increased. For the 1dB filter, voids with Vf = 4 % still give performances close to 

the nominal filter with a 20 lx increase in ALS dark and a 0.07 dB increase in ALS error. Note that the 

performances of the 1dB filter with Vf = 64 % and Vf = 100 % are not shown since they are way out of 

scale (ALS dark > 900 lx). The 2dB filter can sustain voids with a volumetric fraction up to 16 % with 

only a 16 lx increase in ALS dark and a 0.06 dB decrease in the ALS error. The 2dB filter has a higher 

tolerance to air gaps thanks to its higher transmission efficiency. The slight decrease in ALS error it 
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experiences for values of Vf ≤ 16 % is due to the removal of the signal located above 700nm, which 

improves this ALS criterion. We thus show that the formation of voids during the filling of the 

nanostructures can severely deteriorate the filters’ performance if the volume of the air gaps is not 

controlled. While the use of proper deposition techniques is preferable, we demonstrate that the impact 

of voids is limited if their volumetric fraction over the aperture is inferior to 4 % in the case of low ALS 

error filters and inferior to 16 % in the case of high ALS error filters. 

 

 
 

FIG. 4.24. Evolution of the ALS performances with the increase of the volumetric fraction of the air gaps in 

the SiO2 apertures for the 1dB reference filter (hm = 300 nm, P = 275 nm, a = 180 nm and b = 90 nm) and for 

the 2dB reference filter (hm = 300 nm, P = 250 nm, a = 200 nm and b = 100 nm). For the 1dB filter, the dots 

corresponding to Vf = 64 % (ALS error = 2.37 dB and ALS dark = 911 lx) and to Vf = 100 % (ALS error = 

3.47 dB and ALS dark = 1575 lx) are not displayed because of scaling issues. 

4. 6  Conclusion on Chapter 4 

In this chapter, we have simulated the impact of process dispersions on the ALS performances of two 

reference designs. Those simulations have enabled us to define a process flow for the fabrication of 

plasmonic filters that can simultaneously guarantee as few technological challenges as possible and be 

easily transferrable in an industrial context of mass production. The main hard points that are likely to be 

encountered throughout this chosen process route are identified. The aim is to be able to evaluate 

whether there are critical technological bricks and to propose solutions to overcome these potential 

difficulties in the industrial fabrication of plasmonic filters. Each time, we have investigated how the 

optical properties of the filters are impacted by these process dispersions, then we have applied these 

results and evaluated their effects in the case of the ALS application with two reference filters (the 1 dB 

and 2dB filters) having different constraints on their performances. The main differences in behavior 

found out between these two filters can in most cases be explained by the fact that the transmission of 

the filters tend to be much lower and their rejection much stronger when we approach low ALS errors 

close to 1dB. While these low-ALS-error filters experience higher relative variations of their 

transmission (leading to wide variations of the ALS dark), their ALS error are thus less sensitive to 

spectral shifts compared with high ALS error filters since they are less likely to capture unwanted signal, 

especially in the NIR region. 

 The first brick of the fabrication process is the deposition of the different layers composing the 

filters. The resulting dispersions of the layer thicknesses and of the dielectric indices are shown to have a 

limited impact on the ALS performance with a proper monitoring of the deposition tools. A reachable 

level of dispersion (level 2) allows for maximum amplitudes of 21.5 lx in ALS dark and 0.57 dB in ALS 
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error for the 1dB filter, and of 3.8 lx in ALS dark and 0.69 dB in ALS error for the 2dB filer. Therefore, 

we conclude that this step is not critical, and that no specific deposition tools are required for the 

fabrication of plasmonic filters. Regarding the material stability, we established that the formation of a 

native oxide on the surface of the aluminum layer is not an issue for the ALS performance if we take into 

account the decrease of the dimensions of the aluminum structure due to the oxidation process. In this 

case, the performance variations for a 10-nm-thick surface aluminum oxide are inferior to 4 lx and 0.2 

dB for the 1dB filter, and below 1.5 lx and 0.33 dB for the 2dB filter. In addition, we can imagine that in 

practice, the oxidation can be anticipated at the stage of the mask design. 

 During the lithography step, we have considered two main hard points: the rounding of the 

crosses’ corners and the control of the holes’ dimensions. When the crosses’ angles are rounded, we 

observe a blueshift of the resonance that we can attribute to the progressive modification of the plasmon 

resonances in crosses towards circular-like modes. This effect seems more related to the internal angles 

of the crosses, but a change in the interactions between apertures may also be considered. Despite these 

observations, we show that the stability properties of thin crosses are not impacted for polar angles of 

incidence up to 30° with a radius of curvature in the corners up to R = 20 nm. The impact of the rounded 

corners is low on the ALS performance provided that the rounding is limited. In our simulations, we 

show variations inferior to 5.9 lx and 0.22 dB for the 1dB filters and below 6.1 lx and 0.17 dB for the 

2dB filter for a roundness up to R = 15 nm. This roundness may be reachable in the internal corners with 

a double patterning during the lithography step and in the external corners with proper PEC calculations. 

 We have also studied the effect of the potential sloped profiles that can be obtained during the 

holes etching, with the angle being open towards the top. We have assumed that we can choose among 

three situations to anticipate the presence of slopes and to respect the targeted dimensions. If we fix the 

desired dimensions at the top of the filters, the slopes will obstruct the apertures at the bottom of the 

filter and the ALS dark of the filters will experience a massive increase that cannot be tolerated. On the 

contrary, if we choose to reach the target dimensions at the exit of the filters, the funneling effect that we 

have highlighted will collect much signal and will severely deteriorate the rejection of the filters, 

especially in the NIR wavelengths. The resulting increase in ALS error would be crippling. We show 

that the best case would be to anticipate the presence of slopes during the mask design so that the 

targeted dimensions are obtained at the middle of the metallic layer. The ALS error would not be 

impacted by the slopes (variations inferior to 0.18 dB for the 1dB filter and below 0.09 dB for the 2dB 

filter), and the ALS dark variations would be limited to 15.8 lx for the 1dB filter with 5° slopes and to 

10.1 lx for the 2dB filter with 7.5° slopes. Note that the anticipation of slopes is only possible with a 

strong knowledge of the chemistry or of the plasma used for the etching step. 

 The last hard points that we have investigated is the formation of air gaps in the dielectric material 

(SiO2 or SiON in our case) during the filling of the nanostructures. We have demonstrated that the 

presence of voids can quickly become a significant issue when their volumetric fraction Vf in the holes 

increases. A Vf up to 4 % can be tolerated for the 1dB filter with a 20.5 lx and a 0.07 dB variations, 

whereas the 2dB filter can sustain a Vf = 16 % with a 16.5 lx and a 0.06 dB variations. In all cases, we 

show that the presence of voids inside the holes have to be severely limited, especially in structures with 

high aspect-ratios. The use of appropriate deposition techniques such as High Density Plasma (HDP) 

depositions or Sub-Atmospheric Chemical Vapor Depositions (SACVD) should greatly limit the 

formation of air gaps in such structures. 

 





   

  

 

Chapter 5 

Realization and characterization of ALS 
plasmonic filters 

Throughout the previous chapters, we progressively determined which plasmonic solutions were the 

most promising to fulfill the specifications of light sensors and which was the impact of the main 

expected process issues related to the fabrication of hole arrays, especially for cross-shaped-hole arrays. 

This work has continuously led us to prepare the experimental demonstration of the plasmonic filtering 

solution for the ALS application with a knowledgeable attention on the respect of the different aspects of 

the filters’ characteristics. The envisioning of an industrial production of plasmonic filters requires an 

understanding of the actual process inaccuracies and variations that are generated with a wafer-scale 

fabrication and of course an estimation of the performance that can be achieved with such deviations in 

order to assess the viability of the ALS plasmonic solution. Because the time and the resources available 

for this study constituted non-negligible constraints, the objective of this process development was more 

focused on the obtaining of final and functional structures that can be optically characterized to provide a 

proof of principle of the plasmonic filters solution. In other words, this work is not primarily aimed 

towards the fabrication of defect-less structures with the search of dedicated and optimized processes. 

Similarly, the purpose was not specifically to do an exhaustive verification of the modeling of the 

process-related issues investigated in Chapter 4, but we performed as much morphological 

characterizations as possible in order to provide a comparison between the observed and the simulated 

defects in the critical process steps.  

 Consequently, we will be able at the end of the chapter to experimentally evaluate the ALS 

performance of the designs that have been studied and designed throughout this whole thesis and to 

discuss the viability of a wafer-level fabrication of ALS plasmonic filters. In the same time, useful 

information will be obtained regarding the capability of a wafer-scale production environment to 

fabricate nanometric structures and the potential ways of improving the filters quality. To achieve this, 

we will thus first describe the fabrication constraints and the initial outline process flow, together with 

the targeted structures. The main developments and results of the key integration steps will then be 

presented in the light of the study of Chapter 4 regarding the expected process dispersions and defects of 

an industrial wafer-level foundry. Finally, we will evaluate the filters’ performance from the measured 

optical responses of the fabricated filtering structures and compare them with the theoretical results. 
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5. 1 Experimental conditions 

5. 1.1 Integration constraints and limitations 

In the previous chapters, we recurrently explained how our study on plasmonic filters is meant for a 

CMOS fabrication with 300-mm wafer-level equipment, with specific constraints in the selection of 

materials and process techniques. In the present chapter where we aim to experimentally realize and 

study our developed filter designs, we however have to deal with limitations compared with our 

theoretical work, owing to concerns of time constraint and equipment restriction or availability for the 

duration of this thesis. 

 Although we evaluate in Chapter 4 the rounding of the crosses with UV lithography and 

demonstrate that a double patterning can greatly improve their shape reproduction, we did not have the 

opportunity to work with STMicroelectronics’s equipment using deep UV lithography (248 nm or 193 

nm). Accordingly, it was decided that the patterning step of the filters’ fabrication would be performed 

using an Electron Beam Lithography (EBL) available at the CEA Leti. Furthermore, it was agreed that 

the process development would be realized in the CEA clean rooms rather than in the 

STMicroelectronics fab due to lower development costs. It resulted from this decision that the filters 

would be realized on 200 mm wafers instead of 300 mm wafers since the former solution ensured an 

access to a wider choice of materials and processes for our study. It is also worth taking into 

consideration for this chapter that the process dispersions of the CEA equipments cannot be rigorously 

compared with the values used in Chapter 4 since they are not exclusively dedicated to large-scale 

production. 

 Regarding the targeted structures for the experimental realization, it has to be understood that we 

do not aim here to fabricate a complete ALS demonstrator including the packaging and the CMOS logic 

chip. The process development thus focuses on the filtering part of the sensor, meaning that we only 

study the fabrication aspects of the metallic patterned layer and the surrounding dielectric medium that 

will be presented throughout this chapter. Although the development is performed on silicon wafers in 

order to use conventional microelectronics techniques, the photodiode, the transistors, the metallic 

interconnects and the passivation layers are not fabricated. The goal being to test the filtering properties 

of the nano-patterned aluminum plasmonic structures, we aim to measure their optical transmission. Yet, 

the silicon substrate suffers from strong absorption in the whole visible range and does not allow for 

optical transmission measurement. Another solution was imagined: fabricating the plasmonic filters on 

glass wafer instead of silicon. However this would require the development of an entire fabrication 

process with glass wafers on the 200-mm production line, which would be really challenging. 

Consequently, we considered another approach starting with the fabrication on a Si wafer. This wafer is 

then bonded on a glass substrate before silicon is removed. This approach allows for direct 

characterization by optical transmission while maintaining the original fabrication process. The use of a 

wafer bonding technique imposes a few additional constraints on the fabrication that will be detailed 

later in section 5. 2.5, such as a drastic flatness of the interface that will be bonded. The demonstration of 

ALS filters on complete CMOS chips will be mentioned later in this chapter. 

5. 1.2 Process route description 

As explained in the previous sub-section, the major part of this chapter is dedicated to the fabrication of 

the filtering structures only. The constituting parts of an entire ALS sensor such as the metallic wires or 

the logic elements are not included in the demonstrators and the evaluation of the fabricated filters is 

thus performed through transmission measurements. The concerns that we aim to investigate are related 

to the process risk assessment presented in Chapter 4 and are thus limited to the fabrication of the 
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metallic nanostructures, with the major challenge of realizing sub-wavelength hole arrays with wafer-

level processes. We already provided in the previous chapter the reasons of the selection of a fabrication 

using an aluminum etching instead of a damascene method, the filling of nano-scale apertures with 

aluminum and the potential requirement of an adhesive layer for the CMP of aluminum being very 

challenging. We give in Figure 5.1 a more accurate description of the process route used for the 

fabrication of ALS filters with aluminum etching. 

 Two configurations are presented but the process integration is exactly the same. A few 

differences exist in the parameters used between the first engineering development (SiON configuration) 

and the realization of the final structures (without SiON), as it will be explained throughout this chapter.  

 The configuration featuring a SiON layer was used to provide a first study of the adherence 

between aluminum and SiON in the hypothetical case where the integration of the plasmonic filters 

would be integrated in the top-coat layer (see 2. 4 Optimal integration solution for plasmonic ALS). For 

our demonstration of optimized ALS designs, we will only use SiO2.   

 We will actually see in the next sub-section that each configuration corresponds to a different 

mask layout. 
 

The following description is a brief overview of the initial process flow as it was first thought. 

 The first steps consist of a thermal oxidation of the silicon to create the underneath dielectric 

medium (500 nm thick) (followed by SiON in the first configuration) and of the deposition of the 

aluminum layer.  

 PVD Al-1%Si alloy is used in our study because it is more tolerant to thermal stress than pure Al.  

 In a former study of plasmonic filters with nano-imprint lithography [134], [171], the etching of 

aluminum was shown to be a critical step which struggled to properly transfer the targeted design 

to the metal layer, with high etching slopes and substantial shape deformations due to the use of a 

soft mask. We thus decided to perform the photolithography with a combination of a 

photosensitive resist and an 80-nm-thick SiO2 hard mask. The purpose of the hard mask is to 

obtain a better edge definition of the apertures during the etching. We use a resist thickness of 280 

nm for a 200-nm-thick aluminum layer. The resist patterning is performed with a Gaussian 

electron beam (e-beam) (Leica VB6).  The hard mask then undergoes a dry etching with CF4/C4F8 

as reactive gas in a O2 plasma. Dry etching is preferred over wet etching owing to its anisotropic 

behavior which is more adapted to the fabrication of high-aspect-ratios structures.  

 Before the aluminum structuration, a stripping step is performed so that all the remaining 

fluorinated residues are removed. The quality of the aluminum etching is indeed degraded due to 

the formation of a non-volatile AlF3 compound when aluminum is attacked by fluorinated gases. 

Another stripping step is done after the metal etching. 

 The aluminum layer is then patterned with a chlorinated reactive gas. In the case of the SiON 

configuration, the etch stop is done with end point detection method where the detection of 

nitrogen gas indicates that the aluminum layer has been totally etched. In the case of SiO2 only, 

the etch time is calculated from the etch rate of aluminum, with the drawback of being less 

accurate in the detection of the bottom of the aluminum layer. After the stripping of the etch 

residues, the apertures of the hole arrays are thus filled with SiO2 so that the dielectric medium is 

the same around and inside the metallic layer. We saw in section 4. 5.1 that a homogeneous index 

around aluminum is preferable for plasmon resonances. 
 

 Since we want to perform transmission measurements to optically characterize our structures, it is 

necessary to transfer the filters on a transparent glass wafer. This transfer can be performed with a direct 

wafer-to-wafer bonding between the upper SiO2 layer and the glass substrate (Figure 5.2). An extreme 

flatness of the surface is crucial, which is obtained with a chemical-mechanical polishing (CMP) of the 

silica layer obtained after the filling of the holes. An adequate surface preparation is required and will be 

described in details in the corresponding section 5. 2.5. Finally, the silicon wafer is removed so that light 

can freely propagate through the structures. 
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FIG. 5.1. Description of the initial process route developed for the fabrication of plasmonic ALS filters with 

the etching of aluminum. Each configuration corresponds to a specific e-beam (EB) base layout described in 

the next sub-section. 

 

 
 

FIG. 5.2. Description of the bonding step on glass wafer for transmission measurements. The case with 

SiON is not drawn but it underwent the direct bonding in the same manner. 
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5. 1.3 Designs selection and Electron-Beam Lithography bases 

In practice, the process development of the filters was conducted in two steps. Since it was initiated early 

during the thesis work, the evaluation and the optimization of plasmonic ALS filters were not entirely 

achieved at the beginning of the fabrication. A first phase was thus launched with the objective of 

clearing the main critical steps of the fabrication, such as the metal nanostructuration, the holes filling or 

the wafer bonding and to deal with any potential unexpected issues. In order to save time, the 

nanostructures were realized according to an already existing EBL (Electron-Beam Lithography) base 

featuring square patterns with dimensions comparable to potential ALS structures. It must be understood 

that this phase consisted in the fabrication of metallic patch arrays, as described in section 2. 3.2. The 

design of this initial base is given in Figure 5.3. It consists of two electron beam fields (left and right), 

each one containing nine arrays of square patterns arranged in a square array with the same period Px = 

Py = 200 nm. The dimensions of the squares vary between 65 nm and 140 nm. Consequently, the inter-

patches cavities range from 60 nm to 135 nm, which corresponds to the dimensions of the ALS hole-

arrays (Chapter 3). The first stage of the process development was thus realized with square arrays of 

aluminum square patches (and not square holes), even if we did not use these structures for the 

evaluation of ALS filters. A slice view of the structures along the middle of an EB (e-beam) field is 

proposed in Figure 5.4. 

 

 
 

FIG. 5.3. Schematic of the layout of the initial base. The figures given below the arrays are the square 

patterns’ dimensions in nanometers, followed by the period. This base was used to realize square arrays of 

square patches and to test the adherence between AlSi and SiON. The dimensions of the arrays are 500 x 

500 µm² and the distance between two neighboring arrays is 500 µm. Each blue array stands for one filter. 
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FIG. 5.4. Scheme in slice view of the wafer structure along an EB field after holes filling. The scale is not 

respected. 

 
 Once the optimization of plasmonic ALS filters was performed (Chapter 3), a new EBL base was 

designed with the most relevant structures for the study. We will call this base the optimized base. This 

second fabrication phase thus benefited from the development made with the initial base. The 

distribution of the filters is presented in Figure 5.5 and their characteristics are detailed in Appendix A. 

Similarly to the initial base, the filters are spread onto two EBL fields (left and right), each one 

containing 16 arrays (or filters). The colors used in Figure 5.5 distinguish different kind of filters with 

different purposes, as described below.  
 
 

 
 

FIG. 5.5. Schematic of the layout of the optimized base. It features 32 arrays distributed on two EB fields. 

The green arrays stand for ALS designs made of cruciform apertures and the blue ones for ALS designs 

made of square apertures. The red arrays are arrays of the reference filter of Chapter 3 with different shape 

factors or intercrosses distances to evaluate experimentally the angular properties of cross-shaped apertures. 

The description of each array is given in Appendix A. The dimensions of the arrays are 500 x 500 µm² and 

the distance between two neighboring arrays is 500 µm. 
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 The green filters correspond to ALS filters designed with square arrays of cruciform holes, except 

the filter R_B4 which uses a hexagonal array of crosses. These ALS arrays of crosses have been 

optimized with various shape factors b/a ranging from 0.4 to 0.65 and for two targeted maximum 

ALS errors: 1 dB and 1.5 dB. The reference filters of Chapter 4 at 1 dB and 2 dB are also 

fabricated and correspond respectively to the arrays R_B1 and R_A1.  

 The four blue filters are ALS filters designed with square arrays of square apertures optimized for 

maximum ALS errors of 0.85 dB, 1 dB, 1.25 dB and 1.5 dB.  

 The grey array is the last ALS filters, which is designed with a square array of circular holes. In 

total, 19 filters are designed for the ALS application. 

 The red filters are used for a distinct purpose. They are all constituted of square arrays of crosses, 

but their aim is to experimentally study the angular properties of crosses. Their designs are based 

on the reference filter of Chapter 3. On the left EBL field, two filters with shape factors b/a = 0.4 

and b/a = 0.6 are fabricated with increasing intercrosses distances ranging from 50 nm to 150 nm. 

On the right EBL field, the reference filter is designed with five shape factors between 0.4 and 

0.8. The characteristic dimensions of these filters are below 120 nm and their fabrication is thus 

even more challenging than the ALS filters. 

5. 2 Development of a wafer-level integration 

In this section, the development work is articulated around the main process bricks of the fabrication. 

For each process brick, the major results are organized according to the following principle. First, the 

details of the initial process and the corresponding results are presented with the initial EBL base with 

patches arrays, followed by the description and the solving attempts of the hard points that occurred 

during the development. The morphological results from these developments and the subsequent results 

obtained with the optimized base with hole arrays are then discussed. We mainly used an optical 

microscope for the macro-defects visualization and Scanning Electron Microscopy (SEM) (Hitachi S-

5500) or a Focused Ion Beam (FIB) (FIB-SEM Expida 1285) for more accurate morphological 

characterizations. The dispersion values measured in this section are obtained from SEM or FIB-SEM 

observations on a small number of samples and wafers. They are thereby given as a first indication and 

do not pretend to be statistically relevant. It must also be understood that optimizing the process recipes 

and the dimensions of the filters was not within the scope of this study. 

5. 2.1 Materials and interfaces quality  

The first process brick consists in the realization of the basic materials stack composing the filters. We 

first have to deposit the dielectric medium that lies beneath the metallic layer. To achieve this, we 

realized a thermal oxidation at 1050°C of the silicon wafer. We chose to grow the thermal oxide up to 

500 nm to ensure a safe thickness between the silicon and the metallic layer in view of the ulterior Si 

substrate removal. This thickness is not critical for optical measurements while it is not below 200 nm 

[118]. For the initial EB base, an additional 250-nm-thick PECVD SiON layer is deposited at 400°C to 

study the stability of the SiON – Al interface as it would be the case if the plasmonic filters were to be 

realized in the passivation layers as explained in section 4. 5.1. A 200-nm-thick aluminum layer is then 

deposited by PVD at 175°C. The choice of this thickness value is justified by the fact that it comes close 

to the thickness of ALS filters (250 nm – 300 nm) without imposing high aspect-ratios for the 

nanostructuration as a first development. In our case, we used a 1%-silicon-doped aluminum alloy 

because it is more stable than pure aluminum when it is subjected to thermal stress [184], as we will see 

it later in this sub-section.  
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  A typical SEM picture of the resulting stack is shown in Figure 5.6. The measured thickness of 

AlSi performed on different SEM cross sections is 220 nm, which represents a 10 % increase compared 

with the 200 nm target, which falls into the dispersion ranges taken into account in Chapter 4 although 

this equipment is not monitored for a commercial production. We can also measure a 2 % and a 4 % 

increases compared with the targets for the thermal oxide and SiON respectively, but these thicknesses 

are not critical for our filters. Qualitatively speaking, the different interfaces do not reveal any apparent 

defect. We perform additional stress measurements on the SiON and the AlSi layers with a Flexus 

device, which measures the wafer radius of curvature by interferometry, that can be then translated into a 

mechanical stress according to the Stoney equation [185]. We obtain a tensile stress of 300 MPa for 

AlSi. This value is higher than what is measured in literature for an AlSi alloy [186], but the deposition 

parameters we used are not the same. A study demonstrated that for an AlSiCu alloy, a maximum stress 

of 250 MPa was obtained for a deposition temperature of 200°C [187], which is comparable to the 

temperature we used (175°C). In both cases, the aluminum layer is not stable when it endures an ulterior 

thermal treatment, as we will see in Figure 5.7. No delamination of the AlSi layer on SiON is noticed by 

performing a qualitative scotch test, which implies a priori a good adherence between the two materials 

and constitutes a positive result for the potential fabrication of plasmonic filters embedded in the SiON 

top-coat layer. AFM measurements return a low RMS roughness of the AlSi layer of 6 nm and a 

maximum peak-to-valley height of 59 nm, compatible with the following process steps. These values are 

in good agreement with literature [188]. 

 

 
 

FIG. 5.6. (a) Tilted SEM slice view of basic filter stack up to the deposition of the AlSi layer. (b) SEM cross 

section of the AlSi and SiON layers. The granularity and the roughness of AlSi can be seen. 

 

 Previous studies at the CEA Leti demonstrated the difficulties to obtain accurate shape definition 

and dimensions for similar structures when Al is only etched with a soft mask [134], [171]. The use of a 

hard mask with a high selectivity allows for a better protection of the aluminum surface around the 

targeted holes and thus leads to a better etching profile. In particular, the hard mask also limits the 

formation of etching slopes that we want to avoid in order to preserve the performance of the filters (see 

section 4. 4). Fortunately, SiO2 is sufficiently selective with respect to the typical chlorinated etching of 

aluminum. The advantage of a SiO2 hard mask in our case is that we do not have to remove it after the 

structuration since the aluminum is meant to be coated with SiO2 in our plasmonic filters. Consequently, 

we deposited an 80-nm-thick SiO2 layer by PECVD at 350°C with a SiH4 precursor.  

 A SEM picture of the stack with this additional layer is given in Figure 5.7(a). These observations 

reveal the presence of a significant number of protuberances at the surface of the films. If we perform a 

350°C anneal of the stack without depositing the SiO2 hardmask, we can also observe the formation of 

these important surface defects on AlSi in similar proportion (Figure 5.7(b)). The combination of the 

anneal and the hard mask deposition demonstrated that the anneal does not constitute an aggravating 
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factor since the results are very close to those obtained with the hard mask deposition alone. These 

defects are known in literature as aluminum hillocks [186], [189]–[192]. Hillocks consist of local 

extrusions that appear at the surface of a metal, especially when it is subjected to high temperatures. 

Their mechanism of formation in Al or in aluminum alloys is well known and is related to a 

phenomenon of stress release in the metallic film [186], [189]–[193]. When the process temperature is 

increased, the different thermal expansion coefficients and the lattice mismatch between the metal and 

the substrate generate a biaxial stress on the thin metallic film. The compressive nature of the created 

stress then gives rise to a substantial atomic diffusion at the grain boundaries towards the top surface 

which permits the relieving of the internal stress of the metallic layer. The local accumulation of atoms 

at the surface thus forms these hillock structures. We can observe a substantial decrease of the aluminum 

thickness due to the diffusion of AlSi atoms (Figure 5.8(a)). Our observations reveal that the hillocks can 

grow up to a height of 700 nm and a width at the base of 1 µm (Figure 5.8(b)). 

 

 
FIG. 5.7. (a) SEM picture of the stack after the deposition of the SiO2 hard mask. (b) SEM picture of the 

stack after anneal only, without hard mask deposition. 

 

 
FIG. 5.8. (a) SEM cross section of the materials stack after hard mask deposition. (b) SEM cross section of 

the AlSi hillocks after anneal only. 

 
 The formation of hillocks with such dimensions and densities is detrimental to the following 

process route. Their presence can indeed hinder the photosensitive resist deposition and thus sequentially 

degrades the quality of the lithography and the etching steps, which are both crucial for the realization of 

the plasmonic structures. The necessity to prevent their formation led us to look for alternative 

fabrication techniques for the aluminum or for the hard mask depositions. Several possibilities have been 

envisioned and tested, but they are not described in details here and we thus just provide a summary of 

AlSiSiON

SiO2

Thermal SiO2

AlSi

Hillock
Hillock

a) b)

AlSi

SiON

SiO2

Th. SiO2

237 nm

198 nm 175 nm

83 nm84 nm

a) b)

SiON
AlSi

Th. SiO2

706 nm

556 nm



 

CHAPTER 5 

120 

 

our results. The formation mechanism of hillocks quickly drove us towards the use of deposition 

techniques at lower temperatures [188], [191], [193]–[195]. While this solution could deliver 

improvement, it would also impose a thermal constraint on our process route and we thereby searched 

for other potential options in parallel. 

 

 Among the various attempts of hillocks suppression, we first tried to chain up the depositions of 

AlSi and of the hard mask with a minimum time constraint between the two steps. The results were not 

concluding since hillocks are still formed with comparable density and similar size and height. 

 We then decided to fabricate the filters with a different aluminum alloy Al-0.5%Cu by using a 

recipe dedicated to the suppression of hillocks. This recipe was optimized to deposit a 440-nm-thick 

AlCu layer at 450°C, which is too far from our targeted thickness (200 nm). Since the resource were not 

available to develop this process for a 200 nm thickness, a CMP step was required to remove the 240 nm 

excess before depositing the hard mask. While not properly measured, the grain boundaries at the 

surface of AlCu looked deeper than those of AlSi alloy, which could potentially incommode the 

realization of the nanostructures. After the CMP step, circular holes with a diameter of about 5 µm were 

observed in the AlCu layer, making the SiON layer apparent. With such proportions, these defects 

needed to be removed. An engineering of the AlCu CMP was thus initiated on blanket wafers by using a 

Ti/TiN adhesive layer, but the defects were not eliminated. No further investigation was launched and 

the AlCu option was thus dropped out. Trials were also made with the use of pure aluminum, but it did 

not manage to avoid the hillocks formation.  

 We suspected that the degassing of water or di-hydrogen gas captured in the SiON layer due to its 

potential porosity could enhance the formation of hillocks. We thereby decided to perform a one-hour-

long annealing at 350°C of the SiON layer before the deposition of the AlSi, but no improvement was 

observed regarding the hillocks formation after the hard mask deposition.    

 In literature, we found that the use of a capping layer above the aluminum layer could diminish or 

suppress the formation of hillocks during ulterior thermal treatments. We used either a 20-nm-thick 

Al2O3 layer [196], [197] or a Ti/TiN stack [198], [199] as encapsulation layers. Alumina could 

potentially be used on our stack since we saw in Chapter 4 that its impact on the optical response is not 

critical. The Al2O3 layer was deposited with a PEALD technique and the hard mask was then deposited 

to observe the potential hillocks formation. Hillocks were still present with a high density. This 

difference with literature results may be due to the fact that the alumina thickness should be more 

important to inhibit the growth of hillocks, typically superior to 90 nm – 100 nm [196], [197]. The use of 

such a thick alumina layer could however deteriorate too significantly the optical response of the filters 

and was thereby abandoned.  

 In the case of a Ti/TiN encapsulation which is opaque, the presence of this capping entirely 

annihilates the optical properties of the filters. Ti/TiN is thus only used as a temporary encapsulation to 

stabilize the aluminum layer and has to be removed thereafter. In particular, the protocol consisted of the 

PVD deposition of a 10-nm-thick Ti layer and of a 40-nm-thick TiN layer above the aluminum layer. We 

chose to try this option on both AlSi and the AlCu alloys. The stacks then endured a 400°C N2H2 anneal 

for 15 min in order to perform the stress release and the stabilization of the aluminum layer, and the 

Ti/TiN layer was meant to be removed with a CMP step. Despite the presence of Ti/TiN, hillocks were 

still observed with a density comparable to their initial observation. 

 Getting back to the cold process solution, the SiO2 hard mask was deposited at 200°C instead of 

350°C as it was initially the case, with a shorter deposition time. The observation revealed a significant 

reduction of the hillocks formation, attributable as forecast to the limited thermal stress imposed during 

the SiO2 deposition (Figure 5.9). Note that the hillocks are not entirely removed, but their density 

appears to be significantly decreased all over the wafer surface when comparing Figure 5.7(a) to Figure 

5.9(a). Hillocks are reduced to a height of 100 nm and a width at the base of 250 nm. Although this 

option imposed a thermal constraint on our process, it also allowed us to pursue the fabrication of the 

plasmonic structures towards the next steps. We nevertheless assumed that once the etching of the metal 
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layer is performed, the nanostructured areas of AlSi would be much less sensitive to thermal stress due 

to the discontinuity of the metal, allowing for a stress release without the hillocks formation mechanism. 

This assumption will be tested later in the process with the use of deposition steps with temperatures 

higher than 350°C.  
 

 
FIG. 5.9. (a) SEM picture of the stack after the deposition at 200°C of the SiO2 hard mask. (b) SEM cross 

section of the stack focused on a hillock. 

 

 The use of a cold deposition of the SiO2 hard mask showed good results for the reduction of AlSi 

hillocks, it was thus applied to the structures fabricated with the optimized designs. As previously 

explained, in this case the aluminum is directly deposited on the thermal oxide. The SiON layer was not 

used because its refractive index was too high (n ≈ 1.8) compared with the silica that is used above the 

metal and inside the hole, and we know that a homogeneous dielectric medium is preferable for the 

plasmon resonances. An engineering of the SiON layer could have been made to decrease its reflective 

index by modifying the stoichiometry of oxygen and nitrogen atoms, but it could have altered the 

adhesion with aluminum, and a whole additional study would have been necessary. A SEM observation 

of the obtained stack is given in Figure 5.10. The density and the size of the hillocks look comparable 

with what was obtained with the cold deposition for the initial base. There might be slight variations that 

were not measured due to the different stresses generated by the deposition of AlSi on SiO2 or on SiON, 

but we did not quantify them. The quality of the stack was sufficient to validate the cold deposition of 

the hard mask solution on the optimized base. 

 The metal layer and the SiO2 hard mask being deposited with a reduced formation of hillocks, we 

continued with the nanostructuration of the filters, which starts with the patterning of the hole shapes in 

the photoresist. 
 

 
FIG. 5.10. SEM picture of the stack for the optimized base after the deposition at 200°C of the SiO2 hard 

mask. 
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5. 2.2 Electron-beam lithography and corrections 

The small dimensions of the apertures and their particular shapes make the photolithography step 

challenging on the filters’ fabrication. Moreover, we saw in Chapter 4 how the dispersion on the targeted 

dimensions and the rounding of the shapes can impact the ALS performance owing to the intrinsic 

properties of plasmonic filters. Limiting these two undesired effects thereby requires careful 

consideration regarding the realization of the patterns. Indeed, the accuracy of the lithography step is 

determining for the accuracy of the subsequent etching step, itself being crucial for the nanostructuration 

of the aluminum layer, which has to be as close as possible to the targeted designs. In Chapter 4, we 

showed that a double-patterning with 193 nm lithography is able to deliver cruciform shapes with 

limited rounding of the corners. We did not have however the possibility to develop our process on such 

an equipment, and we then decided to use a Gaussian electron-beam lithography technique (Leica VB6).  

 Electron Beam Lithography (EBL) is able to draw small patterns of a few tenths of nanometers, 

and even of a few nanometers for the most advanced equipment, which makes it especially adapted for 

the realization of our designs [200]. The size of the spot is however not the only parameter involved in 

the resolution capability of EBL. In particular, electron-matter interactions induce dispersion in the 

exposed energy transferred into the resist with both scattering and the generation of secondary electrons. 

Moreover in the case of close periodical patterns, the electrons of the current feature writing spill over 

into adjacent areas, which results in a broadening of the pattern image and a decrease of its contrast.  We 

will see throughout this sub-section how these issues can be dealt with. EBL implies a long writing time 

owing to the serial nature of the process which reduces its use to small areas only, unlike conventional 

photolithography where the whole mask is simultaneously projected onto the resist surface. Although 

EBL does not fit with the high throughput requirement of an industrial production, it is advantageous in 

our development since this technique does not use masks, whose realization is long and costly. A trade-

off had to be made on the photoresist thickness: a better EBL resolution is obtained with thin resists, 

whereas the resist consumption during the etching step requires a thicker resist. It was decided as first 

attempt to use a 280-nm-thick photoresist. The metallic patches of the initial base were performed by 

using a negative photoresist, meaning that the exposed areas (corresponding to the desired metallic 

patches) remain after the resist development. The doses were varied according to previous studies using 

the same arrays, whose typical mask transmission rates are between 10 % and 50 %. No antireflective 

coating is required with the use of EBL. 

 

 We provide in Figure 5.11 top-view SEM observations and measurements of a few arrays 

obtained after lithography step. The dimensions are obtained with a CD-SEM equipment (Hitachi CG 

4000) which purpose is to measure the characteristic dimensions (CD) of structures between 30 nm and 

5 µm from SEM top views. It is calibrated with a reference standard ensuring a measuring accuracy of 

0.6 nm. The square shapes are well respected, although the rounding of the corners is more noticeable on 

small patterns, with a size inferior to 85 nm. The dimensions are slightly wider than the targeted designs, 

with the exception of the large patch arrays (above 120 nm) that are finer that the ideal designs. The 

mean dispersions of the dimensions are given in Figure 5.12 for the different array sizes, averaged over 

12 wafers. The arrays with patch sizes of 60 nm, 65 nm and 70 nm could not be measured because of 

resist collapsing, which generally occurs when the resist thickness exceeds three times the pattern size. 

Three values are presented for the array with patch size of 100 nm, corresponding to the three 100 nm 

arrays featured on the initial base. Despite a few dispersion extrema, the mean thickness dispersion over 

the wafers does not exceed 12 % regardless of the patch size, which is comparable to our maximum 

dispersion of 10 % considered in Chapter 4. Most of the arrays actually show a mean dispersion close or 

below 5 %. Bearing in mind that we do not aim to propose optimal process conditions and that no 

proximity effect corrections were used, the results were consistent enough to pursue the fabrication of 

plasmonic ALS filters. One could however object that the dispersion obtained with patches is not 

equivalent to that obtained with holes.  
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FIG. 5.11. CD-SEM observations of arrays with patch sizes of (a) 80 nm, (b) 90 nm, (c) 100 nm, (d) 105 nm, 

(e) 125 nm and (f) 140 nm. The dashed lines do not correspond to the measurements given on the pictures. 

 

 
FIG. 5.12. Mean dispersions of the patch sizes for the arrays featured on the initial base. The dispersions are 

averaged over 12 measured wafers. The bars give the maximum amplitude observed for each array in the 

12-wafers sample. 

 
 In the case of the optimized base, a few changes had to be made on the lithography step, where we 

wanted to realize hole arrays instead of patch arrays. The negative resist of the initial process was 

changed to a positive resist, meaning that the exposed areas of the photoresist are removed. A photoresist 

thickness of 200 nm was chosen, corresponding to the thickness used in CEA for similar resolutions. The 

thickness decrease compared with the 280 nm of the negative resist also implied a thickness change of 

the SiO2 hard mask, which was increased to 120 nm in order to compensate for the material loss during 

the etching step. The mask transmission rates are typically between 12 % and 42 %. SEM observations 

in top-view of a few arrays are given in illustration in Figure 5.13. A careful study of the dimension 

dispersion will be given afterwards in Figures 5.15-5.16. We first present the results of ALS cross-
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shaped-hole arrays with increasing shape factor in Figure 5.13(a)-(c). Despite their smaller arm length, 

crosses with b/a = 0.4 are those where the cruciform shape is the most respected, but the rounding of the 

corners is substantial. When the shape factor increases, the rounding and the proximity effects severely 

complicate the realization of a distinct cruciform contour and the shapes eventually approach a circular 

shapes (b/a = 0.6). The arm widths of the crosses were not measured because of their low relevance 

given the obtained shapes. Square holes gave however good results with faithful shapes and dimensions 

(Figure 5.13(d)-(e)). On the contrary, the arrays of small crosses aimed for the study of the angular 

stability returned poor results given their small dimensions and the absence of lithography optimization 

(Figure 5.13(f)). The entire results of the left field of the optimized base can be found in Appendix B. 

 

 
 

FIG. 5.13. CD-SEM observations of the following hole arrays of the optimized base: (a) L_A1 (a = 167 nm, 

b/a = 0.4), (b) L_A2 (a = 193 nm, b/a = 0.5), (c) L_A3 (a = 185 nm, b/a = 0.6), (d) L_A4 (a = 178 nm),  (e) 

L_B4 (a = 167 nm) and (f) L_C2 (a = 120 nm, b/a = 0.4). In the cases of cruciform shapes, only the arm 

length is measured.  

 
We decided to split our batch into two studies.  

 Since the lithography quality of square holes was satisfying, the first part was aimed to continue 

the fabrication of plasmonic filters especially for the square shapes, but also for the crosses 

without corrections. This part will be described in the following sub-sections 5. 2.3 to 5 .2.5.  

 The second part was however dedicated to the development of the EB step in order to improve the 

definition of the crosses before pursuing the nanostructuration. In particular, a development of 

proximity effect corrections (PEC) was attempted with the use of a thinnest and more resolving 

photoresist of 60 nm in combination with dose corrections. We did not have time to perform in 

the same time geometrical proximity corrections, but the results were already very promising 

(Figure 5.14). For direct comparison, we present the same arrays than those given in Figure 5.13. 

Be aware however that the scale is not the same. Qualitatively, the shape improvement can 

immediately be noticed on the ALS crosses, with sharper edges and corners (Figure 5.14(a)-(c)). 

The results are actually really close to the theoretical designs. The difference for the squares is 

tenuous, but less shape rounding can be noted with a closer look (Figure 5.14(d)-(e)). Eventually, 
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a major improvement is gained for small crosses, where the cruciform shape is particularly well 

respected despite the challenging dimensions (a = 120 nm and b = 48 nm). The results on the left-

hand chip arrays of the optimized base can be found in Appendix B. A rough visual fit on the SEM 

observations of crosses returns a radius of curvature in the corners of approximately 30 nm, which 

is slightly higher than the values we estimated for the rounding modeling of section 4. 3.1. It must 

however be noted that the shape obtained after EBL with PEC seems more faithful to the perfect 

cruciform shape compared to the shape we got from our modeling with similar radii of curvature. 

This is most probably due to the approximation of our model and the inaccuracies of the rounding 

measurement. The crosses’ shapes after EBL with PEC are therefore less concerning than what 

the simulations showed in section 4. 3.1, which constitutes good news for the manufacturing of 

cross-hole arrays.  

 

 
FIG. 5.14. CD-SEM observations of the same hole arrays of the optimized base with the more resolving 

resist and with dose corrections: (a) L_A1 (a = 167 nm, b/a = 0.4), (b) L_A2 (a = 193 nm, b/a = 0.5), (c) 

L_A3 (a = 185 nm, b/a = 0.6), (d) L_A4 (a = 178 nm),  (e) L_B4 (a = 167 nm) and (f) L_C2 (a = 120 nm, 

b/a = 0.4). In the cases of cruciform shapes, only the arm length is measured. The dashed lines do not 

correspond to the measurements. 

 
 The shape dimensions measurements for the optimized e-beam base after lithography are gathered 

in Figure 5.15 to provide a quantitative comparison between the initial resist and the new resist with dose 

corrections. The data with the new resist were only measured on the left chip of the optimized base. The 

relative dispersion of the hole size is drawn for each array of the left chip in each case. Note that the hole 

size refers to the size a of the squares and to the arm length a of the crosses. The data are differentiated 

between ALS crosses (gradient bars), ALS squares (hatched bars) and the small non-ALS crosses (full-

color bars). It can be seen that the new resist may give slightly higher dispersion for some of the ALS-

crosses arrays, and the same can be observed on ALS squares. If we look at the global dispersion in 

absolute values obtained over the ALS arrays only, the old resist leads to a mean dispersion of 3.9 % 

with a maximum of 11.14 %, whereas the new resist leads to a mean of 4.5 %, but with a maximum of 

only 7.1 %. It is likely that this increase in mean dispersion is more related to the accuracy of the EB 

equipment. These data are punctual and are only extracted from one wafer for each resist. Only a 
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statistical study would provide an accurate evaluation of the change in dispersion between the two resists 

in a situation with such close values. Moreover, these small variations between the two resists for the 

ALS arrays have to be put into perspective with the significant shape improvement obtained with the 

new resist, which is difficult to quantify. In the case of small crosses however, the improvement of the 

new resist are not questionable. With the old resist, we obtained a mean dispersion of 5.8 % with a 

maximum of 11.1 %, when we only obtained for the new resist a mean dispersion of 1.5 % and a 

maximum of 3.4 %. In total, the new resist allowed for an improvement in mean dispersion from 4.9 % 

to 3 %. Even if these results demonstrate the gain achieved with the new photoresist and the proximity 

effect corrections, it must be kept in mind that a major improvement was obtained in terms of shape 

definition, which cannot appear on a chart. The comparison is also given for the arm width b of the 

crosses in Figure 5.16, with measuring accuracy of ± 3 nm. They are mainly indicative, and especially 

for the smallest designs (L_C1 to L_D4) with the initial resist, which were barely measurable due to the 

high deformation of the crosses. It was chosen that b would be measured at mid-height between the edge 

of the arm and the internal corners. In spite of the low reliability of these values, a clear trend 

highlighting the improvement brought by the new resist and the proximity correction can be observed, 

especially on the smallest designs. The calculated mean dispersion over all the arrays for the initial resist 

is 14.8 % with a maximum of 38.9 %, whereas the new resist gives a mean dispersion of 5.4 % and a 

maximum of 13 %. The gathered data of Figure 5.15 and Figure 5.16 reveal that in the case of ALS 

filters, EBL can be optimized to reach dispersions inferior to 8 % for both the arm length a (mean 4.5 %) 

and the arm width b (mean 5.7 %), which is consistent with our dispersions studied in Chapter 4. The 

final dispersions will be obtained after the aluminum etching though. 
  

 

 
 

FIG. 5.15. Comparison of the relative dispersion obtained on the size of the holes between the initial 200-

nm-thick photoresist and the new 60-nm-thick photoresist with dose corrections on the array of the left chip 

of the optimized base. The bars with gradient colors stand for ALS crosses, the hatched bars for ALS 

squares and the full-color bars for small crosses. The holes size refers to the size of the squares or to the arm 

length of the crosses. 
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FIG. 5.16. Comparison of the relative dispersion obtained on the arm width b of the cruciform apertures 

between the initial 200-nm-thick photoresist and the new 60-nm-thick photoresist with dose corrections on 

the array of the left chip of the optimized base. The bars with gradient colors stand for ALS crosses and the 

full-color bars for small crosses. The squares are left for a direct correspondence of the arrays for the reading 

of a and b on this chart and Figure 5.15. They are made brighter since they do not have relevance for the 

arm width study. These data are only given as indication for the dispersion on the smallest dimension.  

 
 Although geometrical proximity corrections would have certainly improved the accuracy of the 

holes shape and size, we were unfortunately too short in time to go further into development for this 

second part of the study. Complementary solutions were envisioned with the use of intermediate hard 

masks with anti-reflective coatings, but we could not get into it. Consequently, these PEC developments 

for the optimization of cruciform apertures are the last results we could get for our optimal cross-shaped-

hole arrays ALS fabrication. Until the end of this chapter, the results that will be presented are thus the 

developments made on the initial base (Figure 5.11) and on the first part of the optimized base, i.e. the 

squares holes and the deformed crosses (Figure 5.13). 

5. 2.3 Aluminum nanostructuration 

Similarly to the lithography step, the metal nanostructuration is one of most critical and challenging step 

in the fabrication of plasmonic filters. The quality of the etching has a determining impact on the 

plasmon resonances and on the filters’ performance. Namely, dimensional variations and etching slopes 

are two expected issues regarding the Al nanostructuration, as presented in Chapter 4. Indeed, previous 

developments of plasmonic filters led at the CEA Leti attempted to perform the nanostructuration of the 

filters with the use of nano-imprint lithography [134], [171]. The results demonstrated a good transfer of 

the patterns shape into the resist, but significant dispersions of the holes shapes and dimensions after the 

metal etching, where etching slopes can also be noticed. In the light of this work, the structure was 

adjusted to obtain a better compliance of the pattern after the aluminum etching with the use of an 80-

nm-thick SiO2 hard mask, as described in 5. 2.1 Materials and interfaces quality. It is aimed to prevent 

the overexposure of the top edges of the apertures to the plasma, thereby avoiding an excessive 

consumption of the metal at the holes entrance. Sharper and more accurate pattern contours and profiles 

are thus obtained. 
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 The first step of the nanostructuration is the etching of this hard mask. It is performed with a dry 

etching using CF4/C4F8 as reactive gas in a O2 plasma. Before the Al etching, a stripping is done in order 

to remove the fluorinated residues. Indeed, their presence leads to the formation of AlF3, which is 

obtained in solid-phase and thus severely degrades the quality of the ulterior Al etching. A stripping step 

is also performed after the aluminum etching. An overview of the result of the hard mask etching is 

provided in Figure 5.17 with tilted SEM observations. A few indicative measurements were made on the 

three observed arrays of Figure 5.17 for the initial base. Notable size increases of the SiO2 patches were 

found (measurements made at the base of the patches in the pictures, averaged when several measures 

were available): 49 %, 30 % and 22 % for respective targets of 85 nm, 100 nm and 135 nm. These 

increases in dimensions should be transferred in the metal after Al etching, and it has to be noted that the 

hard mask etching may already induce an important dispersion. The hard mask etching was thus 

performed as a second attempt in another equipment with lower ionic bombing, which implies less 

faceting of the patterns and a better control over the dimensions. No characterizations were made 

directly after the hard mask etching, but the results after Al etching presented in the following indicate a 

noticeable benefit. 

 

 
 

FIG. 5.17. Tilted SEM observations of the hard mask etching for three arrays of the right-hand chip of the 

initial base: (a) 85 nm, (b) 100 nm and (c) 135 nm. 

 
 The aluminum etching was then performed by dry etching with a Cl2/BCl3 gas mixture in Ar 

plasma, where BCl3 is especially used for the removal of the surface native oxide Al2O3 [201]. The 

SiON was used as a stop layer with end point detection by sensing the nitrogenous gas. A few patch 

arrays were observed in SEM, and their measurements provide interesting information regarding the size 

dispersion and the etching slopes. Four of them are given in example in Figure 5.18. In order to avoid 

charging issues due to the underlying dielectric medium, the samples were metalized with an Au/Pd 

alloy. At first glance, it can be seen that the profiles are clear-cut, but inclined for small patch sizes. The 

increase in size suggested with the observations performed after the hard mask etching is also well 

noticed. Although the dimensions are not exactly respected, the large patches obtained in Figure 5.18(c)-

(d) demonstrate at the same time the ability to etch very thin cavities with aspect-ratios close to 3.5 with 

an Al thickness slightly superior to 200 nm. This observation is particularly interesting for the further 

realization of hole arrays with tiny dimensions. 

 For all the observed arrays of the initial base, the measured data regarding the patches size at the 

top and at the bottom of the filters, and the corresponding slopes are gathered in Figure 5.19. Since 

different measures were made in the case of the 100 nm array, only the average values are drawn. The 

calculated relative errors confirm the size increase of the metal patches compared with their electron-

beam patterns. A notable gap is observed between the errors at the top of the metallic patches and at their 

base, which seems to decrease when the patches get wider. From these errors, the etching slopes can be 

derived by assuming a symmetric profile of the patch according to their height. The slopes are low and 

are between the optimistic case of 2.5° and the medium case of 5° studied in Chapter 4, with typical 
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values of 3.2° for the 100 nm array (100-nm-wide trench) and 2.1° for the 140 nm array (60-nm-wide 

trench). These slope values augur well for the realization of ALS filters whose cavities’ dimensions are 

of comparable width. The spatial confinement of holes compared with trenches in the case of metal 

patches may lead to slightly different results though. The decrease of the etching slopes with the patch 

size confirms that the difference between the top and the bottom dimensions diminishes with larger 

patches. On the chart, we also add the dispersions that were extracted from the same arrays on the same 

wafers right after the electron-beam lithography. A good correlation and only small differences can be 

noticed between the errors measured after EBL and those measured at the top of the patches after the 

etching. The comparable errors between the two process bricks suggest that both the hard mask and the 

aluminum etching steps do not actually induce a significant size variation compared with what is 

obtained after lithography. These results are promising and demonstrate the benefit of the equipment 

change for the hard mask etching in order to obtain more accurate dimensions compared with Figure 

5.17. It can eventually be noted that the increase in dimension is the highest at the bottom of the patches. 

In the case of hole arrays, we saw in Chapter 4 that it is better to have the targeted CD (Characteristic 

Dimension) respected at mid-height to minimize the impact on the ALS performance. While this work 

has not been led in this thesis, it would be necessary to fine tune the etching bricks so that the profiles 

get closer to the ideal case where there is a slight size excess at the top and a slight size decrease at the 

bottom, like the results observed on the 140 nm array. 

 

 
 

FIG. 5.18. SEM cross sections of the aluminum patterning for four arrays of the initial base: (a) 100 nm, (b) 

110 nm, (c) 125 nm and (d) 140 nm. 
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FIG. 5.19. Relative error on the patch size of the measured arrays of the initial base compared to the target. 

The calculated etching slope for each array is also drawn. The errors that were obtained after the electron-

beam lithography on the same wafers from which the post-etching measurements were made are also given. 

In the case of the 100 nm array for which different measurements were made, the errors are averaged, and 

the slope is averaged over the slopes obtained for the different measurements. 

 
 In the case of the optimized base, the change of the photoresist led us to use a thicker SiO2 hard 

mask of 120 nm. Since no SiON was used in the stack for this study, the thickness removal of aluminum 

was adjusted from the etch rate of the material. We saw in the EBL brick that the crosses gave poor 

shape definition without proximity effect corrections. We will thus now focus solely on the analysis of 

ALS arrays designed with square holes (L_A4, L_B4, R_C1 and R_C2). We present an illustration of 

the metal etching with the R_C1 array in Figure 5.20, that shows SEM observations in normal and tilted 

top views for an AlSi thickness of 200 nm. From the top, a double contour can be observed inside the 

apertures with a width between approximately 10 nm and 20 nm depending on the holes. While this 

corona could be at first glance attributed to etching slopes, a closer look at Figure 5.20(b) suggests that 

this could rather be due to a slightly wider aperture in SiO2 than in aluminum. The apparent roughness 

that can be seen on the sides of the holes however makes it hard to conclude. We propose in Figure 5.21 

SEM cross sections of three arrays of squares for AlSi thicknesses of 200 nm and 275 nm. It can be seen 

in Figure 5.21(a) and Figure 5.21(c)-(d) that the remaining hard mask can indeed create a capping with a 

slightly thinner width that the metallic walls on which it stands, in the order of 10 nm. The pictures also 

confirm the irregular profiles of the apertures, which maximum amplitude can reach approximately 30 

nm for a typical hole size between 170 nm and 180 nm. The metallic flange at the entrance of the holes, 

beneath the hard mask is observable on the four arrays of squares, for the two aluminum thicknesses of 

200 nm and 275 nm. We note from our other SEM pictures that the etching profile is generally irregular 

in the top half of the holes, whereas the profile is smoother and straighter in the lower half. Although the 

overall morphology is not exactly comparable, the profiles at the top of the apertures’ sidewalls are close 

in some locations to the T-shape observed by Yoon et al. [100], that they attributed in their case to low-

pressure dry etching. 
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FIG. 5.20. SEM observations of the R_C1 array of the optimized base for an AlSi thickness hm = 200 nm in 

(a) top view and (b) tilted top view. (c) Global view of the hole array for hm = 275 nm.  

 

 
FIG. 5.21. SEM cross sections of three ALS arrays of squares from the optimized base: (a) R_C1 with hm = 

200 nm, (b) R_C1 with hm = 275 nm, (c) R_C2 with hm = 200 nm and (d) L_B4 with hm = 200 nm. 
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 We measured the size of the holes at both the entrance (top) and the exit (bottom) of the apertures 

in a few holes for each array of squares and for each thickness. Regarding the size at the entrance of the 

holes, we ensured to measure the size just beneath the hard mask, and not at the level of the flange like it 

is the case in Figure 5.21. We draw in Figure 5.22 the mean relative error calculated from these 

measurements for each situation. The maximum and minimum observed errors are also given. It is 

difficult to identify any clear trend given the very low number of samples and by considering the 

measuring inaccuracies. Nevertheless, it can be noticed that the mean relative errors on the holes size are 

beneath 7 % for both the entrance and the exit, which is a value entirely comparable with the errors 

obtained after lithography (Figure 5.15). Although the measurements after EBL and after etching were 

not performed on the same wafers, it can be assumed that the etching brick does not induce a notable 

additional size variation compared with the EBL. The only exception to this observation is the R_C2 

array with hm = 275 nm for the mean relative error at the top, which reaches 14 %.  However, the results 

suggest a noticeable dispersion in the hole size within the a given array, with difference in relative error 

between the highest and the lowest measured sizes than can reach 20 % on the L_A4 array. The impact 

of such size dispersion into the same array on the spectral response is an additional process-related issue 

than has never been addressed and investigated so far. In our study, we only simulated a constant size 

variation of all the holes in the same time, but this new consideration would constitute an interesting 

complement for the potential industrialization of plasmonic filters. It has to be noted than in the cases of 

the arrays R_C1 and R_C2 at 275 nm, very few measurements were available, which explains their low 

dispersion compared with the other arrays. We have seen that the etching profiles were a bit irregular, 

with size variations between 10 nm and 30 nm inside the holes. Consequently, it is not rigorously 

possible to deal with etching slopes with our experimental results. A comprehensive engineering 

development of the etching brick would be required to evaluate the potential ways to limit the holes size 

dispersion and to etch the apertures with sharper profiles, which was not possible in the time allocated 

for a thesis. For comparison with our study of Chapter 4, we nevertheless provide the values of effective 

slope calculated from the top and bottom measurements, which would correspond to a simplified 

aperture profile neglecting the irregularities of the holes sidewalls. The mean effective slopes of the four 

arrays of squares for each thickness are between 0.6° and 2.6°, but a mean of -0.6° is also calculated for 

R_C1 at 200 nm. This negative value means that the widths were slightly thinner at the top than at the 

bottom. Among our measurements, we only count an isolated maximum of 6°. These values are lower 

than what we simulated, but our simulations and these effective slopes do not take into account the 

random irregularities of the etching profiles, whose impact on optical properties remains to be properly 

investigated. 
 

 
FIG. 5.22. Mean relative error of the square sizes at the top and at the bottom of the hole obtained from our 

measurements for each array with a) hm = 200 nm and b) hm = 275 nm. The data for L_B4 at 275 nm were 

not available. The bars give the maximum error amplitude observed for each array. 
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5. 2.4 Holes filling 

 After the nanostructuration of the metallic layer, the apertures have to be filled so that the 

dielectric permittivity is homogeneous around the metal. We saw in section 4. 5.1 that having similar 

metal-dielectric interfaces on holes sidewalls and at the top and the bottom surfaces of the filter was 

preferable to excite the same plasmon and thus to enhance the extraordinary transmission phenomenon. 

In the same time, we demonstrated that in the case of hole-array structures, the presence of air gaps 

within the apertures could substantially alter the spectral responses of the filters depending on the gaps’ 

volume ratio (section 4. 5.2). Typically with our model, the volumetric fraction of the air gaps has to be 

below 4 % to limit their impact on ALS performance. Higher values quickly decrease the transmission of 

the filters and shift the resonance towards blue wavelengths. Consequently, the hole-filling brick has 

been identified as a critical step for the fabrication of our ALS demonstrators. With thick metal films and 

holes’ dimensions below 200 nm, the filling of these nanostructures with no or minimum air gaps may 

indeed be challenging. 

 Although our initial base was not using hole arrays, it provided metallic structures with small 

apertures to fill. Indeed, larger metal patches necessarily create small cavities in-between them. The 

dimensions used for the patches of the different arrays gave us trenches with aspect-ratios ranging from 

1.4 to 3.3 for an AlSi thickness of 200 nm, which are directly comparable to those of our hole-array 

structures. The first trials on this initial base were thus able to deliver relevant information regarding the 

capability of our process integration to fill such structures, and by extension, our ulterior ALS hole-

arrays. The hole filling was first performed on the initial base with a common PECVD equipment with a 

deposition of a 500-nm-thick SiO2 layer at 400°C using a TEOS (tetraethyl orthosilicate) precursor. This 

thickness is necessary for the ulterior bonding on glass wafer. We then performed SEM characterizations 

of a few arrays to verify the quality of the filling inside the structures. A few cross-section SEM 

observations are given in Figure 5.23. The presence of air gaps can be observed on the four pictures, 

which are characteristic of what we observed for larger patch sizes (above 100 nm), i.e. smaller cavities. 

When comparing Figure 5.23(a) and Figure 5.23(b) which show the same 100 nm array at different 

locations on the sample, it can be clearly seen that the voids size and profile is not similar depending on 

where the cleaving is done. In Figure 5.23(a), the sample is cleaved at the middle of a patches line, this is 

why we can distinguish the metal patches and observe the granular structure of AlSi. On the contrary in 

Figure 5.23(b), the cleaving felt between two patches line. Small pieces of AlSi are visible in the 

foreground and correspond to a first line of patches that has been cut at the base during the cleaving. In 

the middle ground, the patches cannot be directly seen because we only see the SiO2 layer covering the 

metal of the second patches line. From these two pictures, it can be deduced that in the case of patch 

arrays, the air gaps have a cruciform shape viewed from the top and are centered in the middle of four 

patches, where the voids are bigger. In this location, we can estimate from Figure 5.23(b) that the voids 

are about 150 nm high and 30 nm wide for the 100 nm arrays, that are representative of the hole sizes in 

ALS filters. Their size progressively decreases along the crosses’ arms as we get farther from their 

center. Accordingly, their size reaches its minimum values at the middle of a patches line, between two 

neighboring metal patches. From Figure 5.23(a), their height ranges from approximately 20 nm to 50 nm 

for a width of about 30 nm. An important feature which is visible on all pictures is that the holes are 

located above the metallic patches. The voids are thus located at the top of the filters. Logically, in this 

location, the voids are expected to have less influence on optical properties than when located just 

between the metallic patches. We performed additional SEM characterizations on the 100 nm array with 

a Focused Ion Beam (FIB), which allows for a more accurate location of the slicing with respect to the 

lines of patches. In Figure 5.23(c) where the cleaving was slightly skewed, the evolution of the gaps size 

when we get farther from the middle of a patches line can clearly be observed. On a side note, we notice 

that voids are a bit easier to distinguish with FIB-SEM characterizations than on SEM. We did not have 

enough characterizations to accurately evaluate the size of the air gaps as a function of the dimensions of 

the arrays, but the same trend were observed on the 125 nm array (Figure 5.23(c)) and the 140 nm array 
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(not shown). In practice, the volumetric fraction of air gaps that we defined in Chapter 4 for hole arrays 

is not really transposable to patch arrays, and would still be complicated to evaluate with 2D 

characterizations only. Nevertheless, these results are sufficient to highlight the difficulty of a classical 

PECVD process to properly fill such small nanostructures with high aspect-ratios. Considering our study 

of voids in hole arrays, the risk of formation of wide and detrimental voids could not be taken in the case 

of our ALS designs and a new filling solution had to be investigated. 

 

 
FIG. 5.23. SEM slice views of the initial base after holes filling with SiO2 for: (a) a 100 nm array, (b) the 

same 100 nm array in another location and (c) the 125 nm array. (d) FIB-SEM observation of the same 100 

nm array. Air gaps are clearly visible on each picture.  

 
 We had the opportunity to perform the hole-filling step in the 200-mm clean room of 

STMicroelectronics, where the use of a High-Density Plasma Chemical Vapor Deposition (HDPCVD, 

that we will simply call HDP) process was proposed. HDP is also known as gap filling and constitutes a 

deposition process that is typically aimed for the filling of small spaces with high aspect-ratio with a low 

thermal budget [202]. The combination of a high plasma density and a low pressure results in 

simultaneous deposition of the precursors and sputtering of the deposited film due to the high ions 

density. The interest of such a method lies in the fact that the sputtering rate depends on the angle 

formed by the attacked surface with respect to the horizontal plane. The film deposition is faster on 

horizontal surfaces (0°) than on gap walls (90°). However, the sputtering, which leads to a removal of 

the deposited material, is more important on surfaces inclined with an angle close to 45°. These two 

opposite phenomena lead to higher deposition rates on plane surfaces (in our case, the top of the patches 

and the bottom of the cavities), whereas the material grows more slowly on inclined surfaces (the top 

edges of the patches) due to the higher sputtering rate. This slope-dependence of the deposition and 

sputtering rates prevents the obstruction of the cavities before they are entirely filled and thus limits the 

formation of voids. The filling capability of HDP deposition is generally characterized by the deposition 
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to sputtering ratio D/S, where D stands for the sum of the net deposition rate (of the precursor) and of the 

sputtering rate (of the ions), and S for the sputtering rate alone. Low D/S values imply a better filling of 

high-aspect-ratio structures, but at the cost of a lower growth rate of the film. 

 The filling of our structures was performed with the deposition at 450°C of a 700-nm-thick SiO2 

layer from SiH4 and O2 precursors in an Ar plasma. The process was split into two steps, with first the 

conformal deposition of an adhesive 40-nm-thick SiO2 layer, followed by the deposition of the 

remaining 660 nm with plasma etching (stronger sputtering related to the higher density of the plasma). 

The D/S ratio used in our case was 2.8. The corresponding SEM characterizations after holes filling are 

given for a few arrays in cross sections in Figure 5.24, mainly realized with FIB. The 85 nm and the 100 

nm arrays reveal a total absence of voids in the cavities, which constitutes a major improvement from the 

results obtained with the PECVD SiO2 of Figure 5.23. The measurement of the AlSi thickness (240 nm 

approximately) and the quality of the filling thus demonstrate the ability to fill structures with aspect-

ratios close to 2.7 with gap widths of about 90 nm in a 240-nm-thick aluminum layer without any voids. 

The process we used however shows its limits with the 125 nm array which reveals the presence of air 

gaps, whereas this is not the case with the 140 nm array. This difference may be explained with the facts 

that the 125 nm array has been shown throughout this whole section to have a higher size increase 

compared with the 140 nm array and that the cross section may have been performed in a more favorable 

zone for the 140 nm arrays since the patches are thinner than the targeted dimensions on the picture. A 

finer tuning of the HDP deposition could certainly improve the filling of these more aggressive arrays, 

but the optimization of the process was not part of the scope of this work and the results we obtained 

from the 100 nm array were encouraging enough to use this method with hole arrays. 

 

 
 

FIG. 5.24. FIB-SEM cross-section observations of the initial base after holes filling with a HDP process for: 

(a) the 85 nm array, (b) a 100 nm array and (c) the 125 nm array. (d) SEM cross-section observation of the 

140 nm array.  
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 Although the finalization of the process development and the optical characterizations will 

entirely be presented in the next sub-section, we provide here the optical characterizations obtained with 

the final patch-array structures for both the PECVD and the HDP depositions in Figure 5.25. The 

measurements were made with a micro-spectrometer whose characteristics are specifically described in 

the next sub-section. The results correspond to the optical responses measured from the same 100 nm 

array on different wafers. Only one of those wafers used HDPCVD, the other ones were fabricated with 

the PECVD holes filling. It can be seen that the spectrum obtained with HDP deposition is very similar 

to the spectra obtained with PECVD, which are themselves very close to the simulated response with the 

same material stack. No obvious distinction can be made between the two deposition processes, thus the 

impact of air gaps and the benefit of HDPCVD cannot be identified on the spectral response of the 

filters. Actually, a first-approximation modeling of voids in a patch array embedded in an infinite SiO2 

medium demonstrates that even with large air gaps, the impact is minimal on the filter’s response, be it 

in transmission or in reflection (Figure 5.25(b)). This explains the high level of similarities between the 

filters obtained with the two deposition processes. Furthermore, the simulations show that the 

transmission (or reflectance) variations theoretically induced by the presence of voids are of the same 

order of magnitude that the wafer-to-wafer reproducibility observable with the three wafers which were 

filled with PECVD. No conclusion can thus be drawn from the optical characterizations of patch arrays 

on the choice of the filling process. Nonetheless, it does not invalidate the benefits of HDPCVD since 

patch arrays seem nearly insensitive to voids, unlike hole arrays. Regardless of this inconclusive optical 

comparison, a HDP filling was thereby used for the fabrication of the optimized base.   

 

 
 

FIG. 5.25. (a) Comparison of the transmission measurements between the structures filled with HDPCVD 

and PECVD. A simulation of the stack is also provided. (b) Rough modeling of air gaps in a patch-array 

filter embedded in an infinite SiO2 medium with the same period (200 nm) and patches size (100 nm) than 

the measured structures. The voids are modeled according to a cruciform air gap between four patches, with 

varying arm length l and with w = 0.5∙l. 

 
 FIB-SEM cross-sections observations were performed on the hole arrays of the optimized base 

filled with HDPCVD for 200-nm-thick AlSi. We show cross sections of the array of squares L_A4 

(Figure 5.26(a)) and of the array of crosses L_A1 (Figure 5.26(b)). The array L_A1 has the particularity 

of featuring the smallest and thinnest ALS crosses of the optimized base, with a = 167 nm and b = 67 nm 

(b/a ⋍ 0.4). It thus constitutes a relevant gauge to evaluate the capability of an industrial deposition 

process such as HDPCVD to fill nanometric cavities, especially in the case of ALS designs. The 

observations reveal that the apertures are perfectly filled with SiO2 both in the case of squares (a = 178 

nm) and in the case of crosses. These results are particularly encouraging, especially if we pay attention 

to the fact that the FIB-SEM cross-section of the cross-array of Figure 5.26(b) was performed along the 

arm width b, which constitutes the smallest dimension of crosses. We have thus demonstrated that 
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HDPCVD is capable of filling hole arrays without air gaps with cavities thinner than 70 nm and with an 

aspect-ratio of 3, which proves that the hole-filling step is not critical for an industrial production at 

wafer-scale of plasmonic ALS filters.  

 The good results of the hole-filling step validated the integration route we defined for the 

manufacturing of plasmonic filters using processes of a CMOS front-end 200-mm fab, with the etching 

of the aluminum and the filling of the apertures with SiO2. In order to perform transmission 

measurements on the obtained structures, we will now present the bonding on glass wafer. 

 

 
FIG. 5.26. FIB-SEM cross-section observations of the optimized base after holes filling with a HDPCVD 

process for: (a) the ALS array of squares L_A4 (P = 296 nm, a = 178 nm); (b) the ALS array of crosses 

L_A1 (P = 275 nm, a = 167 nm, b = 67 nm). 

5. 2.5 Validation of the bonding on glass wafers 

The hole-filling brick constitutes the last step of the filters fabrication since the metal is patterned, the 

holes are filled and the dielectric medium surrounding the metallic layer is homogenized. If the filters 

were realized on a CMOS sensor, the process integration related to plasmonic filters would end at this 

point. However in our case, we want to optically characterize the obtained structures with the help of 

transmission measurements. Because of the Si substrate, such measurements cannot be made with our 

structures since silicon is opaque to visible wavelengths. It was thus necessary to develop a process brick 

in order to transfer the structures on a glass wafer and to remove the silicon substrate so that 

transmission measurements were made possible. In this sub-section, only the development on the initial 

base is described, and the results are evaluated directly through optical characterizations. The subsequent 

results obtained with the optimized base will be described separately in the section 5. 3 of this chapter. 

The transfer was envisioned with a direct bonding method of the SiO2 layer used for the holes filling on 

200 mm glass substrates, as described in Figure 5.2. 

 Direct bonding, or molecular bonding, is a technique that consists in the spontaneous adhesion of 

two surfaces without using any intermediate layer or material such as a polymer-based glue. In the case 

of a SiO2 – SiO2 interface, the bonding mechanism can be described as the creation of low-energy Van 

der Waals and hydrogen bindings between the two surfaces owing to their hydrophilic nature, 

characterized by the presence of silanol groups (Si-OH) on a few angstroms [203]. The bonding occurs 

at room temperature when the adequate amount of energy, known as the energy of adhesion, is brought 

to the interface, but this bonding is fragile due to the weak character of the intermolecular bindings and 

the wafers can still be separated. An annealing is thus necessary in order to strengthen the bonding. The 

temperature increase creates stronger siloxane covalent bonds (Si-O-Si) and leads to a shrinkage of the 

inter-wafer spacing due to the diffusion of the interfacial water layer, which increases the energy of 

adhesion and then makes the bonding irreversible. Different mechanisms proposed to explain the 
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evolution of the interfacial bonding with temperature can be found in literature [204]–[206]. The 

realization of a reliable direct bonding imposes drastic constraints on the interface quality in order to 

avoid any detachment of the surfaces. In particular, the surface condition of both wafers has to be 

severely controlled at the macroscopic, mesoscopic and microscopic scales, which are respectively 

determined by the wafer bow, the wafer flatness and the surface roughness. Typical morphological 

criteria for a quality bonding recommend a maximum bow of about 30 µm for a 725-µm-thick and 200-

mm-large Si wafer [207] and a maximum roughness below 6.5 Å RMS [205], [208]. Furthermore, the 

bonding requires having surfaces free of any particular or organic contamination which would generate 

critical defects within the bonding interface. These conditions thus enforce the use of adequate 

treatments to obtain an optimal surface preparation before the bonding step itself. 

 

 
 

FIG. 5.27. (a) and (b). Wide views of the structures layout of the initial base bonded from a 200 mm silicon 

wafer onto a 200 mm glass wafer. (c) Closer view of the two electron-beam fields, each one featuring nine 

arrays of patch-array filters. 

 
 The direct bonding was naturally developed on the initial base. The few differences compared 

with the hole arrays regarding the plasmonic structures located below the bonding SiO2 layer do not have 

any impact on the bonding process a priori and the technique can thus directly be applied to the 

optimized base with the same conditions. The surface preparation consisted first of a CMP of the SiO2 

layer used for the hole-filling step so that the surface flatness condition is respected. However, 

profilometry measurements revealed a significant topography outside of the electron-beam fields. It was 

characterized by a dense concentration of spikes with a peak-to-valley height of about 1 µm, whereas the 

objective was to flatten the profile variations of the 700-nm-thick SiO2 layer generated by the patch 

arrays (see Figure 5.4). An irregular profile with such intensity cannot be planarized efficiently for a 

surface preparation aimed towards a direct bonding. Additional characterizations with an optical 

microscope permitted to conclude that this topography resulted from the formation of AlSi hillocks on 

the aluminum layer that had not been etched on the whole wafer surface outside of the electron-beam 

chips where the arrays were fabricated. In order to soften this critical topography, an extra 2-µm-thick 

SiO2 layer was deposited at 400°C from a TEOS precursor, which appeared to be sufficient to perform 

the planarization with a gross CMP. TEOS-based SiO2 being especially hydrophilic, the wafers were 

annealed at 400°C under N2O2 for 2 hours in order to dry the oxide and to avoid any issues caused by the 

potential water or hydrogen degasing during the ulterior bonding anneal. The top surfaces of both the 

treated wafers and the glass substrate then endured a finer CMP and a surface cleaning to ensure that the 

roughness is below 6.5 Å and that there is no particular contamination, in accordance with the required 

surface conditions described above. Subsequently, the two surfaces are put in contact to realize the direct 

bonding itself, and the bonding anneal is finally performed for 2 hours at 400°C in a N2O2 atmosphere. A 

a) b)
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defect control of the bonding interface was done before and after the annealing with a Scanning Acoustic 

Microscopy (SAM), which consists in transmission and reflection measurements of an acoustic wave 

propagating through the materials [209]. Potential defects, such as water or air gaps, are identified by 

abrupt variations of the acoustic impedance Z = ρ.ca, where ρ is the density of the material and ca the 

propagation speed of the acoustic wave in this material. No defects were identified in our case. Finally, 

the silicon substrate endured a rough grinding to remove the bulk material over about 665 µm, and the 

remaining 60-µm-thick Si layer was then removed with a refined wet etching using TMAH 

(tetramethylammonium hydroxide) until the thermal SiO2 was reached. The obtained bonded structures 

are illustrated with pictures in Figure 5.27. 

 
 We present in Figure 5.28 transmission measurements done on typical arrays of the initial base 

with the wafer on which hole-filling was performed with HDPCVD. The spectra were measured under 

normal incidence with the micro-spectrometer mentioned in section 5. 2.4. The set-up consists of a lamp 

which light is sent through an optical fiber onto a diffractive array. The array we used in our case 

allowed for a wavelength range between 350 nm and 900nm that we could use for the transmission 

measurements in the visible and NIR ranges. The diameter of the spot on the plasmonic arrays was 20 

µm. From this chart, a distinct and consistent evolution of the spectral responses with the patch size 

increase can be noticed with the exception of the 125 nm array. Larger arrays such as the 125 nm and 

140 nm ones seem to noticeably deviate compared with the 130 nm array whereas their targeted 

dimensions are very close. A recall of the size variations after aluminum etching for these three arrays is 

given in Figure 5.28(c)-(d). It explains this difference: while the patches size of the 130 nm array is 

almost respected, the 125 nm array actually reveals a patches size closer to 150 nm, which is comparable 

to the dimensions obtained with the 140 nm array. This observation is not surprising given the fact that 

the overall process was not developed to accurately fabricate the filters. Moreover, the disparities in the 

targeted dimensions among the 16 arrays complicate the use of a process that is optimized for each patch 

size. In the case of a product with only a few different filters, it would be easier to develop a fabrication 

route specifically dedicated to their dimensions. There were three 100 nm arrays featured on the initial 

base, which are more representative of our targeted ALS dimensions in the case of hole arrays. The 

measurements of these arrays demonstrate a very good intra-wafer repeatability of the process for these 

dimensions. One can also observe small oscillations on the spectral responses, which are due to 

interference phenomena inside the materials stacks. 

 

 
 

FIG. 5.28. (a) Transmission measurements with a micro-spectrometer made on a few arrays of the initial 

base. CD-SEM observations after aluminum etching are provided for large arrays including: (b) the 125 nm 

array, (c) the 130 nm array and (d) the 140 nm array.   
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FIG. 5.29. Comparison of the simulations and the transmission measurements made with a micro-

spectrometer on the wafer using HDPCVD and three wafers using PECVD during the hole-filling brick on 

the initial base for: (a) the 80 nm array, (b) a 100 nm array and (c) the 125 nm array. In the case of the 125 

nm array, a simulation with patches size of 150 nm is added in dashed line. (d) Reflection measurements and 

simulation of the 100 nm array with the glass substrate at the bottom (SiON above AlSi). 

 
  The responses in transmission of the main filters are compared with simulations represented with 

black curves in Figure 5.29 for the four wafers available. The simulations take into account the glass 

substrate and the thermal SiO2 – air interface. The refractive indices of the glass substrate are obtained 

from CEA measurements (n = 1.5009 at λ = 633 nm with negligible n”). There is a good agreement 

between the simulations and the measurements for the 80 nm array, but the best fit is obtained with the 

100 nm array, which measured spectra are actually superimposed with the calculated response. The 

process was typically developed so that the arrays with medium dimensions among all the initial base, 

i.e. the 100 nm arrays, are the most optimized ones. The results obtained for the 100 nm arrays thus 

demonstrate that accurate fabrication can be developed when the process route is dedicated to precise 

dimensions range. A deviation can however be observed in the NIR range from 700 nm where the 

simulations are slightly higher in transmission than the measured spectra, but this difference could not be 

addressed. For the 100 nm array, we also provided in Figure 5.29(d) reflection measurements performed 

with the glass substrate at the bottom, i.e. with the SiON layer located above the aluminum layer. The 

agreement with simulations is well respected, but the same deviation can be noticed in the NIR range. 

Finally, the transmission measurements on the 125 nm array show a clear deviation from the simulation 

above 550 nm, and even a disparity between the different wafers, which highlights the process 

inaccuracies that occurred for this array in particular. If we compare the simulation of the 125 nm array 

with the measured transmission of the 130 nm array in Figure 5.28, it can be seen that the spectral 

response is very close. This observation strengthens the fact that the results obtained for the 125 nm 

array are not due to the limits of our process to fabricate large patches (i.e., gaps inferior to 70 nm), but 
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rather to local process issues related to the fact that the various process steps were not optimized for 

these dimensions. The simulation of a 150 nm array in dashed line in Figure 5.29(c), which is closer to 

the actual dimensions of the fabricated 125 nm and 140 nm arrays, reveals that the deviation in the NIR 

range is still observed from thin to large patches sizes. This phenomenon is not explained. The 125 nm 

array put aside, these results also demonstrate an interesting wafer-to-wafer reproducibility which is 

encouraging for the industrial fabrication of ALS filters, although a statistical study would be required to 

formally conclude on this point. It seems also that plasmonic filters are able to endure anneals 

comparable to the passivation annealing described in sections 2. 2.1.2 The performance criteria and 3. 

B.1.1 Evaluation of plasmonic filters performance, which could improve their performance by 

decreasing their ALS dark values. Eventually, the agreement observed between simulations and 

measurements does not point out any obvious process-related effect, which validates the development 

performed at each step for the fabrication of our hole-arrays filters.  
 

 The same process route was thus used for the finalization of the hole-array filters. To avoid the 

topography issues related to the formation of hillocks on the metal layer outside of the electron-beam 

fields, the thickness of the SiO2 layer used for the holes filling was increased to 2.5 µm. Approximately 

1.5 µm were then removed during the surface preparation for bonding on glass. The optical 

characterizations of these ALS filters are presented in the next section. 

5. 3 Evaluation of the fabricated ALS filters 

This part is specifically aimed to propose a comprehensive analysis of the optical measurements 

obtained with the processed ALS filters of the optimized base, which fabrication and development have 

been extensively described in the previous section. More than comparing the experimental and 

simulations data, the objective is to calculate the ALS performance of these filters, in the light of the 

simulation work done in the previous chapters and of the process development presented throughout the 

current one. This analysis is meant to provide determining information to answer the main issue of this 

thesis regarding the potential viability of the plasmonic solution to perform filtering function in the 

industrial production of light sensing applications. 

5. 3.1 Responses and performance at normal incidence 

Similarly to the patch arrays, the hole-array filters of the optimized base were first optically 

characterized in normal incidence with the micro-spectrometer described in the sub-section 5. 2.5 

Validation of the bonding on glass wafers. Only transmission measurements were performed in the case 

of hole arrays, for two wafers corresponding to an aluminum thickness of 200 nm and 275 nm 

respectively. We present in Figure 5.30 a comparison of the spectral responses obtained with the 

measurements and with simulations for a representative array of square holes with the R_C2 filter. Note 

that the complete transmission results are available in Appendix C. The simulations are calculated with 

the perfect targeted shapes, dimensions and thicknesses. The glass substrate is modeled as an infinite 

medium (n = 1.5009 at λ = 633 nm) and the thermal SiO2 – air interface is taken into account. 

 First of all, the four square-hole arrays all present very similar responses, as seen in Appendix C. 

For an AlSi thickness of 200 nm, the resonance peak is always thinner of about 50 nm in wavelength and 

its maximum transmission loses about 10 %, which can partly be explained by the slightly thicker AlSi 

deposited films. The blue-shift and the signal loss could correspond to a shape rounding as we observed 

in simulations with crosses, but not to the presence of voids as we saw in section 5. 2.4. For a thickness 

of 275 nm, the trend is different: a transmission loss is still observed, but there is no noticeable 

resonance shift and the peak looks slightly broaden. We do not know if air gaps are formed for this AlSi 
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thickness. It is difficult to draw conclusions from these spectral responses without dedicated 

characterization, especially knowing that some of the morphological aspects described in the sub-section 

5. 2.3 Aluminum nanostructuration, such as the sidewall roughness for instance, have not been studied. 

Their unknown effects combined with the potential presence of voids and with the estimated holes size 

variations make a rigorous analysis complex and assumption-based only. Characterization technique 

such as 3D Atomic Force Microscopy (AFM) could provide more accurate information regarding the 

shapes and the profiles of the apertures, which would allow for a better understanding of the optical 

responses of the filters. One can however appreciate that the simulations/experiments confrontation, 

while not perfect, returns coherent behaviors from this non-optimized process. If we compare with 

Figure 5.29 for instance, we notice the absence of interferences on the spectra. The comparison with our 

simulations demonstrates that the interferences are caused by Fabry-Perot interferences in the SiO2 – 

SiON composite layer between air and aluminum. In the case of hole arrays (optimized base), the 

reflectivity of the Al film is reduced thanks to plasmon resonances, which may explain the observed 

reduction of the interference effects. 

 

 
 

FIG. 5.30. Confrontation of the spectral responses obtained by simulations and with micro-spectrometer 

measurements at normal incidence for the R_C2 array of square holes for a metal thickness (a) hm = 200 nm 

and (b) hm = 275 nm. Filter dimensions: period P = 298 nm and square size a = 179 nm. 

 
 Although the study had to focus on square-hole arrays due to the bad lithography results obtained 

for crosses without PEC, the cross-hole arrays were also optically characterized. Two arrays of crosses 

with low (0.45 for R_A2) and high (0.65 for R_A4) shape factors are presented in Figure 5.31. Bear in 

mind that the shape factor stands for the ratio of the arm width b to the arm length a of the crosses. Like 

in the case of squares, the presented charts are representative of what is observed on the other cross-hole 

arrays. For thin crosses, the measured spectral response generally deviates noticeably from the 

simulations, especially with a significant blue-shift. On the contrary for larger crosses, the measurements 

mostly fit well with the computations results. In the case of crosses, we can safely claim from the 

morphological characterizations that the severe rounding of the crosses plays a major role in the 

observed resonance blue-shift. On the other hand, it is important to interpret these results with caution. 

At first look, one could be tempted to conclude that despite the significant process variations 

experienced by cross-holes arrays, they give better results than squares. The trick however is that the 

impact of the shape deformation of the crosses on the spectral response can be artificially compensated 

by the fact that more signal is sensed owing to the holes enlargement, leading to a measurement close to 

the simulation, whereas the filter geometry significantly differs. This remark is especially relevant for 

the pure analysis of the spectral responses relatively to the morphological characterizations and 
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highlights its complexity, but it will not have much importance for the ALS evaluation of the filters as 

we will see it later in this part. The non-ALS arrays with small crosses did not give any exploitable 

results because the shapes were not obtained without PEC. 

 

 
 

FIG. 5.31. Confrontation of the spectral responses obtained by simulations and with micro-spectrometer 

measurements at normal incidence for a 200-nm-thick AlSi layer of two ALS hole-arrays of crosses with 

different arm width to arm length ratios b/a (shape factor): (a) the R_A2 array (P = 275 nm, a = 176 nm and 

b = 79 nm) and (b) the R_A4 array (P = 298 nm, a = 189 nm and b = 119 nm). 

 
 As we have seen throughout this thesis, the evaluation of ALS performance cannot be done solely 

from visual representation of the spectral response because of all the elements that have to be taken into 

account in the calculation. We thus inserted the transmission measurements into the ALS evaluation 

software tool described in section 2. 2, and we compared the results with those obtained by simulations. 

The simulations take into account the same materials stack and the exact targeted dimensions. First of 

all, we present the global trend over the 18 fabricated ALS filters of the optimized base (the array of 

circular holes is not shown). A quick visual comparison can be made on Figure 5.32 for the maximum 

ALS errors obtained for the AlSi thicknesses of 200 nm and 275 nm. Note that only this parameter is 

commented, but the complete results with the maximum ALS error and the ALS dark detailed for each 

array are all available in Appendix D. In the case of the larger thickness, it can immediately be noticed 

that the fabricated filters feature equivalent performance in ALS dark, but with slightly higher ALS 

errors as the blue scatter plot looks shifted towards the right-hand of the chart (Figure 5.32(a)). This 

increase in ALS error is probably related to the broadening of the resonance peaks observed for the 275 

nm thickness on the spectra, leading to more undesired signal being sense, but the origin of this 

broadening is not clear. In the same time, this peak enlargement could compensate for the transmission 

loss also observed on the spectral responses and could thereby explain the similar values of ALS dark. In 

the case of the lower thickness, there is however an increase of the ALS dark criterion, and the 

maximum ALS errors obtained are surprisingly lower (i.e., better) than the simulations. This could be 

explained as follows. First, it has to be remembered that we showed in previous chapters that cross-hole 

and square-hole arrays generally require a thickness superior to 250 nm to provide sufficient rejection 

outside of the useful signal. Owing to practical restrictions, we could not fabricate the ALS filters we 

optimized each with their own respective optimal thicknesses that generally exceeded 250 nm, and even 

300 nm in some cases. With the 200 nm thickness that was chosen to facilitate the nanostructuration, the 

resonances of the fabricated designs were necessarily wider than with their optimized thickness since the 

rejection is worse with lower metal thickness. Yet, we have seen that the measured responses of the 200-

nm-thick filters presented a marked blue-shift and a thinning of the resonance peak in most cases. 

Combining this effect with the slight increase in deposited Al thickness may reasonably explain the 
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highest selectivity of the filters with less undesired signal being sense, leading to better performances in 

terms of ALS error. Consequently, this would also explain the increase of the ALS dark since less signal 

reaches the photodiode. Again, accurately attributing these effects to specific process variations is 

however tricky without more morphological characterizations, but it can most probably be related to the 

substantial shape deformation observed in the case of cruciform holes. Nevertheless, major information 

can be extracted from these results. Indeed, if we consider the specification ranges for the ALS 

application that we represented in green in Figure 5.32, this work confirms that plasmonic filters can 

provide a filtering solution fitting the established ALS criteria. In view of actual customers demand, the 

performance would however certainly need to be improved, but the proof of concept is demonstrated 

with this first development attempt since the measured performances are consistent with what was 

expected. The results obtained with the 200-nm-thick filters suggest that we could obtain good 

performance with lower metal thicknesses, but it must not be forgotten that the fabricated shapes are not 

exactly cruciform unlike what was simulated in the previous chapters. Note that the simulated filters 

given in Figure 5.32 have worse performance than what is given in Appendix A because the evaluation 

and the optimization of the filters resulting from Chapter 3 were originally calculated with infinite SiO2 

substrate and superstrate with a varying thickness. In the case of Figure 5.32, the stack is slightly 

different and the thickness is fixed either to 200 nm or 275 nm. 

 

 
 

FIG. 5.32. Comparison of ALS dark values and maximum ALS errors obtained with the fabricated filters 

(blue circles) and with simulations (red squares) for an AlSi thickness of (a) 275 nm and (b) 200 nm. The 

black square stands for the performance obtained with the green resist combined with the old IR-cut, and the 

orange square for the green resist and the new IR-cut. 

 
 A closer look at the ALS performance obtained from the specific designs chosen in Figure 5.30 

and Figure 5.31 may bring useful insights on the results, as shown in Figure 5.33. Considering the array 

of squares R_C2, the evolutions of the ALS performance previously described between the two 

aluminum thicknesses become clearly obvious and fit perfectly the spectral responses of Figure 5.30. 

This behavior is entirely consistent among the four arrays of squares. In most cases, the arrays of squares 

have similar behavior than arrays of larger crosses (b/a > 0.5), with a degradation of the performance for 

hm = 275 nm from the simulations to the experiments, and with a noticeable decrease of the maximum 

ALS error for hm = 200 nm, combined with a higher increase in ALS dark. The small degradations 

observed for the 275-nm-thick filters may be easier to link with the different process inaccuracies since 

the deposited AlSi thickness is much closer to the ideal targets for ALS filters. Namely, the broadening 

of the resonance peak and the transmission loss may be due to the size increase of the holes (wider peak) 

combined with slightly thicker AlSi films and the presence of soft effective slopes (lesser transmission). 
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As it can be seen in Figure 5.33(b), crosses with the smallest shape factors (b/a < 0.5) generally 

experience a considerable shape deformation that translates into a severe deterioration of the ALS 

performance. Although the results obtained from the arrays of squares are quite consistent because of the 

well-respected shapes during the fabrication, the analysis of crosses only provides a general trend on the 

evolution of the ALS performance compared with the simulations. Depending on their dimensions, some 

may punctually exhibit a different behavior according to the magnitude of the shape deformation they 

experienced after the lithography and etching steps, which can create a compensation effect on the ALS 

evaluation as already mentioned. Keeping this point in mind, the arrays of squares globally propose the 

lowest variations with respect to the targeted performance compared with the arrays of crosses. A more 

accurate and in-depth analysis would have required the help of the hole arrays fabricated with proximity 

effect corrections, but we could not have it in time. The performances obtained in normal incidence are 

thus encouraging for this first development since there is still room for improvement and optimization at 

each step of the fabrication. 

 

 
 

FIG. 5.33. (a) Evolution of the difference in ALS performance between simulations and experiments for a 

typical array of squares (R_C2) when the AlSi thickness is increased from 200 nm to 275 nm. (b) Evolution 

of the difference in ALS performance between simulations and experiments for typical arrays of crosses 

with small b/a (0.45 for R_A2) and larger b/a ratios (0.65 for R_A4) for an AlSi thickness of 200 nm. 

5. 3.2 Angular tolerance of the filters 

We have seen that the fabricated plasmonic filters could provide performances close to the simulated 

ones, with arrays of crosses and squares even remaining in the ALS specification ranges, which 

constitutes a significant result. However, the cruciform shape was specifically chosen and designed so 

that another relevant property of the filters is respected: the stability of the spectral response under off-

normal incidence. The packaging of our considered application limits the incoming light cone to an 

opening of ± 30°, thereby imposing an angular robustness of the filters up to this value. 

 We performed transmission measurements with various angles of incidence on the filters 

exhibiting the best performances with a goniometer (L_A3, L_A4, L_B3, L_B4, R_A3, R_A4, R_C1 

and R_C2). The goniometer produces the visible spectrum from a 2 W Fianium white laser source 

linearly polarized whose output wavelengths range from 420 nm to 1700 nm. The light strikes the arrays 

in a TM configuration, i.e. where the electric field is in the incidence plane. The TM polarization was 

shown in previous chapters to be the less stable one. A monochromator with a maximum operating 

wavelength of 920 nm was used to narrow the measurements on the visible and NIR ranges as it is the 

case in our simulations. A lens was used to limit the beam divergence, leading to a diameter of the spot 
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size of 300 µm at the level of the arrays. The bench allows for measurements with an absolute resolution 

of 1/100° and with a photometry error of ± 1 %. The characterizations were made from normal incidence 

up to 30° with 5° steps. Illustrations of these measurements are given for an array of squares and for an 

array of crosses in Figure 5.34. The evolutions of the spectral responses with increasing angle of 

incidence in the two cases suggest similar behaviors of squares and crosses, characterized with a 

significant transmission decrease and a comparable resonance red-shift of about 100 nm at 30°. No 

different behavior was noted among the eight measured arrays, and the thickness did not seem to play 

any role in the angular stability, which is consistent with the study of section 3. A.1.1. The comparison of 

the measurements with the simulation is given in Figure 5.35 for two arrays. The difference already 

present at normal incidence between simulations and measurements for squares makes the comparison a 

bit messy, especially with the perturbation generated in the blue wavelengths. The trend looks similar, 

but the visualization is not easy because there are noticeable shifts and transmission gaps between the 

experiments and the calculations. In the case of crosses where the comparison was close at normal 

incidence, it can clearly be seen that there is a similar evolution even at 30°. This agreement whereas the 

fabricated crosses are substantially rounded is surprising, but we know from previous chapters that large 

crosses do not really have particular stability in TM polarization (at φ = 0°), even compared with circular 

holes. However, thinner crosses with b/a = 0.5 returned the same evolution, even with simulations (not 

shown). This poor stability could be explained by the large intercrosses distance (about 100 nm) used in 

ALS arrays (see section 3. A.1.4). Remember that no constraint was used on this parameter for the 

optimization of the ALS performance. We may also assume that the stability of crosses is also dependent 

on the crosses size. Indeed, for a given wavelength range, an increase of the holes size may reduce the 

confinement of the electric field inside the apertures. Moreover, we already showed in section 3. A.2 that 

the stability of crosses was more difficult to obtain in the red wavelengths. It would have been ideal to 

measure the thin ALS crosses with b/a = 0.4 obtained with the proximity effect corrections. Those we 

got without PEC were too far from the targeted shape to be relevant. Globally, the results were once 

again very consistent among all the arrays of squares and among all the arrays of crosses.  

 

 
 

FIG. 5.34. Evolution of the spectral responses with increasing angle of incidence measured in TM 

polarization with a goniometer for (a) the R_C2 array (squares) and (b) the R_A3 array (crosses with b/a = 

0.55). These measurements were done on the 200-nm-thick wafer. 
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FIG. 5.35. Comparison of the angular behavior between simulations and goniometer measurements in TM 

polarization for (a) the R_C2 array (squares) and (b) the R_A4 array (crosses with b/a = 0.65). These 

measurements were done on the 200-nm-thick wafer. 

 

 
 

FIG. 5.36. Evolution of the ALS performance for simulations and goniometer measurements in TM 

polarization with increasing angle of incidence for (a) the R_C2 array (squares) and (b) the R_A4 array 

(crosses with b/a = 0.65). These measurements were done on the 200-nm-thick wafer. 

 
 We then evaluated the spectral responses of the two filters of Figure 5.35 in terms of ALS 

performance. The results are given in Figure 5.36. The evolution with the angle of incidence is rather 

consistent with the simulations, with the exception of the crosses for 30°. The angular stability was 

expected to be low for squares and for large crosses since we demonstrated in Chapter 3 the trade-off 

existing between the ALS performance (high b/a) and the angular stability (low b/a). In order to 

compensate for the shift in ALS error, it would be preferable to look for filters that give the lowest 

possible ALS error at normal incidence so that they remain in the specification ranges even for θ = 30°. 

It was actually the case during the optimization of the filters, but as explained in the previous sub-

section, this optimization did not take into account the actual fabricated stack and thicknesses that we 

used later for the process development and that we could not anticipate at this time, resulting in degraded 

performance in the results. It would be interesting to perform a new optimization with structures as close 

as possible to the targeted integration to make a fairer and more accurate simulation/experiment 

comparison. The parameters of the optimization could also take into account the angular dependence of 
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the filters to help choosing the best designs. Finally, a better evaluation of the angular stability of 

plasmonic filters for the ALS application would have required the measurements of the thin crosses 

which experienced EBL corrections. The development was however not finished at the time of this 

writing. 

5. 4 Conclusion on Chapter 5 

We presented in this chapter the process development that was led to achieve the fabrication of our 

optimized structures by avoiding the process inaccuracies as best we could with the time and resources 

restrictions of the study. In the light of our modeling work of the main expected process variations, each 

critical brick of the integration was controlled to evaluate and to adjust the process capability to fit the 

process specifications that we established to get efficient plasmonic filters. Most of these adjustments 

were performed from the first engineering base we got at our disposal before having finished the 

optimization work on plasmonic designs. This initial base was used to realize patch-array filters, but a 

large part of its development provided useful insights that could be directly transferred to the ulterior 

base featuring the optimized hole-array filters since the dimensions were comparable. 

     The materials stack used for the realization of plasmonic filters with aluminum was not 

problematic since the interfaces were defect-less and no adhesion issues occurred, be it with SiO2 or 

SiON, which gives a high flexibility regarding the level at which the filters can be fabricated in the 

integration of a whole sensor. The thickness variation for the AlSi layer was about 10 %, which we did 

not work on since it is not critical, especially for a first demonstration. The formation of hillocks with 

thermal stress was however more concerning for the quality of the successive steps such as the 

lithography and the aluminum etching. It generated a significant delay in the fabrication in order to find 

out the best solution allowing for their suppression. Eventually, the condition of using cold processes 

until the metal structuration was the easiest and most conclusive one. The deposition of the hard mask 

was thus cooled down to 200°C, which significantly reduced the hillocks growth, but did not remove it 

entirely. 

 Regarding the nanostructuration, the electron-beam lithography step was thought as a major issue 

for the filters realization. The results quickly revealed that although the dimensions variations were close 

to the maximum tolerated limit of about 10 % of Chapter 4, the shape of the crosses was severely 

affected in our first attempts. We however demonstrated that the use of a more resolving resist combined 

with proximity effect corrections could greatly improve the cruciform shape and reduce the size 

dispersion below 8 % for the ALS filters, and even below 4 % for the smallest designs that we embedded 

in the base, all presenting much less corners rounding. This lithography development was very 

encouraging but we ran out of time for the continuation of the wafers featuring these improvements. The 

metal nanostructuration was thus only performed on the wafers having deformed crosses and we focused 

on the square shapes which were rather well respected. Whereas the etching of the patches generated 

sharp profiles with slopes below 4°, the hole-array filters showed a sidewall roughness with maximum 

amplitude of 30 nm which made the evaluation of etching slopes more difficult. The impact of roughness 

still has to be evaluated, but the profiles could be considered with an effective slope which was inferior 

to 3°. This value falls in the acceptable range simulated in Chapter 4. No noticeable difference was 

observed between the bottom and the top of the holes regarding size variations, which were below 7 %, 

meaning that there is no additional dispersion induces by the etching step compared with lithography. A 

lower value would be preferable, but it is certainly not overwhelming for a first demonstration, 

especially with a realization of filters with various dimensions at the same time. 

 We demonstrated in Chapter 4 that the presence of air gaps inside the holes has to be limited to 

avoid the degradation of the spectral responses. The development on the initial base highlighted the 

difficulty to fill such cavities with conventional PECVD. The use of a dedicated HDP process gave 
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substantial improvement with a capability to fill 100-nm-wide gaps without any voids. In the case of 

hole arrays, the FIB-SEM observations validated the HDPCVD hole-filling step and the process we 

defined with wafer-level equipment since no air gaps were noticed, even for the smallest ALS design 

featuring cavity widths below 70 nm and aspect-ratios of 3. Finally, we worked on the direct bonding of 

the fabricated structures on glass wafers to permit transmission characterizations. The analysis of the 

patch arrays validated the feasibility of this method and demonstrated at the same time the robustness of 

plasmonic filters to annealing, which could be used in ALS sensors to decrease their ALS dark (see 3. 

B.1.1 Evaluation of plasmonc filters performance). This annealing was not possible with organic resists. 

We also noticed good intra-wafer and wafer-to-wafer reproducibility even for these extreme dimensions. 

 This work led to the core of this study which was to demonstrate experimentally the viability of 

the plasmonic filters fabrication and their performance for ALS applications. The optical 

characterizations performed on ALS designs highlighted the effects of process inaccuracies with 

deviations from the simulated spectra, but their respective roles are difficult to identify and to attribute. 

Nevertheless, we obtained a satisfying agreement between the measurements and the simulations, 

especially characterized with the achievement of fabricated filters inside the ALS specification ranges, 

with maximum ALS errors below 2 dB and ALS dark values inferior to 40 lx. These good results we 

obtained have to be emphasized given the drastic specifications of ALS application targeted in this thesis 

work. The squares generally presented the closest performance to simulations. Crosses may also give 

good results, but their significant shape deformation makes their performances hardly related to the 

cruciform shape. The angular tolerances measured for the less stable polarization revealed a coherent 

behavior with simulations, especially for squares. Unfortunately, the angular stability for crosses with 

shape factors below 0.5 could not be tested. The corrected shapes would have been useful to compare the 

simulations with more accurate fabricated shapes. This work provides important information regarding 

the actual dispersions that can be expected from industrial tools, with the exception of the EBL, and the 

performance that can be reached with them. In particular, it proves that no critical issues prevent the 

realization of plasmonic filters and that they can constitute an efficient filtering solution for ALS 

applications. Knowing that there is still much room for improvement with dedicated and optimized 

processes at each step of the fabrication, we think this study has demonstrated an interesting and 

promising proof of concept for the application of plasmonic filters in industrial products with CMOS-

compatible wafer-level integrations.   

 

 

 

 

 

 

 





   

  

 

Conclusion and Outlook 

The work carried out throughout this thesis was especially driven by the motivation of 

STMicroelectronics to develop disruptive innovations regarding the integration of CMOS light sensors. 

This technological guideline lies in a context where the demand for embedded sensors of various natures 

has been exponentially growing in recent years, in major part thanks to the development of the wireless 

communication market. Image sensors and Ambient Light Sensors (ALS) use in most cases organic 

resists as optical filters, which limit the integration possibilities of the sensors and impose the use of a 

thick IR-cut filter. The search for innovative filtering solutions leaned towards an emerging field of 

photonics that allows for the manipulation of light at nanoscale thanks to plasmonic devices based on 

nano-patterned metallic structures, permitted by the recent progress in nano-lithography. Despite all the 

literature available in this domain, several critical concerns still remain to be addressed in order to 

evaluate the concrete potential of plasmonic filters in CMOS industrial environment. 

 The major issue was to theoretically demonstrate the performance of plasmonics with respect to 

accurate specifications and to study the viability of their fabrication with industrial constraints, such as 

CMOS compatibility and the restriction to high-throughput processes. This subject thereby gave rise to 

two different aspects of the study. The first was to investigate the ability of plasmonic filters to meet the 

required performances and the technological challenges expected for the targeted applications. The 

second consisted in addressing the technological issues inherent to plasmonics that did not exist with 

organic resists, such as for instance the polarization dependency or the compliance with the critical 

dimensions of the nanostructures during the fabrication. To achieve this, I established a methodology at 

the crossroads of different scientific areas among plasmonic theory, electromagnetic simulations and 

process development (Chapter 1). Numerical simulations were used to select the best plasmonic 

nanostructures and integration for our targeted applications (Chapter 2) and to study their optical 

properties in order to propose optimal structure designs (Chapter 3). Thoughts about process integration 

and defects modeling were gathered to investigate the sensitivity of plasmonic structures to wafer-level 

process dispersions and to identify the critical steps that would require particular attention (Chapter 4). 

These studies converged towards the knowledgeable process development of filters and their subsequent 

optical characterization to demonstrate a proof of concept. The result is that I was able to establish the 

potential viability of the plasmonic solution to provide efficient ALS filters compatible with a wafer-

scale fabrication (Chapter 5). 

 

 One of the major sensor-related technological challenges was the angular stability of the filters 

under angles of incidence up to 30°. I demonstrated through this work that among the main plasmonic 

structures families, hole-array filters were the most appropriate structures to provide this property and 

consequently constituted the most serious candidate to approach the drastic requirement of the ALS 

application considered in this work. Patch-array filters were not well adapted to transmission filters, and 

MIM arrays did not show an interesting angular tolerance, in addition to being more complicated to 

fabricate. In particular, we showed that cross-shaped-hole arrays constitute the structures offering the 

best angular robustness and transmission levels at the same time. This study also imposed to search for 
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solutions restricted to CMOS-compatible materials. I managed to demonstrate the interest of these 

structures with the use of aluminum for the metal and SiO2 for the dielectric medium, which was the 

combination returning the best optical properties while being based on very common materials in CMOS 

industry. The establishment of accurate performance criteria and the use of dedicated software have 

permitted a concrete evaluation of the filters relatively to industrial specifications of image sensors and 

ambient light sensors. The developed structures quickly revealed their weaknesses in terms of 

transmission and signal-to noise ratio compared to the state of the art of RGB filters, which is especially 

challenging in terms of performance. This is directly related to the very nature of plasmonic structures 

that implies a notable amount of metallic losses compared to absorptive resists or dielectric-based filters. 

The different requirements of the ALS function are however less demanding regarding the transmission 

and seemed more in agreement with the optical responses achievable with metallic nanostructured filters. 

Their evaluation indeed demonstrated that plasmonic filters could be competitive in theoretical 

performance. Indeed, I demonstrated that it was possible to find designs able to fit with the specifications 

range despite the drastic requirements of the application. Furthermore, these results proved that 

plasmonic filters were able to fulfill the technological challenges motivating this thesis work. Their 

rejection in the NIR range was indeed sufficient to suppress the need of an external IR-cut filter. 

Combined with their thickness of about 300 nm, the thickness of the complete filtering system is thus 

significantly reduced, allowing for the desired height reduction of the whole sensor. 

  In parallel, several questions were raised regarding the viability of such structures and their 

ability to constitute an efficient filtering solution owing to the specific issues they bring compared with 

organic resists. Because of their in-plane nanostructuration, plasmonics filters are not only sensitive to 

the polar angle of incidence, but also to the polarization state and to the azimuth of the incoming light. 

The comprehensive study of the plasmon resonances inside cross-shaped-hole arrays permitted to 

identify the conditions of their angular stability and to propose filters with significantly reduced 

sensitivity to both the angles of incidence and the polarization. I extracted geometrical criteria that favor 

the regime of localized plasmon resonances which are responsible for the angular robustness. Thin 

crosses and low inter-cross distances are the two major conditions providing this property that could then 

be used to design optimal filters in terms of ALS performance and angular stability. The study however 

showed that the gathering of these two aspects requires a trade-off since ALS performances are 

improved with larger crosses. The best designs were then optimized with an algorithm developed in the 

CEA Leti which was combined with the ALS evaluation software of STMicroelectronics and the 

RCWA. This work has provided in the same time a dedicated evaluation and optimization software tool 

that can be directly used for the further development of other plasmonic structures and applications. In 

practice, the advantages of the plasmonic filters’ principle constitute also a source of concerns regarding 

their fabrication. The plasmon resonances are related to the shape and to the dimensions of the metallic 

nanostructures. Deviations on the size and shape of the structures in fabrication have to be drastically 

limited in order to avoid a serious deterioration of the expected performances. However, the 

nanostructures are small and the capabilities of wafer-scale fabrication equipment are thereby heavily 

challenged. Unlike most of the works available in literature, I had to focus on the use of wafer-scale 

processes only to carry out a risk assessment related to the viability of a potential industrial production 

of these filters. This was led by the analysis of the main expected process inaccuracies with typical 

dispersions of a 300-mm-wafer fab, with two aspects in mind: their effects on plasmon resonances and 

their impacts on ALS performances. The calculations allowed for the identification of the main hard 

points, which mainly consisted of the lithography accuracy in size and shape of the patterns, of the 

etching profiles and the presence of air gaps during holes filling. In a second phase, the actual process 

development of optimized filters with wafer-scale processes proved that there were no crippling issues 

with such equipment. The main observed dispersions felt into the tolerable expected ranges, be they for 

thickness variations,  holes dimensions, etching slopes or air gaps formation. The development of the 

electron beam lithography gave faithful shape reproduction, and the continuation of this fabrication 

could give very interesting additional results. Eventually, the final optical characterization returned some 
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promising performance that felt into the specifications range and thus achieved the demonstration of the 

viability of the plasmonic filters solution with an integration directly transferable to an industrial 

environment. We note that very recent works progressively take into account the effect of process-

related inaccuracies on the performance of plasmonic filters [57], [166], [167]. It demonstrates that this 

thesis is part of a present-day trend which aims to carry plasmonic filters towards a technological 

transfer in concrete applications. 

 Currently, the development of filters with improved Electron Beam Lithography (EBL) is still on-

going. A collaboration was also established with the University of Glasgow and STMicroelectronics 

Edinburgh to fabricate some optimized designs directly on ALS photodiodes of CMOS chips provided 

by STMicroelectronics Crolles. This fabrication will allow for the direct evaluation of the plasmonic-

based ALS sensors with dedicated measurement benches, and could also assess the benefit of the final 

annealing on the performance of plasmonic ALS. 

 
 Although many challenges were solved throughout this work, a few points still need to be 

addressed. EBL was the only process that does not meet the conditions of high throughput. The complete 

validation of the integration should evaluate the capability of deep UV lithography with a double 

patterning as it was mentioned in Chapter 4. The cost of such a process is however still very high, 

especially if the filters are fabricated in the last levels of the sensors. The plasmonic solution would be 

more competitive with the amortization of this kind of patterning. On a side note, we deposited two 

patents to fabricate the filters closer to the photodiodes, which helps to solve this issue in addition to 

providing better optical performance [161], [162]. The development of high-resolution lithography 

techniques in the near future [210] could be significantly profitable to the progress of plasmonic filtering 

structures in robust front-end wafer-scale production.  

 If this thesis provided insights regarding the potential industrialization of plasmonic filters, there 

is still a need for a complete validation with a demonstration on full-sheet 300-mm wafers. A statistical 

dispersion study on production-dedicated equipments combined with the development of optimized 

processes would precisely assess this potential. The optical characterization and the performance 

evaluation of plasmonic filters produced with a front-end 300-mm production line still have to be 

performed on blanket wafers or directly on CMOS sensors. The collaboration that we established with 

the University of Glasgow constitutes a first step in this direction. Moreover, the plasmonic filters that 

we developed use metallic layers without barriers, which may raise the question of metal diffusion under 

thermal stress, for which a reliability study would be required. 

 A dedicated process study regarding the morphological defects and variations of plasmonic filters 

would be required to obtain more information about the weak points of the manufacturing. It would 

allow for even more accurate modeling of the process dispersions, which would lead to a clear 

identification of the process steps that generate them, and to a better understanding of the measured 

spectral responses. Such a study would be beneficial in view of a reliable production of plasmonic filters. 

 While we worked with infinite metallic arrays, the study could need to be extended with the 

investigation of finite-size effects in the case of spatially-delimited arrays. The ALS photodiode of the 

application considered in this work is large (approximately 3x3 µm²), but the potential transfer of 

nanostructured metallic filters towards applications with smaller pixels will require such a study. In 

literature, a few works have started to take into account these considerations [54], [85], [211], [212].   

  The use of noble metals such as silver could be investigated in detail as we evidenced structures 

providing higher ALS performance at normal incidence. Dedicated areas of CMOS industrial clean 

rooms can be implemented for the use of contaminant materials in the very last steps of the integration.  

 The search for new plasmonic structures could also be a solution to find easier shapes to fabricate 

and/or filters with higher angular stability with less restrictive geometrical conditions. We also patented 

more advanced structures that could later give interesting optical properties without making their process 

more difficult. No detail is given regarding these patents since they are currently being filed. 
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 Similarly to the work done on the ALS application in this thesis, plasmonic filters can be studied 

beyond visible sensing applications. Indeed, the plasmonic properties of metals such as gold, silver or 

copper, in the infrared (IR) range can contribute to the development of a significant number of IR-

sensors applications: night-vision cameras, Time-of-Flight proximity sensors [174], etc. Since the 

operating wavelength of a plasmonic filter is determined by its dimensions, several filters can be 

patterned on the same level with a single patterning. This ability of plasmonic filters makes them 

especially interesting for the realization of sensors gathering different functions. Plasmonics can thus 

lead to a decrease of the cost of multi-pixel sensors and favor beyond-Bayer configurations, such as 

RGB-IR or RGB-CMY sensors [213]. The combination of this advantage and of the extended potential 

wavelength range of plasmonic filters is furthermore particularly attractive for multi-spectral [95], [214], 

[215] or hyper-spectral imaging [216], which both require a high number of filters to cover a large 

wavelength scale (multi-spectral imaging) and to obtain a high wavelength resolution (hyper-spectral 

imaging). 

  
 As a conclusion, this thesis demonstrates the feasibility and the interest of nano-patterned metallic 

filters for spectral filtering applications, together with their technological transfer to wafer-scale 

fabrication. In particular, we think that the performance we obtained for low-cost ALS sensors combined 

with the ability to pattern different filters with a single lithography step could make plasmonic filters 

very good candidates especially suited for the realization of multi-pixels sensors or RGB–ALS sensors 

featured in higher-end handheld devices. The process development that was led throughout this work 

constitutes a global analysis methodology of the manufacturing viability of plasmonic structures that can 

be transferred to other applications beyond visible light sensors. 
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Appendix A 

Optimized base: designs’ characteristics 
 

Array 
Hole 

shape 
b/a Description 

ALS 

Target  
hm P a b 

Optim. 

ALS 

Err 

Max 

Optim. 

ALS 

Dark 

L_A1 Crosses 0.4 ALS 1 dB 227 275 167 67 1.25 62.9 

L_A2  Crosses 0.5 ALS 1 dB 354 267 193 96 1.05 39.4 

L_A3 Crosses 0.6 ALS 1 dB 274 298 185 109 1.02 42.8 

L_A4 Squares - ALS 1 dB 338 296 178 - 1.02 29.1 

L_B1 Crosses 0.4 ALS 1.5 dB 249 253 173 69 1.53 53.2 

L_B2 Crosses 0.5 ALS 1.5 dB 273 267 187 92 1.52 32.2 

L_B3 Crosses 0.6 ALS 1.5 dB 311 301 198 119 1.51 32.1 

L_B4 Squares - ALS 1.5 dB 229 298 167 - 1.51 25.9 

L_C1 Crosses 0.4 
Intercrosses dist. d 

= 50 nm 
- 75 170 120 48 - - 

L_C2 Crosses 0.4 
Intercrosses dist. d 

= 75 nm 
- 75 195 120 48 - - 

L_C3 Crosses 0.4 
Intercrosses dist. d 

= 100 nm 
- 75 220 120 48 - - 

L_C4 Crosses 0.4 
Intercrosses dist. d 

= 150 nm 
- 75 270 120 48 - - 

L_D1 Crosses 0.6 
Intercrosses dist. d 

= 50 nm 
- 75 170 120 72 - - 

L_D2 Crosses 0.6 
Intercrosses dist. d 

= 75 nm 
- 75 195 120 72 - - 

L_D3 Crosses 0.6 
Intercrosses dist. d 

= 100 nm 
- 75 220 120 72 - - 

L_D4 Crosses 0.6 
Intercrosses dist. d 

= 150 nm 
- 75 270 120 72 - - 

R_A1 Crosses 0.5 
Reference ALS 

2dB 
2 dB 300 250 200 100   

R_A2  Crosses 0.45 ALS 1 dB 268 275 176 79 1.11 56.4 

R_A3 Crosses 0.55 ALS 1 dB 340 300 192 106 1.07 49.7 

R_A4 Crosses 0.65 ALS 1 dB 284 298 189 119 1.02 36.6 

R_B1 Crosses 0.5 
Reference ALS 

1dB 
1 dB 300 275 180 90   

R_B2 Crosses 0.45 ALS 1.5 dB 201 275 170 77 1.52 43.9 

R_B3 Crosses 0.55 ALS 1.5 dB 250 279 187 103 1.51 28 

R_B4 Crosses 0.65 
ALS – Hexagonal 

array 
 236 298 189 119 1.51 26 

R_C1 Squares - ALS 0.85 dB 308 305 171 - 0.85 40 

R_C2 Squares - ALS 1.25 dB 315 298 179 - 1.21 25.8 

R_C3 Crosses 0.4 -  75 150 120 48 - - 

R_C4 Crosses 0.5 -  75 150 120 60 - - 

R_D1 Crosses 0.6 -  75 150 120 72 - - 

R_D2 Crosses 0.7 -  75 150 120 84 - - 

R_D3 Crosses 0.8 -  75 150 120 96 - - 

R_D4 Circles - ALS        

 

TABLE A.1. Dimensions and description of the selected arrays distributed on the optimized base 

described in section 5. 1.3. ALS designs (green and blue arrays) were optimized to respect a given 

maximum ALS error (Target). The performance results obtained after optimization are given in the last 

two columns. The dimensions are given in nm. 
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Appendix B 

Electron beam lithography of the optimized base 
 

Array Initial 200-nm-thick photoresist New 60-nm-thick resist + PEC 

L_A1 

  

L_A2 

  

L_A3 

  

L_A4 

  

L_B1 
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L_B2 

  

L_B3 

  

L_B4 

  

L_C1 

  

L_C2 
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L_C3 

  

L_C4 

  

L_D1 

  

L_D2 

  

L_D3 
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L_D4 

  

 

TABLE B.1. Top CD-SEM views of the shapes obtained for the 16 arrays of the left field of the 

optimized base after electron beam lithography with the initial 200-nm-thick photoresist (left column) 

and with the second 60-nm-thick photoresist with Proximity Effect Corrections (right column). 
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Appendix C 

Transmission measurements of the optimized base with 

microspectrometer 

 

 

 

 

 

 
 

FIG. C.1. Comparison of the microspectrometer measurements (blue) to the simulations (red) on the 16 

arrays of the left electron beam field of the optimized base for an Al thickness of 200 nm.  
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FIG. C.2. Comparison of the microspectrometer measurements (blue) to the simulations (red) on the 16 

arrays of the right electron beam field of the optimized base for an Al thickness of 200 nm.  
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FIG. C.3. Comparison of the microspectrometer measurements (blue) to the simulations (red) on the 16 

arrays of the left electron beam field of the optimized base for an Al thickness of 275 nm.  
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FIG. C.4. Comparison of the microspectrometer measurements (blue) to the simulations (red) on the 16 

arrays of the right electron beam field of the optimized base for an Al thickness of 275 nm.  
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Appendix D 

Performance evaluation of ALS filters measured with 

microspectrometer 

 

 

 
 

FIG. D.1. Maximum ALS error of the 18 ALS arrays calculated from simulations (red) and 

microspectrometer measurements (blue) at normal incidence for an Al thickness of 200 nm.  

 

 

 
 

FIG. D.2. ALS dark of the 18 ALS arrays calculated from simulations (red) and microspectrometer 

measurements (blue) at normal incidence for an Al thickness of 200 nm.  
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FIG. D.3. Maximum ALS error of the 18 ALS arrays calculated from simulations (red) and 

microspectrometer measurements (blue) at normal incidence for an Al thickness of 275 nm.  

 

 

 

 
 

FIG. D.4. ALS dark of the 18 ALS arrays calculated from simulations (red) and microspectrometer 

measurements (blue) at normal incidence for an Al thickness of 275 nm.  
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Introduction 

 

 
Les capteurs d’image sont omniprésents dans notre environnement depuis de nombreuses années, utilisés 

notamment dans des applications telles que les appareils photo, les webcams ou les systèmes de vidéo-

surveillance. Récemment, la croissance exponentielle du marché de la communication sans fil a 

considérablement relancé la demande de tels capteurs. En effet, l’émergence des appareils mobiles tels 

que les smartphones ou les tablettes tactiles a généré un intérêt croissant pour le développement de 

capteurs d’image miniaturisés du fait de l’intégration progressive de fonctions d’imagerie et de vidéo. 

D’autres fonctionnalités ont été développées pour les capteurs d’image au fur et à mesure de l’expansion 

de ce secteur, parmi lesquelles les capteurs de luminosité ambiante (ou capteurs ALS de l’acronyme 

anglais Ambient Light Sensors) connaissent en particulier un essor grandissant. L’intérêt de ces capteurs 

ALS est de mesurer le niveau de luminosité environnement afin de permettre un ajustement automatique 

du rétro-éclairage des écrans, offrant ainsi un meilleur confort visuel à l’utilisateur et réduisant par la 

même occasion la consommation de batterie liée à l’utilisation de l’écran. Les capteurs d’image et les 

capteurs ALS partagent un fonctionnement similaire, caractérisé par le filtrage des photons utiles à leur 

fonction respective, réalisé en grande majorité par le biais de résines organiques colorées. Ces résines 

imposent cependant des restrictions très strictes sur l’intégration des capteurs du fait de leur sensibilité 

aux traitements thermiques et nécessitent en outre l’utilisation d’une vitre coupe-infrarouge externe 

puisqu’elles ne peuvent filtrer le signal infrarouge (IR). La nécessité de ce filtre coupe-IR augmente de 

plus l’épaisseur de ces capteurs dans un contexte où le marché est marqué par la réduction des coûts et 

par la démonstration technologique d’appareils toujours plus fins. Il est donc devenu important 

aujourd’hui de développer des solutions de filtrage innovantes capable de suivre ces tendances de 

marché dans le but de proposer des capteurs d’image et de lumière plus compétitifs. 

 Ces dernières années, la littérature a montré un intérêt croissant pour une branche émergente de 

la photonique qui consiste à manipuler la lumière à l’échelle du nanomètre à partir de couches 

métalliques périodiquement structurées : la Plasmonique. Ce domaine tire son nom de l’étude d’ondes 

électromagnétiques confinées aux interfaces métal-diélectrique, appelées plasmons. Un plasmon de 

surface est défini comme une oscillation collective du plasma électronique à la surface du métal, dont 

l’excitation peut être réalisée par un couplage avec les photons incidents sous certaines conditions 

précises. Dans le cas de réseaux métalliques périodiques, une propriété essentielle des plasmons de 

surface est qu’ils sont excités et entrent en résonance pour des longueurs d’onde spécifiques déterminées 

par certaines dimensions caractéristiques des structures utilisées. Ce phénomène rend la plasmonique 

particulièrement adaptée aux applications de filtrage spectral, pour lesquelles la longueur d’onde de 

fonctionnement du dispositif peut simplement être réglée en changeant la taille des structures. En 
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particulier, des métaux comme l’aluminium, l’argent ou l’or peuvent générer des plasmons dans les 

longueurs d’onde du visible et du proche IR, et de nombreux travaux ont ainsi démontré la réalisation de 

filtres plasmoniques colorés qui présenteraient l’immense avantage de ne nécessiter qu’une unique étape 

de photolithographie. Grâce aux propriétés électromagnétiques des métaux, ces filtres sont en outre 

capables de filtrer le signal IR sans filtre externe supplémentaire. Cependant, la majorité des études 

utilisent des matériaux considérés comme contaminant dans les salles blanches industrielles et fabriquent 

les filtres avec des procédés qui ne sont pas compatibles avec la contrainte de rendement nécessaire aux 

productions commerciales. Il existe donc peu d’information disponible en termes d’intégration et de 

performance permettant d’envisager un transfert technologique des filtres plasmoniques des laboratoires 

vers des produits industriels. 

 Par conséquent, cette thèse vise à évaluer le potentiel des filtres plasmoniques à fournir une 

alternative viable et performante aux solutions de filtrage actuelles en vue d’un futur transfert vers des 

applications industrielles. Dans ce travail de thèse, les applications ciblées sont les capteurs d’image et 

les capteurs de luminosité ambiante. Cet objectif se décompose selon deux axes majeurs. Le premier 

consiste en l’étude et la sélection parmi différentes structures plasmoniques de celles qui permettent 

d’obtenir les meilleures performances théoriques pour les applications visées, tout en respectant les défis 

technologiques et les contraintes industrielles qui leurs sont associés. Le second axe consiste à évaluer la 

viabilité de la fabrication de telles structures par rapport aux enjeux d’intégration inhérents aux filtres 

plasmoniques et par rapport aux dispersions de procédés qui doivent être attendues avec une fabrication 

à l’échelle du wafer. Pour répondre à cette problématique, cette thèse est articulée suivant l’organisation 

présentée ci-dessous. 

 

Tout d’abord, nous décrivons dans le Chapitre 1 l’intérêt du filtrage plasmonique pour les 

capteurs de lumière. Nous présentons en premier lieu les structures et les principes respectifs des 

capteurs d’image CMOS et des capteurs ALS, menant ainsi aux enjeux du filtrage spectral. Un accent 

particulier est mis sur la partie filtrage de ces dispositifs avec une revue des principaux types de filtrage, 

en précisant leurs avantages et leurs limites. Le principe du filtrage plasmonique est ensuite introduit. Le 

potentiel de cette solution pour les capteurs de lumière est alors présenté. Les défis associés sont ensuite 

expliqués et la méthodologie choisie pour cette thèse, décrite. 

Le Chapitre 2 consiste en l’identification des structures plasmoniques qui pourraient répondre 

aux exigences des capteurs de lumière. D’abord, les outils numériques de simulation et d’évaluation 

utilisés dans ce travail sont détaillés. Les cahiers des charges correspondant aux capteurs d’image et aux 

capteurs ALS sont expliqués. De là, la sélection des structures plasmoniques les plus adaptées est 

réalisée à travers l’évaluation de leur facilité de fabrication, de leurs propriétés optiques et de leur 

stabilité angulaire. Une intégration directe des filtres respectant la compatibilité avec les procédés 

CMOS des lignes industrielles est proposée. Ce chapitre permet d’identifier les meilleurs matériaux et 

structures compatibles CMOS capables de répondre aux défis respectifs des applications visées. 

Dans le Chapitre 3, les meilleures structures plasmoniques pour les capteurs ALS sont mises en 

évidence. En premier lieu, une étude approfondie des propriétés de stabilité angulaire des réseaux de 

trous cruciformes est présentée afin de limiter la sensibilité de nos filtres plasmoniques aux angles 

d’incidence et à la polarisation de la lumière. De ces résultats, l’évaluation des filtres plasmoniques 

optimisés pour l’application ALS est effectuée. Ce chapitre permet d’estimer le potentiel théorique des 

filtres plasmoniques et de proposer des performances optimales pour cette application. 

Dans le Chapitre 4, l’impact potentiel des facteurs liés à la fabrication sur les performances des 

filtres plasmoniques est simulé. Puisque les résonances de plasmon dépendent de la taille et de la forme 

des structures, nous évaluons la sensibilité des filtres plasmoniques aux imprécisions des procédés. Les 

principaux défauts qui peuvent être attendus à chaque étape de la fabrication sont modélisés. Les 

variations sur les principaux paramètres sont étudiées d’après des valeurs de dispersion typiques d’une 

production sur wafer 300 mm au niveau des étapes de dépôt et de photolithographie, avec également le 

possible arrondissement des trous cruciformes. Les impacts respectifs des profils inclinés dans le métal 
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après gravure et de la formation de cavités d’air lors du remplissage des trous sont évalués. Les étapes 

critiques de la fabrication sont donc identifiées et évaluées. 

Le Chapitre 5 est dédié à la fabrication et à la caractérisation des structures plasmoniques. 

D’abord, le développement process des filtres plasmoniques définis au Chapitre 3 est présenté à la 

lumière des études de dispersions précédentes. Les principales difficultés et dispersions de chaque étape 

sont observées et comparées avec les résultats du Chapitre 4. Les filtres obtenus sont caractérisés pour 

évaluer leurs performances et les comparer avec le travail théorique des chapitres précédents. La 

viabilité de la solution plasmonique en termes de performances et d’intégration est alors discutée. 

Finalement, une conclusion est faite sur la capacité des filtres plasmoniques à proposer des 

performances optiques optimales et à être transférés vers des lignes industrielles en vue d’une utilisation 

dans des applications commerciales. Quelques pistes sur les perspectives de cette thèse sont également 

proposées. Dans ce résumé, seul un aperçu des principaux résultats est fourni pour chaque chapitre. 
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Chapitre 1 

 

 
Nous présentons dans ce chapitre la structure générale et le principe de fonctionnement des principaux 

types de capteurs de lumière sur lesquels nous nous concentrons pour cette thèse : les capteurs d’image 

et les capteurs de luminosité ambiante (ALS). Nous expliquons ensuite comment le système de filtrage 

actuel devient problématique pour une intégration plus avancée et moins chère de tels capteurs dans des 

appareils toujours plus fins. Les résines organiques présentent l’inconvénient majeur de nécessiter un 

filtre coupe-infrarouge externe qui augmente notamment l’épaisseur des capteurs (Fig. 1). Pour rester 

compétitif sur le marché des capteurs de lumière dans les dispositifs mobiles d’entrée ou de milieu de 

gamme, il devient nécessaire de développer une solution de filtrage entièrement sur puce qui ne requiert 

pas de filtre additionnel pour supprimer le signal IR. L’une des alternatives connues les plus sérieuses est 

l’utilisation de filtres Fabry-Perot. Nous notons cependant que leur fabrication peut nécessiter plusieurs 

étapes de dépôt de matériaux et de photolithographie, et impose notamment un contrôle sévère des 

épaisseurs et des propriétés optiques des couches minces déposées, ce qui nécessite des équipements 

spécifiques et coûteux. 

 

 
FIG. 1. Pour reproduire la réponse diurne de l’œil (réponse photopique), le filtrage des capteurs ALS 

est généralement réalisé à l’aide d’une résine organique verte et d’une vitre coupe-infrarouge. 

 
   En explicitant le principe théorique des plasmons de surface (Fig. 2), nous décrivons alors les 

avantages que propose la plasmonique pour répondre à nos enjeux technologiques. Le mécanisme des 

résonances de plasmon permet de réaliser du filtrage dans le visible avec l’utilisation d’une simple 

couche métallique structurée, la longueur d’onde de fonctionnement étant déterminée par les dimensions 

des nanostructures. En pratique, cela signifie que l’élément actif d’un filtre plasmonique – la couche 

métallique – est réalisable à partir d’une seule étape de dépôt et d’une unique étape de lithographie, 

même dans le cas de capteurs avec différents pixels. En outre, les propriétés optiques des métaux 

permettent naturellement de supprimer le signal IR non désiré, et donc dans le même temps la nécessité 

d’un filtre coupe-infrarouge externe. Les filtres plasmoniques, du fait de leur structure et de leur 

principe, apportent cependant leurs propres challenges technologiques par rapport à la solution de 

filtrage la plus couramment utilisée, à savoir les résines organiques. En effet, la structuration du métal en 

2D les rend sensibles à l’angle d’incidence (polaire et azimutal) de la lumière incidente et à son état de 

polarisation, paramètres qui ne constituaient pas de problèmes avec les résines à base de pigments 

colorés. De même, la réponse spectrale des filtres est directement liée aux dimensions caractéristiques 

des structures : généralement, la période du réseau, ainsi que la taille et la forme des motifs. Tous ces 

paramètres génèrent des enjeux de reproductibilité par rapport aux dispersions de procédé liées à la 

précision des équipements de fabrication à chaque étape critique de la réalisation des filtres, en 
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particulier pour les applications dans le domaine visible où les dimensions deviennent nanométriques. En 

outre, nous nous intéressons ici uniquement à des procédés, des matériaux et des équipements 

compatibles avec un environnement CMOS et avec une production industrielle 300 mm à l’échelle du 

wafer, caractérisée notamment par une contrainte de haut rendement. 

 

 
 

FIG. 2. Représentation visuelle d’un plasmon polariton de surface (oscillation collective du plasma 

d’électrons de surface) se propageant le long d’une interface métal-diélectrique. Dans le cas d’une 

excitation par un réseau métallique périodique, le vecteur d’onde du plasmon de surface dépend des 

dimensions caractéristiques de la structure, permettant ainsi de réaliser une fonction de filtrage 

spectral.  

  

 L’objectif de cette thèse est donc d’évaluer le potentiel des filtres plasmoniques à répondre aux 

challenges technologiques spécifiques aux applications considérées, mais également aux enjeux de 

performances et d’intégration liés à leur principe de fonctionnement. Le manuscrit est articulé suivant les 

problématiques suivantes : déterminer les meilleures structures plasmoniques et intégrations pour les 

applications ciblées (Chapitre 2), optimiser les propriétés optiques et les performances des structures 

identifiées (Chapitre 3), évaluer la viabilité de la fabrication de telles structures avec des procédés 

industriels en modélisant les principaux défauts et dispersions de procédé attendus (Chapitre 4), et enfin, 

démontrer expérimentalement la solution plasmonique en développant la fabrication des designs 

optimisés et en les caractérisant optiquement (Chapitre 5). 
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Chapitre 2 
 

 
A travers ce chapitre, nous décrivons les méthodes de simulations numériques et d’évaluation que nous 

utilisons pour répondre aux challenges technologiques intrinsèques du filtrage plasmonique, et nous 

définissons un cahier des charges qui permet l’évaluation à l’échelle du système complet et 

l’optimisation des filtres. Les simulations électromagnétiques sont réalisées à partir d’un algorithme 

RCWA (Rigorous Coupled Wave Analysis), particulièrement adapté à notre étude puisque nous 

considérons des structures périodiques et que les calculs sont suffisamment rapides pour tester de très 

nombreuses structures avec des larges plages de paramètres. En ce qui concerne l’évaluation des 

performances liées aux applications visées, les filtres ALS doivent respecter deux critères de 

performance. Ces critères sont calculés sur le système complet et prend en compte le type d’illuminant, 

la réponse du filtre optique et le rendement quantique de la photodiode (Fig. 3). Le principal critère 

déterminant est l’erreur ALS maximum, qui est directement liée à la qualité du signal filtré (réponse 

proche de la sensibilité photopique), et donc au facteur de qualité et à la réjection du filtre. Cette erreur 

ne doit pas dépasser 2.2 dB, correspondant à la performance de la résine et de la vitre coupe-IR utilisée 

en début de thèse par STMicroelectronics. Le deuxième critère, l’ALS dark, est lié à la performance du 

capteur en condition de basse luminosité (valeur de l’éclairement nécessaire pour différencier le signal 

utile du courant d’obscurité de la photodiode), qui correspond plutôt au niveau de transmission du filtre. 

La limite est fixée à 100 lx. 

 

 
 

FIG. 3. Schéma représentant l’ensemble des éléments pris en compte pour l’évaluation de 

performance des capteurs ALS. La sensibilité du dispositif et les critères qui en découlent sont 

définis à partir : du type d’illuminant, de la transmission de la vitre du packaging, de la réponse 

spectrale du filtre et du rendement quantique de la photodiode. 

 

  Nous avons simulé les principaux types de structures de filtres optiques plasmoniques avec un 

accent particulier sur leur sensibilité à la polarisation et sur la stabilité angulaire. En plus des difficultés 

liées à leur fabrication, les structures MIM (Métal-Isolant-Métal) n’ont pas montré de propriétés 

avantageuses en termes de niveau de transmission ou de stabilité angulaire. Les réseaux de plots 

métalliques, bien que plus faciles à fabriquer, présentent une sensibilité très importante aux conditions 

d’incidence de la lumière, ce qui est rédhibitoire pour les applications considérées dans cette thèse. La 

meilleure association entre la facilité de fabrication et les performances optiques est obtenue avec les 

réseaux de trous diélectriques dans une couche métallique (Fig. 4). Bien qu’aucun de ces trois types de 

structures n’atteigne les mêmes niveaux de transmission que les résines organiques, les réseaux de trous 

se distinguent par leur capacité à présenter une très forte stabilité angulaire. En particulier, les réseaux de 
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trous cruciformes donnent les meilleurs résultats avec une très bonne robustesse à la polarisation et aux 

conditions d’incidence de la lumière, en plus de proposer un paramètre géométrique supplémentaire par 

rapport aux carrés ou aux cercles pour régler la réponse des filtres : la largeur de bras des croix. Les 

faibles transmissions généralement obtenues avec les filtres plasmoniques (ou les hauts niveaux de 

transmission avec de très mauvais facteurs de qualité) compliquent leur intégration dans des capteurs 

d’image CMOS destinés à des appareils haut-de-gamme, mais ces propriétés de stabilité angulaire font 

cependant des réseaux de trous, et particulièrement les trous cruciformes, une solution prometteuse pour 

réaliser du filtrage ALS. La suite de l’étude est donc concentrée sur l’optimisation des performances et 

sur les problématiques de fabrication des filtres plasmoniques à base de réseaux de trous cruciformes. A 

partir des travaux du Chapitre 2, nous avons breveté une solution limitant la sensibilité des filtres 

plasmoniques en général à l’azimut pour des applications capteur d’image. 

 

 
FIG. 4. Les structures de type réseaux de trous diélectriques dans une couche métallique se sont 

avérées être le meilleur compromis entre niveau de transmission, stabilité angulaire et facilité de 

fabrication. En particulier, les réseaux de croix ont montré la possibilité d’obtenir une très bonne 

robustesse à l’angle d’incidence et à l’état de polarisation. 

 

 Finalement, l’intégration de ce type de filtres plasmoniques est étudiée dans l’objectif d’obtenir 

l’intégration la plus directe dans une route standard de fabrication de capteurs d’image. La configuration 

que nous définissons est alors de fabriquer les filtres au-dessus des couches de passivation de SiO2 et de 

Si3N4, situées au-dessus des interconnections métalliques, juste avant l’ouverture des plots d’aluminium. 

La solution qui donne des performances ALS optimales consiste à intégrer la couche d’aluminium 

nanostructurée à l’intérieur de la couche de SiON servant de revêtement protecteur contre l’atmosphère 

extérieure, qui est alors utilisée comme matériau diélectrique environnant pour le filtre plasmonique. 

Afin de limiter l’impact optique de la couche de Si3N4 sous-jacente, la couche intermédiaire de SiO2 

située entre l’aluminium et le nitrure doit avoir une épaisseur de 325 nm. Cette configuration définit 

ainsi l’empilement optique complet du capteur qui est pris en compte par la suite dans les simulations 

évaluant les performances des filtres plasmoniques dans le cas d’un capteur ALS réel. A la suite de cette 

étude, nous définissons donc deux empilements de référence qui sont utilisés dans les chapitres suivants 

(Fig. 5). Le premier est un empilement dit standard où la couche d’aluminium structurée se trouve dans 

un milieu de SiO2 infini. Il est utilisé pour l’étude théorique des résonances de plasmon dans nos 

structures. L’autre est un empilement dit ALS qui fait référence à l’empilement complet des matériaux 

du capteur situé au-dessus de la photodiode, comprenant ainsi le filtre intégré dans le SiON, les couches 

de passivation et les diélectriques du BEoL. Il est utilisé pour l’évaluation et l’optimisation des 

dispositifs ALS à base de plasmonique. 
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FIG. 5. Description des deux empilements de référence utilisés dans la suite de la thèse. a) 

Empilement dit standard, utilisé pour étudier les résonances de plasmons dans nos structures. b) 

Empilement dit ALS, optimisé pour les performances ALS dans le cas d’une intégration directe dans 

une route procédé standard d’un capteur industriel. 
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Chapitre 3 

 

 
Les structures les plus adaptées à nos applications ayant été identifiées, nous cherchons maintenant à 

optimiser leurs propriétés optiques et leurs performances. Nous démontrons dans une première partie du 

Chapitre 3 que les propriétés optiques des réseaux de trous cruciformes telles que leurs sensibilités à 

l’angle d’incidence et à la polarisation peuvent être précisément ajustées en changeant certaines 

dimensions caractéristiques de ces structures. Les deux paramètres géométriques principaux permettant 

de gérer leur comportement électromagnétique sont le facteur de forme des croix, défini comme le 

rapport de la largeur de bras des croix sur leur longueur de bras b/a, ainsi que l’espacement entre les 

croix d. Un faible facteur de forme (inférieur à 0.5 d’après nos simulations, voir Fig. 6) et une courte 

distance inter-croix inférieure à 75 nm favorisent un régime de résonances localisées de plasmon au 

niveau des ouvertures au détriment des plasmons propagatifs, ce qui assure une faible sensibilité des 

filtres aux conditions d’éclairement. L’épaisseur de métal doit être supérieure à 150 nm afin d’améliorer 

la stabilité angulaire, mais son influence est légère par rapport à l’impact du facteur de forme et de 

l’espacement inter-croix. L’impact de l’azimut dans le cas des réseaux 2D et des solutions pour en 

limiter les effets sont étudiés, ce qui constitue un aspect rarement pris en compte pour les réseaux de 

trous dans la littérature à notre connaissance. Nous pensons que cette étude apporte une contribution 

additionnelle à la compréhension des rôles respectifs des plasmons localisés et des plasmons polaritons 

de surface dans le mécanisme de transmission optique extraordinaire (EOT). En outre, nous démontrons 

la capacité des réseaux de trous cruciformes à fournir des filtres avec une forte stabilité angulaire et une 

insensibilité à la polarisation, à condition que les règles de design que nous établissons soient respectées 

et que le choix des matériaux soit cohérent avec les longueurs d’onde considérées. 
 

  

 

 

 

 

 

FIG. 6. Evolution des réponses 

spectrales avec l’angle d’incidence 

θ, l’azimut φ et l’état de 

polarisation (TE ou TM) d’un 

même filtre pour différentes 

valeurs du ratio b/a (SF de 

l’anglais shape factor) des trous en 

croix. a) b/a = 0.4 et φ = 0°. b) b/a 

= 0.6 et φ = 0°. c) b/a = 0.8 et φ = 

0°. d) b/a = 0.4 et φ = 45°. e) b/a = 

0.6 et φ = 45°. f) b/a = 0.8 et φ = 

45°. La réponse du filtre est 

d’autant plus stable que le ratio b/a 

est faible. 
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Dans une seconde partie, nous montrons que les filtres plasmoniques sont capables de rentrer 

dans le gabarit de performances de l’application ALS et de se rapprocher des valeurs d’erreur ALS de la 

solution résine verte/vitre coupe-IR (2012). Ils sont également capables d’approcher l’erreur ALS de la 

référence 2015, bien qu’ils présentent un AlS dark plus élevé autour de 40 lx. Cette valeur peut 

potentiellement être réduite grâce à un recuit final du dispositif que les filtres plasmoniques peuvent 

supporter contrairement aux résines organiques, ce qui est vérifié expérimentalement au Chapitre 5. 

Seules des formes de trous spécifiques telles que les carrés ou les croix peuvent atteindre des 

performances compétitives, ce qui nous amène à supposer que les plasmons localisés jouent un rôle 

essentiel dans l’obtention d’une réponse spectrale se rapprochant de la sensibilité photopique. 

L’application requiert des filtres avec des épaisseurs d’aluminium généralement supérieures à 225 nm, 

permettant une très bonne réjection autour du signal utile, des périodes comprises entre 250 nm et 300 

nm, ainsi que des rapports a/P compris entre 0.6 et 0.75. Nous montrons que la dispersion des 

performances due à l’angle d’incidence polaire, à l’azimut et à la polarisation est limitée et contenue 

dans le cahier des charges avec des faibles facteurs de formes. Les limites de la stabilité des croix sont 

cependant atteintes pour des angles d’incidence de 60° (Fig. 7). Des solutions plus avancées sont 

proposées à partir d’argent ou d’or à la place de l’aluminium. Bien que l’or ne soit pas approprié pour 

des filtres en transmission dans le visible, l’argent est capable de fournir des filtres ALS très performants 

comparables avec la référence de 2015 à partir de trous carrés ou de trous cruciformes avec un facteur de 

forme supérieur à 0.7. Ceci implique que l’argent constitue une alternative prometteuse à l’aluminium 

pour du filtrage optique bien que les conditions de stabilité des croix puissent ne pas être remplies. La 

nanostructuration de couches minces d’argent avec des équipements industriels est cependant 

problématique pour l’introduction de ce métal dans des salles blanches CMOS de production de masse. 
 

 
FIG. 7. Représentation 2D des performances ALS d’un filtre plasmonique en incidence normale 

(point noir), puis sous différents angles d’incidence θ (différentes couleurs), pour différentes valeurs 

d’azimut (points d’une même couleur), en moyennant les réponses obtenues sous polarisations TE et 

TM. Les critères de performance définis au Chapitre 2 servent de coordonnées. La zone verte 

représente le gabarit acceptable de performance. Nos calculs montrent qu’il est possible de trouver 

des designs qui respectent le cahier des charges des performances, et ce même sous une incidence de 

30°, angle maximum permit par l’ouverture du capteur. 
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Chapitre 4 

 

 
Puisque nous voulons réaliser des structures dont les dimensions sont à la limite du savoir-faire 

technologique actuel, les imprécisions de fabrication, et particulièrement avec de procédés industriels, 

constituent un challenge majeur pour le transfert des filtres plasmoniques vers une production de masse 

en vue d’applications commerciales. Dans ce chapitre, nous simulons l’impact des dispersions de 

procédé issues de la salle blanche 300 mm de STMicroelectronics Crolles sur les performances ALS de 

deux designs de référence. Ces simulations nous permettent de définir une route de fabrication des filtres 

plasmoniques qui puisse garantir un minimum de défis technologiques et qui soit facilement transférable 

en milieu industriel. Les principaux points bloquants qui sont susceptibles d’être rencontrés à chaque 

étape de la fabrication sont identifiés et évalués. L’objectif est d’être capable de déterminer s’il existe 

des briques technologiques critiques et de proposer le cas échéant des solutions pour surpasser ces 

difficultés potentielles (Fig. 8). Dans chaque cas, nous étudions d’abord comment les propriétés optiques 

des filtres sont impactées par les dispersions de procédé, puis nous appliquons ces résultats et évaluons 

leurs effets en termes de performances dans le cas de l’application ALS. 

 

 
 

FIG. 8. Principales dispersions et défauts de procédé attendus lors de la fabrication des filtres 

plasmoniques par gravure de la couche d’aluminium et remplissage SiO2 des ouvertures. 

 

 La première brique de la fabrication est le dépôt des différentes couches constituant les filtres. 

Nous montrons que les dispersions sur l’épaisseur des couches et leurs indices de réfraction ont un 

impact limité sur les performances ALS, et qu’il est possible de trouver des designs respectant le gabarit 

de performances même avec les niveaux de dispersions actuels. Cette étape n’est donc pas critique, et 

aucun équipement de dépôt spécifique n’est requis pour la fabrication des filtres. L’utilisation de 

machines de dépôt de qualité optique pourrait néanmoins permettre d’obtenir plus de designs respectant 

le cahier des charges. En ce qui concerne la stabilité du métal, nous montrons que la formation d’un 

oxyde natif en surface de l’aluminium ne constitue pas un problème pour les performances ALS à 

condition de prendre en compte les variations des dimensions de la structure métallique du fait du 

processus d’oxydation. En outre, nous pensons qu’en pratique, il est possible d’anticiper l’oxydation du 

filtre directement à l’étape de dessin du masque de lithographie. 

 Durant l’étape de lithographie, nous considérons deux points bloquants principaux : 

l’arrondissement des coins des croix et le contrôle des dimensions des trous. Quand les angles des croix 

sont arrondis, nous observons un décalage vers les courtes longueurs d’onde de la résonance, que nous 

attribuons à la modification progressive des résonances plasmon spécifiques aux croix vers des modes de 

résonances propres aux trous circulaires. Cet effet semble plutôt relié aux angles internes des croix, mais 

une modification des interactions entre les motifs peut aussi être considérée. Malgré ces observations, 

nous montrons que les propriétés de stabilité angulaire des croix fines ne sont pas impactées pour des 
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rayons de courbure des coins R = 20 nm jusqu’à 30° d’incidence. L’impact des coins arrondis est faible 

sur les performances ALS à condition que le rayon de courbure n’excède pas 15 nm ou 20 nm en 

fonction du design (Fig. 9). Ces valeurs d’arrondi doivent pouvoir être atteintes dans les coins internes 

avec une lithographie en double exposition et dans les coins externes à l’aide de calculs de proximité 

optique (OPC). 

 

 
 

FIG. 9. Etude sur deux filtres de référence de l’impact de l’arrondissement des croix sur les 

performances ALS des filtres plasmoniques, pour différentes valeurs d’arrondis R (rayon de courbure 

dans les angles). a) Angles externes arrondis. b) Angles internes arrondis. c) Tous les angles de la 

croix arrondis.  

 

 Nous étudions également l’influence de la présence potentielle de profils en pente dans 

l’aluminium qui peuvent être obtenus lors de la gravure des motifs, formant un angle ouvert dirigé vers 

le haut du filtre. Nous supposons que trois situations peuvent se présenter pour anticiper la présence de 

pentes de gravure par rapport aux dimensions attendues. Si nous fixons les dimensions désirées en haut 

des filtres, les pentes obstruent les ouvertures et l’ALS dark connaît alors une augmentation massive qui 

ne peut être tolérée. Au contraire, si nous choisissons d’atteindre les dimensions voulues à la sortie (en 

bas) des filtres, nous mettons en évidence un effet « entonnoir » qui collecte plus de signal et détériore 

sévèrement la réjection des filtres, en particulier dans le proche IR. L’augmentation correspondante de 

l’erreur ALS serait rédhibitoire. Nous montrons alors que la meilleure configuration serait d’anticiper la 

présence de pentes de gravure durant l’étape de dessin du masque de façon à obtenir les dimensions 

désirées à mi-hauteur de la couche de métal. Dans ce cas, nos résultats montrent que l’erreur ALS n’est 

pas impactée par les pentes, et que l’augmentation de l’ALS dark est limitée à environ 15 lx. Notons 

cependant que l’anticipation des pentes n’est possible qu’avec une très bonne connaissance des 

paramètres utilisés lors de l’étape de gravure.  

 Le dernier point bloquant que nous étudions est la formation de cavités d’air (« voids ») dans le 

matériau diélectrique durant l’étape de remplissage des trous. Nous démontrons que la présence de voids 

devient très rapidement problématique quand la fraction volumétrique Vf des voids par rapport au 

volume des trous augmente. En fonction des designs, certains filtres peuvent tolérer des fractions 

volumétriques comprises entre 4 %  et 16 %. Cependant, notre étude montre globalement que la présence 
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c)
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de voids dans les ouvertures doit être sévèrement limitée (Fig. 10), en particulier dans les structures 

présentant de forts rapports d’aspect pour lesquelles la formation de cavités d’air constitue un risque très 

élevé. L’utilisation de techniques de dépôt appropriées au remplissage de structures aux rapports 

d’aspect importants est alors recommandée. 

 

 
 

FIG. 10. Etude de l’impact de la formation de cavités d’air lors du remplissage SiO2 du filtre sur les 

résonances de plasmon, pour différentes fractions volumétriques Vf des cavités. 
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Chapitre 5 
 

 
Les études réalisées sur la recherche de designs, les performances théoriques atteignables et les 

considérations de robustesse aux dispersions de procédé dans les chapitres précédents nous permettent à 

présent de passer à la fabrication de nos filtres optimisés. Nous présentons ainsi dans ce chapitre le 

développement process qui a été mené pour réaliser expérimentalement les meilleures structures en 

évitant au mieux les défauts de fabrication. À la lumière des résultats du chapitre précédent, chaque 

brique d’intégration a été contrôlée afin d’évaluer et d’ajuster la capacité du procédé à respecter les 

critères que nous avons définis pour obtenir des filtres performants. L’étude a été menée en deux temps, 

avec en premier lieu un développement sur des réseaux de plots métalliques ayant des dimensions 

proches de nos structures, puis dans un second temps avec des réseaux de trous optimisés issus de nos 

travaux d’évaluation théorique. Les structures ont été réalisées sur des wafers silicium de 200 mm. 

 L’empilement de matériaux utilisé pour la réalisation de filtres plasmoniques en aluminium n’a 

pas engendré de problème particulier. Les interfaces n’ont pas présenté de défauts et aucun décollement 

n’est survenu. La variation d’épaisseur de l’aluminium (Al-1%Si) déposé était d’environ 10 %, ce qui 

n’était pas critique pour une première démonstration. La formation d’ « hillocks » due aux contraintes 

thermiques constituait en revanche un problème inquiétant pour la qualité des étapes suivantes telles que 

la photolithographie et la gravure du métal. Ceci a entrainé un retard conséquent dans la fabrication afin 

de déterminer la meilleure solution permettant leur suppression. Finalement, utiliser des procédés avec 

un faible budget thermique jusqu’à la structuration du métal s’est avéré être la solution la plus simple et 

la plus concluante. Le dépôt du masque dur utilisé pour améliorer les profils de gravure a ainsi été réalisé 

à 200°C (au lieu de 350°C), ce qui a réduit de manière considérable la croissance des hillocks, bien 

qu’ils n’aient pas été entièrement supprimés. 

 En ce qui concerne la nanostructuration, l’étape de lithographie à faisceau d’électrons (ou e-

beam) était envisagée comme un défi majeur pour la réalisation des filtres. Les résultats ont montré que 

si les variations de dimensions étaient légèrement inférieures à la limite de 10 % fixée dans le Chapitre 

4, la forme des croix en revanche était sévèrement modifiée lors de nos premiers essais. Nous avons 

cependant montré qu’avec l’utilisation d’une résine plus résolvante, plus fine, combinée avec des 

corrections d’effets de proximité (PEC), pouvaient grandement améliorer la forme en croix et limiter 

l’arrondissement des coins (Fig. 11). Ces développements de la lithographie étaient très encourageants 

mais ces wafers « améliorés » n’ont pu aller plus loin faute de temps. La suite de la fabrication ne s’est 

donc faite que sur les motifs non corrigés comprenant des croix déformées et des carrés dont la forme 

était bien respectée. Lors de la structuration du métal, les réseaux de trous ont montré une rugosité des 

flancs des ouvertures avec une amplitude maximale de 30 nm. L’impact de ces irrégularités reste à 

évaluer, mais les profils de gravure ont pu être considérés comme ayant une pente effective inférieure à 3 

%. Cette valeur se trouve dans la plage de valeurs acceptables simulée dans le chapitre précédent. Les 

dispersions mesurées sur la taille des trous après gravure du métal étaient inférieures à 7 %, ce qui 

constitue un bon résultat pour une première démonstration, en particulier avec la réalisation simultanée 

de filtres ayant des dimensions bien distinctes. 
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FIG. 11. Observations CD-SEM de différents réseaux de filtrage (trous carrés et trous cruciformes) 

obtenus avec une résine e-beam plus adaptée et après corrections de proximité.  

 

 Nous avons démontré dans le Chapitre 4 que la présence de voids doit à tout prix être limitée 

pour éviter une dégradation importante des performances des filtres. Nos premiers essais de remplissage 

SiO2 réalisés à partir d’un procédé PECVD (dépôt chimique en phase vapeur assisté par plasma) 

classique ont révélé la formation d’importantes cavités d’air. Nous avons montré que l’utilisation d’un 

procédé spécifique de type HDPCVD (dépôt chimique avec plasma haute densité) apportait une 

amélioration considérable à la qualité du remplissage. Des observations FIB (faisceaux d’ions) ont validé 

notre étape de remplissage HDP avec des équipements à l’échelle du wafer puisque nous avons mis en 

évidence le remplissage sans formation de voids de structures ALS présentant des trous larges de 70 nm 

avec un rapport d’aspect de 3 (Fig. 12). Enfin, nous avons validé une étape de fabrication supplémentaire 

que nous avons spécifiquement développée pour réaliser des caractérisations optiques en transmission : 

le report des structures (fabriquées sur wafer silicium) sur un wafer verre, transparent dans le visible. 

Cette étape a également permis de montrer la robustesse des filtres plasmoniques aux traitements 

thermiques grâce au recuit de collage qui est utilisé lors de cette étape. 
 

 
 

FIG. 11. Coupes transverses FIB-SEM a) d’un réseau de carrés (largeur de cavité : 178 nm) et b) 

d’un réseau de croix (largeur de cavité : 67 nm) après remplissage SiO2 par HDPCVD des structures, 

pour une épaisseur d’aluminium de 200 nm. Ces observations démontrent la possibilité de remplir de 

telles structures sans formation de cavités d’air avec des procédés industriels. 
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 Ce développement process nous a finalement menés au cœur de cette étude, qui était de 

démontrer expérimentalement la viabilité de la fabrication des filtres plasmoniques ainsi que leurs 

performances pour l’application ALS. Les caractérisations optiques réalisées sur les designs ALS ont 

mis en évidence les effets de différentes imprécisions de procédé à partir des déviations obtenues par 

rapport aux réponses spectrales simulées, mais le rôle respectif de ces imprécisions sur les réponses des 

filtres est difficile à identifier précisément. Néanmoins, nous obtenons un accord significatif entre nos 

mesures et nos simulations, caractérisé notamment par le fait que nous avons réussi à obtenir des filtres 

fabriqués dont les performances respectent le gabarit de performance ALS établi, avec des erreurs ALS 

inférieures à 2 dB et des valeurs d’ALS dark inférieures à 40 lx (Fig. 12). Ces bons résultats doivent être 

soulignés étant donné le cahier des charges drastique ciblé pour l’application ALS dans cette thèse. La 

stabilité angulaire reste à démontrer pour les motifs cruciformes fins puisque nos croix étaient trop 

déformées pour tester cette propriété. Les motifs optimisés auraient été particulièrement utiles pour une 

comparaison directe des propriétés de stabilité avec les motifs théoriques simulés. Ces travaux 

fournissent d’importantes informations concernant les dispersions réelles qui peuvent être attendues 

d’équipements typiques de l’industrie et les performances qui peuvent être atteintes à partir de ceux-ci, à 

l’exception de la lithographie e-beam. Ces résultats prouvent en particulier qu’il n’est pas de problème 

critique empêchant d’envisager la réalisation de filtres plasmoniques, et que ceux-ci peuvent constituer 

une solution de filtrage performante pour des applications ALS. Étant conscients qu’il existe une marge 

de manœuvre importante pour améliorer chaque étape de la fabrication avec des procédés dédiés et 

optimisés, nous pensons que cette étude démontre une preuve de principe prometteuse pour l’application 

des filtres plasmoniques dans des produits industriels à partir d’intégrations à l’échelle du wafer et 

compatibles CMOS. 

 

 
FIG. 12. Comparaison entre les résultats de performances théoriques attendus pour les filtres simulés 

(rouge) et les résultats de performances obtenus à partir des mêmes filtres fabriqués (bleu), pour les 

deux épaisseurs d’aluminium fixées pour la fabrication a) 200 nm et b) 275 nm. Chaque point 

représente un design de filtre plasmonique. Nous mettons ici en évidence le bon accord entre les 

simulations et les démonstrateurs expérimentaux, mais soulignons également le fait que des filtres 

plasmoniques expérimentaux respectent le cahier des charges industriel de STMicroelectronics pour 

l’application ALS. 
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Conclusion 
 

 
Le travail de cette thèse était tout particulièrement motivé par la volonté de STMicroelectronics de 

développer des solutions innovantes concernant l’intégration des capteurs de lumière CMOS. Cette ligne 

directrice est justifiée par un contexte économique dans lequel la demande en capteurs embarqués de 

différentes sortes croît de façon exponentielle ces dernières années, en majeur partie grâce au 

développement du marché de la communication mobile. Les capteurs d’image et les capteurs de 

luminosité ambiante (ALS) utilisent généralement des résines organiques comme filtres optiques, qui 

limitent les possibilités d’intégration de ces capteurs et imposent l’utilisation d’un filtre coupe-infrarouge 

(IR) épais. La recherche d’une solution de filtrage innovante s’est dirigée pour cette thèse vers un 

domaine émergent de la photonique qui permet la manipulation de la lumière à l’échelle nanoscopique 

avec des dispositifs plasmoniques construits à base de structures métalliques nanostructurées. Malgré un 

état de l’art conséquent en filtrage plasmonique, plusieurs enjeux technologiques restent à étudier afin 

d’évaluer le potentiel des filtres plasmoniques dans un environnement industriel CMOS. 

 Le défi majeur était de démontrer théoriquement les performances des filtres plasmoniques par 

rapport à un cahier des charges précis et d’étudier la viabilité de leur fabrication avec des contraintes 

industrielles, comme la compatibilité CMOS et la restriction à des procédés à haut rendement. Cette 

problématique a par conséquent été divisée suivant deux aspects du sujet. Le premier était d’étudier la 

capacité des filtres plasmoniques à respecter les performances et les challenges technologiques requis 

pour les applications ciblées. Le deuxième aspect consistait à adresser les enjeux technologiques 

inhérents aux structures plasmoniques qui n’existaient pas avec les résines organiques, comme par 

exemple la sensibilité à la polarisation ou le respect des dimensions critiques des nanostructures lors de 

la fabrication. Pour répondre à ces différentes problématiques, j’ai mis en place une méthodologie 

impliquant différents domaines techniques comprenant notamment la théorie plasmonique, des 

simulations électromagnétiques et du développement de procédés (Chapitre 1). Des simulations 

numériques ont été réalisées pour sélectionner les meilleures nanostructures et intégrations plasmoniques 

pour nos applications (Chapitre 2), ainsi que pour étudier leurs propriétés optiques afin de proposer des 

designs optimaux (Chapitre 3). Des réflexions concernant l’intégration process ont été menées en 

parallèle avec une modélisation des défauts de fabrication dans le but d’étudier la sensibilité des 

structures plasmoniques aux dispersions de procédés d’une fabrication à l’échelle du wafer et d’identifier 

les étapes critiques qui nécessiteraient une attention particulière (Chapitre 4). Ces études ont convergé 

vers un développement process judicieux de filtres, puis vers leur caractérisation optique pour en 

démontrer le concept. Les résultats obtenus montrent que j’ai pu établir la viabilité potentielle de la 

solution plasmonique à fournir des filtres ALS performants compatibles avec une fabrication à l’échelle 

du wafer (Chapitre 5).           
 

L’un des principaux challenges technologiques propres aux capteurs était la stabilité angulaire 

des filtres pour des angles d’incidence jusqu’à 30°. J’ai démontré à travers ce travail que parmi les 

principaux types de structures de filtrage optique plasmonique, les réseaux de trous étaient les plus 

appropriés pour fournir cette propriété, constituant donc les meilleurs candidats pour approcher les 

exigences drastiques des capteurs ALS. En particulier, j’ai montré que les réseaux de trous cruciformes 

dans une couche métallique étaient les structures offrant à la fois la meilleure robustesse en angle et des 

transmissions proches de 50 %. L’étude devant se limiter à des matériaux compatibles CMOS, j’ai pu 

démontrer l’intérêt de ces structures avec de l’aluminium comme métal et du SiO2 comme diélectrique, 

qui constituent l’association de matériaux avec les meilleures propriétés optiques. La mise en place de 

critères de performance précis et l’utilisation d’outils numériques dédiés ont permis une évaluation 
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concrète des filtres relativement à un cahier des charges industriel des applications visées. Les exigences 

en transmission de la fonction ALS se sont montrées moins drastiques que pour les capteurs d’image et 

ont donc semblé plus en accord avec les réponses optiques atteignables avec des filtres métalliques 

nanostructurés. Leur évaluation m’a en effet permis de montrer que les filtres plasmoniques peuvent 

rivaliser avec les résines actuelles en termes de performance puisque des designs ont pu être trouvés dans 

notre gabarit de performances. Ces résultats ont également prouvé que leur réjection dans le proche IR 

était suffisamment importante pour supprimer le besoin d’un filtre externe, permettant donc bien de 

réduire l’épaisseur globale du capteur. 

En parallèle, plusieurs questions ont été soulevées concernant la viabilité de ces structures et 

leur capacité à constituer une solution de filtrage efficace du fait des enjeux spécifiques qu’elles 

impliquent par rapport aux résines organiques. Puisque structurés, les filtres plasmoniques ne sont pas 

seulement sensibles à l’angle polaire d’incidente, mais également à l’azimut et à l’état de polarisation de 

la lumière. L’étude des résonances de plasmon au sein des réseaux de trous cruciformes m’a permis 

d’identifier les conditions de stabilité angulaire et de proposer des filtres avec une sensibilité 

considérablement réduite aux conditions d’excitation. J’ai extrait des critères géométriques qui 

favorisent un régime de résonances plasmon localisées, responsables de la robustesse en angle et à la 

polarisation des structures. Des croix fines et de faibles distances inter-croix sont les deux conditions 

principales permettant d’obtenir cette propriété, qui ont pu ensuite être utilisées pour trouver des designs 

optimisés en termes de performances ALS et de stabilité angulaire, bien qu’un compromis soit 

nécessaire entre ces deux aspects. En pratique, les avantages du principe des filtres plasmoniques 

constituent également la principale source d’inquiétude en ce qui concerne leur fabrication. Les 

résonances plasmon dépendent de la forme et des dimensions des nanostructures métalliques. Des 

erreurs sur leur taille et sur leur morphologie pourraient sévèrement altérer leurs propriétés optiques et 

leurs performances. Cependant, ces structures ont des dimensions à la limite des procédés actuels de la 

microélectronique, et les capacités des équipements industriels se trouvent donc sérieusement mises à 

l’épreuve. Par rapport à l’état de l’art, j’ai dû me concentrer uniquement sur l’utilisation de procédés à 

l’échelle du wafer afin de mener une étude de risque concernant la viabilité d’une production industrielle 

de ces filtres. J’ai effectué cette étude par l’analyse des principales imprécisions de procédé attendues à 

l’aide de valeurs de dispersion typiques d’une production en 300 mm, selon deux aspects : leurs 

influences sur les résonances plasmoniques et leurs impacts sur les performances ALS. Les calculs ont 

permis d’identifier les principaux points bloquants, qui sont essentiellement la précision de lithographie 

en taille et en respect des formes de motifs, la présence de pentes de gravure et la formation de cavités 

d’air (voids) lors du remplissage des trous. Dans un second temps, le développement de la fabrication 

des filtres optimisés avec des procédés à l’échelle du wafer a prouvé qu’il n’existait pas de problèmes 

rédhibitoires avec de tels équipements. Les principales dispersions observées restaient dans les gammes 

attendues et tolérées, que ce soit pour les variations d’épaisseur, les tailles des motifs, les pentes de 

gravure ou la formation de voids. Finalement, les caractérisations optiques ont montré des performances 

prometteuses qui rentrent dans notre cahier des charges et ont donc finalisé la démonstration de la 

viabilité des filtres plasmoniques avec une intégration directement transférable vers un environnement 

industriel. 

Actuellement, le développement des filtres plasmoniques est toujours en cours grâce à la mise 

en place d’une collaboration avec l’université de Glasgow et STMicroelectronics Edinburgh. L’objectif 

consiste à fabriquer certains des designs de filtres optimisés directement sur des puces CMOS 

comprenant des photodiodes ALS (capteur complet), fournies par STMicroelectronics Crolles. Cette 

étude permettra l’évaluation directe de capteurs ALS plasmoniques avec des bancs de mesures dédiés, et 

constituera donc un excellent complément à ce travail de thèse.   



   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

Plasmonic spectral filtering using metallic nanostructures envisioned for 

CMOS image sensors 
 

Abstract 
 

Image sensors have experienced a renewed interest with the prominent market growth of wireless 

communication, together with a diversification of functionalities. In particular, a recent application known as 

Ambient Light Sensing (ALS) has emerged for a smarter screen backlight management of display-based 

handheld devices. Technological progress has led to the fabrication of thinner handsets, which imposes a severe 

constraint on light sensors’ heights. This thickness reduction can be achieved with the use of an innovative, 

thinnest and entirely on-chip spectral filter. In this work, we present the investigation and the demonstration of 

plasmonic filters aimed for commercial ALS products. The most-efficient filtering structures are identified with 

strong emphasis on the stability with respect to the light angle of incidence and polarization state. Integration 

schemes are proposed according to CMOS compatibility and wafer-scale fabrication concerns. Plasmon 

resonances are studied to reach optimal optical properties and a dedicated methodology was used to propose 

optimized ALS performance based on actual customers’ specifications. The robustness of plasmonic filters to 

process dispersions is addressed through the identification and the simulation of typical 300 mm fabrication 

inaccuracies and defects. In the light of these studies, an experimental demonstration of ALS plasmonic filters is 

performed with the development of a wafer-level integration and with the characterization and performance 

evaluation of the fabricated structures to validate the plasmonic solution. 

 

Keywords: Plasmonics, Surface plasmons, Optical filters, Nanostructures, Metallic arrays, Image sensors, 

ALS, CMOS, Simulation, RCWA, Process integration, Thin films, Characterization. 

 

 

 

 

Filtrage spectral plasmonique à base de nanostructures métalliques adaptées aux 

capteurs d’image CMOS 
 

Résumé 
 

Les capteurs d’image connaissent un regain d’intérêt grâce à la croissance remarquable du secteur de la 

communication sans fil, et leurs fonctionnalités tendent à se diversifier. Plus particulièrement, une application 

récente connue sous le nom de capteur de luminosité ambiante (ALS de l’acronyme anglais) est apparue dans le 

but de proposer un ajustement intelligent du rétro-éclairage dans les appareils mobiles pourvus d’écrans. Les 

avancées technologiques ont permis la fabrication de smartphones toujours plus fins, ce qui impose une 

contrainte importante sur la hauteur des capteurs de lumière. Cette réduction d’épaisseur peut être réalisée grâce 

à l’utilisation de filtres spectraux innovants, plus fins et entièrement sur puce. Dans cette thèse, nous présentons 

l’étude et la démonstration de filtres plasmoniques adaptés à une intégration dans des produits ALS 

commerciaux. Les structures de filtrage les plus performantes sont identifiées avec une importance particulière 

accordée à la stabilité des filtres par rapport à l’angle d’incidence de la lumière et à son état de polarisation. Des 

schémas d’intégration compatibles CMOS et respectant les contraintes d’une fabrication à l’échelle du wafer 

sont proposés. Les résonances de plasmon sont étudiées afin d’atteindre des propriétés optiques optimales et une 

méthodologie spécifique à partir d’un véritable cahier des charges client a été utilisée pour obtenir des 

performances ALS optimisées. La robustesse des filtres plasmoniques aux dispersions de procédé est analysée à 

travers l’identification et la modélisation des imprécisions et des défauts typiques d’une fabrication sur wafer 

300 mm. A la lumière de ces travaux, une démonstration expérimentale de filtres ALS plasmoniques est réalisée 

avec le développement d’une intégration à l’échelle du wafer et avec la caractérisation et l’évaluation des 

performances des structures fabriquées afin de valider la solution plasmonique. 

 

Mots-clefs : Plasmonique, Plasmons de surface, Filtres optiques, Nanostructures, Réseaux métalliques, 

Capteurs d’image, ALS, CMOS, Simulation, RCWA, Procédés d’intégration, Couches minces, Caractérisation.  
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