6 research outputs found

    ADVANCED RADIO ACCESS NETWORK FEATURING FLEXIBLE PER-UE SERVICE PROVISIONING AND COLLABORATIVE MOBILE EDGE COMPUTING

    Get PDF
    Enriched by numerous technological advances, radio access networks (RANs) in the fifth mobile networks generation (5G)-and-beyond strive to meet the goals of both mobile network operators (MNOs) and end-users. While MNOs seek efficiency, resiliency, reliability and flexibility of their networks, end-users are more concerned with the variety and quality of the provided, state-of-the-art, reasonably priced services. This has resulted in a complex, multi-tier, and heterogeneous RAN architecture that is severely challenged to achieve and maintain a strict reliability requirement of seven-nines (i.e., 99.99999% network up-time) and to meet ultra-reliable, low latency communications (URLLC) requirements with a latency upper bound of 1 ms end-to-end roundtrip time. Based on the flexible function split concept and data-plane programmability, this dissertation makes several key contributions to the body of knowledge on advanced, service-oriented RANs in two key core components. The first core component pertains to improving fronthaul efficiency, resiliency, flexibility, and latency performance with a cross-layer integration of Analog-Option-9 function split in the flexible fronthaul paradigm. Within the folds of that, the novel cross-layer digital-analog integration is experimentally investigated to pave the way for promising analog technologies to find their niche in 5G-and-beyond. The second core component is related to the design of lightweight, fronthaul-positioned multi-access edge computing (MEC) units to host Cooperative-URLLC applications at the edge of the fronthaul. Hence, from the vertical perspective, the dissertation provides solutions to support general URLLC applications and the Cooperative-URLLC variation by shrinking and eliminating latency sources at the Top-of-RAN and Low-RAN segments of advanced RANs.Ph.D

    Otimização do fronthaul ótico para redes de acesso de rádio (baseadas) em computação em nuvem (CC-RANs)

    Get PDF
    Doutoramento conjunto (MAP-Tele) em Engenharia Eletrotécnica/TelecomunicaçõesA proliferação de diversos tipos de dispositivos moveis, aplicações e serviços com grande necessidade de largura de banda têm contribuído para o aumento de ligações de banda larga e ao aumento do volume de trafego das redes de telecomunicações moveis. Este aumento exponencial tem posto uma enorme pressão nos mobile operadores de redes móveis (MNOs). Um dos aspetos principais deste recente desenvolvimento, é a necessidade que as redes têm de oferecer baixa complexidade nas ligações, como também baixo consumo energético, muito baixa latência e ao mesmo tempo uma grande capacidade por baixo usto. De maneira a resolver estas questões, os MNOs têm focado a sua atenção na redes de acesso por rádio em nuvem (C-RAN) principalmente devido aos seus benefícios em termos de otimização de performance e relação qualidade preço. O standard para a distribuição de sinais sem fios por um fronthaul C-RAN é o common public radio interface (CPRI). No entanto, ligações óticas baseadas em interfaces CPRI necessitam de uma grande largura de banda. Estes requerimentos podem também ser atingidos com uma implementação em ligação free space optical (FSO) que é um sistema ótico que usa comunicação sem fios. O FSO tem sido uma alternativa muito apelativa aos sistemas de comunicação rádio (RF) pois combinam a flexibilidade e mobilidade das redes RF ao mesmo tempo que permitem a elevada largura de banda permitida pelo sistema ótico. No entanto, as ligações FSO são suscetíveis a alterações atmosféricas que podem prejudicar o desempenho do sistema de comunicação. Estas limitações têm evitado o FSO de ser tornar uma excelente solução para o fronthaul. Uma caracterização precisa do canal e tecnologias mais avançadas são então necessárias para uma implementação pratica de ligações FSO. Nesta tese, vamos estudar uma implementação eficiente para fronthaul baseada em tecnologia á rádio-sobre-FSO (RoFSO). Propomos expressões em forma fechada para mitigação das perdas de propagação e para a estimação da capacidade do canal de maneira a aliviar a complexidade do sistema de comunicação. Simulações numéricas são também apresentadas para formatos de modulação adaptativas. São também considerados esquemas como um sistema hibrido RF/FSO e tecnologias de transmissão apoiadas por retransmissores que ajudam a alivar os requerimentos impostos por um backhaul/fronthaul de C-RAN. Os modelos propostos não só reduzem o esforço computacional, como também têm outros méritos, tais como, uma elevada precisão na estimação do canal e desempenho, baixo requisitos na capacidade de memória e uma rápida e estável operação comparativamente com o estado da arte em sistemas analíticos (PON)-FSO. Este sistema é implementado num recetor em tempo real que é emulado através de uma field-programmable gate array (FPGA) comercial. Permitindo assim um sistema aberto, interoperabilidade, portabilidade e também obedecer a standards de software aberto. Os esquemas híbridos têm a habilidade de suportar diferentes aplicações, serviços e múltiplos operadores a partilharem a mesma infraestrutura de fibra ótica.The proliferation of different mobile devices, bandwidth-intensive applications and services contribute to the increase in the broadband connections and the volume of traffic on the mobile networks. This exponential growth has put considerable pressure on the mobile network operators (MNOs). In principal, there is a need for networks that not only offer low-complexity, low-energy consumption, and extremely low-latency but also high-capacity at relatively low cost. In order to address the demand, MNOs have given significant attention to the cloud radio access network (C-RAN) due to its beneficial features in terms of performance optimization and cost-effectiveness. The de facto standard for distributing wireless signal over the C-RAN fronthaul is the common public radio interface (CPRI). However, optical links based on CPRI interfaces requires large bandwidth. Also, the aforementioned requirements can be realized with the implementation of free space optical (FSO) link, which is an optical wireless system. The FSO is an appealing alternative to the radio frequency (RF) communication system that combines the flexibility and mobility offered by the RF networks with the high-data rates provided by the optical systems. However, the FSO links are susceptible to atmospheric impairments which eventually hinder the system performance. Consequently, these limitations prevent FSO from being an efficient standalone fronthaul solution. So, precise channel characterizations and advanced technologies are required for practical FSO link deployment and operation. In this thesis, we study an efficient fronthaul implementation that is based on radio-on-FSO (RoFSO) technologies. We propose closedform expressions for fading-mitigation and for the estimation of channel capacity so as to alleviate the system complexity. Numerical simulations are presented for adaptive modulation scheme using advanced modulation formats. We also consider schemes like hybrid RF/FSO and relay-assisted transmission technologies that can help in alleviating the stringent requirements by the C-RAN backhaul/fronthaul. The propose models not only reduce the computational requirements/efforts, but also have a number of diverse merits such as high-accuracy, low-memory requirements, fast and stable operation compared to the current state-of-the-art analytical based approaches. In addition to the FSO channel characterization, we present a proof-of-concept experiment in which we study the transmission capabilities of a hybrid passive optical network (PON)-FSO system. This is implemented with the real-time receiver that is emulated by a commercial field-programmable gate array (FPGA). This helps in facilitating an open system and hence enables interoperability, portability, and open software standards. The hybrid schemes have the ability to support different applications, services, and multiple operators over a shared optical fiber infrastructure

    Quantum Dash Multi-Wavelength Lasers for Next Generation High Capacity Multi-Gb/s Millimeter-Wave Radio-over-Fiber Wireless Communication Networks

    Get PDF
    The ever-increasing proliferation of mobile users and new technologies with different applications and features, and the demand for reliable high-speed high capacity, pervasive connectivity and low latency have initiated a roadmap for the next generation wireless networks, fifth generation (5G), which is set to revolutionize the existing wireless communications. 5G will use heterogeneous higher carrier frequencies from the plentifully available spectra in the higher microwave and millimeter-wave (MMW) bands, including licensed and unlicensed spectra, for achieving multi-Gb/s wireless connectivity and overcoming the existing wireless spectrum crunch in the sub-6 GHz bands, resulting from the tremendous growth of data-intensive technologies and applications. The use of MMW when complemented by multiple-input-multiple-output (MIMO) technology can significantly increase data capacity through spatial multiplexing, and improve coverage and system reliability through spatial diversity. However, high-frequency MMW signals are prone to extreme propagation path loss and are challenging to generate and process with conventional bandwidth-limiting electronics. In addition, the existing digitized fronthaul for centralized radio access network (C-RAN) architecture is considered inefficient for 5G and beyond. Thus, to fully exploit the promising MMW 5G new radio (NR) resource and to alleviate the electronics and fronthaul bottleneck, microwave photonics with analog radio-over-fiber (A-RoF) technology becomes instrumental for optically synthesizing and processing broadband RF MMW wireless signals over optical links. The generation and distribution of high-frequency MMW signals in the optical domain over A-RoF links facilitate the seamless integration of high-capacity, reliable and transparent optical networks with flexible, mobile and pervasive wireless networks, extending the reach and coverage of high-speed broadband MMW wireless communications. Consequently, this fiber-wireless integration not only overcomes the problem of high bandwidth requirements, transmission capacity and span limitation but also significantly reduces system complexity considering the deployment of ultra-dense small cells with large numbers of 5G remote radio units (RRUs) having massive MIMO antennas with beamforming capabilities connected to the baseband units (BBU) in a C-RAN environment through an optical fiber-based fronthaul network. Nevertheless, photonic generation of spectrally pure RF MMW signals either involves complex circuitry or suffers from frequency fluctuation and phase noise due to uncorrelated optical sources, which can degrade system performance. Thus simple highly integrated and cost-efficient low-noise optical sources are required for next-generation MMW RoF wireless transmission systems. More recently, well-designed quantum confined nanostructures such as semiconductor quantum dash/dot multi-wavelength lasers (QD-MWLs) have attracted more interest in the photonic generation of RF MMW signals due to their simple compact and integrated design with highly coherent and correlated optical signals having a very low phase and intensity noise attributed to the inherent properties of QD materials. The main theme of this thesis revolves around the experimental investigation of such nanostructures on the device and system level for applications in high-speed high-capacity broadband MMW RoF-based fronthaul and wireless access networks. Several photonic-aided high-capacity long-reach MMW RoF wireless transmission systems are proposed and experimentally demonstrated based on QD-MWLs with the remote distribution and photonic generation of broadband multi-Gb/s MMW wireless signals at 5G NR (FR2) in the K-band, Ka-band and V-band in simplex, full-duplex and MIMO configurations over 10 to 50 km optical fiber and subsequent wireless transmission and detection. The QD-MWLs-based photonic MMW RoF wireless transmission systems’ designs and experimental demonstrations could usher in a new era of ultra-high-speed broadband multi-Gb/s wireless communications at the MMW frequency bands for next-generation wireless networks. The QD-MWLs investigated in this thesis include a simple monolithically integrated and highly coherent low-noise single-section semiconductor InAs/InP QD buried heterostructure passively mode-locked (PML) laser-based optical coherent frequency comb (CFC) and a novel monolithic highly correlated low-noise semiconductor InAs/InP buried heterostructure common-cavity QD dual-wavelength distributed feedback laser (QD-DW-DFBL). The performance of each device is thoroughly characterized experimentally in terms of optical phase noise, relative intensity noise (RIN), timing jitter and RF phase noise exhibiting promising results. Based on these devices, different long-reach photonic MMW RoF wireless transmission systems, including simplex single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) and bidirectional configurations, are proposed and experimentally demonstrated with real-time remote electrical RF synthesizer-free all-optical frequency up-conversion, wireless transmission and successful reception of wide-bandwidth multi-level quadrature amplitude modulated (M-QAM) RF MMW wireless signals having bit rates ranging from 4 Gb/s to 36 Gb/s over different hybrid fiber-wireless links comprising of standard single mode fiber (SSMF) and indoor wireless channel. The end-to-end links are thoroughly investigated in terms of error-vector-magnitude (EVM), bit-error-rat (BER), constellations and eye diagrams, realizing successful error-free transmission. Finally, novel high-capacity spectrally efficient MIMO and optical beamforming enabled photonic MMW RoF wireless transceivers design and methods based on QD-MWLs with wavelength division multiplexing (WDM) and space division multiplexing (SDM) are proposed and discussed. A proof-of-concept implementation of the proposed photonic MMW RoF wireless transmission system is also simulated in a simple WDM-based configuration with bidirectional 4×4 MIMO MMW carrier streams

    Photonic Millimeter Wave Signal Generation and Transmission Over Hybrid Links in 5G Communication Networks

    Full text link
    [ES] El estándar de quinta generación (5G) es la clave potencial para satisfacer el aumento exponencial en la demanda de nuevas aplicaciones, servicios y usuarios. La tecnología 5G ofrecerá una latencia extremadamente baja de 1 ms, una velocidad máxima de datos de 10 Gbit/s, una alta densidad de conexión de hasta 106 dispositivos/km2 y permitirá una alta movilidad de los dispositivos de hasta 500 km/h. En esta Tesis se proponen varias soluciones basadas en tecnologías habilitadoras para el despliegue de redes 5G. La arquitectura de la red de acceso de radio en la nube (C-RAN) se emplea junto con las técnicas de Fotónica de Microondas como una solución prometedora para generar y transmitir señales de ondas milimétricas (mmW) en la próxima generación de comunicaciones móviles. La tecnología radio sobre fibra (RoF) ha demostrado ser una buena opción para enfrentarse al desafío de la distribución inalámbrica mmW debido a la gran distancia de transmisión, el gran ancho de banda y la inmunidad a las interferencias electromagnéticas, entre algunas de las principales ventajas. Además, esta tecnología se puede ampliar con comunicaciones ópticas de espacio libre (FSO) en sistemas de radio sobre FSO (RoFSO) en las redes inalámbricas. En esta Tesis, las señales mmW se generan fotónicamente mediante modulación externa de doble banda lateral con supresión de portadora (CS-DSB) y se distribuyen a través de enlaces fronthaul híbridos RoF/FSO. Además, la generación múltiple de señales permite la distribución reconfigurable en canales multiplexados por división de longitud de onda (WDM) desde una oficina central hasta las estaciones base, y se ha evaluado el impacto de las turbulencias producidas en los canales FSO sobre las señales mmW generadas fotónicamente en términos de fluctuaciones de potencia y ruido de fase de la señal. Se propone la técnica de modulación directa de un láser (DML) como solución principal para la transmisión de datos a través de enlaces ópticos híbridos que emplean un esquema de multiplicación de frecuencias ópticas, es decir, CS-DSB, para la generación de señales de mmW. En concreto, se evalúan teórica y experimentalmente los esquemas de generación fotónica local y remoto de señales mmW y se comparan para su implementación práctica en la red frontal de la C-RAN y, además, se estudia experimentalmente el impacto de la distorsión armónica y de la intermodulación en la transmisión de datos. Igualmente, con el fin de obtener la capacidad que ofrece el DML en términos de ancho de banda, también se presenta una evaluación teórica y experimental del efecto de la dispersión de la fibra y el chirp sobre diferentes anchos de banda de señales de M-modulación de amplitud en cuadratura (QAM). No obstante, la Tesis también incluye otro enfoque para la transmisión de datos basado en el uso de otro modulador externo. En este caso, la demostración experimental de la generación de señales ópticas empleando CS-DSB y la transmisión de señales a través de fibra híbrida y red frontal FSO se completa con un enlace de antena que permite transmitir señales 5G 64/256-QAM. La investigación realizada con los sistemas CS-DSB y DSB también permiten comparar la robustez frente al desvanecimiento inducido por la dispersión cromática de la fibra. Además, se ha realizado una evaluación experimental impacto las turbulencias producidas en los canales FSO sobre las señales mmW generadas fotónicamente con diferentes distribuciones térmicas y se ha cuantificado la degradación de la señal de datos de acuerdo con las condiciones de la turbulencia. Como demostradores finales, esta Tesis incluye un sistema de transmisión full-dúplex que emplea señales 5G en enlace descendente (DL) a 39 GHz y en enlace ascendente (UL) a 37 GHz; y la transmisión de señales OFDM LTE de 60 GHz (DL) y 25 GHz (UL) sobre una infraestructura heterogénea de frontal óptico que consiste en fibra óptica de 10 km, un canal FSO de 100 m y un enlace de radio inalámbrico de 2 m.[CA] L'estàndard de quinta generació (5G) és la clau potencial per a satisfer l'augment exponencial en la demanda de noves aplicacions, serveis i usuaris. La tecnologia 5G oferirà una latència extremadament baixa d'1 ms, una velocitat màxima de dades de 10 Gbit/s, una alta densitat de connexió de fins a 106 dispositius/km2 i permetrà una alta mobilitat dels dispositius de fins a 500 km/h. En aquesta tesi es proposen diverses solucions basades en tecnologies habilitadores per al desplegament de xarxes 5G. L'arquitectura de la xarxa d'accés de ràdio en el núvol (CRAN) s'empra junt amb les tècniques de Fotònica de Microones com una solució prometedora per a generar i transmetre senyals d'ones mil·limètriques (mmW) en la pròxima generació de comunicacions mòbils. La tecnologia ràdio sobre fibra ( RoF) ha demostrat ser una bona opció per a enfrontar-se al desafiament de la distribució sense fil mmW a causa de la gran distància de transmissió, el gran ample de banda i la immunitat a les interferències electromagnètiques, entre alguns dels principals avantatges. A més, aquesta tecnologia es pot ampliar amb comunicacions òptiques d'espai lliure (FSO) en sistemes de ràdio sobre FSO (RoFSO) en les xarxes sense fil. En aquesta Tesi, els senyals mmW es generen fotònicament per mitjà de modulació externa de doble banda lateral amb supressió de portadora (CS-DSB) i es distribueixen a través d'enllaços frontals híbrids RoF/FSO.. A més, la generació múltiple de senyals permet la distribució reconfigurable en canals multiplexats per divisió de longitud d'ona ( WDM) des d'una oficina central fins a les estacions base, i s'ha avaluat l'impacte de les turbulències produïdes en els canals FSO sobre els senyals mmW generades fotònicament en termes de fluctuacions de potència i soroll de fase del senyal. Aquest treball proposa la tècnica de modulació directa d'un làser (DML) com solució principal per a la transmissió de dades a través d'enllaços òptics híbrids que fan servir un esquema de multiplicació de freqüències òptiques, és a dir, CS-DSB, per a la generació de senyals de mmW. En concret, s'avalua teòric i experimentalment els esquemes de generació fotònica local i remota de senyals mmW i es comparen per a la seua implementació pràctica a la xarxa frontal de la C-RAN i a més, s'estudia experimentalment l'impacte de la distorsió harmònica i de la intermodulació en la transmissió de dades. Igualment, amb el fi d'obtindre la capacitat que ofereix el DML en termes d'amplada de banda, també es presenta una avaluació teòrica i experimental de l'efecte de la dispersió de la fibra i el chirp sobre diferents amples de banda de senyals de M-modulació d'amplitud en quadratura (QAM). No obstant això, la Tesis també inclou altre enfocament per a la transmissió de dades basat amb l¿ús d'altre modulador extern. En aquest cas, la demostració experimental de la generació de senyals òptics emprant CS-DSB i la transmissió de senyals a través de fibra híbrida i xarxa frontal FSO es completa com un enllaç d'antena que permet transmetre senyals 5G 64/256-QAM. La investigació realitzada amb els sistemes CS-DSB i DSB també permet comparar la seua robustesa davant l¿esvaïment induït per la dispersió cromàtica. A més, s'ha avaluat experimentalment l'impacte de les turbulències produïdes en els canals FSO sobre els senyals mmW generades fotònicament amb diferents distribucions tèrmiques i s'ha quantificat la degradació del senyal de dades d'acord amb les condicions de la turbulència. Com a demostradors finals, aquesta Tesi inclou un sistema de transmissió full-dúplex que empra senyals 5G en enllaç descendent (DL) a 39 GHz i en enllaç ascendent (UL) a 37 GHz; i la transmissió de senyals OFDM LTE de 60 GHz (DL) i 25 GHz (UL) sobre una infraestructura heterogènia de frontal òptic que consisteix en fibra òptica de 10 km, un canal FSO de 100 m i un enllaç de ràdio sense fil de 2 m.[EN] The fifth generation (5G) standard is the potential key to meet the exponentially increasing demand of the emerging applications, services and mobile end users. 5G technology will offer an extremely low latency of 1 ms, peak data rate of 10 Gbit/s, high contention density up to 106 devices/km2 and enable high mobility up to 500 km/h. This Thesis proposes several solutions based on enabling technologies for deploying 5G networks. Cloud-radio access network (C-RAN) architecture is employed in conjunction with microwave photonics techniques as a promising solution to generate and transmit millimeter wave (mmW) signals in the next generation of mobile communications. Radio over fiber (RoF) has been demonstrated as a good option to face the challenge of mmW wireless distribution, due to long transmission distance, large bandwidth and immunity to electromagnetic interference, as some of the main advantages. Moreover, this technology can be extended with free-space optical (FSO) communications in Radio over FSO systems (RoFSO) as wireless networks. In this Thesis, mmW signals are photonically generated by carrier suppressed double sideband (CS-DSB) external modulation and distributed over hybrid RoF/FSO fronthaul links. Moreover, multiple generated signals allow reconfigurable distribution in wavelength-division multiplexed (WDM) channels from a central office to the base stations, and the impact of turbulent FSO channels on photonically generated mmW signals has been evaluated in terms of power signal fluctuations and phase noise. A directly modulated laser (DML) is proposed as a major solution for signal transmission over hybrid optical links employing optical frequency multiplication scheme, i.e. CS-DSB, for mmW signal generation. Moreover, local and remote photonic mmW signal generation schemes are theoretically and experimentally evaluated and compared for practical deployment in C-RAN fronthaul network while the impact of harmonic and intermodulation distortion on data transmission is also experimentally studied. Furthermore, for the sake of obtaining the DML usability in terms of bandwidth, theoretical and experimental evaluation of the effect of fiber dispersion and chirp over different M-quadrature amplitude modulation (QAM) signals bandwidth is also presented. Another data transmission approach based on the cascade of two external modulators is also employed in the Thesis. In this case, the experimental demonstration of optical signal generation employing CS-DSB and signal transmission over hybrid fiber and FSO fronthaul network is completed with a seamless antenna link leading to successful transmission of 64/256-QAM 5G signals. The CS-DSB and DSB schemes are also investigated for the sake of comparison in terms of robustness against fiber chromatic dispersion-induced fading. Furthermore, experimental evaluation of the impact of turbulent FSO links on photonically generated mmW signals with different thermal distributions has been performed and data signal degradation has been quantified according to the turbulence conditions. As final demonstrators, the Thesis includes a full-duplex transmission system employing 39 GHz downlink (DL) and 37 GHz uplink (UL) 5G signals over hybrid links; and 60 GHz (DL) and 25 GHz (UL) OFDM LTE signal transmission over an heterogeneous optical fronthaul infrastructure consisting of 10 km optical fiber, 100 m FSO channel and 2 m wireless radio link.I would like to acknowledge the financial support given by Research Excellence Award Programme GVA PROMETEO 2017/103 Future Microwave Photonics and European Network for High Performance Integrated Microwave Photonics (EUIMWP) CA16220.Vallejo Castro, L. (2022). Photonic Millimeter Wave Signal Generation and Transmission Over Hybrid Links in 5G Communication Networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19025

    TRANSMISSION PERFORMANCE OPTIMIZATION IN FIBER-WIRELESS ACCESS NETWORKS USING MACHINE LEARNING TECHNIQUES

    Get PDF
    The objective of this dissertation is to enhance the transmission performance in the fiber-wireless access network through mitigating the vital system limitations of both analog radio over fiber (A-RoF) and digital radio over fiber (D-RoF), with machine learning techniques being systematically implemented. The first thrust is improving the spectral efficiency for the optical transmission in the D-RoF to support the delivery of the massive number of bits from digitized radio signals. Advanced digital modulation schemes like PAM8, discrete multi-tone (DMT), and probabilistic shaping are investigated and implemented, while they may introduce severe nonlinear impairments on the low-cost optical intensity-modulation-direct-detection (IMDD) based D-RoF link with a limited dynamic range. An efficient deep neural network (DNN) equalizer/decoder to mitigate the nonlinear degradation is therefore designed and experimentally verified. Besides, we design a neural network based digital predistortion (DPD) to mitigate the nonlinear impairments from the whole link, which can be integrated into a transmitter with more processing resources and power than a receiver in an access network. Another thrust is to proactively mitigate the complex interferences in radio access networks (RANs). The composition of signals from different licensed systems and unlicensed transmitters creates an unprecedently complex interference environment that cannot be solved by conventional pre-defined network planning. In response to the challenges, a proactive interference avoidance scheme using reinforcement learning is proposed and experimentally verified in a mmWave-over-fiber platform. Except for the external sources, the interference may arise internally from a local transmitter as the self-interference (SI) that occupies the same time and frequency block as the signal of interest (SOI). Different from the conventional subtraction-based SI cancellation scheme, we design an efficient dual-inputs DNN (DI-DNN) based canceller which simultaneously cancels the SI and recovers the SOI.Ph.D

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed
    corecore