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SUMMARY 

 We are now in the era of alluvial global data flows from massive data contents 

are created by subscribers on various social media platforms such as YouTube, TikTok, 

Facebook and others, at an ever-accelerating pace. Additionally, the advent and early 

adoption of immersive experience, provided by such platforms as virtual reality (VR) and 

augmented reality (AR) enhances demand for ultra-low latency in the movement of 

massive volume of data. In response to this demand, fiber optics and wireless 

technologies have penetrated every capillary of modern, metropolitan community living 

to provide ubiquitous and seemingly instant communications. As an aggregator of fiber 

and wireless resources, the fiber-wireless access network is in urgent need of dramatic 

innovations so as to satisfy the requirements of high-capacity, ultra-low latency and ultra-

reliability of communications in the new era. The radio access network (RAN) serves the 

purpose to connect the core network and the user equipment (UE). The base station (BS) 

connects the UE via wireless spectra, where millimeter-wave (mmWave) is adopted in 

5G new radio (NR) to expand the wireless bandwidth. The link between the BS and the 

mobile core network is established by the optical fiber due to its low propagation loss and 

wide optical bandwidth. In a modern RAN, the multi-layer radio processing functions of 

a conventional BS are distributed to the central unit (CU), distribute unit (DU) and 

remote radio unit (RRU) through function splits. 

 The radio signals can be transmitted via the fibers in a RAN system based on 

two prevailing radio over fiber (RoF) schemes, namely, analog RoF (A-RoF) and digital 

RoF (D-RoF). In A-RoF, the analog radio signal is converted to the optical domain and 



 xvii 

transported directly to or from the RRU antenna via optical fiber. On the other hand, D-

RoF quantizes the radio signal and use robust optical modulation format, for example 

OOK to transmit the quantization bits over the fiber. At the RRU, the received bits 

require extra DSP to reconstruct the radio signal for wireless propagation. The A-RoF 

excels in terms of optical bandwidth efficiency over short distances while the quantized 

D-RoF, while less spectrally and power efficient, it generally obtains a much higher 

fidelity than its A-RoF counterpart which suffers from severe channel impairments, 

including nonlinear degradation, fiber dispersion, etc.  

 Considering the advantages and limitation of both RoF schemes, it is clear that 

both require further improvements if RAN implementation is to reach higher throughput 

and spectral efficiency. 

 The dissertation focuses on enhancing the transmission performance in the 

fiber-wireless access network through mitigating the vital system-level limitations of both 

D-RoF and A-RoF, with machine learning techniques being systematically implemented. 

Since D-RoF needs to substantially increase its optical transport capacity to deliver 

massive volume of digital radio signal quantization bits, the first task is to improve its 

utilization efficiency of the optical bandwidth. Compared with the conventional OOK 

modulation formats in the D-RoF, the advanced PAM8 modulation can triple the spectral 

efficiency. However, the intensity-modulation-direct-detection (IMDD) based optical link 

has a small dynamic range which can be easily overwhelmed by advanced modulated 

signals with large drive voltages. In this case, however, the signal quality is degraded by 

nonlinear impairments.  



 xviii 

 In this work, we design an efficient deep neural network (DNN) decoder to 

mitigate the resulting nonlinear degradations. Comparing with the conventional nonlinear 

Volterra series based methods, the DNN shows better performance and has a lower 

implementation complexity. To further improve the optical bandwidth efficiency, we also 

investigate the probabilistic shaping (PS) method which can customize the modulation 

entropy by tuning the constellation occurrence probability. With the PS-PAM8 

modulation implemented, it is demonstrated that an 80-Gbps signal can be transmitted 

over 20-km standard single mode fiber (SSMF) with a BER at the FEC threshold of about 

3.8e-3 at as minimum received optical power as possible. In addition, a neural network 

based digital predistortion (DPD) method is implemented to mitigate the nonlinear 

impairments over the whole link. The DPD function can be integrated within the 

transmitter which typically has more processing resources and power than the receiver in 

typical access networks. Through optical transmission experiments, it is shown that 

implementation of the DPD leads to a dramatic BER gain over competing linear pre-

equalization schemes. Aside from DSP contributions, an optical lite coherent system is 

demonstrated to increase optical transmission capacity with significantly higher optical 

receiver sensitivity and longer transmission distance than conventional IMDD link. A -

26-dBm sensitivity is experimentally achieved at 50-Gbps data rate over 100-km SSMF. 

It is worth noting that the D-RoF can employ the low-cost passive optical network (PON) 

infrastructure, where we design an intelligent dynamic bandwidth allocation (DBA) 

scheme bandwidth reinforcement learning (RL) to optimize the optical bandwidth 

utilization and reduce the latency. 



 xix 

 The wireless spectrum is a scarce resource shared by different wireless systems 

and services such as mobile communication, wireless local-area networks (WLAN), and 

satellite positioning. As the density of active radio transmitters has been increasing 

exponentially, the signal interference becomes a prevalent and unavoidable issue in the 

5G RAN. The exploitation of signals from different licensed systems and unlicensed 

transmitters creates a unprecedently complex interference environment which cannot be 

solved by conventional pre-defined network planning. In response to the challenges, a 

proactive interference avoidance scheme using reinforcement learning is proposed and 

experimentally verified in an mmWave-over-fiber platform. Except for the external 

sources, the interference may also arise internally from a local transmitter when the 

transmitting signal and receiving signal are co-time and co-frequency (i.e. transmission 

on the same channel at the same time). The self-interference (SI) from the local 

transmitter is overwhelming to the received signal of interest (SOI) from a remote radio 

station and cannot be removed by an RF filter since it is in band. Different from the 

conventional subtraction-based SI cancellation scheme, we design an efficient Dual-

inputs DNN (DI-DNN) based canceller which simultaneously cancels the SI and recovers 

the SOI. Experimental results also indicate a better SOI recovery performance with 

capability on nonlinearity mitigation. The Non-orthogonal multiple access (NOMA) has 

been employed to utilize power-domain resources and increase the number of connected 

user equipment (UE) within the same time-frequency block. In contrast to the 

conventional orthogonal frequency-division multiple access (OFDMA), NOMA schemes 

allow multiplexing the UE signals in the power domain at the cost of larger inter-UE 

interference. Successive interference cancellation (SIC) is a common solution that 



 xx 

decodes the UE’s data sequentially based on power-descending order. However, the SIC 

inevitably introduces high processing latency when more UE signals are packed in 

NOMA, while the inherent error propagation can significantly degrade the sensitivity of 

the subsequent UEs. In this case, parallel interference cancellation (PIC) which can 

jointly decode all the UEs’ data, becomes a desirable solution. We propose and 

experimentally demonstrate a convolutional neural network (CNN) based PIC scheme to 

decode the NOMA signals which effectively avoids the error propagation with improved 

EVM performance.  
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

In the surge of the “information age”, we have witnessed a revolution in the way 

we see, connect, and communicate due to the advent of vital technologies such as 8K 

videos with high refresh rate, AR/VR headset, and 3D project starline, to name a few. 

These emerging applications with massive data exchange require more efficient transport 

networks than ever before, which envisions ultra-broadband, instantaneity, and super-

reliability of 5G and beyond radio access networks (RAN). Moreover, it must catch up 

with the explosive growth of mobile data traffic, which is expected to be 607 EB/month 

by 2025 and even 5016 EB/month by 2030 as shown in Figure 1.1 [1]. The underlying 

technologies to support the massive mobile data traffic rely on optical communication 

and networking due to their wide-bandwidth and low propagation loss. Optical fibers 

connect core networks to all kinds of wireless cells and serve as the primary medium in 

the mobile fronthaul (MFH) of the RAN. Besides, new wireless spectrum resources such 

as millimeter waves (mmWave) are adopted in 5G new radio (NR) to expand the wireless 

bandwidth. While most current technologies tackle the two mediums (fiber and wireless) 

in an isolated fashion, the topic of radio-over-fiber (RoF) based integrated fiber-wireless 

network focuses on optimizing and orchestrating the two media collectively to achieve 

higher bandwidth capability with simple and cost-effective design. At least that’s the goal. 
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Figure 1.1 Global mobile traffic estimation from 2020-2030 [1]. 

 There are two types of RoF systems, namely, analog RoF (A-RoF) and digital RoF 

(D-RoF). A-RoF significantly simplifies the architecture of the base station (BS), as it 

becomes purely analog without inclusion of any digital signal processing (DSP) functions. 

Besides, transmitting the analog radio signal instead of the digitized radio samples in the 

optical fiber, greatly saves the optical bandwidth. However, A-RoF is susceptible to 

nonlinear degradations due to the overwhelmed dynamic range of optical transceivers and 

power amplifiers [2]. The D-RoF transmission has a higher fidelity as it relies on robust 

modulation schemes such as OOK. Moreover, as D-RoF exploits similar optical transport 

technologies to the ones used in passive optical network (PON) and can be supported by 

a low-cost PON infrastructure with minor revisions [3]. Nevertheless, D-RoF has low 

bandwidth efficiency as large numbers of quantization bits digitized from radio signal are 

transmitted in the fiber link. For example, according to the technical specification defined 

by the Common Public Radio Interface (CPRI), transporting of 4-Gb/s wireless data via 

D-RoF technology requires 157.3-Gb/s of optical transmission capacity, for a typical 

configuration [4]. The fundamental challenge of D-RoF lies on improving the bandwidth 

efficiency. Therefore, advanced modulation formats with higher spectral efficiency and 
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effective schemes to recover the signals from the associated D-RoF transmission 

impairments deserve further investigations. 

Aside from those fundamental challenges, due to small cells densification and 

intensive spectrum reuse, the 5G and beyond RAN also faces severe interferences from 

different sources including inter-cell interference, self-interference, etc. Moreover, the 

macro or small cells from different wireless operators mainly work independently such 

that conventional pre-defined network planning and resource allocation schemes will not 

work effectively to fix the interference in the heterogenous RAN [5]. The industry has 

long suffered from the expensive, unreliable, and inefficient interference management 

through inadequate power/frequency adjustments and human-centric interference hunting. 

Consequently, for the purpose of maintaining uncompromised user experience in the 

presence of accidental or malicious interference, a proactive self-organized interference 

mitigation scheme is inevitable. 

  Machine learning (ML) technology is known as an essential driving force on the 

ongoing Fourth Industrial Revolution. The ML can play a crucial role in 5G and beyond 

RAN, thanks to its capability to model systems without requiring closed-form equations. 

Meanwhile, certain heuristic or brute-force algorithms can be replaced by ML with better 

performance and lower inference complexity. Moreover, it is envisioned that ML will 

ultimately enable real-time fault diagnosis and autonomous zero-touch network 

management [6].  Recently, both academia and industry put together heroic efforts in 

delivering new ML algorithms and ML training/inference hardware, significantly 

reducing the implementation cost, and strengthening the effectiveness/robustness of ML 

model. This wide acceptance of ML has inspired telecom operators to improve the 
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availability and accessibility of their operational data, which can be fully mined and 

exploited by ML algorithm developers. This dissertation presents an attempt to tackle the 

essential challenges in the fiber-wireless networks through experimental implementation 

of novel ML algorithms and validation on their performance over conventional baseline 

methods. 

The objective of the dissertation is to experimentally investigate and validate 

machine learning techniques for transmission performance optimization in radio-over-

fiber (RoF) based fiber-wireless access networks. Since the D-RoF is the most widely 

accepted RoF transport technology in modern RANs, we aim to alleviate the capacity 

crunch of the D-RoF using advanced modulation schemes and neural networks based 

nonlinear equalization/pre-distortion algorithms. Besides, we improve the efficiency of 

the PON infrastructure in terms of capacity and latency to facilitate low-cost D-RoF 

deployments, where a lite coherent system and an intelligent DBA algorithm are 

experimentally validated. Moreover, the dissertation focuses on mitigating the complex 

interference in 5G and beyond RANs. The interference mitigation performances are 

experimentally evaluated based on millimeter-wave-RoF platforms. Specifically, a 

proactive interference avoidance scheme using reinforcement learning and an effective 

method for simultaneous self-interference (SI) cancellation and signal-of-interest (SOI) 

recovery using a dual-inputs DNN (DI-DNN) are experimentally demonstrated. 

1.2 Background and Challenges 

1.2.1 Fiber-Wireless Network Architectures and mmWave Integration 
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As an effective integration of optical fiber and wireless communications, the 

fiber-wireless network shown in Figure 1.2 takes advantage of both technologies, such 

that it poses benefits of long transmission distance and large communication bandwidth 

while supporting high mobility and seamless coverage. These valuable features, 

pioneered by Prof. Chang in 2005, have catapulted the fiber-wireless network to the 

status of key enabling technology for mobile fronthaul access networks. 

The most widely deployed MFH architecture in fiber-wireless network is the D-

RoF which digitally delivers the radio waveform through the optical fiber after 

converting the waveform into digital bits followed by intermediate frequency carrier 

modulation, optical conversion and fiber transmission. Since optical and wireless 

modulation are occupying different physical domains, optical fiber transmission 

performance can be optimized separately to improve the fidelity of the digitized radio 

signal without affecting the wireless standards. For example, low-cost commercialized 

facilities and products intended for the PON industry, as shown in Figure 1.2, can also fit 

the needs of D-RoF with minor revisions. The commonly implemented standard for the 

D-RoF is CPRI which replaces a copper coaxial cable link between a radio transceiver 

and a base station such that allowing a remote and more stable connection. A CPRI link 

transmits the digitized IQ samples of baseband radio signals. Although it is a simple 

technology that has been widely adopted since 2G, the transmission of digitized IQ 

samples requires a large optical bandwidth, making it unscalable for 5G services with 

extended wireless bandwidth, carrier aggregation and massive MIMO. For example, to 

achieve a wireless data rate of 1 Gb/s with 8x8 MIMO and 3 sectors, a 147.5 Gb/s of 

optical rate is required based on the CPRI interface [7]. The CPRI rate requirement can 
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be reduced through data compression by downsampling [8], nonlinear companding [9], 

etc. The downsampling method acquiescently sets an over-sampling ratio to remove the 

OFDM oversampling dependency, while the nonlinear companding can utilize OFDM 

amplitude distribution via compression algorithms [10]. Although the optical bandwidth 

demand can be reduced by up to 50%, the compressed CPRI still requires a significant 

capacity. 

 

Figure 1.2 Overview of fiber-wireless access network including RAN and PON. 

In 5G NR, to disaggregate the conventional BBU and radio tower functions, the 

3GPP has defined a series of function split options targeting for use cases with different 

capacity and latency requirements. As shown in Figure 1.3. the split points of the last 

three options lie in the PHY layer, where the option 8 represents the conventional D-RoF 

link with CPRI encapsulation protocol. The option 6 and 7 shift part of the PHY 

functions to the RRU such that the fronthaul data traffic requirement can be alleviated. 
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Other higher functional splits are like a distributed RAN configuration, which loses the 

coordination benefits of C-RAN and reduces the overall network capacity. Due to the 

extra complexity associated with implementing vendor-specific functional splits, the 

CPRI-based option 8 is still mostly deployed in spite of the low bandwidth efficiency. 

Therefore, it’s urgent to improve the spectral efficiency of D-RoF for a higher 

transmission capacity. 

 

Figure 1.3 Logical architecture and function split options of 5G NR. 

The A-RoF is envisioned by researchers to be a promising option for MFH with 

low complexity and latency. The radio signal directly modulates an optical carrier and 

keeps the optical bandwidth the same as electrical bandwidth, leading to a higher spectral 

efficiency compared with the D-RoF. According to the radio frequency transmitted in the 

fiber, two A-RoF types can be defined as shown in Figure 1.4: RF over Fiber (RFoF) and 

IF over Fiber (IFoF) [11]. In the first type, a modulated RF carrier frequency is converted 

to light and introduced into an optical fiber so that frequency upconversion is not 

necessary at the RRU. The RFoF has a better spectral efficiency than the D-RoF, but the 

optical fractional bandwidth is small as only a tiny portion of the optical bandwidth is 

utilized by the modulated signal. The other type of radio over fiber transmission carries a 

modulated intermediate radio frequency (IF) wave, such that carrier aggregation is 

achieved through frequency division multiplexing (FDM), thus improving optical 

bandwidth utilization. It is noted that, the IF signal combining/splitting can be achieved 
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via either analog multiplexer or DSP [12]. The drawback of the IFoF is that dedicated 

signal upconverters (i.e., mixer) and downconverters (i.e., envelope detector) are required 

at the RRU. Both means of ARoF provide high spectral efficiency and low RF frontend 

complexity. With the purely analog processing at the RRH, a reduced latency is also 

possible. However, the analog radio signal transmitted in the fiber requires a transmission 

link with a high dynamic range, otherwise the radio signal transmission quality will be 

severely degraded. Therefore, the pragmatic deployment of A-RoF is still pending on 

low-cost optical and electrical components with high linearity. 

 

Figure 1.4 Illustration on transport schemes for RFoF and IFoF. 

Considering the scarcity of the spectral resources in the sub-6 GHz spectrum, 

mmWave band are finding their way in the 5G RAN to provide much needed additional 

bandwidth resources. Recent amended FCC regulations allocate 10.85 GHz of additional 

spectrum for wireless broadband, including a 3.85 GHz of licensed flexible use spectrum 

in the 28 to 40 GHz bands and a license-free spectrum ranging from 64 to 71 GHz [13]. 

Additionally, according to the Further Notice of Proposed Rule Making (FNPRM), 24 to 

25, 32, 42, 48, 51, 70 and 80 GHz will also be accessible [14]. The mmWaves can be 

used to provide high directionality through massive MIMO beamforming. Directionality 

can provide array gain resulting, high spatial signal density and low inter-cell interference 
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[15]. An unfortunate characteristic of mmWaves is high atmospheric propagation loss 

which is compensated by array gain, small cells and frequency reuse. Moreover, with the 

short wavelengths, the mmWave antenna can be relatively compact and more suitable for 

integration in a user device. 

The mmWave generation in electrical domain is a challenging and costly process 

due to the inherent bandwidth limitation of the conventional electronics. Therefore, 

photonics-based generation of mmWave has become an attractive solution to circumvent 

electrical bandwidth limitations. The basic way to generate mmWave by optical means 

involves the mixing of two coherent light bundles of different wavelengths such that the 

difference in wavelengths corresponds energetically to the desired mmWave frequency 

[16]. The photonics-based generation of mmWave is particularly suited because on 

wavelength can be continuous wave (CW) while the other may carrier modulation. 

However, it’s limited to the downlink application as it’s not feasible to be integrated into 

a compact user device for uplink transmission. A wide variety of investigations on 

applying the photonics-based mmWave generation into fiber-wireless networks have 

been reported. For the V-band (40-75 GHz) frequencies, optical external modulation 

based methods using optical carrier suppression (OCS) and optical frequency comb (OFC) 

have been demonstrated in [17-18]. To target tens of Gbps wireless data rate, W-band 

carrier ranging from 75 GHz to 110 GHz can also be realized using an optical heterodyne 

detection scheme with an optical local oscillator (LO) [19]. Therefore, photonics-based 

mmWave generation and propagation are extensively employed in experiments discussed 

in this dissertation. 

1.2.2 Advanced Signal Recovery and Modulation 
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The modern RAN requires the deployment of high-capacity and lost-cost fiber 

optical communication infrastructures. Among the available systems, intensity 

modulation/direct detection (IMDD) is a preferred scheme due to its low power 

consumption, small footprint, and low cost [20]. On the other hand, those features of the 

IMDD scheme bring in some drawbacks as well, including limited transmitting power 

and small channel bandwidth. PAM modulations like OOK and PAM4 are widely used in 

IMDD since they are simple and robust [21]. Besides, the PAM8 has recently been 

adopted in short distance optical fiber communication to further increase the transmission 

capacity [22]. However, the PAM modulation lacks sufficient flexibility in adjusting 

spectral efficiency, which makes it incapable of fully utilizing the channel resources (i.e., 

bandwidth and SNR). Originated from coherent optical communications, probabilistic 

shaping (PS) has become a popular approach to reduce the gap in SNR between the 

capacity of the optical communication system and the Shannon limit [23-25]. Through 

shaping the occurrence probability of the constellation points in a modulation scheme, or 

in other words, increasing the possibility to transmit lower amplitude symbols, we can 

increase the minimum Euclidean distance among all the constellation points at a given 

average signal power. Besides, the spectral efficiency of PS modulation can be 

continuously adjusted by varying the constellation probabilistic distribution. Nevertheless, 

the PS shaped signal is associated with a higher PAPR, which can easily exceed the small 

dynamic range of the low-cost IMDD based MFH link, resulting in severe nonlinear 

impairments. In this case, commonly used linear equalization schemes (i.e., least mean 

square algorithm (LMS)) can not suffice. Nevertheless, DNN is expected to be able to 

eliminate the nonlinear impairments efficiently [26-28] because of its superior modeling 



 11 

capability owing to the multi-layer architecture and nonlinear activation function in each 

neuron. Compared with conventional Volterra nonlinear equalizer, the DNN is expected 

to show an improved performance with reduced inference complexity. Moreover, 

implementing the DNN into the fiber-wireless network is more practical now because of 

the explosive improvements in efficient nonlinear multi-variable optimization algorithms 

and the low-cost parallel computing hardware (i.e., graphic processing unit (GPU) and 

tensor processing unit (TPU)) [29-30]. Although there are some concerns about the DNN 

complexity, the training time of the DNN to adapt dynamic channel environment can be 

significantly reduced through transfer learning once the initial training is complete. 

Moreover, the online querying of the trained DNN, i.e., nonlinear equalization, just 

involves multiple matrix multiplications with a low time complexity. 

Except for the receiver-side equalization, nonlinear degradations can also be 

mitigated through transmitter-side digital predistortion (DPD) with simple operation and 

high flexibility [31-32]. The DPD can be implemented in the transmitter of the fiber-

wireless network to take advantages of the centralized DSP resources. This scheme also 

reduces the processing burden and simplifies the receiver design, which allows a cost-

effective implementation of nonlinear compensation. Through pre-distorting the 

transmitted signal, the output of a nonlinear system will be linearized. Till now, the DPD 

scheme is widely applied in modern transmitters to operate the power amplifier (PA) at a 

higher efficiency through expanding the overall linear range with a pre-distorted 

baseband signal [33-34]. Most DPD methods are based on finding the optimal 

coefficients of nonlinear kernels of the Volterra series. However, the performance of the 

Volterra-based model can be limited under severe nonlinearities due to high estimation 
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error on the high-order kernels [35]. Alternatively, the neural networks are well known 

for the capability to learn arbitrary nonlinear function based on the universal 

approximation theorem [36]. Considering the DPD is inherently a nonlinear function, it is 

therefore desirable to utilize the neural networks for the DPD implementation. 

1.2.3 Overview of Passive Optical Network supporting D-RoF Implementation 

Delivering more bandwidth/capacity has been a top research focus on passive 

optical networks to support the dramatic data traffic of D-RoF and other fiber to the x 

(FTTX) applications. To meet this trend, the ITU-T/Full Service Access Network (FSAN) 

have been developing the standardization of the next-generation passive optical network 

stage 2 (NG-PON2) since 2015 [37]. As illustrated in Figure 1.5, NG-PON2 is a PON 

system that exploits time- and wavelength- division multiplexing (TWDM). The optical 

line terminals (OLT) use different wavelength pairs, while each OLT communicates with 

multiple optical network unit (ONU) via time-division multiple access (TDMA). Also, 

NG-PON2 is compatible with the legacy optical distribution network (ODN) with power-

splitter based fiber infrastructure. It’s detailed that the NG-PON2 requires 40Gb/s/λ or 

beyond data rate [38]. To comply with the new standard, approaches using advanced 

modulation formats such as PAM4, Duobinary and discrete multi-tone (DMT) are 

proposed [39-40]. Compared with the conventional non-return-to-zero (NRZ) signal, data 

rate can be increased with the same bandwidth. However, those intensity-modulation-

direction-detection (IMDD) based methods have a comparatively low modulation index 

and degraded transmission performance due to the creation of optical double sidebands, 

as well as the fiber/modulator induced dispersion. Also, the optical phase information is 

lost during square-law detection in the photodetector (PD). Those drawbacks result in 
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low receiver sensitivity (>-17dBm), which makes it infeasible to satisfy the critical PON 

link budgets. Besides, the IMDD scheme has a very limited fiber dispersion tolerance 

(<30ps/nm), preventing it from being implemented in the desired O+ band (>1320 nm) 

[41]. Optical coherent detection, on the other hand, utilizes an optical local oscillator 

(OLO) serving as an optical domain downconverter. This method enables linear optical 

field detection, which offers significant benefits for digital fiber dispersion compensation 

and electrical/optical components induced impairment mitigation. Also, a huge signal 

gain is obtained proportional to the magnitude of the OLO. However, the coherent 

detection hardware is associated with high-cost from the expensive polarization-diversity 

hybrid, balanced-photodetector array, etc. On top of this, the PON is sensitive to cost, 

which limits the massive deployment of coherent detection. Therefore, a lite coherent 

system combining the benefits of both IMDD and coherent is designed and validated in 

this dissertation. 

The importance of low latency and high reliability are increasing for future PONs, 

as they will be asked to deliver time critical services like 5G mobile X-haul. Thus, new 

deterministic and reliable latency management approaches are necessary. For instance, a 

1-10 ms one-way latency is required for F1 mobile fronthaul interface, while this number 

reduces to 100 to few 100 μsec if we move to a lower layer function-split of mobile 

fronthaul [42]. As a point-to-multi-point system, PON has been one of the dominant 

architectures to provide bandwidth sharing among different types of services [43]. In 

general, dynamic bandwidth allocation (DBA) is used in PON to allocate traffic 

bandwidth in upstream based on the instantaneous demands and requests from users 

(ONUs). Different DBA algorithms or strategies have been proposed to support the 
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upstream bandwidth sharing [44-45], however, most of the algorithms are based on a 

fixed strategy and have no feedbacks from the network environment changes and use-

scenario requirements upgrading. Theoretically, different DBA algorithms would be 

suitable for different use-scenarios or traffic conditions. In addition, the “optimal” DBA 

scheme for the same network can vary from time to time as the traffic load throughout a 

day or week can change dramatically. In addition, different users/services may have 

distinct latency requirements. When the traffic load from each user changes, the 

corresponding network latency also changes. As mentioned above, many emerging 

services require more deterministic and reliable latency. Therefore, an intelligent 

bandwidth allocation that can perceive or sense the network environment changes 

proactively and correspondingly update its bandwidth allocation policy smartly to 

manage the latency for different users can be very attracting. Besides, machine-learning 

based methods with promising performances have been reported on bandwidth and 

resource allocation in wireless and mobile access networks [46]. It is impactful to 

investigate machine learning based latency management algorithms in PONs. 
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Figure 1.5 Advanced PON architecture. 

1.2.4 Interference Avoidance and Cancellation 

The scarcity of wireless spectrum has led to intensive frequency reuse and cells 

densifications in 5G and beyond RANs. Along with the exponentially increasing number 

of active radio transmitters, the interferences among signals from various sources has 

become prevalent and unprecedently complex. Generally, as illustrated in Figure 1.6, the 

interference in RANs may have different origins such as inter-cell interference from a 

marco/small cell or jamming station, etc. [47-48].  To handle these interferences properly 

for a higher transmission quality, two steps are typically involved. The first step is 

interference detection, which detects the presence and characteristics of the interference. 

The second step is interference mitigation, which can be conducted via interference 

avoidance or cancellation [49-50]. In a practical system, interference cancellation is hard 

to accomplish in real time for most of use cases, as it requires the full knowledge of the 



 16 

interference. On the other hand, interference avoidance can be realized via simpler 

schemes, for example, frequency shifting or spatial steering. The natures of the 

macro/small cells from different carriers are mainly independent operations, such that 

conventional static network planning or allocation is not capable of avoiding interference 

in a protean network. For fast reaction to environmental change and minimizing the 

interference caused impairments, a self-organized autonomous interference avoidance 

scheme is paramount [51]. Reinforcement learning (RL) has attracted tremendous interest 

and demonstrated its superior performance in many optimizing and strategy-selecting 

applications, such as the AlphaGo, network congestion control, etc. [52-53]. The RL 

agent can interact with the environment and obtain feedbacks on the actions it executes. 

In addition, the agent stores a value network in the form of a Q-table or a neural network, 

such that the agent can make the most beneficial decision at a certain state based on its 

previous trial and error. Unlike the supervised machine learning, which requires a large 

dataset and is time/resource consuming due to the offline training, the RL belongs to the 

online learning. The agent evolves and becomes more intelligent through the real-time 

interactions with the environment. These excellent characteristics make RL a promising 

candidate for interference avoidance. Therefore, we design and experimentally 

demonstrate a proactive real-time interference avoidance scheme using Q-table based RL. 
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Figure 1.6 Illustration of complex interferences in advanced RANs. 

Moreover, to satisfy the dramatically increasing data traffic demand, unlike 

conventional time-division duplex (TDD) and frequency-division duplex (FDD), in-band 

full duplex (IBFD) communication has drawn tremendous interest as it uses the same 

physical resource for bi-directional transmission and could be deployed as a standalone 

technique or complementing mmWave to increase channel capacity [54]. Inevitably, 

severe self-interference (SI) from downlink signal will overwhelm the signal-of-interest 

(SOI), i.e., uplink signal, at the base station receiver due to the approximation of the 

collocated transmit antenna and receive antenna. Enabling the IBFD relies on efficient 

cancellation schemes to suppress the Tx SI. The SI cancellation scheme is mainly 

categorized into passive suppression and active cancellation as summarized in Figure 1.7. 

In passive suppression, the SI signal is suppressed at the Tx-Rx air interface using 

antenna configuration and design to lessen coupling between Tx and Rx [55]. In active 

cancellation, the SI signal is cancelled via subtracting a reconstructed SI copy from the 
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known Tx signal. The active cancellation can be further divided into analog and digital 

cancellation, based on the processing domain (analog or digital) of where the SI is 

subtracted. Various analog interference cancellers based on electronics or optics have 

been reported in [56-57]. In [57], a 30-dB cancellation depth over 5.5-GHz bandwidth 

was demonstrated based on an optoelectronics canceller. However, the analog canceller is 

typically costly and not efficient or scalable to remove the SI after a non-ideal channel 

response. In this case, digital cancellation can be implemented to cancel the remaining SI 

components after the mitigation of the dominant SI by an analog canceller.  

 

Figure 1.7 Summary of prevailing self-interference cancellation schemes. 

The basic idea of the conventional digital SI cancellation is to estimate the channel 

coefficients between the local transmitter and the receiver. Based on the estimated 

coefficients, an SI cancellation signal is constructed to subtract the SI from the received 

signal. The bottleneck of the digital cancellation is the limited quantization dynamic 

range of an analog-digital-converter (ADC), which requires a low SI-to-SOI power ratio, 

otherwise the quantization noise of the SOI will increase dramatically. On the other hand, 

due to the highly directional beams and reduced signal travel range of mm-wave bands, 
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the SI to SOI power ratio becomes much higher compared to sub-6GHz cases, ensuring a 

more applicable and reliable digital cancellation for a full-duplex RAN. Nevertheless, 

previous reported digital cancellation schemes [58-59] lack the analysis and consideration 

of SI cancellation and SOI recovery when the channels exhibit nonlinearities. In those 

cases, the remaining nonlinear SI after conventional analog and digital cancellation is still 

inevitable and degrades the SOI quality significantly. To address those challenges, 

ordinary neural networks are introduced to construct a non-linear SI cancellation signal 

[60-61], which has less computation complexity at the inference step (i.e., after training is 

completed) than nonlinear polynomial-based methods (Volterra series). However, those 

reports assume that the local receiver is operating linearly such that the SI can be 

removed by simple subtraction. In realistic cases, any receiver nonlinearity will cause 

inaccurate SI channel estimation such that the subtraction-based digital cancellation 

schemes might fail to suffice. As a result, we propose a novel dual-inputs DNN (DI-DNN) 

to cancel the SI and recover the SOI simultaneously. 

Non-orthogonal multiple access (NOMA) has been investigated to utilize power-

domain resources and further increase the connectivity to end user equipment (UE) [62]. 

In contrast to the conventional orthogonal frequency-division multiple access (OFDMA), 

NOMA schemes allow multiplexing the UE signals in the power domain at the cost of 

larger inter-UE interference. Successive interference cancellation (SIC) is a common 

solution that decodes the UE’s data sequentially based on power-descending order. 

However, the SIC inevitably introduces high processing latency when more UE signals 

are packed in NOMA, while the inherent error propagation will significantly degrade the 

sensitivity of the subsequent UEs [63]. In this case, parallel interference cancellation (PIC) 
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which can jointly decode all the UEs’ data, becomes a desirable solution. On the other 

hand, the neural network has proven its efficacy in our work on simultaneous SI 

cancellation and SOI recovery, which follows a similar decoding process as NOMA 

except the characteristics of the SI are known. Therefore, the learning-based architecture 

and deep modelling capacity of the neural network make it a promising solution to 

facilitate the PIC in the NOMA decoding. 

1.3 Dissertation Organization 

 The dissertation aims to enhance the transmission performance in the fiber-

wireless access network through mitigating the vital system limitations of both A-RoF 

and D-RoF, with machine learning techniques being systematically implemented. Figure 

1.8 illustrates the topics covered in this dissertation. The first thrust is improving the 

spectral efficiency for the optical transmission in the D-RoF to support the delivery of 

massive number of bits from digitized radio signals. Advanced digital modulation 

schemes like PAM8, DMT, and probabilistic shaping are investigated and implemented, 

while they may introduce severe nonlinear impairments on the low-cost optical IMDD 

based D-RoF link with a limited dynamic range. An efficient deep neural network (DNN) 

equalizer/decoder to mitigate the nonlinear degradation is therefore designed and 

experimentally verified. Besides, we design a neural network based DPD to mitigate the 

nonlinear impairments from the whole link, which can be integrated into a transmitter 

with more processing resources and power than a receiver in an access network. More 

than that, we demonstrate a lite coherent system and an intelligent DBA algorithm to 

further improve the efficiency of PON, which is a readily available infrastructure to 

facilitate a low-cost D-RoF implementation. Another thrust is to proactively mitigate the 
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complex interferences in RANs. The composition of signals from different licensed 

systems and unlicensed transmitters creates an unprecedently complex interference 

environment that cannot be solved by conventional pre-defined network planning. In 

response to the challenges, a proactive interference avoidance scheme using 

reinforcement learning is proposed and experimentally verified in a mmWave-over-fiber 

platform. Except for the external sources, the interference may arise internally from a 

local transmitter and share the same time and frequency block as the SOI. Different from 

the conventional subtraction-based SI cancellation scheme, we design an efficient dual-

inputs DNN (DI-DNN) based canceller which simultaneously cancels the SI and recovers 

the SOI. We also extend a similar scheme for the PIC in NOMA, which effectively 

cancels the inter-user inference and alleviates the error propagation. 

 

Figure 1.8 Topics and organizations of the dissertation. 

 After the introduction of motivations and research backgrounds in Chapter 1, 

Chapter 2 demonstrates the experimental implementations on advanced modulation 

schemes and nonlinear compensation algorithms. We show that the PAM8 has a higher 
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spectral efficiency and supports longer fiber transmission distance at the same data rate 

compared with conventional modulation schemes like PAM4. Probabilistic shaped PAM8 

is also verified to be flexible in adapting the channel frequency response. Those schemes 

are vulnerable to nonlinear degradations, such that we design an efficient DNN equalizer 

to mitigate the nonlinear impairments. Performance comparison between conventional 

linear and Volterra based nonlinear equalizer is quantified experimentally. Considering 

the abundant DSP resources in the transmitter of an access network, we systematically 

implement a neural network based DPD to perform nonlinear compensation for the whole 

optical link with PS-DMT modulation. The neural network based DPD shows obvious 

gain over linear pre-equalization schemes. 

 In Chapter 3, we investigate the low-cost PON infrastructure and improve its 

efficiency in terms of capacity and bandwidth allocations to support the D-RoF 

implementations. A lite coherent system is demonstrated with high receiving sensitivity 

and exoneration on the dispersion-induced power fading. Besides, an intelligent DBA 

algorithm based on reinforcement learning is verified to improve the bandwidth 

utilization than what the commonly deployed Interleaved Polling with Adaptive Cycle 

Time (IPACT) can achieve. 

 In Chapter 4, we focus on solving the complex interferences in the 5G and beyond 

RANs. Firstly, we design a proactive frequency-shifting based interference avoidance 

scheme through SARSA reinforcement learning. The rough frequency location of the 

multi-band interferences can be detected via the sub-EVMs. We experimentally validate 

that the proposed scheme could avoid both the static and dynamic multi-band 

interferences in real time. Besides, a simultaneous SI cancellation and SOI recovery 
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scheme is demonstrated. This scheme is based on a DI-DNN instead of the 

conventionally implemented subtraction-based SI cancellation schemes. Experimental 

results show the DI-DNN can effectively cancel the SI while recover a clean SOI in both 

frequency and constellation domains. Moreover, a neural network based PIC scheme is 

experimentally validated, outperforming the SIC and avoiding the error propagations. 

 The contributions of this dissertation are summarized in Chapter 5, along with 

some pointers for future research opportunities and directions. 
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CHAPTER 2. ADVANCED SIGNAL RECOVERY AND 

MODULATION 

In this chapter, we demonstrate an efficient DNN-based scheme for multi-level 

signal recovery and nonlinear impairments mitigation in the D-RoF based MHF. 

Advanced modulation formats are also integrated to improve the spectrum efficiency. 

Specifically, we investigate the performance of PAM8 and demonstrate its advantages 

over PAM4. We also take advantage of the flexibility of PS to dynamically adapt to the 

optical channel response. The improvement on multi-level signal recovery and nonlinear 

compensation are experimentally verified. Moreover, to better utilize the centralized DSP 

resources in RANs, a DPD scheme based on the convolutional neural network (CNN) is 

designed and validated in an IMDD-based optical link. 

2.1 Enhanced Multi-Level Signal Recovery 

Budget-friendly high-data-rate and long-distance MFH technologies are in an 

urgent need to support several orders of magnitude higher wireless throughput. Among 

the available connection technologies, the directly modulated laser (DML) based IMDD 

system is popular because of its low-cost, robustness and easy implementation [64]. OOK 

and PAM4 modulation are widely used in IMDD systems. Nevertheless, PAM8 is a 

promising substitute with a higher spectral efficiency. Besides, compared with PAM4 and 

OOK, the PAM8 suffers less from the power-fading induced by fiber dispersion, which 

makes the DML based IM-DD system with PAM8 modulation an ideal candidate for 

high-throughput and long-distance MFH transmission. 

The supervised machine learning has two major categories, the first one is 

regression. Due to the excellent nonlinear modeling ability, it has been implemented as 
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an equalizer at the receiver end, which solves a regression problem [65]. However, a 

hard/soft decoder is required afterward. The DNN has multiple hidden layers and a much 

better model representation capability. It’s much more powerful and resource saving 

compared with a shallow and wide neural network. The other category of supervised 

learning is classification. The input layer is still taking previous and subsequently 

received samples; however, the outputs are decoded samples, which simplifies the 

equalization-decoding process and eliminates the need for the extra decoders. In this 

section, we propose and experimentally demonstrate a 60-Gb/s PAM8 transmission over 

30-km standard single mode fiber (SSMF) using DNN decoder for enhanced MFH 

transmission. A pace-setting data-rate and transmission-distance product at 1800-

Gbps·km based on the PAM8 modulated 14-GHz class DML IM-DD link is also 

demonstrated. Our related work has been published in IEEE PTL [66]. 

2.1.1 Principles and System Setup 

 Figure 2.1(a) illustrates next generation fronthaul interface (NGFI) structure. The 

NGFI consists of the CU, DUs, and RRUs. In the CU, a powerful cloud GPU, is 

implemented to provide initial DNN model training and pass it to DUs to save cost and 

resources at the DU side. Figure 2.1(b) is the proposed system setup for fronthaul II 

transmission. The modulator driver is used to provide sufficient driving voltage onto the 

DML, A 14-GHz class DML is employed as the transmitter to convert the driving signal 

into the optical domain. The optical signal is then propagated through a 30-km SSMF and 

detected by a PIN receiver in the DU. To improve the spectral efficiency and extend the 

power-fading limited transmission distance at a certain data-rate, we implement PAM8 as 

the modulation scheme. Though a clear benefit of PAM8 is that it has more signal levels 

than the traditional and widely utilized OOK and PAM4, additional signal levels cause 

severe degradation of signal to noise ratio (SNR). To alleviate the impact of a lower SNR, 

a higher driving voltage is necessary. However, this requirement imposes strong 
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nonlinear effects due to the limited dynamic range of the modulator driver and the DML. 

In this case, the commonly used linear least mean square algorithm (LMS) is not able to 

eliminate the nonlinearities. This is where a DNN has the advantage, thanks to its ability 

to accommodate a massive number of parameters, Even the most complex function can 

be explicitly represented by a DNN. In addition, the increasingly efficient nonlinear 

optimization algorithm and the exponentially growing capabilities and widening use of 

parallel processing through GPUs and tensor processing unit (TPU) make DNN more 

practical to be implemented into the MFH applications. 

 

Figure 2.1 (a) NGFI structure; (b) Experimental system setup; (c) DNN decoder structure. 
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 Figure 2.1(c) shows the structure of the proposed DNN decoder. We take the 

input sample with its 64 previous and 64 subsequent samples as the input layer. Besides, 

we have two hidden layers; each layer has 1024 neurons, the output layer consists of 8 

nodes, each node corresponds to a PAM-8 level as shown in the gray boxes. At each 

hidden layer, we use the Selu activation function; the Selu function is defined as: 

S𝑒𝑙𝑢(𝑥) = 𝜆 {
𝑥               𝑖𝑓 𝑥 > 0
𝛼𝑒𝑥 − 𝛼  𝑖𝑓 𝑥 ≤ 0

 

(2.1) 

Since the gradient is the constant λ when the input x>0, this function can effectively 

eliminate the gradient vanishing problem. A vanishing gradient will cause the DNN to 

become incapable of converging because the gradient will not be able to decrease at an 

upper hidden layer. On the other hand, the gentle gradient when x ≤ 0, minimizes the 

variance of the input and effectively eliminates gradient exploding problem. At the output 

layer, the activation function is the Softmax function. The function is given by:  

                                                            𝜎(𝑧)𝑗 =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 

 (2.2) 

Instead of just selecting the maximum value, the Softmax function outputs all the 

input values with respective probabilities to be selected. The probability of each input can 

be derived from the formula (2.2); larger input values will have a higher probability at the 

output. The proposed DNN loss function is categorical cross-entropy as defined below:  

𝐽(𝑤) = −
1

𝑁
∑[𝑦𝑛𝑙𝑜𝑔�̂�𝑛 + (1 − 𝑦𝑛)log (1 − �̂�𝑛)]

𝑁

𝑛=1
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(2.3) 

The combination of the Softmax function and categorical cross-entropy make the 

loss calculation easier, which enables a more convenient way to derive the partial 

derivatives for back-propagation [67]. Moreover, we implement the Adamax algorithm 

proposed by [68], an algorithm for first-order gradient-based optimization of stochastic 

objective functions, based on adaptive estimates of lower-order moments. This new 

algorithm implements momentum during each training epochs. The momentum acts as an 

accelerator to find the global minimum instead of limiting the scope to the local 

minimum. Though the proposed DNN provides a sufficient number of parameters to find 

the correlations between the received symbols and the transmitted symbols, overfitting 

can result because of the limited size of the training set. To alleviate overfitting, we 

integrate the dropout layers in the DNN as shown by the dashed blue lines in Fig.1(b), 

which deactivate 20% of neurons during each epoch. In addition, a Max norm kernel 

constraint is set with the dropout layers to avoid possible strong connections between the 

neurons of different layers. Besides, an early stopping mechanism is implemented to 

monitor the accuracy of the validation. The validation set is a subset of the training set. 

We use it to measure the DNN’s generality at each epoch instead of using it for model 

training. When the validation set accuracy doesn’t improve over a certain number of 

epochs, we stop the training, and the model becomes the most generalized.      

2.1.2 Experimental Results 

In the experiment, we generate a pseudo-random 8-level sequence, which is 

downloaded to an arbitrary waveform generator (AWG) with 65 GSa/s sampling-rate. 

The initial source sampling rate is set to 20 GSa/s which is equivalent to a 20-Gbaud 

PAM8 signal. The output signal voltage of the AWG is 180 mV, which is amplified 

afterwards by a 30-dB fixed gain modulator driver (SHF 810) used to modulate a 14-GHz 
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class DML. The driving current of the DML is set to 150 mA to provide sufficient optical 

power for long distance transmission. The output wavelength of the DML is 1543.2 nm 

with 9.5-dBm optical power. The output signal of the DML is then propagated through a 

30-km SSMF and detected by a PIN receiver (Finisar XPDV2020R). At the receiver end, 

an 80-GSa/s real-time oscilloscope is used to sample the analog signal with 8-bits 

quantization precision. The sampled data is used for training DNN decoder model and 

calculating BER offline. Firstly, we resample the data to 20 GSa/s which matches the 

source sampling rate, then we perform a correlation between the transmitted signal and 

resampled signal to achieve synchronization. The first 64k synchronized data is fed to the 

DNN for training, 20% of them are used as the validation set during each epoch. After the 

validation set accuracy stops improving, after a certain number of epochs, the program 

will stop the training automatically and save the best DNN model. The best model is used 

to decode the resampled data. This DNN decoder integrates the equalization and 

decoding process, the output is one of the PAM8 levels. The signal recovery logic is 

greatly simplified from the initially two steps to one single step. The BER is calculated 

by comparing the difference between the original and recovered samples. Figure 2.2(a) 

demonstrates the BER performance over different data rate. We scan the source sampling 

rate from 15 GSa/s to 25 GSa/s with 1 GSa/s per step, which corresponds to data rates 

from 45 Gb/s to 75 Gb/s using PAM8 transmission. From Figure 2.2, it can be inferred 

that the system reaches 2.69x10-3 BER at 60 Gb/s over 30 km, which is below the 7% 

overhead forward error correction hard decision (FEC-HD) threshold of 3.8x10-3. This is 

the first demonstration of 1800-Gbps·km data-rate transmission-distance product based 

on a 14-GHz class DML IM-DD system without dispersion compensation. We also 

compare the performance difference between the DNN decoder and the Volterra series 

based nonlinear equalizer + Hard Decision (VNLE-HD). The latter receiver equalizer has 

17-tap second order Volterra series and 128-tap linear filter. The DNN outperforms it 

with a huge margin, i.e., a 14.7 Gb/s data rate boost (30.6% of original data rate) is 
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resulted at the FEC-HD threshold. In addition, we measure the system sensitivity based 

on both DNN and VNLE-HD. The results are summarized in Figure 2.2(b). The data rate 

is fixed at 60 Gb/s using PAM8 transmission and propagates through a 30-km SSMF.  

 

Figure 2.2 (a) BER comparison over data rate. (b) BER comparison based on received 

optical power. 

 The received optical power (ROP) is varied from -3 dBm to 4 dBm. Here, the 

DNN also shows superior sensitivity performance over VNLE-HD. The VNLE-HD can 

never reach the FEC-HD threshold at 60 Gb/s over 30 km even at the highest ROP. For a 
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better comparison, we use a minimum mean square error algorithm (MMSE) to fit the 

BER over the entire range of ROP used in this experiment. The performance of a VNLE-

HD is indicated as the dash-dot blue line in Figure 2.2(b). As shown by the double arrow 

in the same figure, at 7% overhead FEC threshold, a 1.6 dB sensitivity gain is obtained 

over the VNLE-HD. The insets for PAM8 recovery illustration in Figure 2.2 are the 

received signal histograms before and after the VNLE. 

We also measure the RF response of the full link, which includes the modulator 

driver, DML, 30-km SSMF and the PIN receiver. The result is illustrated by the red curve 

in Figure 2.3. Due to dispersion, deteriorated double-sideband (DSB) beating and DML 

chirp, a frequency dip is observed at 15.2 GHz, which causes a strong signal degradation 

around the frequency dip. The demonstrated link data rate of 60 Gb/s over 30-km 

transmission using PAM8 is not trivial. Using PAM4 it can be even more difficult to 

transmit over 30 km with a dispersion limited system. As shown by the black curve in 

Figure 2.3, 60-Gb/s PAM4 has strong signal spectrum leakage after 15.2 GHz, which 

right at the dip in the RF frequency response. Therefore, the power fading causes 

significant information entropy loss, which causes extreme difficulty to recover the 

PAM4 signal. PAM8 modulation breaks this barrier since the source spectrum, as 

illustrated by the dashed blue curve, is entirely contained for frequency below the dip at 

15.2 GHz. This happenstance is key to support 60 Gb/s transmission. The main limitation 

of using PAM8 is related to SNR requirement which is even worse when system power 

budget is limited. Here, the power budget is 6.5 dB, which is limited by the low 

responsivity of the PIN receiver. Using the APD receiver instead will significantly boost 

the system power budget. Furthermore, optical dispersion compensation could be 

implemented to increase dispersion tolerance in MFH. 
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Figure 2.3 Link frequency response measurement and PAM4/PAM8 source spectra. 

Training DNN to high accuracy from scratch is resource consuming. However, once we 

get an initial optimized model, only a small number of training epochs are required to 

regain the optimal model over a limited range of dynamic channel conditions. To verify 

the stability of the DNN decoder, we arranged to receive data every 6 minutes for a 

consecutive period of 3 hours. Figure 2.4 illustrates the BER over time with only 20 

training epochs for each point. We also include the VNLE-HD for comparison. For the 

DNN decoder, the BER varies between 2.7x10-3 to 3.5x10-3, all below 7% FEC-HD 

threshold. However, for VNLE-HD, BER falls well outside this range scoring values 

from 6x10-3 to 7x10-3. These results support our contention that a DNN can be trained 

quickly for the circumstances at hand once an initial optimized model is obtained. The 

computational complexity of the DNN can be quantified by the number of hidden layers 

[69]. Here, the computational complexity of DNN is O(n2), which is comparable to that 

attributed to a VNLE-HD. Rapid DNN training is critical for MFH transmissions because 

(1) the DU doesn’t have to commit too many scarce resources for DNN training to 

recover a signal since the initial training can be performed by the cloud GPU at the CU 
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and then pass the trained DNN down to the DU as a baseline. At the DU, the DNN can be 

refined to suit with minimal training epochs. The DNN model is robust enough to take 

care of the expected dynamic channel variations.  

 

Figure 2.4 BER over time performance verification for DNN decoder. 

2.1.3 Summary 

 In this section, we have proposed and experimentally demonstrated a DNN 

decoder for MFH transmission. A record-high data-rate-x-transmission-distance product 

of 60 Gb/s over 30 km based on a 14-GHz class DML IMDD system is achieved. The 

experimental system utilizes the PAM8 modulation, which is more spectrally efficient 

than traditional PAM4 and OOK modulations. Although PAM8 is less sensitive to power 

fading than PAM4 + OOK at the same data-rate, PAM8 leads to stronger nonlinearity and 

a higher SNR requirement due to higher chirp. This potential problem is resolved thanks 

to the effectiveness of the multiple parameter data fitting capability of the DNN decoder 

and the rapid training for a dynamic environment once the primary DNN is trained offline. 

The DNN decoder utilizes the limited PAM8 SNR to reach the possible minimum BER. 

Moreover, the system’s BER test over different ROP and data rate is analyzed and 
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compared with the VNLE-HD, and the superiority of the DNN decoder over VNLE-HD 

is demonstrated. Though the DNN training from scratch would be prohibitive, a much-

reduced training epoch need be involved at the DU once an initial optimized model is 

obtained offline at the cloud GPU in the CU. Our scheme provides a promising low-cost 

enhanced-performance solution for MFH transmission. 

2.2 Integration of PS-PAM8 and DNN to Mitigate Capacity Crunch 

 To satisfy the dramatic bandwidth requirements from data-thirsting 5G services, 

advanced modulation format with higher spectral efficiency and flexibility are necessary 

in RANs. PS-PAM8 provides the flexibility to adapt the channel response and an 

improved entropy. However, it can easily overwhelm the limited dynamic range of an 

optical link. Therefore, we efficiently take advantage of both PS to utilize the channel 

resources and DNN on nonlinear signal equalization/decoding, and experimentally 

demonstrate a capacity-approaching transmission in the D-RoF. A proof-of-concept 

experiment is conducted to verify the efficacy of the proposed scheme with an 80-Gbps 

PS-PAM8 signal over 20-km standard single mode fiber (SSMF) transmission based on 

SD-FEC. Our related work has been published in [70]. 

2.2.1 Operating Principles and Experimental Setup 

The Figure 2.5(a) shows the experimental setup of the proposed scheme. Firstly, a 

uniformly distributed binary bit sequence is randomly generated and fed into a 

distribution matcher (DM) for PS. The implemented DM is based on the constant 

composition distribution matcher (CCDM) [71]. The PS symbols output by the CCDM 

follow the Maxwell-Boltzmann distribution with flexible entropy through adjusting the 

constellation point occurrence probability as given by: 
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𝑃(𝑎𝑖) = exp(−𝜆𝑎𝑖
2) ∑(−𝜆𝑎𝑖

2)

𝑖

⁄  

(2.4) 

where ai is the amplitude of a constellation point, and λ is a rate parameter. The shaped 

symbols are then PAM mapped and converted to an analog signal as shown by inset (i) 

through a 64-GSa/s arbitrary waveform generator (AWG, M8195A). The modulator 

driver is used to provide sufficient signal voltage swing to drive the DML (SCMT-

100M11G), while the DML is used as the transmitter in the CU to convert the driving 

signal into the optical domain with a center wavelength at 1548.3 nm as illustrated in 

inset (ii). The optical signal propagates through a 20-km SSMF and detected by a PIN 

receiver (SCMR-100M11G) in the DU. The detected signal is digitized using an 

oscilloscope with 80-GSa/s sampling rate (DSOZ254A) for the following digital signal 

processing. Though the PS-PAM8 signal with an information rate of 2.5 bits/symbol has 

a larger minimum Euclidean distance than the uniform PAM8 modulation at a certain 

average signal power, it also introduces a higher PAPR. The peak of the signal can easily 

exceed the small dynamic range of the low-cost electrical and optical components in the 

MFH and make it vulnerable to nonlinear impairments. Figure 2.5(b) shows the structure 

of the implemented DNN decoder. We take the input symbol with its 80 previous and 80 

subsequent symbols as the input layer. The DNN consists of 2 hidden layers with 1024 

neurons at each layer. There are 8 neurons at the output layer, each one corresponds to a 

constellation point of the PAM8 modulation. We use the Selu function as the activation 

function at the hidden layers which can effectively eliminate the gradient vanishing and 

gradient exploding problems that commonly result in DNN’s incapable of convergence. 
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The activation function at the output layer is Softmax given by: 𝜎(𝑧)𝑗 = 𝑒𝑧𝑗 ∑ 𝑒𝑧𝑘𝐾
𝑘=1⁄ . 

The Softmax function is employed to calculate the probability of each DNN output 

values, while categorical cross-entropy defined as: 𝐽(𝑤) = − 1 𝑁⁄ ∑ [𝑦𝑛𝑙𝑜𝑔�̂�𝑛 +𝑁
𝑛=1

(1 − 𝑦𝑛)log (1 − �̂�𝑛)], is implemented for loss calculation. In the combination of the 

Softmax function and the categorical cross-entropy, the calculation of the partial 

derivative for back-propagation is more concise. Besides, we utilize the Adamax              

algorithm to train the DNN, which can efficiently avoid the local optima. Another severe 

problem associated with DNN is overfitting. We alleviate it through integrating dropout 

layers in the DNN as shown by the dashed blue arrows in Figure 2.5(b), which 

deactivates 20% of neurons during each training epoch. We also divide the received 

symbols into 3 sets, namely, training set, validation set, and testing set with a ratio of 0.6, 

0.1, and 0.3, respectively. The validation set is used to measure the validation accuracy 

over the whole training process. When the validation set accuracy is not improving over 

100 epochs, we will stop the training to avoid severe overfitting. 
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Figure 2.5 (a) Experimental setup; (b) structure of the DNN decoder. 
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2.2.2 Experimental Results and Evaluations 

The frequency response of the end-to-end system configured as Figure 2.5(a) is 

measured by a 20-GHz vector network analyzer as shown by the red curve of Figure 

2.6(a). The measured S21 response is in between the input to the modulator driver and 

the PIN receiver output. As observed, the S21 response is relatively flat below 16 GHz, 

while it degrades dramatically beyond that frequency. For comparison, we also plot the 

spectra of PS-PAM8, PAM8 and PAM4 with a bit rate of 80 Gb/s in Figure 2.6(a) as 

indicated by blue, purple, and green curve, respectively. Due to the low spectral 

efficiency of PAM4 modulation, the spectrum of PAM4 signal is far beyond the 

bandwidth of the system. However, since we can flexibly set the entropy of PS-PAM8 

signal, the PS-PAM spectrum closely matches the system frequency response, which 

maximizes the bandwidth utilization. As for the PAM8 signal, though it is within the 

bandwidth limit of the system, the Euclidean distance between adjacent constellations is 

too small to reach acceptable BER performance because of the limited SNR in the low-

cost IMDD system. To set up a baseline in reference to the discussed modulation 

schemes, we firstly measure the optical back-to-back (BtB) transmission performance of 

80-Gb/s signals based on IMDD with an optimized LMS post-equalization. During the 

measurement, the received optical power (RoP) is scanned from -4.5 dBm to 4.5 dBm 

with 1-dB increment. The measured BER curves for PS-PAM8, PAM8 and PAM4 are 

shown in Figure 2.6(b) as blue, red, and yellow solid curves, respectively. The SD-FEC 

and HD-FEC thresholds are also plotted as reference lines. For the PAM4 modulation, 

the BER cannot go below either of the thresholds for all the measured RoP values due to 

the insufficient system bandwidth. In the PAM8 modulation case, the BER becomes 
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lower as the RoP increases and passes the HD-FEC threshold at -0.6-dBm RoP. However, 

the PS-PAM8 achieves a -3.4-dBm receiver sensitivity and demonstrates a prominent 

2.8-dB gain over PAM8 modulation at the HD-FEC threshold.  

 

Figure 2.6 (a) Measured system S21 response and signals spectra. (b) BER over RoP at 

B2B case. 

In addition, the BER curves after 20-km SSMF transmission are also measured as 

shown in Figure 2.7(a). The PS-PAM8 demonstrates a remarkable 4.1-dB gain compared 

with PAM8 at SD-FEC threshold. As discussed in the former section, the higher power 

efficiency of the PS signal is at the cost of increasing the PAPR. In the low-cost MFH 

system, the high PAPR can easily exceed the limited dynamic range of the transmission 

link and resulting strong nonlinearity. The DNN decoder is an efficient method for 

mitigating nonlinear impairments. To verify the performance, we randomly generate a 

100k symbol length PS-PAM8 signal in the CU. At the DU, after resampling and 

resynchronization, we take the first 60% of the received symbols as training set, the 

following 10% as validation set, and the remaining 30% is test set for the DNN. We 
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monitor the validation-set accuracy while training the DNN, once validation-set accuracy 

stops improving over 100 epochs, the algorithm will stop the training automatically and 

save the most current DNN model parameters. The trained DNN decoder will then 

decode the test-set data. Figure 2.7(b) demonstrates an experimental verification on the 

DNN’s performance. The blue curve is the baseline BER performance over RoP with the 

LMS post-equalization, while the red curve indicates the performance of the DNN 

decoder. At the SD-FEC threshold, the DNN decoder demonstrates a noteworthy extra 

3.2-dB gain over the baseline, which proves the DNN’s efficacy on eliminating the 

probabilistic shaping’s drawback of nonlinear impairment, and on significantly 

improving the overall transmission performance from the CU to DU. 

 

Figure 2.7 BER over RoP (a) 20-km SSMF transmission. (b) With and without DNN. 

2.2.3 Summary 

We propose and experimentally demonstrate a capacity-approaching transmission in 

5G MFH based on PS-PAM8 modulation and DNN decoder. The PS-PAM8 signal is 

power efficient and is flexible in information rate to adapt to varying channel conditions. 
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However, probabilistic shaping introduces a higher PAPR and makes the PS signal 

vulnerable to the limited dynamic range of the hardware components in 5G MFH 

resulting in severe nonlinear impairments. We subsequently implement a DNN decoder 

for nonlinear compensation to significantly improve the overall transmission performance 

from the CU to DU with a 3.2-dB extra gain at SD-FEC threshold. Adding up the 4.1-dB 

gain from PS-PAM8, a 7.3-dB gross gain is realized compared to conventional uniform 

PAM modulations with linear post-equalization. Our scheme offers a promising solution 

to mitigate capacity crunch in the D-RoF MFH. 

2.3 DPD Enhancement by CNN for PS-DMT Transmission 

To circumvent the bandwidth limitation, high spectral efficiency modulation schemes 

like discrete multi-tone (DMT) has been deployed [72]. The DMT can provide higher 

tolerance to chromatic dispersion, compatibility to low-cost IM/DD systems, and 

flexibility for multiple access. Moreover, the probabilistic shaping (PS) has been 

developed for adoption in access network to mitigate capacity crunch [70] as it can 

customize entropy and enhance sensitivity by tuning the distribution probability of the 

constellation. However, both DMT and the PS are subject to high peak to average power 

ratio (PAPR), which easily overwhelms the limited dynamic range of the low-cost IMDD 

based optical link even under regular operation condition, such that the nonlinear 

impairments will be inevitably present in transmission systems. Several nonlinearity 

mitigation techniques including receiver-side equalization and transmitter-side digital 

predistortion (DPD) are available as potential solutions. Among them, the DPD is the 

most effective and precise scheme with simple operation and high flexibility. In this 

section, we efficiently integrate convolutional neural network (CNN) based DPD for 
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nonlinearity mitigation and PS-DMT to exploit the limited channel capacity. A 68.2-Gb/s 

net data-rate transmission over 15-km standard single-mode fiber (SSMF) is 

experimentally demonstrated using 11G-class devices. Besides, the proposed scheme 

attains 1.1-dB sensitivity gain over conventional linear pre-equalization in a proof-of-

concept experiment. The contents of this section are derived from our work published in 

OFC [73]. 

2.3.1 Operating Principles 

The PS sequence for DMT modulation is generated via a constant composition 

distribution matcher (CCDM) [71]. The output sequence follows Maxwell-Boltzmann 

distribution, and the entropy can be adjusted through tuning the rate parameter λ as given 

by: 𝑃(𝑎𝑖) = exp(−𝜆𝑎𝑖
2) / ∑ (−𝑗 𝜆𝑎𝑗

2), where ai and aj are available symbols from the 

alphabet {ai}. In this case, the symbol with a higher amplitude will have a lower 

occurrence probability to save signal power. For the DPD part, we implement indirect 

learning architecture, which reduces half of the complexity for system identification than 

direct learning. As shown in Figure 2.8, the discrete-time post-distortion function is 

firstly estimated and then copied to the pre-distortion function. The post-distortion 

function is equivalent to the inverse of the system transfer function with the sampled 

output yn as the input and the post-distortion output: 

�̂�𝑛 =  �̂�𝑝𝑜𝑠𝑡
−1 (𝑦𝑛) 

(2.5) 
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The �̂�𝑝𝑜𝑠𝑡
−1 is derived through minimizing the error defined as: 𝑒𝑛 = 𝑑𝑛 − �̂�𝑛, while the 

predistortion output dn is equal to input sample xn at the beginning of the learning 

process. The pre-distortion function then copies the post-distortion function such that: 

𝑦𝑛 = �̂�𝐶𝐻(�̂�𝑝𝑟𝑒
−1 (𝑥𝑛)) = 𝐺 ∙ 𝑥𝑛 

(2.6) 

 

Figure 2.8 Indirect learning process. 

where G is a scalar corresponding to the average gain of �̂�𝐶𝐻. In this case, the channel 

output is linearized. The regression process to derive the �̂�𝑝𝑜𝑠𝑡
−1  can also be realized via 

neural networks such as CNN and multilayer perceptron (MLP), converting the problem 

to hyper-parameter optimization. Here, CNN is implemented due to its lower model and 

computation complexity from kernel coefficients sharing. The architecture of CNN is 

demonstrated in Figure 2.9. The φy is the 1-D tensor consists of the currently received 

sample yn and its pre-cursor/post-cursor samples. There are two 1-D convolutional layers 

with 10 different kernel filters for each layer followed by batch normalization to suppress 

overfitting and max pooling for downsampling. The output of the Conv2 is flattened and 
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serves as the input to a multilayer feedforward neural network with two hidden layers. 

The first hidden layer has 20 neurons while the second has 10 neurons. The ReLU 

function is used at each layer for activation, while the mean square error (MSE) is used as 

the loss function. 

 

Figure 2.9 CNN architecture for DPD implementation. 

 

Figure 2.10 Experimental setup for DPD implementation. 

2.3.2 Experimental Setup and Results 

Figure 2.10 depicts the setup of the proof-of-concept experiment. A uniformly distributed  

binary bit sequence is randomly generated by MATLAB, which is then mapped to PS-

64QAM through CCDM and QAM modulation. The entropy is set to 5.6 for optimized 

channel SNR utilization. The same entropy applies to all the data subcarriers without 
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using bit loading to reduce processing complexity. The DMT modulation process is 

followed, with 4096-point FFT, 15.36 MHz subcarrier spacing, and 1026 active data 

subcarriers. The DMT setting is determined by the measured end-to-end S21 response of 

the system as shown in Figure 2.11 to exploit the limited bandwidth. Although the 3-dB 

bandwidth is only 2.8 GHz, the S21 response is not dropping severely until 15.4 GHz. 

The DMT signal is then digitally pre-distorted and converted to an analog signal using a 

64-GSa/s arbitrary waveform generator (AWG, M8195A). An 11G-class directly 

modulated laser (SCMT-100M11G) with pre-amplifier and transimpedance amplifier 

(TIA) is implemented at the transmitter to convert the signal into the optical domain with 

1548.2 nm center wavelength and 8.56 dBm output power. The optical signal transmits 

over a 15-km SSMF and is detected by an 11G-class photodetector (SCMR-100M11G) at 

the ONU. We employ an 80-GSa/s oscilloscope (DSOZ254A) to capture and digitize the 

detected signal for receiver end processing including iFFT, zero-forcing equalization, etc. 

 
Figure 2.11 Measured end-to-end system S21 response. 
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Figure 2.12 Training and testing MSE loss over training epoch. 

Figure 2.12 shows the training and testing loss of the CNN during the indirect 

learning process using PyTorch platform. Among the 557036 received digitized samples, 

the first 70% percent is used as the training set while the remaining 30% percent is 

separated off as the testing set. The testing loss drops along with the training loss with 

only a small deviation, justifying there is no overfitting issue. The trained CNN is then 

applied in the DPD process and newly captured data are used for performance evaluation 

and comparisons. Figure 2.13 compares the received spectra of CNN-DPD, linear pre-

equalization, and without DPD. The CNN-DPD pre-compensates both the linear and 

nonlinear impairments, up to 4.3-dB more nonlinearity mitigation is observed compared 

to linear pre-equalization, while the latter only equalizes the linear response. To evaluate 

the realistic transmission performance, we measure and calculate the normalized 

generalized mutual information (NGMI) serving as a pre-FEC metric, over received 

optical power (RoP) sweeping from -9.8 dBm to 0.2 dBm. Figure 2.14 (a) demonstrates 

the back-to-back (B2B) measurement. The NGMI difference at low RoP is small due to 



 47 

the inaccurate parameters’ estimation under low SNR. However, at 0.89-NGMI threshold 

corresponding to 20% overhead (OH) SD-FEC [81], the CNN-DPD shows 0.8-dB 

sensitivity gain over the linear pre-equalization and 1.7-dB gain than the without DPD 

case. The 15-km SSMF transmission performance comparison is demonstrated in Figure 

2.14 (c), where 1.1-dB and 3.9-dB gain are obtained, respectively. Therefore, the 

sensitivity is improved from -2.6 dBm to -6.5 dBm with the help of the CNN-DPD. 

Besides, a clear PS-64QAM-5.6 constellation is recovered at 0.2-dBm RoP as shown in 

the inset with the warmer color indicates a higher constellation-point density. The net 

spectral efficiency (SE) of the PS-64QAM-5.6 at 20% OH SD-FEC can be calculated 

using: 

𝑆𝐸 = 𝐻𝑟𝑎𝑤 −
𝑂𝐻

100% + 𝑂𝐻
∙ log2 𝑀 = 5.6 −

20%

100% + 20%
∙ log2 64 = 4.6 

Considering the cyclic prefix OH is 1/16, the effective baud rate of the DMT signal is 

derived as 14.83 GBaud. As a result, the net data rate reaches 68.2 Gb/s with -6.7 dBm 

sensitivity. 
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Figure 2.13 Received spectra comparison. 

2.3.3 Summary 

To the best of our knowledge, this is the first theoretical investigation and 

experimental demonstration on combining DMT and PS to exploit the channel capacity in 

an access network and integrating CNN-DPD to mitigate the nonlinear impairment 

arising from the high PAPR. The system can mitigate up to 4.3-dB nonlinearity which is 

measured and confirmed in the spectra comparison. Moreover, a net 68.2-Gb/s 

transmission over 15-km SSMF is experimentally demonstrated with 1.1-dB sensitivity 

gain compared to conventional pre-equalization schemes. 
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Figure 2.14 NGMI over RoP: (a) at B2B connection; (b) at 15-km SSMF transmission. 
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CHAPTER 3. ENHANCED PON SUPPORTING D-ROF 

TRANSMISSION 

The PON infrastructure is an effective solution to realize economical RAN 

configuration and MFH transport as it allows the sharing of optical fibers and 

transmission equipment [74]. However, the conventional PON bandwidth will become 

deficient in supporting the increasing mobile network traffic in the near future. In 

addition, the latency in the upstream transmission of PON, due to the DBA, remains a 

challenge for satisfying the fronthaul latency tolerance. In this chapter, we propose a lite 

coherent transceiver design to improve the PON capacity and an intelligent DBA 

algorithm with higher bandwidth utilization to reduce the latency. Corresponding 

simulation and experimental results verify the effectiveness of the proposed scheme 

while build up the applicability of PON. 

3.1 Lite Coherent Optical System 

In this section, we propose and investigate a novel lite coherent receiver based PON 

system. The lite coherent receiver consists of only one single PD, one OLO, one analog 

to digital converter (ADC) and an optical coupler, which significantly simplifies the 

components and architecture of the conventional coherent receiver. By tuning the 

wavelength of the OLO, arbitrary wavelength channel selection is feasible. Also, we 

achieve bits stream I-Q modulation and upconversion digitally, with the optical intensity 

modulator converting the signal into optical domain, which cuts the high cost and 

eliminates the I-Q imbalance associated with the optical I-Q modulator. Based on the 
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proposed system built up by 10-G class electrical and optical components, we for the first 

time, demonstrate a symmetric 50Gb/s/λ 16-QAM transmission over 100-km standard 

single mode fiber (SSMF). The prototype inherits the benefits of coherent detection 

without the high-cost as well as facilitates the realization of promising applications like 

OLT-less inter-ONU communication. The contents of this section are derived from our 

work published in OFC [75]. 

 

Figure 3.1 Experimental setup and framework of the prototype lite coherent access 

system. 

3.1.1 System Setup and Principles 

Figure 3.1 demonstrates the framework and experimental setup of the prototype 

system. An external cavity laser (ECL, PPCL100) referred as ECL1, with 13.5-dBm 

maximum output power is implemented in the OLT to serve as both the seed light (SL) to 

the optical intensity modulator for the downlink and as an OLO to the photodetector for 

the uplink. The OLT is connected to multiple ONUs through some optical power 
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splitters. In the downlink, The PRBS-15 bits sequence is first mapped to 16-QAM 

constellation using Gray coding. We then upconvert the digital I-Q modulated signal to 

an intermediate frequency (IF) and extract its real part for digital to analog conversion 

(DAC) using a 65 GSa/s arbitrary waveform generator (AWG, Keysight M8195A). The 

output of the AWG is amplified by the modulator driver (Picosecond Model 5865) with a 

12-GHz 3-dB bandwidth to generate sufficient swing to drive the optical intensity 

modulator. We bias the JDSU 10-Gb/s intensity modulator to its null point where the best 

field-wise linearity locates, so that the optical carrier is suppressed while the modulation 

index is the highest. The modulated optical signal propagates through a 100-km SSMF. 

At the ONU side, an optical attenuator is implemented in front of the lite coherent 

receiver to simulate the path loss from power splitters. Another ECL, referred as ECL2 is 

implemented at the ONU serving the same functionalities as it is in the OLT. The ECL2 

is set to be roughly 14-GHz away from the ECL1 and combines with the received optical 

signal (ROS) using a 3-dB optical coupler for lite coherent detection. After the square 

law detection in a PD (MITEQ-SLR) with 9.8 GHz 3-dB bandwidth, the output 

photocurrent IPD(t) is proportional to: 

𝐼𝑃𝐷(𝑡) ∝ {𝐸𝑂𝐿𝑂 ∙ cos(𝜔𝑂𝐿𝑂 ∙ 𝑡) + 𝐸𝑅𝑂𝑆(𝑡) ∙ cos[𝜔𝑅𝑂𝑆 ∙ 𝑡 + ∅(𝑡)]}2 

∝
1

2
𝐸𝑂𝐿𝑂

2 +
1

2
𝐸𝑅𝑂𝑆

2 (𝑡) + 2𝐸𝑂𝐿𝑂 ∙ 𝐸𝑅𝑂𝑆(𝑡) ∙ cos(𝜔𝑂𝐿𝑂 ∙ 𝑡) ∙ cos[𝜔𝑅𝑂𝑆 ∙ 𝑡 + ∅(𝑡)] 

∝ 𝐸𝑂𝐿𝑂 ∙ 𝐸𝑅𝑂𝑆(𝑡) ∙ {cos[𝜔𝐼𝐹 ∙ 𝑡 + ∅(𝑡)] + cos[(𝜔𝑅𝑂𝑆 + 𝜔𝑂𝐿𝑂) ∙ 𝑡 + ∅(𝑡)]} 

(3.1) 
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Here, the 𝐸𝑂𝐿𝑂
2  is the average DC energy flux filtered out by the PD’s internal capacitor. 

Since the OLO magnitude is much greater than the ROS, the 𝐸𝑅𝑂𝑆
2 (𝑡)  term can be 

negligible. Besides, the high frequency component at frequency 𝜔𝑅𝑂𝑆 + 𝜔𝑂𝐿𝑂 is out of 

PD’s bandwidth. In this case, the dominant term in photocurrent is 𝐸𝑂𝐿𝑂 ∙ 𝐸𝑅𝑂𝑆(𝑡) ∙

𝑐𝑜𝑠[𝜔𝐼𝐹 ∙ 𝑡 + ∅(𝑡)]. 𝜔𝐼𝐹 is the frequency difference between 𝜔𝑅𝑂𝑆 and 𝜔𝑂𝐿𝑂. It can be 

seen the OLO provides huge gain and enables linear detection of ROS E-field. The ADC 

function onto the PD’s output is performed by an 80 GSa/s oscilloscope (DSOZ254A). 

 

Figure 3.2 DSP process of the lite coherent receiver. 

The inset (i) in Figure 3.2 shows the spectrum of the digitized samples, where the 

lower sideband of the signal is filtered out using the minimum-order FIR filter and 

downconverted to baseband. We design a radius decision based multi-modulus algorithm 

(RD-MMA) with 30 equalization taps. The constellations before and after the RD-MMA 

are demonstrated in inset (ii). The carrier frequency offset estimation and compensation 

are performed through finding the frequency at the maximum of |𝐹𝐹𝑇[𝑠4(𝑡)]|. Here, s(t) 

is the signal after RD-MMA, and FFT is fast-Fourier transformation. We apply the phase 

recovery algorithm afterwards. Since the phase noise frequency is relatively low in our 
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system, we employ 80-symbol length sliding window. In this case, any residual phase 

components after the fourth power of the constellation points on the centre √10 radius 

ring will be eliminated by each other. The recovered constellation is illustrated in inset 

(iii). After decoding, the BER is calculated by comparing the difference between the 

original and recovered bits sequences. 

3.1.2 Experimental Results 

Figure 3.3(a) demonstrates the BER performance over received optical power (RoP), 

the data rate is set to the fixed 50 Gb/s using 16-QAM modulation. The sensitivity of the 

prototype reaches -26.4 dBm at 7% forward-error-correction hard decision (FEC-HD) 

BER threshold. The link-budget reaches 40.1 dB with 13.7 dBm maximum transmitting 

power at the OLT. We also compare the optical back-to-back (B2B) with the 100-km 

transmission performance, and no obvious penalty is observed. The sensitivity over data 

rate result is shown in Figure 3.3(b). We choose 2.5-GBaud, 5-GBaud, 8-GBaud, 10-

GBaud and 12.5-GBaud as the test points, which correspond to 10-Gb/s to 50-Gb/s using 

16-QAM modulation. As observed, the higher sensitivity is obtained at lower data rate, 

which enables flexible data rate configuration for the ONUs requiring different link 

budgets. Since the OLTs and ONUs use the same optical/electrical components and 

architecture, the downlink and uplink transmission are symmetric with identical 

performance. Besides, the high capacity OLT-less inter-ONUs communications are 

feasible based on this prototype, providing ultra-low-latency and ultra-reliability 

compared with over OLT communication. In 5G era, some sets of ONUs will directly 

connect to wireless backhaul/fronthaul network base stations to provide mobile services 

within given wireless coverage area [76]. Our prototype also supports this use case as 
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justified in Figure 3.4. Here, 3 bands of upconverted 10-Gb/s 16-QAM signals are 

generated in the OLT and transmitted through 100-km SSMF. Figure 3.4 demonstrates 

the BER over RoP for each band after a similar signal detection and recovery processes 

as described above. The sensitivity for band-1, band-2 and band-3 are -28.9-dBm, -30.3-

dBm and -31.8-dBm, respectively. Besides, at the ONU side, the lite coherent receiver 

output can be further amplified and directly emitted into air through the multi-bandpass 

sectors antenna to provide carrier aggregated mobile services. 

 

Figure 3.3 (a) BER over RoP at 50-Gb/s over 100-km SSMF, (b) sensitivity over data 

rates. 

 

Figure 3.4 BER over RoP for multi-band transmissions over 100-km SSMF. 
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3.1.3 Summary 

We demonstrate a pace-setting symmetric 50 Gb/s/λ 16-QAM transmission over 100-

km SSMF with 40.1-dB link budget based on 10G-class electrical/optical components to 

support the implementation of NG-PON2. The prototype system utilizes a low-cost lite 

coherent receiver to achieve high receiver sensitivity, flexible wavelength channel 

selection, and digital dispersion/link impairment compensation. The symmetrical 

architecture for OLTs and ONUs enables identical downlink/uplink transmission 

performance. Besides, the prototype lite coherent system is capable of supporting high-

capacity OLT-less inter-ONU communications. Carrier aggregation for 5G wireless 

services can also be realized through the prototype. Our scheme provides a promising 

low-cost, high-capacity solution to tackle access networking challenges of NG-PON2 and 

beyond. 

3.2 Intelligent Dynamic Bandwidth Allocation  

In this section, we propose a novel method for intelligent bandwidth allocation (IBA) 

in PON by using reinforcement learning (RL) for latency management. The 

reinforcement learning scheme consisting of three core factors, including State, Action, 

and Reward, is implemented to proactively update the bandwidth allocation parameters. 

Based on the network traffic information as the input State, the core Agent updates the 

maximum allocated bandwidths of the target user for latency management. We verify the 

capability of the proposed scheme under both fixed and dynamic traffic loads scenarios to 

achieve <1ms average latency. The RL agent demonstrates an efficient intelligent 
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mechanism to manage the latency, which provides a promising IBA solution for the next-

generation access network. Our related work has been published in CLEO [77]. 

3.2.1 Principles of IBA 

Figure 3.5 shows the principle and implementation of reinforcement learning (RL) for 

IBA in PON. Particularly, Figure 3.5(a) shows the detailed processing flow, and Figure 

3.5(b) shows the implementation in PON environment. RL has demonstrated prominent 

performance in strategy selection and optimization tasks. The RL agent can obtain 

positive/negative reward on its executed action under a certain state through interaction 

with the environment. The feedbacks on state-action pairs can be saved and updated 

using Q-table or deep neural network, such that the agent is able to make the decision 

with most positive expected reward. For our demonstration, the input State St is the 

traffic information as the average load of traffic in ONU over the time, while the Action 

is the optimal maximum bandwidth Wmax(i) allocated to the ith ONU, which is a series of 

discrete values W(n)∈[W1, …, WN]. The Q-table updating, and action selection are based 

on State–action–reward–state–action (SARSA) algorithm, which is an on-policy temporal 

difference value-based RL algorithm with more conservative action to ensure reliable 

operations in NG-EPON. Here the Reward is the traffic latency of specific ONU to the 

target latency after action. 

A two-layer implementation of proposed IBA in PON with different time scales is 

shown in Figure 3.5(b). In the lower layer, fast DBA is implemented in μsec to msec 

scale for real-time bandwidth assignments according to the actual bandwidth request 

from ONUs. On the higher layer, we have the IBA agent to update the DBA policy in the 



 58 

scale of hundreds of msec to seconds range based on the inputs from the network. The 

IBA actions are implemented in a non-real-time manner, which is based on the RL 

algorithm described above. 

 

Figure 3.5 The Principle and implementation of RL for IBA in PON: (a) the principle; (b) 

the implementation in PON environment. 

3.2.2 Physical Layer Parameters Test 

To find out the key parameter settings of IBA simulation, we conduct physical layer 

verifications including laser on-off time, burst-clock-data-recovery (BCDR) time and link 

sensitivity test for 25G EPON. As such, the total effective guard interval time can be 

confirmed. The experimental setup is shown in Figure 3.6. We first randomly generate a 

100k length bit sequence and perform pre-equalization based on estimated channel 

coefficients derived by least-mean-square (LMS) algorithm. The pre-equalized sequence 
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is then downloaded to an arbitrary waveform generator (AWG) to produce an NRZ-OOK 

signal running at 25 Gb/s to comply with NG-EPON standard. The signal is amplified by 

a modulator driver and is modulated onto a directly modulated laser (DML) for fiber 

transmission. The optical signal is detected by a PIN receiver with optical 

preamplification and is digitized by an oscilloscope for the following off-line signal 

decoding. A variable optical attenuator (VOA) is implemented to control the received 

optical power (RoP). Figure 3.7(a) shows the measured laser on-off behavior, the laser 

rise time is 27 ns while the laser fall time is 34 ns. Besides, to achieve a line rate of 25 

Gb/s in NG-EPON, a fast synchronization and signal recovery using BCDR for the burst-

mode upstream is necessary. We implement a first-order digital CDR scheme based on 2-

times oversampling and nonlinear bang-bang phase detector [78] to test the BCDR speed. 

Follow the BER threshold in IEEE 802.3ca specification, Figure 3.7(b) demonstrates the 

clock phase vs time result at BER = 1e-2. The clock phase is converged at around 0.23 

symbol time after 800 symbols of training. At a sampling rate of 50 GSa/s, the BCDR 

convergence time is derived to be 16 ns. Figure 3.7(c) is the BER over RoP measurement 

to calculate the link budget of the NG-EPON. The receiver sensitivity is -26 dBm at BER 

= 1e-2. By taking the difference between the DML output power of 5.5 dBm and the 

receiver sensitivity, the link budget of the system reaches 31.5 dB. Since there is no 

commercially available burst-mode transimpedance amplifier (BM-TIA) for burst gain 

setting time measurement, we calculate the total effective guard interval time based on 

the gain setting time of 48 ns from the reference work of 25-GBaud BM-TIA [79]. We 

confirm that considering the laser on-off time, BCDR time as well as the BM-TIA setting 

time, a total effective guard interval time of 1 μs should be safe enough for future 
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commercial systems. The effective guard time setting of 1 μs will be used in our 

following simulations. 

 

Figure 3.6 Experimental setup for guard time evaluation. 



 61 

 

Figure 3.7 (a) Laser on-off time measurement; (b) BCDR performance at BER = 1e-2; (c) 

BER over received optical power (RoP) measurement. 
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3.2.3 Intelligent Bandwidth Allocation Simulations and Results 

Figure 3.8 shows the simulation setup and results obtained. We simulated 32 ONUs 

in the NG-EPON system with two wavelengths each carrying 25-Gb/s data, as shown in 

Figure 3.8(a). We assume 1 μs for guard interval time according to our experimental 

verification above. As such, a total of 50-Gb/s capacity is shared by the 32 ONUs using 

first-fit scheme for DBA on the two wavelengths. All 32 ONUs have random RTTs 

within the range of 100 to 200 μs. ONU2 is the target ONU that is enabled with latency 

management based on RL method. All traffic is generated by an Ethernet traffic generator 

model that is described in [80], where self-similar traffic is generated based on the 

aggregation of multiple streams, each consisting of an alternating Pareto-distributed 

ON/OFF period [80]. The Ethernet traffics are with the packet size of 64 to 1518 bytes, 

and maximum traffic load for each ONU is 2 Gb/s. The default Wmax for simulation is set 

at 30000 bytes. The Q-table update interval and Wmax adjustment interval are all set as 

0.8 s. Figure 3.8(b) shows the latency management results at the fixed load rate of 1.0 at 

2 Gb/s. To verify the latency management capability, we set two target latency values at 

3 ms and 1 ms. It is seen that in result of Figure 3.8(b) the target ONU2 follows the 

latency targets < 3 ms and < 1 ms with our latency management. As a comparison, we 

plot the latency performance under a fixed Wmax setting to present that the variance of 

latency is significantly reduced by employing latency management. Figure 3.8(c) shows 

the Q value distribution of the Q-table after training with 1-ms target latency and 

different traffic loads, we can see that the peak data rate of upstream burst traffic can be 

as high as 5.5 Gb/s. Finally, the latency management performance with dynamic traffic 

loads is shown in Figure 3.8(d), with the simulation the traffic load changes based on the 
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trend obtained from a real user traffic behavior during a day. As a comparison, the 

latency performance of fixed Wmax is also presented. The latency of fixed Wmax (30000 

bytes) can increase beyond 20-ms at high traffic load. By using RL method, with a target 

latency of 1 ms, the determinism and reliability of latency management are demonstrated 

by the simulation result that the average latency of ONU2 is below 1 ms, with a peak 

latency about 2 ms due to the bursty traffic. 
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Figure 3.8 The simulation setup and results: (a) the simulation setup; (b) simulation of 

RL to target 3-ms latency; (c) the Q-table value obtained; (d) the latency performance 

with dynamic traffic load. 
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3.2.4 Summary 

In this section, we propose a novel method for intelligent bandwidth allocation in 

PON by using SARSA reinforcement learning for latency management. The proposed 

scheme’s capability to achieve < 1 ms average latency under both fixed and dynamic 

traffic loads scenarios is verified. An efficient intelligent mechanism to manage latency is 

demonstrated by the agent, offering a future-proof IBA solution for NG-EPON. 

 

 

  



 66 

CHAPTER 4. INTERFERENCE AVOIDANCE AND 

CANCELLATION 

In this chapter, the works on proactive interference avoidance and self-interference 

cancellation are demonstrated. The proof-of-concept experiments are conducted on 

mmWave-RoF platforms. In Section 4.1, the reinforcement learning based interference 

avoidance scheme provides an envision for self-organized interference management in 

the RAN. In Section 4.2, a simultaneous self-interference cancellation and signal-of-

interest recovery scheme is realized by a dual-inputs DNN, outperforming conventional 

subtraction-based interference cancellers. In Section 4.3, we design a novel parallel 

interference cancellation scheme to facilitate NOMA decoding. 

4.1 Proactive Interference Avoidance 

In this section, we firstly propose and experimentally demonstrate a proactive real-

time interference avoidance scheme in a mmWave-RoF system using (SARSA) RL. The 

scheme can proactively avoid the multi-band interference and ensure the transmission 

quality under both static and dynamic conditions, along with the self-evolution via agent-

environment interactions. Our related work has been published in [81]. 

4.1.1 Operating Principles 

The mobile fronthaul network consists of the CU, DU, and RRU. A DU typically 

connects to the plural of RRUs, providing a tactic for coordinated multi-point (CoMP) 

transmission and deep multi-cell resource utilization [82]. Here we focus on the 

transmission from the DU to RRU and ultimately to UE. Analog radio-over-fiber stands 
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out as the technology to connect the DU and RRU due to its higher bandwidth efficiency, 

lower latency, and cost. In 5G, due to the small cell architecture and the dense 

deployment of RRU in the urban area, there are multiple sources of unwanted 

interference, including the other carriers, macro cells to small cells, adjacent small cells, 

and intentional jammers. These interferences may collide with the desired signal. Since it 

is complex to acquire the full information of the external interference, the RRU is very 

unlikely to be able to cancel the interference. In addition, the interference cannot be 

filtered out using an RF filter, since it is inside the signal band. To eliminate the 

impairment of the interferences, the RRU can alternatively shift the signal frequency in 

their allowable range based on the RL algorithm to find the idle interference-free band. In 

RL, there are three core factors: the state, the action, and the reward. The state design 

needs to be informative to ensure the reinforcement learner’s performance. Here the state 

consists of the vector of the signal’s center frequency and sub-(EVMs) and is discretized 

when implemented. We divide the (OFDM) signal into three zones to calculate the left, 

center, and right sub-EVMs. To be more specific, the left sub-EVM is calculated from the 

first 1/3 subcarriers EVM, while the center sub-EVM and the right sub-EVM are 

calculated similarly, except for different zones of subcarriers. The signal center frequency 

is divided into 25 sections and denoted by integers 1–25, while each sub-EVM has five 

intervals and is denoted by integers 1–5. In other words, the value of the state represents 

the index of the discretization intervals. We take the discretized signal’s center frequency, 

the left, center, and right sub-EVMs as the sub-states. All the sub-states are then 

combined as an overall state based on the formula below: 

𝑠 =  𝑠0 ×  125 +  𝑠1 ×  25 +  𝑠2 ×  5 +  𝑠3 
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(4.1) 

Here the s is the overall state; s0 is the sub-state of the center frequency; and s1, s2, 

and s3 are sub-states of the left, center, and right sub-EVM, respectively. The overall 

state covers all the sub-states and simplifies the RL algorithm. We define shifting the 

frequency as the action. There are five associated actions which are shift −20, −10, 0, 10, 

and 20 MHz. In this case, the agent has options for adjusting the desired signal frequency 

allocations, depending on different levels of aggression. Finally, the reward is defined via 

taking the log difference of the (BER) between the current and last state as 

𝑟 =  log 𝐵𝐸𝑅𝑝𝑟𝑒𝑣 − log 𝐵𝐸𝑅𝑐𝑢𝑟𝑟 

(4.2) 

The r is the immediate reward BERcurr is the current BER, while BERprev is the BER of 

the previous state. If the current BER is lower than the previous state, the reward is 

positive, and vice versa. Therefore, the agent can get a positive experience when the 

executed action reduces the BER. In addition to those core factors, we set the initial 

exploration rate to 1 with an exponential decay rate at 0.95 per interaction. The initial 

exploration rate is high, because the agent needs to get familiar with and explore more in 

the environment to accumulate positive and negative experience. With abundant 

experience acquired, the exploration rate becomes lower such that the agent can exploit 

its experience more often through taking beneficial actions. For a similar reason, we set 

the initial learning rate to 0.5, and its value is decayed by a factor of 0.95. Besides, to let 

the agent consider the future reward, we define a discount factor with a value of 0.8, such 
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that the future reward can still affect the action at the current state though alleviated. 

Therefore, the element value of the Q table is updated as below: 

                        Q(sn, an)= α · r + γ · Q(sn+1, an+1) + (1 − α) · Q(sn, an) 

(4.3) 

where sn, an represent the current state and action, respectively. α is the learning rate; γ is 

the discount factor; sn+1, an+1 are the next state and action, respectively. In this 

experiment, we implement SARSA learning, an on-policy temporal difference learning 

algorithm for value-based RL, to realize the action selection and Q table updating. 

SARSA learning is more suitable than the off-policy Q learning, as the latter is cliff 

walking with too much aggression for a real-time system [83]. Algorithm 1 for the 

implemented SARSA learning is designed as below: 

 

4.1.2 Experimental Setup 
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Figure 4.1 shows the experimental setup to verify the proposed scheme. An external 

cavity laser (ECL, PPCL100) centered at 1549.8 nm is launched to the Mach–Zehnder 

modulator 1 (MZM1) with a 13-dBm input power, the spectrum of the ECL’s output is 

shown as the inset i of Figure 4.2. We bias the MZM1 at null point to suppress the optical 

carrier. A 30-GHz RF single-tone signal is created by an RF signal generator (Anritsu 

68369B) and modulates onto the MZM1. The optical spectrum after the MZM1 is shown 

in inset ii. To further suppress the central optical carrier and boost the 60 GHz spacing 

sideband carriers, we utilize an optical interleaver and an EDFA (AEDFA13-B-FC). 

Next, A 16-QAM OFDM signal with 52 subcarriers and 100 MHz bandwidth are 

generated using an arbitrary waveform generator (AWG) (M8195A) and boosted by a 

modulator driver (Picosecond 5865). We modulate the amplified OFDM signal onto the 

MZM2 biasing at the quadrature point. The optical signal then transmits through a 20 km 

standard single-mode fiber and is detected by a 60 GHz photodetector (PD, 

XPDV2020R). Due to the square law detection of the two optical carriers in the PD, a 

mmWave signal with 60-GHz center frequency is generated and radiated out through a 

horn antenna (ARH-1525-02). We use an independent channel of the AWG to create a 

multi-band interference with a 32-QAM OFDM waveform. Besides, another RF signal 

generator (E8247C) is employed to create a 15-GHz RF singletone signal which is then 

quadrupled to 60 GHz band using a frequency quadrupler (DBS-4060X410). Through 

mixing with the 60 GHz local oscillator in an RF mixer (SFB-15), the interference is 

upconverted to a 60 GHz band and is emitted by another horn antenna (ARH-1520). The 

receiving antenna (ARH-1520) located 1.5 m away from the transmitting antenna 

captures both the signal and interference, which are downconverted to the baseband 
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through an envelope detector (DET-15-RPFW0). After digitization by an oscilloscope 

(DSOZ254A), we use an OFDM decoder to recover the transmitted information. 

 

Figure 4.1 Experimental setup for proactive interference avoidance. 

4.1.3 Experimental Results and Evaluation 

To verify the functionality of the proposed scheme, we conduct a proof-of-concept 

experiment. In the first scenario, multiple interferences are involved in the receiving-end 

with their center frequency and bandwidth fixed. The first interference is allocated at 30 

MHz with a 20-MHz bandwidth, the second interference locates at 80 MHz with a 20-
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MHz bandwidth, and the third interference has a 40 MHz bandwidth and centered at 270 

MHz. The transmitted signal is a 100-MHz wide 16-QAM modulated OFDM signal with 

52 subcarriers. We set the initial frequency of the signal to 250 MHz, such that the third 

interference has strong spectrum overlapping with the signal. To mimic the realistic 

scenario with comparable signal and interference power, the power of the received signal 

at the UE is set to −12.3 dBm, while the total power of the received multi- band 

interference is −14 dBm. Therefore, the signal is severely degraded by the interference 

initially. Figure 4.2(a) demonstrates the actions taken by the agents over a time period 

(TP, the time for one interaction between the agent and the environment) to avoid the 

multiband interference. The red area represents the interfered spectrum over the TP, 

while the blue area corresponds to the frequency range of the desired signal. Here the 

center frequency of the signal is reset to 250 MHz every 100 TPs. As shown, at the first 

100 TPs, the convergence time is much longer than the following episodes because of the 

high exploration rate at the beginning. In this condition, the agent is more intended to 

explore the environment. This intention helps the agent capture a broader scope in the 

environment to avoid the local optima. Besides, the agent accumulates a lot of related 

experience, such that it takes more decisive and beneficial actions in the subsequent 

episodes leading to a faster convergence. Figure 4.2(b) is the corresponding BER over the 

TP. The agent does not take any action when the BER falls below the 3.8 × 10−3 HD-FEC 

threshold. The change in BER clearly demonstrates the action’s effect on the 

transmission quality. The contour map of the Q table is shown in Figure 4.3(a). The 

warmer color indicates a higher reward at a certain state/ action combination, and vice 

versa. We update the element values of the Q table according to the formula (4.3) over 
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the TP. The value updating amplitude of the Q table is decaying as well, since the agent 

becomes more familiar with the environment based on the past interactions reflected in 

the Q table. According to the previous miscellaneous experience, the agent acts more 

intelligently and makes a more beneficial decision. We plot the BER over the TP at the 

eighth episode, as shown in Figure 4.3(b). The agent takes decisive and requitable actions 

which quickly avoid the multi-band interference and recover the signal transmission 

quality, the actual convergence time is within a second. The corresponding signal 

constellations are plotted as insets in Figure 4.3(b). 

 

Figure 4.2 Static Interference: (a) action taken over TP; (b) BER over TP. 

 

Figure 4.3 (a) Decision map shown by Q-table; (b) BER over TP at eighth episode. 
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In realistic scenario, the interference characteristics are not fixed. Our scheme also 

works in a dynamic environment. Here, to better characterize the scheme’s performance, 

we create four types of multi-band interference, namely, Type 1, Type 2, Type 3, and 

Type 4. Those interference features are summarized in Table 4-1. The chronological 

order of the interference appearance is 1-3-2-1-2-4-3-2-1-4; each type of interference 

lasts 100 TPs. In this experiment, we also set the initial signal frequency to 250 MHz as 

the starting condition. Besides, we create an empty Q table to learn a new strategy and 

observe the actions on frequency shifting from TP 1 to TP 1000, as shown in Figure 

4.4(a). The agent performs excellently within the first 100 TPs, as the type 1 interference 

is easier to avoid. Besides, though the interference is dynamic, the agent keeps interacting 

with the environment and learns in real time. Once the HD-FEC threshold of BER is 

reached, the agent stops further action, as the interference impairment is successfully 

eliminated. However, the states and the BER are still actively monitored; when there is an 

abrupt change in the interference or transmission quality, the agent takes new actions to 

avoid the interference until the BER reaches below the HD-FEC threshold again. Figure 

4.4(b) demonstrates the corresponding BER over the TP. The result matches well with 

the actions taken, illustrated in Figure 4.4(a). The proposed scheme can potentially be 

extended to handle a more complicated realistic wireless environment efficiently. For 

example, its feasibility can be further improved through more diverse actions based on 

refined interference feature identification, while the online convergence speed would be 

accelerated by profiling the interference characteristics and via proper off-line training. 

The proposed scheme requires active communication within the control plane between 

the controller of the DU to take actions and the UE to calculate state and reward. This 
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interaction is viable, since it just requires some simplified channel state information from 

the UE, which can be fed back to the DU over a highly reliable scheme [84], without 

noticeable traffic load increasing and high latency. Meanwhile, it saves a lot of time in 

finding a solution to deal with the interference autonomously with the help of RL. 

 

Figure 4.4 Dynamic Interference: (a) action taken over TP; (b) BER over TP. 

Table 4-1 Summary of interference center frequency and bandwidth. 

 

4.1.4 Summary 

In this section, we propose and experimentally verify a proactive real-time 

interference avoidance scheme in a mmWave-RoF based RAN using SARSA RL. The 

agent can interact with the environment in real time and learn from the trial and error. 

The past positive and negative experiences are reflected on the element values of the Q-
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table. According to the Q-table, the agent can take actions with a maximum potential 

reward. The proposed scheme works well for both fixed and dynamic interference 

scenarios. The agent becomes more intelligent and takes decisive and requitable actions 

when the same state appears again. In addition, the agent monitors the BER and states to 

detect the severity of the dynamic interference. Once there is a change degrading the 

signal transmission quality, the agent takes new actions on shifting the frequency to avoid 

the dynamic interference. 

4.2 Simultaneous SI Cancellation and SOI Recovery 

In this section, we propose a DI-DNN based interference canceller for simultaneous 

SI cancellation and SOI recovery, taking both the received signal and the known SI as 

dual inputs to the neural networks. We conduct a proof-of-concept experiment based on 

an mmWave-RoF platform to verify the performance of the proposed interference 

canceller systematically. To the best of our knowledge, this is the first attempt for 

simultaneous SI cancellation and SOI recovery considering receiver nonlinearity, along 

with pilot feasibility evaluation on the mmWave-band full duplex. Moreover, we expand 

the applicability of the DI-DNN into the full-duplex DOCSIS (Data Over Cable Service 

Interface Specification) and validate its effectiveness for echo cancellations. Our related 

works have been published in [85-87].  

4.2.1 Operating Principles 

This section reviews and explains the principles of neural networks based cancellers. 

Figure 4.5 shows a simplified wireless full-duplex system diagram to help explain 

cancellers’ models and principles. The digital baseband signal at time instant n is denoted 
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as x(n). The signal is converted by a digital-to-analog converter (DAC) into the analog 

domain, then is upconverted and amplified before being transmitted by the base station 

(BS) antenna. Here, we denote the signal’s baseband equivalent as x(t). Due to the 

proximity of the transmit and receive antenna, the transmitted x(t) causes severe SI at the 

local receiver. At the user equipment (UE) side, s(t) is generated and sent to the BS as 

the SOI. At the BS receiver, after amplification and downconversion, r(t) is obtained 

with received SOI s’(t) superimposed with the strong received SI x’(t). The r(n) 

represented the digital baseband of r(t)=f(x’(t)+s’(t)) after the analog-to-digital 

converter (ADC), where f represents a nonlinear transfer function at the BS receiver. 

Besides, the digital SI cancellation and DSP part do not need to be located at the BS 

based on different fronthaul function splits. 

 

Figure 4.5 Simplified full-duplex wireless communication diagram. 

To recover the SOI s(t) from the interfered received signal r(t), the received SI 

x’(t) needs to be cancelled. Assume hSI represents the impulse response of the SI channel, 

the received digital SI signal x’(n) can be modeled as 
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𝑥′(𝑛) = ∑ ℎ𝑆𝐼(𝑙)𝑥(𝑛 − 𝑙)

𝐿

𝑙=−𝐿

 

(4.4) 

where the memory length of the channel is 2L+1. In polynomial interference cancellers, a 

SI cancellation signal �̂�(𝑛) is constructed based on polynomial estimated hSI and can be 

derived by the Volterra series of x(n) as follows: 

�̂�(𝑛) = ℎ0 + ∑ ∑ …

𝐿1

𝑙1=−𝐿1

𝐾

𝑘=1

∑ ℎ𝑘(𝑙1, … , 𝑙𝐾) ∏ 𝑥(𝑛 − 𝑙𝑗)

𝑘

𝑗=1

𝐿𝐾

𝑙𝐾=−𝐿𝐾

 

(4.5) 

Here, K is the highest nonlinearity order, Lk is the one-sided memory length, while 2Lk+1 

represents the total memory length of the k-th order nonlinearity, and hk is the coefficient 

for each Volterra series element. Based on the formula (4.5), the �̂�(𝑛) can be estimated 

using the MMSE optimizer. In this case, the recovered SOI �̂�(𝑛) = 𝑟(𝑛) − �̂�(𝑛). The 

polynomial canceller assumes no nonlinear crosstalk between the SI and SOI, such that 

the SI can be directly subtracted from the received signal. 

The polynomial canceller is normally associated with high computation 

complexity, especially when K is large (eg. K = 5). This computation complexity comes 

from a massive number of basis functions and the calculations of basis functions. As the 

multiplications dominate the hardware resources consumption, we evaluate the cancellers’ 

complexity based on how many multiplications are required at the inference step. The 

complexity of the polynomial cancellers is: 
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𝑁𝑝𝑜𝑙𝑦 = ∑ 𝐶𝑘
2𝐿𝑘+𝑘

+ ∑(𝑘 − 1)𝐶𝑘
2𝐿𝑘+𝑘

𝐾

𝑘=1

𝐾

𝑘=1

= ∑ 𝑘𝐶𝑘
2𝐿𝑘+𝑘

𝐾

𝑘=1

 

(4.6) 

Here, the first item calculates the total number of the basis of a polynomial canceller, 

while the second item is the multiplications required for the basis function calculation. 

The linear canceller is a special case of the polynomial cancellers with K=1.  

The neural networks have demonstrated superior performance over the Volterra 

series in nonlinear equalizations, such that an intuitive idea to use neural networks for 

interference cancellation is to estimate the hSI replacing the polynomial formula. Figure 

4.6 demonstrates a conventional DNN-based canceller structure. To make it simpler, we 

use IN-H1-H2-H3-ON to represent the structure of the shown DNN. The processing flow is 

similar to polynomial cancellers but using a DNN for SI channel estimation. The total 

memory length for DNN input is 2L + 1. In this case, the �̂�(𝑛) = 𝑓𝐷𝑁𝑁(∑ 𝑥(𝑛 − 𝑙)𝐿
𝑙=−𝐿 ). 

The DNN canceller has a lower computation complexity than the compared polynomial 

cancellers based on pruned Volterra series at the inference step due to its narrow and 

deep architecture. The total complexity based on multiplications is: 

𝑁𝐷𝑁𝑁 = 𝐼𝑁 × 𝐻1 + 𝐻𝐷 × 𝑂𝑁 + ∑ 𝐻𝑖 × 𝐻𝑖+1

𝑖=𝐷−1

𝑖=1

 

(4.7) 
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Here, IN is the number of neurons at the DNN input layer, Hi is the neurons’ number at 

each hidden layer, ON is the output neuron number, and D is the depth of the DNN (the 

total number of the hidden layers).  

 

Figure 4.6 Structure and parameters of a conventional DNN canceller. 

Unfortunately, the intuitive DNN canceller is still subtraction-based, which cannot 

mitigate the nonlinear crosstalk from the SI to the SOI. For the purpose of solving this 

limitation, we design a novel DI-DNN canceller. As shown in Figure 4.7, the proposed 

DI-DNN has two separate inputs, one is from the known current SI x(n) and the other 

input is the received signal r(n) with its L precursor and L postcursor samples. In this 

case, the SOI can be directly recovered as: 

�̂�(𝑛) = 𝑓𝐷𝐼−𝐷𝑁𝑁(𝑥(𝑛), ∑ 𝑟(𝑛 − 𝑙)

𝑙=𝐿

𝑙=−𝐿

 

(4.8) 

Because of the nonlinear Relu activation function at each hidden layer, the DI-DNN can 

capture and mitigate the nonlinear SI to SOI crosstalk, which significantly improves the 
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SOI recovery performance. The DI-DNN only has a negligible complexity increase than 

DNN canceller due to the extra x(n) as the input: 

𝑁𝐷𝐼−𝐷𝑁𝑁 = (𝐼𝑁 + 1) × 𝐻1 + 𝐻𝐷 × 𝑂𝑁 + ∑ 𝐻𝑖 × 𝐻𝑖+1

𝑖=𝐷−1

𝑖=1

 

= 𝑁𝐷𝑁𝑁 + 𝐻1 

(4.9) 

 

Figure 4.7 Structure and parameters of the proposed DI-DNN canceller. 

The weights of the DI-DNN are optimized via supervised learning using training 

samples containing known inputs and corresponding outputs. The loss function is defined 

as the MSE and the loss with respect to the weights can be computed using 

backpropagation. The weight optimization is based on the Adam gradient descent 

algorithm, which implements momentum and adaptive learning rate during each weight 

update. The gradient update rule at step t is: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 
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𝑤𝑡 = 𝑤𝑡−1 − 𝜂
𝑚𝑡

√𝑣𝑡+∈
 

(4.10) 

The mt is the exponential average gradients, the vt is the exponential average of gradient 

squares, the gt is the current gradient, 𝜂  is the initial learning rate; 𝛽1 ,  𝛽2 , and∈are 

hyperparameters to fine-tune the Adam optimizer. This optimizer promises a fast and 

optimized convergence. 

4.2.2 Experimental Setup 

Figure 4.8 depicts the experimental setup and processing architecture. In the DU 

side, a C-band external cavity laser (ECL, PPCL100) is employed to generate an optical 

carrier to the Mach-Zehnder Modulator 1 (MZM1) biased at the null point. At the same 

time, a 30-GHz RF single-tone signal is modulating onto the MZM1 to obtain 60-GHz 

spacing optical sidebands based on optical carrier suppression (OCS). To compensate for 

the modulation loss from the MZM1, an EDFA (AEDFA13-B-FC) is used to boost the 

output optical signal. On the other hand, we generate a 16-QAM OFDM signal serving as 

the SI. The subcarrier spacing is 27× 15kHz=1.92 MHz compliant with 5G conventions. 

The SI signal has 104 active carriers which imply a signal bandwidth of around 200 MHz, 

while the intermediate frequency is 300 MHz. The SI signal is digital-to-analog 

converted through a 16-GSa/s arbitrary waveform generator (AWG, M8195A) and 

boosted by a modulator driver (Picosecond 5865) to modulate the optical signal at the 

MZM2, which is biased at the quadrature point. The RRU is connected to the DU with a 

15-km standard single-mode fiber (SSMF). After the detection by a V-band photodetector 

(XPDV2020R), an upconverted SI signal is generated with a 60-GHz carrier frequency. 
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The SI signal is amplified by a 25-dB gain power amplifier (PA1) before entering a 15-

dBi horn antenna. The transmit antenna is intentionally partially positioned toward the 

receive antenna to mimic strong self-interference. In the UE side, a random bit-sequence 

is generated and modulated into QPSK symbols, following by conventional OFDM DSP 

to serve as the SOI. The SOI has 52 active subcarriers with 1.92-MHz subcarrier spacing. 

The intermediate frequency is the same as the SI signal to intensify the in-band self-

interference. The SOI is upconverted to 60-GHz carrier frequency via mixing with a 

quadrupled 15-GHz RF single tone signal. The UE antenna is placed 2-meters away from 

the RRU receive antenna and the power of the SOI is controlled to verify the digital 

cancellers performance under different SOI to SI power ratio. At the RRU receive 

antenna, both the SOI and SI are captured and amplified by a low-noise amplifier (LNA). 

The received signal is down-converted by an envelope detector (ED, DET-15-RPFW0). 

Since the RRU lacks processing capability, the received signal is sent back to the DU for 

the interference cancellation and DSP using a directly modulated laser (DML) based 

IMDD link. A real-time oscilloscope (DSOZ254A) is used at the DU to sample the 

received signal to obtain data for experimental verification. 
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Figure 4.8 Experimental setup of full-duplex mmWave over fiber access system. 

4.2.3 Experimental Results and Evaluation 

Firstly, we evaluate the performance of a linear canceller. Figure 4.9(a) shows the 

SI cancellation coefficients of a 128-tap digital canceller derived from the correlation 

between pilot Tx signal and the SI. As observed, besides the dominant peak of SI, there 

are multiple notable SI components originated from microreflections due to impedance 

mismatch. Figure 4.9(b) demonstrates the spectra of the baseband OFDM SI signal before 

and after digital cancellation. The orange curve is the spectrum of a 1-GHz bandwidth SI 

signal with 520 efficient carriers over 2048 FFT size, while the blue curve is the 2-GHz 

bandwidth SI signal with 1040 efficient carriers. After the digital cancellation, both of the 

SI signals are cancelled completely down to the noise floor as shown by the purple and 

yellow curves, respectively. The cancellation performance is derived via calculating the 

difference in dB between the spectra before and after the cancellation. We experimentally 

demonstrate a 24.1-dB digital cancellation over 1-GHz bandwidth and a 19.5-dB 

cancellation over 2-GHz bandwidth in a mm-wave over fiber system, as shown in Figure 
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4.9(c). This prominent performance enables full-duplex operations over a wide 

bandwidth. 

 

Figure 4.9 (a) Cancellation coefficients over tap index; (b) self-interference signal spectra 

before and after SI cancellation; (c) cancellation performance over frequency range. 

Besides, we evaluate the cancellation performance of nonlinear cancellers based on 

Volterra series and DNNs. The proposed DI-DNN is implemented using the Tensorflow 

Keras framework. The DI-DNN consists of 1 input layer, 1 output layer and 3 hidden 

layers. The structure is (21+1)-8-4-4-1. We construct a feature dataset for the DI-DNN 

training and testing using the received signal samples and synchronized known SI 
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samples with a dimension of 195820 by 22. Each feature dataset element consists of two 

separate inputs. The first input is formed by the currently received signal sample with its 

10 precursor and 10 postcursor samples, while the second input is obtained from the 

current SI sample. The target dataset for the DI-DNN is built from the synchronized SOI 

samples with each element be the current SOI sample. The dimension of the target 

dataset is 195820 by 1. The first 2/3 of the dataset is used for DI-DNN training while the 

remaining 1/3 is used for testing. The initial step size of the Adam optimizer is set to 0.02, 

the mini-batch size is 8000, and the total training epoch is 100. Figure 4.10(a) 

demonstrates the monitored training loss and testing loss over 100 epochs when the SOI 

to SI power ratio is -6 dB. The training loss and testing loss come very close to each other 

over the whole training epochs, the testing loss is even slightly smaller than the training 

loss because the training loss is measured during each epoch while testing loss is 

measured after each epoch. The close match of the training and testing loss verifies there 

is no overfitting. To connect the testing loss to SOI recovery performance, we plot the 

recovered SOI EVM in dB over the first 20 epochs, as the DI-DNN model already 

converges to a relatively low MSE loss (below 0.014) after epoch 20. As shown in Figure 

4.10(b), the recovered SOI EVM follows the trend of the descent training/testing loss. 

The insets show how the SOI recovers from a corrupted constellation (at epoch 3) to a 

clear constellation (at epoch 19) along with the model’s evolution. 
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Figure 4.10 (a) Training and testing loss comparison; (b) EVM in dB and constellation of 

recovered SOI over the first 20 training epochs for both training and test set. 

At the last training epoch (epoch 100), the MSE loss converges to 0.008, such that 

the DI-DNN model is well-trained for performance evaluation. Figure 4.11 demonstrates 

the constellation and spectrum recovery of the SOI from the received signal. After 

applying the DI-DNN canceller, the EVM in dB of the SOI is improved from -0.2 dB to -

15.0 dB with a 14.8-dB gain achieved. The recovered constellation is clear and the SOI 

spectrum is fully recovered from a completely overwhelmed received spectrum. To 

visualize the subtraction of SI and the recovery of SOI in conventional cancellers, the 

received signal and the recovered signals are illustrated in the frequency domain. The 

hyper-parameter setting of the DNN canceller is similar to the DI-DNN for a fair 

comparison. Figure 4.12 shows the spectrum of the received signal, linear, nonlinear, and 

DNN recovered SOI, respectively. Unlike many previous papers that evaluate the 

cancellation performance with only the presence of SI, we measure the metrics more 

realistically having the SI and SOI coexist in the received signal. As shown, the linear 

canceller has a 17.4-dB cancellation depth, resulting in a 9.6-dB SNR of the recovered 

SOI. The nonlinear canceller and the DNN canceller perform similarly, both show 21.3-

dB cancellation and 12.1 dB recovered SNR. The extra 3.9-dB cancellation comes from a 
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better estimation of the SI cancellation signal considering the transmitter-side 

nonlinearity. 

 

Figure 4.11 Constellation and spectrum recovery of SOI based on the DI-DNN canceller. 
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Figure 4.12 Spectra comparison between before and after cancellation of linear canceller, 

nonlinear canceller and DNN canceller. 

The SOI to SI power ratio is an important factor to evaluate the cancellers’ 

performance, as its value significantly affects the nonlinear crosstalk from the SI to the 

SOI. Besides, with a higher SOI to SI ratio, the nonlinear channel estimation on SI will 

be less accurate, which remarkably degrades the conventional subtraction-based 

cancellers performance. Due to nonlinearity at the receiver, the received SI and SOI will 

compete for the received power. For example, -6-dB input SOI to SI ratio corresponds to 

-9.3-dB received SOI to SI ratio. In the whole context, we refer the SOI to SI ratio as 

input SOI to SI ratio.  
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Figure 4.13 SNR of recovered SOI comparison among linear, nonlinear, DNN and DI-

DNN cancellers over input SOI to SI ratio. 

Figure 4.13 demonstrates the direct comparison of SOI recovery performance under 

different SOI to SI ratio. From the shown curves, the SNR of DI-DNN recovered SOI has 

1.3-dB gain over the DNN and the nonlinear cancellers at -8.7-dB SOI to SI ratio. The 

gain is relatively small because the SI is dominant in the received signal, such that the 

nonlinear channel estimation on the SI is more accurate. Conversely, at -4.2-dB SOI to SI 

ratio, the DI-DNN canceller outperforms the DNN and the nonlinear cancellers by 5.7 dB. 

The huge margin results from a more accurate estimation of the SI cancellation signal, 

which is affected by the presence of the SOI, especially when the SOI is close to the SI in 

terms of power. This conclusion can also be justified by the declining trend of the red and 

yellow curve when SOI to SI ratio surpasses -6 dB, which indicates stronger nonlinear 

crosstalk between SOI and SI. The linear canceller performs poorly as shown by the 
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purple curve. The DI-DNN demonstrates more than 6-dB gain over the whole SOI to SI 

ratio range. 

Time complexity is another essential metric to evaluate potential real-time 

performance. Since the multiplication operations consume most of the hardware 

resources, here we take the total number of multiplications as the time complexity. Due to 

a similar neural network structure, the DI-DNN and the DNN cancellers’ complexities 

are close to each other. Based on formula (4.7) and (4.9), the total multiplications 

required at the inference step are ( 21 + 1) × 8 + 8 × 4 + 4 × 4 + 4 × 1 = 228  and 

21 × 8 + 8 × 4 + 4 × 4 + 4 × 1 = 220, respectively. The Volterra nonlinear canceller, 

on the other hand, has a much higher complexity. Its highest nonlinear order is 3, the 

linear memory length is 21, both the second and the third order nonlinear memory lengths 

are 11. Based on formula (4.6), the total multiplications required is 21 + 66 + 286 +

66 + 286 × 2 = 1011 . The DI-DNN saves 77.5% required multiplications compared 

with the Volterra nonlinear canceller. However, if compared with simpler polynomial 

models like parallel Hammerstein, the complexity reduction can be smaller. Obviously, 

the linear canceller has the least complexity with only 21 multiplications but at the cost of 

insufficient performance. The complexity comparisons are summarized in Table 4-2. 

Table 4-2 Complexity comparisons among digital cancellers. 
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4.2.4 Application in Echo Cancellation 

Full-duplex DOCSIS has been encountering a continuous uphill battle to double the 

channel capacity through resource sharing of uplink and downlink channels [88]. As the 

downstream and upstream are delivered via the same spectrum at the same time, echoes 

will arise from the internal couplings or micro-reflections in a cable system. To ensure 

the proper operations of full-duplex DOCSIS, echo cancellation is necessary, which 

shares a similar process and technology as the self-interference cancellation. In this 

subsection, we employed the proposed DI-DNN for simultaneous echo cancellation and 

upstream signal recovery with experimental validation. 

The experimental setup of the OFDM based full-duplex transmission system is 

illustrated in Figure 4.14. A 16-GSa/s arbitrary waveform generator (AWG) is employed 

to generate the downlink echo and the desired uplink signal. To evaluate the impairment 

due to the interference power from the reflected echo, a 10-dB attenuator cascaded by a 

35-dB gain amplifier are applied to boost the downlink signal. Echo signal and the 

desired signal are combined via a power combiner before entering a 10 GSa/s real-time 

scope (RTS). Both echo and uplink signal are offline encoded and decoded via Matlab. 

The typical OFDM processing is employed. The FFT size is 2048 and the subcarrier 

spacing is set as 1.92 MHz. The bandwidth of echo is fixed as 990MHz and the desired 

uplink signal bandwidth under tested are 90, 450, and 990 MHz, respectively. The 

downstream transmitted power is ranging from -10 to -18 dBm before the power 

amplifier. 
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Figure 4.14 Experimental setup of the OFDM-based full-duplex cable system. 

As one can note that in Figure 4.15, the received BER performance is getting worse 

as the bandwidth of uplink increasing. This can be understood since the output Vpp of the 

desired signal, i.e., uplink, is fixed by the AWG as 1 V. Thus, as the bandwidth 

increasing, the per subcarrier SNR is decreased. Meanwhile, the BER is getting worse 

when the DS power increasing because the echo impairment is also increasing for the 

uplink signals in this case. On the other hand, the BER performance with nonlinear 

canceller, i.e., Volterra equalizer, always outperforms the linear canceller, i.e., minimum 

mean square error (MMSE), at the cost of a much higher DSP complexity. In the case of 

90-MHz US, the BER of nonlinear canceller performs irrelevant to the power of echo 

interference. 



 94 

 

Figure 4.15 BER performance over DS power using (a) linear (b) nonlinear cancellers. 

As shown in Figure 4.16, the DNN decoding performance of 90 MHz US is close to 

the nonlinear canceller. In this case, the DS information is not needed and thus all the RE 

can be fully utilized for the full-duplex operation. However, the performance of DNN 

drops quickly as the bandwidth increasing to 450MHz. DNN only outperforms the linear 

canceler in the strong interference range of DS power over -15 dBm, in such range, both 

DNN and linear canceler cannot achieve the FEC threshold requirement even with 20% 

overhand. This performance degradation may be caused by the insufficient vertical 

resolution of the received signal, since the peak to average power ratio (PAPR) increase 

proportional to the active subcarrier number. To circumvent this restriction, a 

straightforward method is reducing the active subcarrier number at the cost of reducing 

the bandwidth. 
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Figure 4.16 BER performance versus interference with the DNN canceller: (a) training 

set; (b) test set. 

To get the better DNN performance and keep the transmission bandwidth, we can 

reduce the fast Fourier transform (FFT) size and active subcarrier number as well as 

increase the subcarrier spacing. Bandwidth under tested are 1GHz and 1.8GHz to comply 

with the DOCSIS 4.0 requirement. The active subcarrier number are 32 and 58, 

respectively. With the new settings, the US and echo have the same bandwidth for the 

FDX operation. the DNN canceller outperforms the conventional linear and non-linear 

DSPs in both scenarios as shown in Figure 4.17. The test set data performance is close to 

the training set, which implies no overfitting issue. The received performance is 

independent of the bandwidth increment. 
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Figure 4.17 Wideband echo cancellation BER performance based on (a) conventional 

DSPs; (b) DNN. 

4.2.5 Summary 

We propose a novel DI-DNN canceller for simultaneous nonlinear SI cancellation 

and the SOI recovery. The DI-DNN canceller demonstrates significant SNR gain over the 

nonlinear and the DNN cancellers especially when the SOI to SI ratio is small. A 

remarkable 5.7-dB gain is realized at a ratio equals -4.3 dB. The proposed DI-DNN 

canceller, together with the mmWave-RoF implementation serves as a promising 

candidate for the 5G and beyond full-duplex wireless communication networks. Besides, 

we expand the applicability of the DI-DNN for echo cancellation in full-duplex DOCSIS. 

Better BER performance is observed at any measured DS transmission power for both 1 

GHz and 1.8 GHz bandwidth cases. The results show the DNN canceller is robust for 

different configurations and working conditions of the coaxial cable network, offering a 

future-proof solution for cable operators to satisfy the exponentially growing bandwidth 

demand without dramatic infrastructure change. 
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4.3 Parallel Interference Cancellation 

In this section, for the first time, we propose a Convolutional Neural Network based 

PIC (CNN-PIC) for decoding the NOMA signals in mmWave-RAN. The CNN-PIC 

effectively avoids the error propagation while mitigating the nonlinear impairments from 

the transmission link simultaneously. Experimental results show significant gain over the 

SIC in NOMA signal recovery and decoding performance. Moreover, the CNN-PIC is 

capable to recover the UE signals even under small power difference among the UEs, 

where the SIC fails to suffice. Our related work has been published in OECC [89]. 

4.3.1 Operating Principles 

Figure 4.18(a) shows a schematic diagram of NOMA with two UEs. Here, we 

denote 𝑠1(𝑡) and 𝑠2(𝑡) as the transmitted signals from UE1 and UE2, respectively. The 

𝑠1(𝑡) and 𝑠2(𝑡) are superimposed at the RRU, where the power ratio are determined by 

their transmitted power and the corresponding channel conditions. Assume that the UE1 

is the user with a stronger transmitted power 𝑃1, while the UE2 has a weaker transmitted 

power 𝑃2. Then the NOMA signal received at the RRU can be represented as  

𝑟(𝑡) = 𝑓 (∑ ℎ𝑖√𝑃𝑖

2

𝑖=1
∙ 𝑠𝑖(𝑡)) 

(4.11) 

where ℎ𝑖  is the channel attenuation coefficient while the 𝑓(∗)  represents a nonlinear 

channel transfer function. The 𝑟(𝑡) is then downconverted and digitized by an analog to 

digital converter (ADC) for the NOMA decoding. To avoid additional DSP and extra 
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delays from ranging and time synchronization in UEs, the uplink NOMA signal is 

asynchronous which requires waveform-level SIC in conventional solutions [90]. In the 

SIC scheme, the UE1 signal is decoded first using a standard OFDM decoding process by 

treating the UE2 signal as noise. The decoded UE1 symbol 𝑧1(𝑛) is used to recontruct an 

estimated UE1 waveform �̂�1(𝑛) , which is then subtracted in time-domain from the 

digitized received signal 𝑟(𝑛) for UE2 signal recovery. In the case of low signal-to-

interference-plus-noise ratio (SINR), decoding the UE1 signal could cause an inaccurate 

 

Figure 4.18 (a) NOMA illustration diagram. (b) CNN-PIC architecture. 
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channel estimation and high BER, which further lead to severe error propagation. Besides, 

the simple subtraction process of SIC neglects the receiver nonlinearity at the RRU, 

resulting in a strong residual interference. However, in our proposed CNN-PIC, UE1 and 

UE2 signals can be jointly recovered for NOMA decoding without the aforementioned 

drawbacks. As shown in Figure 4.18(b) of the CNN-PIC architecture, there are two 

neurons at the output layer, corresponding to the recovered UE1 signal �̂�1(𝑛) and UE2 

signal �̂�2(𝑛). The 𝜑𝑟 is a 1-D tensor formed by the current received sample 𝑟(𝑛) and its 

precedent/subsequent samples. The 𝜑𝑟 goes through two layers of convolution process 

with 10 different kernel filters at each layer. Batch normalization is inserted before the 

Relu activation function to prevent overfitting, and the maxpooling is followed for 

downsampling. The output of the second convolution layer is flattened as the input to the 

feedforward neural network with two hidden layers. Each hidden layer has 32 neurons 

with Relu as the activation function. At the output layer, a joint MSE loss function is 

defined:  

𝐿𝑜𝑠𝑠 =  𝛼 ∙ (�̂�1(𝑛) − 𝑠2(𝑛))2 + (1 − 𝛼) ∙ (�̂�2(𝑛) − 𝑠1(𝑛))2 

(4.12) 

The 𝛼 is a weighting factor to determine the contribution of each MSE loss to the total 

loss for optimization.  

4.3.2 Experimental Setup and Results 

The proof-of-concept experimental setup is depicted in Figure 4.19. For each UE, a 

uniformly distributed binary sequence is generated in MATLAB, which is then 4QAM 
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modulated and followed by the conventional OFDM DSP. The subcarrier spacing is set to 

1.92 MHz, complying to the 5G conventions. To differentiate the signals from the two 

UEs, 104 subcarriers are data-loaded for the UE1 signal indicating a 200-MHz bandwidth, 

whereas UE2 signal has a 100-MHz bandwidth with 52 active subcarriers. Each signal is 

digitally upconverted to a 300-MHz intermediate frequency. The OFDM waveform is 

generated by a 16-GSa/s arbitrary waveform generator (AWG, M8195A), while the 

transmitted power is tuned by the output voltage (Vp) of the corresponded AWG channel. 

At each UE, a mixer is used to upconvert the analog signal to 52.92-GHz carrier 

generated by quadrupling a 13.23-GHz RF source. The mmWave signal is further 

boosted by a 25-dB gain power amplifier (PA) before entering the 15-dBi transmit horn 

antenna. The Tx and Rx antennas are separated by 4 feets. At the RRU side, another 15-

dBi receive horn antenna captures both signals from the two UEs, forming a NOMA 

signal. The NOMA signal is downconverted by an envelope detector (ED, DET-15-

RPFW0) and converted to optical signal through a directly modulated laser (DML). After 

propagating through a 10-km standard single mode fiber (SSMF), the signal is detected 

by a photodetector (PD) at the DU, whose output connects to a 10-GSa/s oscilloscope 

(DSOZ254A) for digitization. The digitized samples are used in the following waveform-

level SIC or CNN-PIC to compare the decoding performance. 
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Figure 4.19 Experimental setup for NOMA PIC. 

Figure 4.20(a) shows the training and testing loss of the CNN-PIC versus the 

training epoch. Among a total 195840 received digitized samples, the first 70% percent is 

separated as the training set and the remaining 30% is used as the test set. The testing loss 

follows a similar descending curve as the training loss without significant deviation, 

showing no overfitting issue. Figure 4.20(b) illustrates the waveform-level SIC in the 

spectral domain, where the UE2 signal is clearly recovered from the received spectrum. 

However, the corrupted UE2 constellation indicates a severe error propagation issue with 

a 92.31% EVM, which arises from the decoding error of UE1 signal with a 51.74% EVM, 

causing the failure of SIC. On the contrary, the proposed CNN-PIC recovers both the 

UE1 signal and UE2 signal in parallel, while mitigates the nonlinear channel impairments 

simultaneously as demonstrated by the spectra in Figure 4.20(c). Besides, clear 

constellations are obtained for both UE signals with a 23.02% EVM for UE1 and a 39.56% 

EVM for UE2, respectively. 
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Figure 4.20 (a) Training and testing MSE loss versus training epoch. (b) Spectra 

comparison before and after applying SIC. (c) Spectra comparison before and after 

applying CNN-PIC. 

To examine the performance of the CNN-PIC over different power ratio, we scan 

the Vp of the UE2 from 0.08 V to 0.36 V. The power density of the UE2 signal even 

surpasses the UE1 when UE Vp ≥  0.28V. As shown in Figure 4.21(a), significant 

improvement of NOMA signal recovery is achieved by the CNN-PIC compared to the 



 103 

SIC especially under smaller power ratio. The recovered SNR gain of UE2 over the SIC 

becomes smaller at a lower UE2 Vp. This phenomenon is owing to the fact that the CNN-

PIC recovers the NOMA signal by find the correlations while the SIC is susceptible to 

severe error propagation under limited SINR. At a lower UE2 Vp, the decoding error of 

UE1 signal is smaller due to a higher SINR. Conversely, the correlation between the UE2 

signal and the received signal becomes weaker with a lower UE2 signal power. Figure 

4.21(b) demonstrates the sensitivity test in the NOMA mmWave-RoF system at 0.18-V 

UE2 Vp. The UE1 and UE2 using the CNN-PIC reach -5.7-dBm and -1.5-dBm 

sensitivity at 7% overhead HD-FEC threshold, respectively. On the other hand, the 

waveform-level SIC based NOMA decoding fails to reach any threshold over the 

received optical power (RoP) because of the dominant residual interference causing by 

nonlinear degradations and error propagations. 

 

Figure 4.21 (a) NOMA signal recovery comparison under different UE2 power. (b) 

Sensitivity test of the link over 10-km SSMF. 
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4.3.3 Summary 

 We propose a novel CNN-PIC scheme for NOMA signal decoding and recovery in 

mmWave-RAN. The CNN-PIC recovers all the UE signals in parallel while mitigating 

the channel nonlinear impairments simultaneously. Significant improvements are 

observed in the recovered signal SNR due to the elimination of error propagation, which 

is otherwise suffered by the conventional waveform-level SIC. Moreover, -5.7dBm and -

1.5dBm sensitivity are achieved in the link transmission test for UE1 and UE2, 

respectively. The demonstrated results justify the effectiveness of the CNN-PIC scheme, 

which provide a viable solution for NOMA implementation in 5G/6G mmWave-RAN. 
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CHAPTER 5. CONCLUSIONS 

5.1 Technical Contributions 

This dissertation studies the methodologies for the transmission performance 

optimization in fiber-wireless access network. We investigate the underlying 

infrastructure and improve the system design to support higher capacity and bandwidth 

utilization. The core innovations are centered on the implementation of machine learning 

techniques. We design neural networks based equalizer and pre-distorter to mitigate the 

nonlinear impairments arising from the overwhelmed small dynamic range of modern 

RANs, which are even more severe with advanced modulation formats. Considering the 

unprecedently complex interference in 5G and beyond era, we design a proactive 

interference avoidance scheme using RL and an efficient SI cancellation method using 

DI-DNN. Besides, a CNN based PIC solution is demonstrated to facilitate NOMA 

decoding. The technical contributions of the research thrusts are summarized below. 

5.1.1 Advanced Signal Recovery and Modulation 

 The fronthaul link in a modern RAN is associated with non-negligible nonlinear 

impairments due to the limited dynamic range of the deployed low-cost optics/electronics 

components. The nonlinear degradations will be more severe when advanced modulation 

formats are implemented to improve the spectral efficiency. In this study, we design a 

DNN decoder which can effectively mitigate the nonlinear distortions. Both PAM8 and 

PS-PAM8 transmission are experimentally validated. Besides, to utilize the centralized 
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DSP resources of RANs, we invent a CNN enhanced DPD scheme that resolves the 

nonlinear degradations from the whole link at the transmitter side.  

To enhance the multi-level signal recovery, a deep neural network (DNN) decoder 

which combines the function of both equalization and decoding is proposed and 

experimentally demonstrated for mobile fronthaul (MFH) transmission. This DNN 

consists of one input layer, one output layer, and several hidden layers. Adamax 

algorithm is implemented for finding the global minima while dropout mechanism and 

early stopping are utilized to avoid overfitting. The DNN accepts the received samples as 

the input and generates the decoded samples directly to recover the transmitted samples. 

Using this DNN decoder, a pace-setting data-rate transmission-distance product at 1800-

Gbps·km based on the directly modulated laser (DML) with intensity-modulation direct-

detection (IMDD) is obtained. Besides, the PAM8 modulation with 3-bps/Hz spectral 

efficiency is implemented. Due to the smaller source spectrum bandwidth compared with 

traditionally widely used PAM4 and OOK at a certain data-rate, the power fading limited 

transmission distance is extended by 1.5 and 3 times, respectively. 

To mitigate the capacity crunch in RANs, we integrate the PS-PAM8 and the DNN 

decoder. The PS-PAM8 is power efficient and offers a higher flexibility to adapt the 

channel frequency response. However, the higher PAPR introduced by PS will make the 

nonlinear impairments even more severe. We therefore implement the DNN decoder for 

nonlinear compensation and improve the receiver sensitivity by 3.2-dB. Adding up the 

4.1-dB gain from PS-PAM8, an 80-Gb/s over 20-km SSMF transmission performance is 

realized with a beyond 7.3-dB gross gain over uniform PAM modulations with linear 

post-equalization. 
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To better utilize the centralized computing resources in RANs and simplify the DSP 

design in the receiver. We combine the DMT and PS to exploit the channel capacity and 

integrate CNN-DPD to mitigate the impairments from the amplifier nonlinearity and 

inherent nonlinearity of electrical to optical (E/O) and optical to electrical (O/E) 

conversion. A 68.2-Gb/s net data-rate probabilistic shaped discrete multi-tone 

transmission in passive optical network with 11G-class devices. The convolutional neural 

network strengthens the digital predistortion performance with 1.1-dB improvement of 

system sensitivity over linear pre-equalization. 

5.1.2 Enhanced PON supporting D-RoF Transmission 

The PON infrastructure allows the sharing of optical fibers and transmission 

equipment to support low-cost configuration of RANs. However, the bandwidth of 

conventional PONs is becoming deficient to support the dramatic traffic in D-RoF 

transmission. Besides, the bandwidth utilization and latency are not optimized to support 

5G mobile services. 

To improve the capacity of PON, we utilize a low-cost lite coherent receiver to 

achieve high receiver sensitivity, flexible wavelength channel selection, and digital 

dispersion/link impairment compensation. A pace-setting symmetric 50 Gb/s/λ 16-QAM 

transmission over 100-km SSMF with 40.1-dB link budget based on 10G-class 

electrical/optical components is demonstrated. The symmetrical architecture in the OLT 

and ONU enables equivalent transmission rate between the downlink and uplink. Besides, 

the prototype lite coherent system can also support high-capacity OLT-less inter-ONU 

communications. 



 108 

To improve the utilization of the uplink bandwidth and reduce the network latency, 

a novel intelligent bandwidth allocation scheme in NG-EPON using reinforcement 

learning is proposed and demonstrated for latency management. The proposed scheme 

can realize a future-proof IBA in NG-EPON, with < 1 ms average latency under both 

fixed and dynamic traffic loads scenarios.  

5.1.3 Interference Avoidance and Cancellation 

The wireless interferences are unprecedently complex in 5G and beyond RANs. 

Conventional static planning and human-centric interference hunting schemes are 

becoming inadequate. Besides, self-interference is a rising issue as full-duplex 

communication is introduced to magnify the channel capacity. 

To avoid the interference, we propose and experimentally verify a real-time 

proactive interference avoidance scheme in a mmWave-RoF based RAN using 

reinforcement learning. The RL agent have several essential factors, including state, 

action, and reward. The state is defined as a discretized value from the center frequency, 

the left, right, and center sub-EVM of the signal. The action space has 5 options, which 

are −20, −10, 0, 10, and 20 MHz. The RL agent will choose the most proper action to 

avoid the dynamic interference. To learn from the experience, the reward is defined as the 

log value of BER difference between the past and the present state. The RL-based 

approach is an online learning algorithm, which learns in real time based on 

environmental feedbacks. Besides, the agent learns from past trails/errors and updates Q 

table accordingly, which enables it to respond intelligently when facing a similar 
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situation again. We verify the capability of the proposed scheme under both fixed and 

dynamic interference scenarios. 

For the self-interference cancellation, an efficient method for simultaneous 

nonlinear self-interference cancellation and signal-of-interest recovery is proposed and 

experimentally verified in a mmWave over fiber testbed, based on a specially designed 

dual-input deep neural network (DI-DNN). The mmWave band is more realistic to 

implement full-duplex communication compared with the conventional sub-6GHz band, 

as it operates as a highly directional beam and shorter transmission distance resulting in a 

higher SOI to SI ratio. We mitigate the nonlinearity arising from the transmitters of both 

the SI and SOI, as well as the nonlinear crosstalk from the SI to the SOI after the 

detection by a nonlinear receiver. Significant SNR gain is achieved over the nonlinear 

and the DNN cancellers, especially when the SOI to SI ratio is small. A remarkable 5.7-

dB gain is realized at a ratio equals -4.3 dB. Moreover, the expanded application of DI-

DNN on echo cancellation for full-duplex DOCSIS is also successful. Higher signal 

quality is obtained at various DS transmission power for both 1 GHz and 1.8 GHz 

bandwidth cases. 

To mitigate the inter-user interference in NOMA decoding and alleviate the error 

propagation in SIC, we propose a novel CNN-PIC scheme for NOMA signal decoding 

and recovery in mmWave-RAN. The CNN-PIC recovers all the UE signals in parallel 

while mitigates the channel nonlinear impairments simultaneously. Prominent 

improvements are observed in the recovered signal SNR because of the alleviation on 

error propagation, which is otherwise suffered by the conventional waveform-level SIC. 

Moreover, -5.7dBm and -1.5dBm sensitivity levels are achieved in the link transmission 
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test for UE1 and UE2, respectively. The demonstrated results prove the effectiveness of 

the CNN-PIC scheme, which provides a viable solution for NOMA implementation in 

5G/6G mmWave-RAN. 

5.2 Future Research Topics 

5.2.1 Joint Equalization and Digital Predistortion 

An important part of this dissertation is designing and implementing neural 

networks based digital predistortion and post-equalization to mitigate the nonlinear 

impairments in the fiber-wireless network. However, the dedicated DSP modules in the 

transmitter and receiver are not optimized for the end-to-end transmission, resulting in a 

deficient nonlinear compensation. Besides, they may also enhance the noise power and 

introduce excess power loss. Consequently, the implementation of a fiber-wireless link as 

an end-to-end neural network would help derive the optimal joint equalization and digital 

predistortion functions. This method allows the optimization for a specific metric to be 

done in a single deep learning process for the whole link, which deserves further 

investigations in the future. 

5.2.2 Proactive Interference Mitigation using Deep Q Network 

We have demonstrated a proactive interference avoidance scheme through shifting 

the signal carrier frequency. In a more complex scenario, limiting the actions to 

frequency shifting only might not be sufficient. Other straightforward interference 

mitigation actions can be power controlling, beam steering, waveform adapting, etc. 

Besides, the decision-making of a reinforcement learning agent needs more precise state 
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information to analyze the characteristics of interferences. Under those circumstances, Q-

table based learning process becomes ineffective. On the other hand, the Deep Q 

Network (DQN) is able to accept continuous states value such that a significantly larger 

state-action space can be supported. The DQN only saves the DNN weights instead of a 

massive Q-table, which remarkably relaxes the memory requirements [91]. Therefore, the 

DQN based RL could be an impactful candidate to solve more complex interferences. 
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