25 research outputs found

    Building Detection using Aerial Images and Digital Surface Models

    Get PDF
    In this paper a method for building detection in aerial images based on variational inference of logistic regression is proposed. It consists of three steps. In order to characterize the appearances of buildings in aerial images, an effective bag-of-Words (BoW) method is applied for feature extraction in the first step. In the second step, a classifier of logistic regression is learned using these local features. The logistic regression can be trained using different methods. In this paper we adopt a fully Bayesian treatment for learning the classifier, which has a number of obvious advantages over other learning methods. Due to the presence of hyper prior in the probabilistic model of logistic regression, approximate inference methods have to be applied for prediction. In order to speed up the inference, a variational inference method based on mean field instead of stochastic approximation such as Markov Chain Monte Carlo is applied. After the prediction, a probabilistic map is obtained. In the third step, a fully connected conditional random field model is formulated and the probabilistic map is used as the data term in the model. A mean field inference is utilized in order to obtain a binary building mask. A benchmark data set consisting of aerial images and digital surfaced model (DSM) released by ISPRS for 2D semantic labeling is used for performance evaluation. The results demonstrate the effectiveness of the proposed method

    BUILDING EXTRACTION FROM REMOTE SENSING DATA USING FULLY CONVOLUTIONAL NETWORKS

    Get PDF

    Automatic building detection in aerial and satellite images

    Full text link
    Abstract—Automatic creation of 3D urban city maps could be an innovative way for providing geometric data for varieties of applications such as civilian emergency situations, natural disaster management, military situations, and urban planning. Reliable and consistent extraction of quantitative information from remotely sensed imagery is crucial to the success of any of the above applications. This paper describes the development of an automated roof detection system from single monocular electro-optic satellite imagery. The system employs a fresh ap-proach in which each input image is segmented at several levels. The border line definition of such segments combined with line segments detected on the original image are used to generate a set of quadrilateral rooftop hypotheses. For each hypothesis a probability score is computed that represents the evidence of true building according to the image gradient field and line segment definitions. The presented results demonstrate that the system is capable of detecting small gabled residential rooftops with variant light reflection properties with high positional accuracies. Index Terms—Building extraction, satellite image processing, aerial image processing, photogrammetry, computer vision, geo-metrical shape extraction. I

    BUILDING DETECTION USING AERIAL IMAGES AND DIGITAL SURFACE MODELS

    Get PDF
    In this paper a method for building detection in aerial images based on variational inference of logistic regression is proposed. It consists of three steps. In order to characterize the appearances of buildings in aerial images, an effective bag-of-Words (BoW) method is applied for feature extraction in the first step. In the second step, a classifier of logistic regression is learned using these local features. The logistic regression can be trained using different methods. In this paper we adopt a fully Bayesian treatment for learning the classifier, which has a number of obvious advantages over other learning methods. Due to the presence of hyper prior in the probabilistic model of logistic regression, approximate inference methods have to be applied for prediction. In order to speed up the inference, a variational inference method based on mean field instead of stochastic approximation such as Markov Chain Monte Carlo is applied. After the prediction, a probabilistic map is obtained. In the third step, a fully connected conditional random field model is formulated and the probabilistic map is used as the data term in the model. A mean field inference is utilized in order to obtain a binary building mask. A benchmark data set consisting of aerial images and digital surfaced model (DSM) released by ISPRS for 2D semantic labeling is used for performance evaluation. The results demonstrate the effectiveness of the proposed method

    Detection of fragmented rectangular enclosures in very high resolution remote sensing images

    Get PDF
    We develop an approach for the detection of ruins of livestock enclosures (LEs) in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfectly regular enclosures but also for ruined ones with distorted angles, fragmented walls, or even a completely missing wall. Furthermore, it has a zero value for spurious structures with less than three sides of a perceivable rectangle. We show how the detection performance can be improved by learning a linear combination of the rectangularity and size features from just a few available representative examples and a large number of negatives. Our approach allowed detection of enclosures in the Silvretta Alps that were previously unknown. A comparative performance analysis is provided. Among other features, our comparison includes the state-of-the-art features that were generated by pretrained deep convolutional neural networks (CNNs). The deep CNN features, although learned from a very different type of images, provided the basic ability to capture the visual concept of the LEs. However, our handcrafted rectangularity-size features showed considerably higher performance.European Prehistor

    BUILDING ROOF BOUNDARY EXTRACTION FROM LiDAR AND IMAGE DATA BASED ON MARKOV RANDOM FIELD

    Get PDF

    Detection of incomplete enclosures of rectangular shape in remotely sensed images

    Get PDF
    We develop an approach for detection of ruins of livestock enclosures in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a new rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfect enclosures, but also for broken ones with distorted angles, fragmented walls, or even a completely missing wall. However, it has zero value for spurious structures with less than three sides of a perceivable rectangle. Performance analysis using large imagery of an alpine environment is provided. We show how the detection performance can be improved by learning from only a few representative examples and a large number of negatives.Computer SciencesEuropean Prehistor

    Research on robust salient object extraction in image

    Get PDF
    制度:新 ; 文部省報告番号:甲2641号 ; 学位の種類:博士(工学) ; 授与年月日:2008/3/15 ; 早大学位記番号:新480

    Automatic Detection of Compound Structures by Joint Selection of Region Groups from a Hierarchical Segmentation

    Get PDF
    A challenging problem in remote sensing image analysis is the detection of heterogeneous compound structures such as different types of residential, industrial, and agricultural areas that are composed of spatial arrangements of simple primitive objects such as buildings and trees. We describe a generic method for the modeling and detection of compound structures that involve arrangements of an unknown number of primitives in large scenes. The modeling process starts with a single example structure, considers the primitive objects as random variables, builds a contextual model of their arrangements using a Markov random field, and learns the parameters of this model via sampling from the corresponding maximum entropy distribution. The detection task is formulated as the selection of multiple subsets of candidate regions from a hierarchical segmentation where each set of selected regions constitutes an instance of the example compound structure. The combinatorial selection problem is solved by the joint sampling of groups of regions by maximizing the likelihood of their individual appearances and relative spatial arrangements. Experiments using very high spatial resolution images show that the proposed method can effectively localize an unknown number of instances of different compound structures that cannot be detected by using spectral and shape features alone. © 2015 IEEE
    corecore