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ABSTRACT: 

In this paper a method for automatic extraction of building roof boundaries is proposed, which combines LiDAR data and high-
resolution aerial images. The proposed method is based on three steps. In the first step aboveground objects are extracted from 
LiDAR data. Initially a filtering algorithm is used to process the original LiDAR data for getting ground and non-ground points. 
Then, a region-growing procedure and the convex hull algorithm are sequentially used to extract polylines that represent 
aboveground objects from the non-ground point cloud. The second step consists in extracting corresponding LiDAR-derived 
aboveground objects from a high-resolution aerial image. In order to avoid searching for the interest objects over the whole image, 
the LiDAR-derived aboveground objects’ polylines are photogrammetrically projected onto the image space and rectangular 
bounding boxes (sub-images) that enclose projected polylines are generated. Each sub-image is processed for extracting the polyline 
that represents the interest aboveground object within the selected sub-image. Last step consists in identifying polylines that 
represent building roof boundaries. We use the Markov Random Field (MRF) model for modelling building roof characteristics and 
spatial configurations. Polylines that represent building roof boundaries are found by optimizing the resulting MRF energy function 
using the Genetic Algorithm. Experimental results are presented and discussed in this paper. 

* Corresponding author

1. INTRODUCTION

Building extraction methods are important in the context of 
capturing and updating spatial data for applications that involve 
urban areas. However, automated building roof extraction has 
remained a challenging task, mainly due to the varying building 
roof configurations, the varying neighbourhood contexts, and 
noise in the input data. High-resolution images are rich in 
semantic information and in fine geometric details, but they can 
be affected by illumination differences and occlusions. 
However, the Light Detection and Ranging (LiDAR) system 
directly provides three-dimensional point clouds with high 
confidence height information, which is the most useful data for 
detecting aboveground objects. However, LiDAR data are poor 
in semantic information and, due to the inherent subsampling 
process, are also poor in fine geometric details. Due to the 
complementary characteristics of these two data sources, it is 
expected that objects, such as buildings, can be extracted with 
more accuracy, completeness, and reliability than by using a 
single data source.  

In view of the complementary characteristics of the LiDAR and 
image data, the combination of both data sources is a promising 
strategy for extracting high-quality building roof boundaries. In 
Chen and Zhao (2012) LiDAR data are used to generate a 
normalized Digital Surface Model (nDSM), from which 
candidates are obtained to represent buildings. Image 
information is used to help the vegetation filtering. In 
Awrangjeb et al. (2013) information from LIDAR data and 
multispectral imagery are used for detecting and extracting 
straight lines. LiDAR points are further classified into ground 
and non-ground points and, those from the non-ground points' 
set are checked for proximity to long straight lines. LiDAR 
points that satisfy this criterion are used for modelling the roof 
planes and reconstructing the whole building roof. Li et al. 

(2013) also explores the complementary advantages of LiDAR 
data and optical imagery. This method is fully data-driven and 
the main steps are: points of each roof patch are detected from 
LiDAR point cloud; initial building edges are extracted from 
optical imagery using a modified Canny detector; building 
boundaries are extracted by combining the previous derived 
roof patches and edges. Zhou and Zhou (2014) proposed a 
seamless fusion between LiDAR and aerial imagery using 
aspect graphs, which utilize house features like geometry, 
structures, and shapes. A method for building and tree detection 
from LiDAR data and aerial images is presented in Zarea and 
Mohammadzadeh (2016), which combines several image 
analysis tools, like the support vector machine, mathematical 
morphology, and k-means cluster algorithm. 

A theory that has been gaining ground in feature extraction, 
such as in the extraction of buildings, is the probabilistic theory 
of Markov Random Field (MRF) (Krishnamachari and 
Chellappa, 1996; Katartzis and Sahli, 2008; Ferraioli, 2010; 
Galvanin and Dal Poz, 2012; Fernandes and Dal Poz, 2016). 
The great advantage of using the MRF model is that this 
formalism easily allows the characterization of contextual 
information. Specifically, the analysis of complex urban scenes 
can be facilitated if neighbourhood information is incorporated 
into the scene modelling. In this context, this paper proposes a 
method for the automatic extraction of building roof boundaries 
that integrates LiDAR data and high-resolution aerial images, 
which is based on an MRF-based energy function. This energy 
function is developed on the basis of assumptions that roofs are 
rectilinear (i.e., with roof sides intersecting at right angles) and 
spatially distributed in a block or grid pattern. This paper is 
organized as follows: Section 2 describes the proposed method; 
Section 3 presents the experimental results; and the main 
conclusions and future perspectives are presented in Section 4. 
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2. PROPOSED METHOD FOR EXTRACTION OF 
BUILDING ROOF BOUNDARIES 

The proposed method is based on the following three steps: 
extraction of polylines delimiting aboveground objects (e. g., 
vegetation and buildings) from LiDAR data; extraction of 
polylines delimiting the same aboveground objects (extracted 
from LiDAR data) from a high-resolution aerial image; and 
recognition of the building roof boundaries by a Markov 
Random Field (MRF) analysis of the aboveground objects 
previously extracted from the LiDAR and image data. 
 
2.1 Extraction of aboveground object boundaries from 
LiDAR and image data 

Our procedures for extracting aboveground objects from 
LiDAR and image data use standard algorithms (like the region 
growing segmentation algorithm, the convex hull boundary 
extraction algorithm, and the watershed segmentation method). 
As such, only general procedures are presented below. 
 
The extraction of aboveground objects from LiDAR data is 
accomplished as follows. First, the original LiDAR point cloud 
is submitted to a filtering algorithm for getting ground and non-
ground points. These two sets of points allow the generation of 
a Digital Surface Model (MDS) and a Digital Terrain Model 
(MDT). Second, an nDSM is computed by subtracting the MDT 
from the MDS. Third, taking into account that building roof 
points are found above certain height above the ground (e.g., 2.5 
m), points below a height threshold are eliminated from the 
nDSM. Fourth, the region-growing algorithm is applied to 
remaining points to group points into segments based on the 
proximity criterion. Next, the convex hull algorithm is used for 
computing polylines that represent boundaries of segments 
(aboveground objects) previously derived. Last, polylines that 
are below a minimum area threshold (ta) are discarded. 
 
Next step consists in extracting corresponding LiDAR-derived 
aboveground objects from a high-resolution aerial image. In 
order to avoid searching for the interest objects over the whole 
image, the LiDAR-derived aboveground objects’ polylines are 
photogrammetrically projected onto the image space and 
rectangular bounding boxes that enclose projected polylines are 
generated. A segmentation scheme is applied to each sub-image 
that is delimited by a rectangular bounding box. One basic 
difficult in segmenting a building roof in a high-resolution 
aerial image is the difference in illumination among roof faces 
with different orientations. In order to mitigate this problem and 
facilitate the roof segmentation into a unique segment, first the 
RGB input image is transformed into the YUV colour system. 
Second, U and V components are used to generate a two-
dimensional histogram, which is further smoothed by the mean 
to reduce the noise. The smoothed histogram is now segmented 
by the watershed method for separating relevant regions inside a 
selected sub-image.  Finally, taking into account that the interest 
object (i. e., the building roof) is the largest inside the selected 
sub-image, the polyline with largest area is selected to be a 
candidate to represent a building roof boundary for this sub-
image. 
  
2.2 Identification of building roof polylines 

The MRF model has the advantage of characterizing the 
contextual knowledge by modeling the spatial relationships 
between the primitives (e.g., segments of lines, polylines etc.) 
that represent real world objects. 

Let X= {X1, X2, …, Xn} be a family of random variables that are 
defined over the set of n primitives R= {R1, R2, ..., Rn}, where 
each Xi corresponds to Ri. According to the Hammersley–
Clifford theorem (Kopparapu and Desai, 2001), an MRF can be 
characterized by the Gibbs distribution, i.e., 
 

                     
)(exp1][ xU

Z
xXP −==  (1) 

 
Where: x is a realization of X; Z is a normalization constant; and 
U(x) is the Gibbs energy function. 
 
The energy function U(x) can be formulated to model geometric 
and contextual information of building roofs. An energy 
function with these characteristics has been formulated with the 
basis of polylines that represent aboveground objects extracted 
from the LiDAR and image data. It is worthy anticipating that 
the energy function U(x) is formulated by using the LiDAR-
derived polylines projected onto the image-space, instead of 
original polylines extracted from LiDAR data. The energy 
function is defined so that each aboveground object is 
associated with a random variable (xi), which takes binary 
values: 1 (one) if the aboveground object is a building roof; or 0 
(zero) otherwise. This rule results in an n-dimensional random 
vector, where n is the number of aboveground objects extracted 
from the LiDAR/image data. This random vector is the 
unknown that is determined in an optimization process. 
 
The energy function U(x) is formulated with the basis of three 
energy terms, which are based on the following properties: the 
rectangularity; the spatial relationship; and the relative 
orientation. 
 
In the first energy term (U1(x)), which is based on the 
rectangularity attribute, the basic idea is to favor aboveground 
objects with rectilinear geometry, i.e., objects delimited by 
straight-line segments that intersect at approximately right 
angles. The rectangularity attribute is defined as the angle 
between the main and secondary direction of the polyline that 
represent an object boundary. This angle is exactly 90o for a 
perfect rectilinear polyline. The rectangularity is computed for 
each polyline extracted from the image and for the 
corresponding projected polyline. As roof polylines extracted 
from the high-resolution image are geometrically better than the 
corresponding projected (LiDAR-derived) polylines, we model 
this prior knowledge in the rectangularity energy term (Equation 
2) by using a higher weight for the rectangularity computed for 
the former polylines (those extracted from the image). 
 

                     (2) 
 
Where:   and ;  is the absolute 
value operator;  and  are angles between the main and 
secondary directions of the polyline extracted from the image 
and the corresponding projected polyline, respectively; and  
and  are weights assigned to rectangularities computed for the 
polyline extracted from the image and for the projected 
polyline, respectively ( ). 
 
The spatial energy term (Equation 3) should favour building 
roofs that are spatially arranged so that their main or secondary 
directions are parallel or perpendicular to one another. 
 

          (3) 
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Where:  and ;  is 
the angle between the main directions of ith and jth aboveground 
objects extracted from the image;  is the angle between main 
directions of corresponding project aboveground objects (i. e., 
the ith and jth aboveground objects); and  and  are weights 
associated to the spatial orientation term for aboveground 
objects extracted from the image ( ) and for corresponding 
projected aboveground objects ( ), respectively. Therefore, 
the spatial relationships within the two sets of polyline 
(extracted from the image and corresponding ones projected 
onto the image) are balanced together according to the spatial 
relationship energy term (Equation 3). Due to the same reason 
already discussed, it is necessary to assign a higher value for the 
weight , such that . 
 
The relative orientation energy term (Equation 4) is computed 
in function of angles between the main directions of the 
polylines extracted from the image and the corresponding 
projected polylines. Thus, polylines that represent rectilinear 
roofs should be benefited, because the main directions of pair of 
polylines extracted from the image and corresponding projected 
ones must be similar. This is not expected to happen when 
dealing with natural objects such as vegetation. 
 

  

 
 (4) 

 
Where: ;  is the main direction of the 
polyline extracted from the image and that represent the ith 
aboveground object;  is the main direction of the project 
polyline and that represent the same (ith) aboveground object. In 
case both polylines, extracted from the image and 
corresponding projected one, are perfectly rectilinear and, in 
addition, the image is ideally oriented, the main direction of 
these polylines are parallel. The opposite tends to occur with 
natural objects, like vegetation. 
 
Finally, the energy equation is formulated as follows, 
 

U(x)=  +  +                  (5) 
 
Where:   are positive constants, such that 

. 
 
The optimal configuration x is obtained by minimizing the 
energy function U(x); i.e., x= argmin(U(x)). We employed the 
Genetic Algorithm (GA). After randomly selecting an initial 
population (i.e., an initial solution for x), the GA algorithm 
proceeds by employing the selection (which equates to survival 
of the fittest), crossover (which represents the coupling between 
individuals), and mutation (which introduces random 
modifications) operators, which introduce random 
modifications. The GA optimization converges when the fittest 
individual (x) is good enough according to the fitness 
measurement (i.e., U(x)). For more details on the GA theory, 
please refer to the relevant literature, such as Goldberg (1989). 
 

3. EXPERIMENTAL RESULTS 

The proposed method has been experimentally evaluated based 
on test areas of different complexities and two of these 
experiments are presented in this section. The first experiment is 
relatively simple because the scene is basically composed of 
few isolated buildings. The second experiment is based on a test 

area with relatively close buildings, which may put some 
difficult to separate them, mainly when using LiDAR data. 
 
The data set used in our experiments consisted of: 10-cm high-
resolution aerial image, along with interior and exterior 
orientation parameters; and LiDAR point cloud with density of 
approximately 8 points/m2. This data set was acquired from the 
urban area of Presidente Prudente-SP, Brazil, and was kindly 
provided by Engemap Geoinformation - Assis-SP, Brazil. 
 
The values of most important parameters and thresholds used in 
the experiments were: 
• Minimum area threshold (ta): 20 m2; 
• Weights  and  used in the energy terms  and 

: 0.7 and 0.3, respectively; 
• Weights used in the energy function U(x):  = 0.4 and 

 = 0.3; 
• Probability of crossover and mutation of the GA method: 

0.7 and 0.01, respectively; 
• Size of the population generated by the GA method and 

number of iterations: 15 and 40, respectively. 
 
Most of the thresholds and parameters were determined by trial 
and error, but they were kept unchanged in both experiments. 
 

 

 

(a) 

 
(b) 

Figure 1. Test 1. (a) LiDAR-derived aboveground polylines 
projected onto the image; and (b) Polylines extracted from the 
image 
 
The first test aims at verifying the performance of the proposed 
method in the extraction of building roof boundaries in a 
relative simple configuration, in which buildings are clearly 
separated in the image. As can be seen in Figure 1, the test area 
contains three buildings, all of them with simple rectilinear 
roofs. 
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Figure 1(a) shows the LiDAR-derived aboveground polylines 
projected onto the aerial image. Now on we refer to these 
polylines as projected polylines. Eight polylines were extracted 
from the LiDAR data, three of which represent the three 
buildings that are present in the test area (polylines 1, 2, and 3); 
other polylines refer to high vegetation (polylines 4, 5, 6, 7 and 
8). It is important to emphasize that these polylines have already 
undergone the minimum area filtering. Figure 1(b) shows the 
polylines extracted from the aerial image, which are supposed to 
totally or partially represent the same aboveground objects 
extracted from the LiDAR data. As expected, the building roof 
polylines are geometrically much better, as they are more 
regular and accurate when compared to corresponding projected 
polylines. 
 

 
 (a) 

 
(b) 

Figure 2. Test 1. (a) Building roof polylines identified by the 
GA algorithm; (b) Reference building roof boundaries 
 
Figure 2(a) shows the result of the GA optimization of the 
proposed MRF-based energy function. The obtained result is 
corrected, without occurrence of false positives/negatives. 
Despite the low complexity of the scene, the shape and the 
configuration of the buildings match very well the properties 
(the rectangularity modelled by the Equation 2, the spatial 
relationship modelled by Equation 3, and the relative orientation 
modelled by Equation 4) modelled in the energy function 
(Equation 5). The opposite occurs with vegetation areas, which 
naturally present irregular shapes and, as a consequence, their 
corresponding polylines extracted from the LiDAR and image 
data may be very different in geometry. Thus, vegetation 
polylines can be easily discarded because they do not contribute 
to the minimum of the energy function U(x). 
 
In order to quantitatively assess the obtained results, the indexes 
of completeness and correctness were estimated, taking into 
account the extracted building roof polylines (Figure 2(a)) and 

the corresponding reference polylines (Figure 2(b)). The 
average completeness and correctness for this experiments were 
99,19% and 99,94%, respectively. The lowest values for the 
completeness (98,28%) and the correctness (98,28%) were 
obtained for building roof boundaries C2 and C1, respectively. 
The building roof boundary C3 got the optimal correctness 
value (100%). 
 

 
(a) 

 
(b) 

Figure 3. Test 2. (a) LiDAR-derived aboveground polylines 
projected onto the image; and (b) Polylines extracted from the 
image 
 
The second experiment is based on a test area that presents 
some difficulties for the proposed method. The three topmost 
buildings in Figure 3(a,b) show main roofs connected to 
adjacent narrow roofs with very different materials. As a result, 
it is expected that the segmentation of those roofs in whole 
segments is a tough task. 
 
The LiDAR-derived aboveground polylines projected onto the 
aerial image are shown in Figure 3(a). This means that eight 
aboveground objects were extracted from the LiDAR data, four 
of which represent building roofs (polylines 1-4, Figure 3(a)) 
and the remaining objects represent high vegetation segments 
(polylines 5-8, Figure 3(a)). The nDSM segmentation method 
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fails in segmenting the two topmost buildings (see polyline 4 in 
Figure 3(a)), resulting in one segment for both buildings. This 
failure occurs due to several reasons, as e.g.: both buildings are 
too near; and the adjacent regions (blue ellipse in Figure 3(a)) of 
both building roofs have similar heights; and insufficient 
LiDAR point cloud quality. 
 
Figure 3(b) shows the polylines extracted from the aerial image, 
which in principle correspond to the same aboveground objects 
extracted from the LiDAR data. As expected, the building roof 
polylines extracted from the image is geometrically better then 
the corresponding projected polylines. However, some problems 
can be observed in the polylines extracted from the image. First, 
although the segmentation method correctly segments the two 
topmost building roofs within the sub-image that contains the 
projected polyline 4 (Figure 3(a)), the maximum area criterion 
adopted to select the final polyline within this sub-image 
maintains only one polyline. This failure highlights that it is 
necessary that the aboveground objects must be separated, at 
least coarsely, by the LiDAR segmentation method to avoid the 
occurrence of false negatives. Another kind of segmentation 
problem occurs with buildings composed by roof parts with 
very different contrast (as e.g. see the two topmost buildings). 
 

 
(a) 

 
(b) 

Figure 4. Test 2. (a) Building roof polylines identified by the 
GA algorithm; (b) Reference building roof boundaries 
 

The result of the GA optimization of the proposed MRF-based 
energy function is shown in Figure 4(a). The optimization 
process identified all building roof polylines that were 
previously extracted from the image, i.e. the extraction failure 
(false negative) was due to the segmentation problem already 
discussed beforehand. In addition, no false positive was 
verified. On the other word, the optimization process was well 
succeeded. The reasons are the same ones discussed for the first 
experiment – all building roofs are rectilinear and their main 
directions are parallel to one another. 
 
The completeness and correctness parameters were computed 
for each identified building roof polylines (Figure 4(a)) by using 
the corresponding reference building roof polyline (Figure 
4(b)). The completeness and correctness values were 90,46% 
and 99,32% in average, respectively. The lowest value for the 
completeness parameter was obtained for the building roof C4 
(75,04%), because the roof faces connected to the main roof 
were not extracted.  The completeness value for the building 
roof C3 (about 90%) was also relatively low. Building roof C1 
and C2 almost got the optimal completeness value of 100%. 
The correctness values were above 95% for all building roofs. 
 

4. CONCLUSIONS AND FUTURE WORK 

In this paper, a method for the automatic extraction of building 
roof boundaries with the integration of LiDAR data and aerial 
image was presented and evaluated. Polylines extracted from 
LiDAR data that represent aboveground objects are projected 
onto the image to delimit regions (sub-images) where polylines 
representing the same aboveground objects are extracted. The 
process of identifying polylines that represent building roof 
boundaries is performed through the GA optimization method 
of the MRF-based energy function, which models relevant 
properties of building roof boundaries. 
 
The proposed method was preliminarily evaluated based on two 
experiments of different complexities. Although the 
delimitation of regions in the image enabled in many cases the 
accurate and reliable extraction of aboveground object 
boundaries previously extracted from the LiDAR data, some 
types of segmentation failures of the LiDAR data caused the 
incorrect segmentation of the selected sub-image. An example 
of such problem occurred in Test 2 with the building boundary 
C4, where two adjacent roofs in the LiDAR data were 
segmented into a single region and in the corresponding sub-
image the segmentation process separated both roof buildings 
into two regions; consequently, one out of two building roof 
boundaries was discarded by the maximum area heuristic. On 
the other hand, texture and illumination variations on the roof 
surfaces were well modelled through the proposed image 
segmentation procedure. The energy function, constructed from 
the assumptions that building roofs are rectilinear and spatially 
distributed in regular urban squares, responded optimally to the 
two selected tests. 
 
An important direction for future work is the refinement of the 
proposed LiDAR and image data segmentation procedures, 
although other important factors can influence the segmentation 
results, like the LiDAR point cloud quality. Another possibility 
for future work would be the application of reconstruction 
methods aiming at the regularization of the extracted building 
roof polylines. Finally, the use of true orthophoto could be an 
excellent option for the application of the method in complex 
urban areas, where viewpoint-dependent obstructions are 
common. 
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