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Abstract—A challenging problem in remote sensing image
analysis is the detection of heterogeneous compound structures
such as different types of residential, industrial, and agricultural
areas that are composed of spatial arrangements of simple prim-
itive objects such as buildings and trees. We describe a generic
method for the modeling and detection of compound structures
that involve arrangements of an unknown number of primitives in
large scenes. The modeling process starts with a single example
structure, considers the primitive objects as random variables,
builds a contextual model of their arrangements using a Markov
random field, and learns the parameters of this model via sam-
pling from the corresponding maximum entropy distribution. The
detection task is formulated as the selection of multiple subsets
of candidate regions from a hierarchical segmentation where each
set of selected regions constitutes an instance of the example com-
pound structure. The combinatorial selection problem is solved
by the joint sampling of groups of regions by maximizing the
likelihood of their individual appearances and relative spatial
arrangements. Experiments using very high spatial resolution
images show that the proposed method can effectively localize an
unknown number of instances of different compound structures
that cannot be detected by using spectral and shape features alone.

Index Terms—Context modeling, Gibbs sampling, Markov ran-
dom field (MRF), maximum entropy distribution, object detection,
spatial relationships, Swendsen–Wang sampling.

I. INTRODUCTION

THE increasing spatial and spectral resolutions of the im-
ages acquired from new-generation satellites have im-

proved the capability to capture additional details about the
objects of interest and have increased the feasibility of new
applications that rely on the effective identification of these ob-
jects. A common approach to object-based image classification
and object recognition is to assume the existence of homo-
geneous regions that can be modeled with spectral or shape
features alone. However, as the spatial resolution increases,
such homogeneous regions often correspond to very small
details. Consequently, a new requirement for semantic image
understanding has become the modeling and identification of
image regions that are intrinsically heterogeneous. Examples of
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Fig. 1. Examples of compound structures in WorldView-2 images. Each 150 ×
150 pixel window includes one or more examples for residential, industrial, and
agricultural structures composed of various spatial arrangements of primitives
(buildings and trees) with different color and shape characteristics.

such regions, also called compound structures, include different
types of residential, industrial, and agricultural areas that are
composed of spatial arrangements of simple primitive objects
such as buildings and trees [1]–[3] as shown in Fig. 1. How-
ever, the detection of these structures is a challenging problem
because there is no single color, shape, or texture feature that
can effectively model their appearances.

One of the most common alternatives is to use a window-
based approach where the image is divided into tiles and these
tiles are classified according to their features. The bag of words
(BoW) model has been popular in recent years for modeling the
tile content. First, visual words are formed by quantizing local
features. Then, each tile is described by the frequency of these
words and is classified [4]–[6] or retrieved [7], [8]. The main
problem in the BoW representation is that it does not consider
spatial arrangements that can be very crucial for many types
of compound structures. In other words, BoW is a first-order
model that primitives contribute independently of their position
and independently from each other.

In an attempt to exploit spatial information, Vaduva et al. [9]
modeled relative positions between objects by extracting object
pair signatures as words that characterize the tiles. However, the
tile-based modeling still enforces artificial boundaries on the
image. Segmentation algorithms can produce flexible bound-
aries and promise to be adaptive to the image content. For
example, Kurtz et al. [10] extracted heterogeneous objects in
multiple levels of details where the segmentation in the high-
resolution image was provided by clustering the segmentation
in a lower resolution image. Gaetano et al. [11] performed
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hierarchical texture segmentation by iteratively merging neigh-
boring homogeneous regions that had frequently co-occurring
region types. In both approaches, certain segments in certain
scales may correspond to compound structures, but the group-
ing criteria still do not involve spatial arrangements and hence
may fail in detecting and delineating many other structures.

Another problem with tile-based modeling is the assumption
that the whole window corresponds to a compound structure
where feature extraction is performed holistically. To identify
structure-sensitive neighborhoods, Vanegas et al. [12] proposed
a graph-based method to determine aligned groups of objects
from a given segmentation. However, this method was designed
for specific arrangements such as alignment and parallelism. It
also worked in a single scale and was sensitive to segmentation
errors. The use of multiple partitionings of the image via
segmentation hierarchies has been identified as an important
problem in remote sensing. However, it is mainly addressed
as the problem of selecting individual regions from a set of
candidates [13]–[17] with no consideration of the contextual
interactions between neighboring regions.

In this paper, we propose a generic method for the modeling
and detection of compound structures that can involve the
arrangements of an unknown number of primitive objects. The
procedure starts with a single example compound structure that
contains primitive objects that are used to estimate a prob-
abilistic appearance and arrangement model. The modeling
process considers the primitive objects as random variables in a
Markov random field (MRF) where potentially related objects
are connected. MRFs have been used in the literature to model
contextual information in neighborhoods of pixels [18] or re-
gions [19], [20]. Our aim is to learn a flexible arrangement
model with a small number of examples that can distinguish
between different types of compound structures inside a large
scene instead of dedicating the MRF to model the whole scene
with only a limited set of relationships. The parameters of
the proposed MRF model are learned via sampling from the
corresponding maximum entropy distribution.

The detection task is formulated as the selection of multiple
coherent subsets of candidate regions obtained from a hierar-
chical segmentation where each set of selected regions, when
grouped together, constitutes an instance of the example com-
pound structure. This differs from our earlier work [3] that did
not need an initial segmentation of the primitives but required
that their number is given a priori. The proposed selection
algorithm models the spatial relationships among the candidate
regions by using the multiscale neighborhood graph. Our algo-
rithm uses a sampling procedure to maximize the likelihood of
groups of regions where the decision of selecting or not select-
ing regions is done jointly as groups instead of individual deci-
sions. Furthermore, our algorithm does not have any a priori
knowledge of the number of regions to be selected. It also
enables the detection of regions that cannot be detected by using
spectral and shape features alone, owing to the contextual infor-
mation that the model captures. In summary, our major con-
tributions are threefold. First, we describe a model for the
individual appearance properties of primitive objects as well as
their spatial arrangements within compound structures. Second,
we propose a solution to the combinatorial region selection

Fig. 2. Object/process diagram of the proposed approach. Rectangles represent
objects, and rounded rectangles represent processes. The details of all steps are
presented in the following sections.

problem for detecting and localizing an unknown number of
instances of a given compound structure in a large scene. Third,
to avoid the over- or under-segmentation of candidate regions,
we seamlessly integrate multi-scale information and search for
the most meaningful regions appearing at different scales of a
hierarchical segmentation.

An overview of the proposed approach is shown in Fig. 2.
The rest of this paper is organized as follows. Section II
introduces the representation for primitive objects and the prob-
abilistic model for their spatial arrangement and shape char-
acteristics. Section III describes the learning algorithm for the
estimation of the parameters in the proposed model. Section IV
describes the selection algorithm for finding the structures
with similar arrangements among a set of candidate regions.
Section V presents experimental results, followed by conclu-
sions in Section VI.

II. COMPOUND STRUCTURE MODEL

Compound structures arise from local interactions between
primitive objects as well as their individual properties. The set
of factors that make the individual primitives members of a
compound structure can be motivated by the Gestalt rules that
attempt to model the perceptual grouping process in the human
vision system. In the following, we present the representation
for the primitives, propose a generic spatial arrangement model
for grouping these primitives according to semantic cues such
as proximity, continuity, parallelism, alignment, etc., and de-
scribe a statistical model that encodes the spatial arrangement
properties of these groupings into a probabilistic region process.

A. Primitive Representation

In this paper, compound structures are defined as high-level
heterogeneous objects that are composed of spatial arrange-
ments of multiple, relatively homogeneous, and compact prim-
itive objects. The set of primitives includes objects that can
be relatively easily extracted using low-level operations that
exploit spectral, textural, or morphological information. These
objects, such as buildings and trees, can be used as build-
ing blocks of more complex structures. In this paper, each
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Fig. 3. Neighborhood graph. (a) RGB image. (b) (Blue ellipses) Primitive
objects and (green lines) edges representing the neighbors of one primitive.
(c) Graph for all primitives.

primitive object vi is represented by an ellipse vi=(li, si, θi),
where li = (lxi , l

y
i ) ∈ [0, Xmax − 1]× [0, Ymax − 1] represents

the ellipse’s center location, si = (shi , s
w
i ) ∈ [shmin, s

h
max]×

[swmin, s
w
max] contains the ellipse’s major and minor axis lengths,

respectively, and θi ∈ [0, π) is the orientation measured as the
angle between the major axis of the ellipse and the horizontal
image axis. Here, Xmax and Ymax are the width and height
of the image, respectively, and (shmin, s

h
max) and (swmin, s

w
max)

are the minimum and maximum major and minor axis lengths,
respectively.

Ellipses have often been used as the image primitives in
perceptual organization [21] and object recognition [22] tasks
in the computer vision literature, and the underlying assumption
that the primitives have relatively compact shapes also holds
for many objects of interest in remotely sensed scenes. Ellipses
provide simple but sufficiently flexible approximations that can
model the most fundamental object characteristics like location,
scale, and orientation and can generalize to other shapes such
as circles, rectangles, and line segments with additional con-
straints on specific parameters. The following sections show
that they also enable effective and efficient feature extraction
and model estimation steps.

B. Spatial Arrangement Model

For a given compound structure consisting of M primitive
objects, we construct a neighborhood graph G = (V,E), where
the vertices V = {v1, . . . , vM} correspond to the individual
primitive objects and the edges E model their spatial relation-
ships (see Fig. 3). The neighborhood information is obtained by
proximity analysis where a threshold on the distance between
the closest pixels of each object pair is used to determine the
neighbors. In particular, let Pi denote the set of pixels inside the
ellipse vi. Then, (vi, vj) ∈ E if and only if the distance between
the closest pixels of vi and vj is less than a proximity threshold
δ, i.e., E = {(vi, vj) ∈ V × V : ∃(pi, pj) ∈ Pi × Pj such that
∀ (p′i, p′j) ∈ Pi × Pj , d(pi, pj) ≤ d(p′i, p

′
j) and d(pi, pj) ≤ δ}

where d(pi, pj) denotes the Euclidean distance between two
pixels pi and pj .

For each neighboring primitive object pair (vi, vj) ∈ E, we
compute the following four features (see Fig. 4):

1) distance between the closest pixels, φ1
ij= minpi∈Pi,pj∈Pj

d(pi, pj);
2) relative orientation, φ2

ij=min{|θi−θj|, 180− |θi− θj |};
3) angle between the line joining the centroids of the two

objects and the major axis of a reference object, φ3
ij =

Fig. 4. Pairwise feature examples. φ1, φ2, φ3, φ4 are described in the text.

min{|αij − θi|, 180− |αij − θi|}, where αij is the angle
of the line segment connecting the centroids of vi and vj ;

4) distance between the closest antipodal pixels that lie on
the major axes,φ4

ij=minpi∈Pa
i ,pj∈Pa

j
d(pi, pj), whereP a

i

denotes the two antipodal pixels on the major axis of vi.

These features capture various Gestalt properties such as prox-
imity, parallelism, directional continuity, and proximal continu-
ity, respectively. Furthermore, φ2 and φ3 together measure how
much the two objects are aligned. In addition to the pairwise
features, we also compute the following two individual features
for each primitive object vi:

1) area, φ5
i = π(shi /2)(s

w
i /2);

2) eccentricity, φ6
i =

√
1− (swi /s

h
i )

2.

Then, given the set of primitives V and the corresponding
features, a 1-D marginal histogram Hk is constructed for each
φk, k = 1, . . . , 6, calculated over all V and E. We append
all marginal histograms and use H(V ) = (H1(E), H2(E),
H3(E), H4(E), H5(V ), H6(V ))T , where E is assumed to be
deterministically computed fromV , as a nonparametric approx-
imation to the distribution of the feature values of the primitive
objects in the compound structure. The vector length |H(V )| is
the total number of bins in all marginal histograms.

C. Probabilistic Region Processes

The diversity of the patterns in different scenes and the rich-
ness of the details in each scene entail the use of statistical
approaches. In our model, each primitive object vi (i.e., the
ellipse parameters) is considered a vector-valued random vari-
able. Hence, a compound structure is represented by a set of
random variables that leads to a region process that follows
some true unknown distribution.

When there is incomplete information about a probability
distribution, it is desired to use the least informative distribution
that makes the fewest number of assumptions. The principle
of maximum entropy states that the desired distribution is
the one that has the largest possible entropy while still being
consistent with the information available in the data [23].
Given N independent and identically distributed observations
V = {V 1, . . . , V N} and their histogram-based representations
H(V n), n = 1, . . . , N , as described in the previous section, the
information in the training data can be summarized using the
empirical expectation

EV [H(V )] =
1

N

N∑
n=1

H(V n). (1)
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The consistency of the desired model with the evidence in the
training data can be enforced by equating the expectation

Ep [H(V )] =

∫
V

H(V )p(V )dV (2)

with respect to the model distribution p(V ) to the empirical
expectation in (1). Then, given P as the set of all probability
distributions on the random variable V , the maximum entropy
distribution is obtained as the solution to the constrained opti-
mization problem

p∗ = argmax
p∈P

−
∫
V

p(V ) log p(V )dV

subject to Ep [H(V )] = EV [H(V )] . (3)

The region process is governed by the optimal solution p∗,
which is also known as the Gibbs distribution, and by the
calculus of variations, it takes the form

p(V |β) = 1

Zv
exp

{
βTH(V )

}
(4)

where β = (β1, β2, β3, β4, β5, β6)
T is the parameter vector

controlling each histogram bin and Zv is the partition function
[24]. A region process is equivalent to an MRF according to the
following proposition.

Proposition 1: Let G define an MRF. p in (4) satisfies the
conditional independence properties of G.

Proof: We show that p can be represented as a product
of factors, one per maximal clique in the graph. Note that
we can restrict the parameterization to the edges and vertices
of the graph, rather than the maximal cliques. Let p(V |β) =
(1/Zv)

∏
e∈E ϕ1(e)ϕ2(e)ϕ3(e)ϕ4(e)

∏
v∈V ϕ5(v)ϕ6(v), where

Zv is the partition function. We define the edge and vertex fac-
tors as ϕk(e)=exp{(βk)

T
Hk(e)}, k=1, 2, 3, 4, and ϕk(v)=

exp{(βk)
T
Hk(v)}, k = 5, 6, where Hk, k = 1, . . . , 6, are

1-D marginal histograms computed for the features φk, k =
1, . . . , 6. The proof is complete by the Hammersley–Clifford
theorem [24]. �

D. Dynamic Topology of Probabilistic Region Processes

Unlike the traditional MRFs, the neighborhood structure of
a region process in our model is not determined a priori. The
topology of the underlying graph depends on the values of the
variables in the process. Assigning a new value to a primitive
object (e.g., moving, scaling, or rotating the corresponding
ellipse) may change its set of neighbors, i.e., produce new
neighbors and remove existing ones. An important observa-
tion is that using neighborhood structures based on Voronoi
tessellations or k-nearest neighbors may cause changes in the
neighborhood relations of other variables whenever a variable is
modified. Conversely, determining the neighborhood structure
using proximity makes the neighborhood relations between the
other variables remain unchanged. Using the aforementioned

property and Proposition 1, we derive the following corollary
that helps the estimation procedure in the following section.

Corollary 1: The conditional distribution for each individual
variable vi depends only on its neighbors given a realization of
the process V = {v1, . . . , vM} as

p(vi|V \vi) =
p(V )∑

v′
i
p (v′i ∪ V \vi)

=

∏
cvi∈C(G) ϕ (cvi)

∏
c\vi∈C(G) ϕ

(
c\vi

)
∑

v′
i

∏
cv′

i
∈C(G′) ϕ

(
cv′

i

)∏
c\v′

i
∈C(G′) ϕ

(
c\v′

i

)
= p (vi|nb(vi)) (5)

where C(G) represents the cliques of graph G, cvi and c\vi
represent each clique that involves and does not involve vi,
respectively, nb(vi) denotes the neighbors of vi, and G′ in the
denominator represents the graph that is formed for the current
value of v′i.

The equality in (5) follows from the observation that all terms
that do not involve vi cancel out between the numerator and
denominator, so only the products of cliques that contain vi
are left. However, if we use Voronoi tessellations or k-nearest
neighbors, the cancellations would not occur because the c\v′

i

would be different for every assignment of v′i in the summation.

III. LEARNING

A. Maximum Likelihood Estimation

Suppose that we observe a set of region processes V =
{V 1, . . . , V N} that are assumed to be independent and iden-
tically distributed realizations of the same compound structure.
These observations can be manually marked on an image or
drawn by a human analyst. We can estimate a compound
structure model via the maximum likelihood estimation (MLE)
of the unknown parameter vector β by maximizing the log-
likelihood of the data

	(β|V) =
N∑

n=1

log p(V n|β). (6)

The gradient of the log-likelihood is given by

d	(β|V)
dβ

= Ep [H(V )]− 1

N

N∑
n=1

H(V n). (7)

Since the MLE problem is differentiable and jointly concave
in the vector β, gradient ascent algorithms are guaranteed to
converge to the global optimum. We use the stochastic gradient
ascent algorithm where the expectation Ep[H(V )] in (7) is ap-
proximated by a finite sum of histograms of samples V (s), s =
1, . . . , S, drawn independently from the distribution p(V |β), as

Êp [H(V )] =
1

S

S∑
s=1

H
(
V (s)

)
. (8)
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The pseudocode for the resulting method is shown in
Algorithm 1. In the next section, we describe a Markov chain
Monte Carlo (MCMC)-based method for generating each sam-
ple V (s) in line 5 of the algorithm.

Algorithm 1 Stochastic gradient ascent for MLE of β.

Input: V = {V 1, . . . , V N}
Output: β
1: Initialize weights β randomly
2: η ← 1
3: repeat
4: for s ← 1 to S do
5: Sample V (s) ∼ p(V |β)
6: end for
7: Êp[H(V )] ← (1/S)

∑S
s=1 H(V (s))

8: β ← β + η(Êp[H(V )]− (1/N)
∑N

n=1 H(V n))
9: Decrease step size η by a factor of 0.5

10: until log-likelihood in (6) unchanged

B. Sampling Region Processes

We use a Gibbs sampler that samples a variable conditioned
on the values of all the other variables in the distribution param-
eterized by β in a particular iteration of the stochastic gradient
ascent procedure. Given a joint sample Ṽ t = {vt1, . . . , vtM}
of M variables at the tth sampling iteration, the next step
involves replacing the value of a particular variable vti by a
new value vt+1

i drawn from the full conditional distribution
p(vi|Ṽ t\vti , β). We move from vti to vt+1

i by sampling only
one ellipse component (i.e., either one of li, si, or θi) at a
time. That is, we choose either one of li, si, or θi to be
updated at random, with equal probability, and then, a candidate
value is randomly generated for that component from a uniform
proposal distribution over the object parameter space defined in
Section II-A. This corresponds to randomly translating, scaling,
or rotating an ellipse at each sampling iteration. The new value
of the selected component, together with the old values of
the remaining components, produces a candidate sample v∗i .
Since the proposal distribution is symmetric, the acceptance
probability [25] of the candidate sample is obtained as

α = min

(
1,

p(v∗i |Ṽ t\vti , β)
p(vti |Ṽ t\vti , β)

)
. (9)

If the proposal is accepted, vt+1
i is set to v∗i ; otherwise, vt+1

i

stays the same as vti . All the other variables remain unchanged,
i.e., vt+1

j = vtj for j �= i and j = 1, . . . ,M .
By Corollary 1, to sample a variable, we only need to

know the values of its neighbors before and after the pro-
posal. Thus, the acceptance probability reduces to α = min(1,
(p(v∗i |nb(v∗i ), β)/p(vti |nb(vti), β))). Since p can be represented
as a product of potentials over vertices and edges, it can be
further shown that p(vi|nb(vi), β) = (1/Zv) exp{βTH(vi ∪
nb(vi))}, and we can write α = min(1, (exp{βTH(v∗i ∪
nb(v∗i ))}/ exp{βTH(vti ∪ nb(vti))})). As a result, when evalu-
ating α, we do not need to calculate the normalization constant

Fig. 5. Illustration of the Gibbs sampler in Algorithm 2. (a) Compound
structure V given as input to stochastic gradient ascent in Algorithm 1. (b–f)
Samples Ṽ t at iterations t = 0, 50, 200, 500, 1000 in Algorithm 2.

Zv. The sampling procedure is summarized in Algorithm 2 and
is illustrated in Fig. 5.

Algorithm 2 Gibbs sampler for producing a particular V (s).

Input: β
Output: V (s)

1: Initialize Ṽ 0 = {v01 , . . . v0M}
2: for t ← 0, 1, 2, . . . , T − 1 do
3: Choose one vi at random, with equal probability
4: Choose li, si, or θi at random, with equal probability
5: if li is chosen then
6: Sample l∗i ∼ U([0, Xmax − 1]× [0, Ymax − 1])
7: v∗i ← (l∗i , s

t
i, θ

t
i)

8: end if
9: if si is chosen then

10: Sample s∗i ∼ U([shmin, s
h
max]× [swmin, s

w
max])

11: v∗i ← (lti , s
∗
i , θ

t
i)

12: end if
13: if θi is chosen then
14: Sample θ∗i ∼ U([0, π))
15: v∗i ← (lti , s

t
i, θ

∗
i )

16: end if
17: vt+1

i ← UPDATEPRIMITIVE (v∗i , Ṽ
t, β)

18: vt+1
j ← vtj for j �= i and j = 1, . . . ,M

19: end for
20: V (s) ← Ṽ T

21: procedure UPDATEPRIMITIVE (v∗i , Ṽ , β)
22: Compute nb(vi) ∈ Ṽ \vi and nb(v∗i ) ∈ Ṽ \vi
23: Compute acceptance probability α
24: Sample q ∼ U(0, 1)
25: if q < α then
26: return v∗i
27: else
28: return vi
29: end if
30: end procedure



3490 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 6, JUNE 2016

Fig. 6. Hierarchical region extraction. The candidate regions (V ) at three
levels are shown in gray. (a) Edges that represent parent–child relationship are
shown in red. (b) Edges E that represent the final neighbor relationship are
shown in blue. For clarity, we do not show the edges between two levels that
are not consecutive even though there are edges between all level pairs.

IV. INFERENCE AND REGION SELECTION

Given a compound structure model with learned parameter
vector β, we would like to automatically detect all of its
instances in an input image I . We first propose a set of candidate
primitive regions in the image, and then, an inference algorithm
is used to select a coherent subset of those regions that optimize
a probability function defined in terms of both appearance and
arrangement characteristics of region groups.

A. Hierarchical Region Extraction

The first step involves the identification of primitive re-
gions by using a segmentation algorithm. In this paper, we
use opening and closing by reconstruction operations as in
[13]. Considering the fact that different objects of interest may
appear at different scales, we apply opening and closing by
reconstruction using structuring elements in increasing sizes.
These operations form a hierarchy in which the regions from
all levels are treated as candidate primitives, forming the set
V = {v1, . . . , vM}. Fig. 6(a) illustrates the hierarchy.

The next step is to connect the potentially related vertices
at all levels to represent the neighbor relationships. Since the
candidate regions are fixed at the segmentation step, the set of
neighbors for each region can also be fixed, with no need for the
dynamic neighborhood definition for the sampling problem in
Section III-B. Thus, we use Voronoi tessellations of boundary
pixels of regions at each level to identify the neighbors of each
region at that level. A Voronoi-based neighborhood definition
is preferred at this step as it does not require any parameter
like the proximity threshold or the number of neighbors as
in the proximity-based and k-nearest neighbor-based defini-
tions, respectively. After computing the Voronoi tessellation
at each level of the hierarchy independently, a within-level
edge (vi, vj) ∈ E is formed between two vertices if the corre-
sponding regions have neighboring Voronoi cells. Furthermore,
a between-level edge (v′i, v

′
j) ∈ E is also formed if v′j is at

a higher level compared to v′i and if any descendant of v′j
that is at the same level as v′i is a Voronoi neighbor of v′i.
Fig. 6(b) illustrates the edges E.

B. Bayesian Formulation

Given a graph G = (V,E) that represents the candidate
regions and their neighbor relationships in image I , our goal is
to search for coherent groups of regions that attain high prob-
ability explanations of instances of compound structures of
interest in the image. This problem can be formulated as the
selection of a subset V ∗ among all regions V as

V ∗ = arg max
V ′⊆V

p(V ′|I) = arg max
V ′⊆V

p(I|V ′)p(V ′) (10)

where p(I|V ′) is the observed spectral data likelihood for the
compound structure in the image and p(V ′) acts as the spatial
(both shape and arrangement) prior according to the model
defined in Section II. We use a simple spectral appearance
model where the spectral content of each primitive is assumed
to be independent and identically distributed according to a
Gaussian with mean μ and covariance Σ so that p(I|V ′) =∏

vi∈V ′ p(yi|μ,Σ), where yi is the average spectral vector for
the pixels inside the ith region vi. This formulation assumes
that the primitives in a compound structure have similar spectral
characteristics as the focus of this paper is to develop a novel
spatial data model. Different spectral models will be studied
as part of our future work. The spatial appearance probability
p(V ′) is computed as in (4) using ellipses that have the same
second moments as the regions in V ′.

C. CRF Formulation

The selection problem in (10) can be formulated as a condi-
tional random field (CRF). Let X = {x1, . . . , xM} where xi ∈
{0, 1}, i = 1, . . . ,M , be the set of indicator variables associ-
ated with the vertices V of G so that xi = 1 implies that region
vi is being selected. Our CRF formulation defines a posterior
distribution for hidden random variables X given regions V
and their observed spectral features Y = {y1, . . . , yM} in a
factorized form as

p(X |I, V ) ∝ p(I|X,V )p(X,V )

=
1

Zx

∏
vi∈V

exp {(ψc
i + ψs

i )xi}
∏

(vi,vj)∈E
exp

{
ψa
ijxixj

}
(11)

where the vertex bias terms ψc and ψs representing color and
shape, respectively, and edge weights ψa representing arrange-
ment are defined as

ψc
i =

−1

2
(yi − μ)TΣ−1(yi − μ), ∀ vi ∈ V (12)

ψs
i =

6∑
k=5

βk
hk(φk

i )
, ∀ vi ∈ V (13)

ψa
ij =

4∑
k=1

βk
hk(φk

ij)
, ∀ (vi, vj) ∈ E. (14)

The feature φk is computed via the parameters of the ellipse
that has the second moments as the input region, hk is the index
of the histogram bin to which a given feature value belongs in
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Hk, and βk
j denotes the jth component of the parameter vector

βk controlling Hk. Then, selecting V ∗ in (10) is equivalent to
estimating the joint MAP labels given by

X∗ = argmax
X

p(X |I, V ). (15)

D. CRF Inference

The exact inference of (15) is intractable in general graphs,
but an approximate solution can be obtained by an MCMC
sampler. However, Gibbs sampling that updates one variable
at a time can be slow in such models requiring many updates
to produce significant changes in the global state, particularly
when there is strong dependence between the components [24].
On the contrary, the Swendsen–Wang algorithm [26] mixes
much faster by updating the labels of many variables at once.

In this paper, we adapt the Swendsen–Wang algorithm that was
designed for the Ising model parameterization, i.e., {−1,+1}
variables, to sample {0, 1} variables. First, the original {0, 1}
indicator variables X are converted to {−1,+1} variables Z =
{zi = 2xi − 1, i = 1, . . . ,M}. Then, the objective (11) is
reformulated by variable substitution as

p(Z|I, V ) ∝ p(I|Z, V )p(Z, V )

=
1

Zz

∏
vi∈V

exp

{(
1

2
ψc
i +

1

2
ψs
i +

1

4
ψw
i

)
zi

}
∏

(vi,vj)∈E
exp

{
1

4
ψa
ijzizj

}
(16)

where a new term ψw
i =

∑
vj∈V ψa

ij is added to the vertex
biases. We are interested in samples from p(Z|I, V ) so that the
most likely configuration for Z can be found.

The motivation behind the Swendsen–Wang algorithm is that
sampling can sometimes be made easier by adding more vari-
ables. Suppose that we introduce auxiliary variablesU = {uij :
(vi, vj) ∈ E}, one per edge, and define the extended model

p(Z,U |I, V ) ∝ p(I|Z, V )p(Z, V )p(U |Z, I, V ). (17)

A careful selection of P (U |Z, I, V ) can make the condi-
tionals P (U |Z, I, V ) and P (Z|U, I, V ) easy to sample from,
and samples for the joint model P (Z,U |I, V ) can be ob-
tained by alternately sampling these conditionals with con-
ventional MCMC techniques [27]. Then, marginalization will
produce valid Z samples from the original distribution because∑

U p(Z,U |I, V ) = p(Z|I, V ).
In the extended model in (17), we assume that uij are

conditionally independent given the vertex variables and are
uniformly distributed between 0 and exp{(1/4)ψa

ijzizj}. The
conditional distribution of the auxiliary variables can be ob-
tained as

p(U |Z, I, V ) =
∏

(vi,vj)∈E

1

exp
{
1
4ψ

a
ijzizj

}

1l

[
0 ≤ uij ≤ exp

{
1

4
ψa
ijzizj

}]
(18)

where 1l is an indicator function that is 1 when its argument is
true and 0 otherwise. Our choice of this p(U |Z, I, V ) leads to
the joint distribution

p(Z,U |I, V ) ∝
∏
vi∈V

exp

{(
1

2
ψc
i +

1

2
ψs
i +

1

4
ψw
i

)
zi

}

∏
(vi,vj)∈E

1l

[
0 ≤ uij ≤ exp

{
1

4
ψa
ijzizj

}]
. (19)

The conditional distribution of the vertex indicator variables Z
given the auxiliary variables U is also obtained as

p(Z|U, I, V ) ∝ p(Z,U |I, V ). (20)

That is, p(Z|U, I, V ) is equal to the product of the selected
vertex biases, restricted to the region where all constraints{

0 ≤ uij ≤ exp

{
1

4
ψa
ijzizj

}
, ∀ (vi, vj) ∈ E

}
(21)

are satisfied, and is 0 elsewhere.
In the following, we describe how we sample the extended

model via Gibbs sampling from p(U |Z, I, V ) and p(Z|U, I, V )
alternately. Note that the terms involving the edge weights in
(18) can only take two values according to the choice of Z , i.e.,

exp

{
1

4
ψa
ijzizj

}
=

{
exp

{
1
4ψ

a
ij

}
if zi = zj

exp
{−1

4 ψa
ij

}
if zi = −zj.

(22)

Consequently, when conditioning on U in (20), the terms 1l[0 ≤
uij ≤ exp{(1/4)ψa

ijzizj}] may constrain the allowed combi-
nations of Z . In particular, when ψa

ij > 0:

• if uij > exp{(−1/4)ψa
ij}, we must have zi = zj ,

• if uij ≤ exp{(−1/4)ψa
ij}, there is no constraint on

(zi, zj).

Similarly, when ψa
ij < 0:

• if uij > exp{(1/4)ψa
ij}, we must have zi = −zj ,

• if uij ≤ exp{(1/4)ψa
ij}, there is no constraint on (zi, zj).

Hence, the selection of U introduces constraints to the distribu-
tion giving rise to form connected components of vertices to act
as a single bonded unit.

To simplify the notation, we replace each uij with a binary
indicator variable bij = 1l[uij > exp{(−1/4)|ψa

ij|}] that de-
notes the presence of a bond. The conditional p(B|Z, I, V ) for
the set of all bond variables B = {bij : (vi, vj) ∈ E} factorizes
over the edges as p(B|Z, I, V ) =

∏
(vi,vj)∈E p(bij |zi, zj, I, vi,

vj). From (22), when ψa
ij > 0

p(bij = 1|zi, zj , I, vi, vj)

=

⎧⎨
⎩

exp{ 1
4ψ

a
ij}−exp{−1

4 ψa
ij}

exp{ 1
4ψ

a
ij} =1−exp

{−1
2 ψa

ij

}
if zi=zj

0 if zi=−zj.

(23)
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When ψa
ij < 0

p(bij = 1|zi, zj, I, vi, vj)

=

⎧⎨
⎩

exp{−1
4 ψa

ij}−exp{ 1
4ψ

a
ij}

exp{−1
4 ψa

ij)
=1−exp

{
1
2ψ

a
ij

}
if zi = −zj

0 if zi = zj.

(24)

Sampling from p(B|Z, I, V ) and, equivalently, from
p(U |Z, I, V ) is done by randomly selecting a subset of the
bond variables based on p(bij |zi, zj, I, vi, vj) and forming sets
of connected components C that are connected by edges with
bij = 1. The individual vertices that are not connected to any
other vertex are also included in this set. Then, sampling from
p(Z|U, I, V ) is done by randomly selecting some of these
connected components and simultaneously flipping the labels
of all vertices within these components so that the constraints

• zi = zj if ψa
ij > 0,

• zi = −zj if ψa
ij < 0

for bij = 1 are still satisfied. When sampling a connected com-
ponent C ′ ∈ C from p(Z|U, I, V ), the acceptance probability
for flipping the labels is given by

γ(C ′) =
p(−Z|U, I, C ′)

p(−Z|U, I, C ′) + p(Z|U, I, C ′)
(25)

where

p(−Z|U, I, C ′) =
∏

vi∈C′

exp

{(
1

2
ψc
i +

1

2
ψs
i +

1

4
ψw
i

)
(−zi)

}
(26)

is the likelihood of the vertices in C ′ when their labels are
flipped (zi ← −zi) and

p(Z|U, I, C ′)=
∏

vi∈C′

exp

{(
1

2
ψc
i +

1

2
ψs
i +

1

4
ψw
i

)
zi

}
(27)

is the likelihood when the labels stay the same.
The proposed region selection algorithm is summarized in

Algorithm 3 and is illustrated in Fig. 7. We use a simulated
annealing procedure [24] as described in Section V to guide
the sampling iterations. The sampling procedure continues until
the change in the value of the objective (11) between two con-
secutive iterations is significantly small, and a solution to (15) is
obtained by taking the most likely configuration X∗ across all
samples. Finally, the marginal probabilities for the individual
regions in the set V ∗ that corresponds to this solution are
obtained from the frequency of observation of each primitive
region during the sampling process.

Algorithm 3 Swendsen–Wang sampler for CRF inference for
estimating X∗. The number of iterations R is determined by
simulated annealing.

Input: ψc
i , ψ

s
i , ψ

a
ij , i, j = 1, . . . ,M

Output: X∗

1: Initialize labels Z = {zi = −1, i = 1, . . . ,M}
2: for r ← 1, 2, . . . , R do

Fig. 7. Illustration of the Swendsen–Wang procedure in Algorithm 3. In each
figure, the labels of the primitives are shown in red for selected (zi = +1)
and blue for not selected (zi = −1). (a) Labels at the beginning of a particular
sampling iteration. The Voronoi edges (E) are shown in green. (b) Edges with
positive bond probabilities as candidates for forming connected components of
their corresponding vertices. (c) Sampled edges that form connected compo-
nents of vertices bonded together. (d) Result of randomly flipping the labels
of the primitives in some of these components. A single scale is shown for
simplicity even though the algorithm normally runs on the graph for the whole
candidate region hierarchy.

3: for all (vi, vj) ∈ E do
4: bij ← SAMPLEBONDGIVENVERTICES (zi, zj , ψ

a
ij)

5: end for
6: Form connected components C using bonds bij = 1
7: Pick component C ′ ∈ C uniformly at random
8: Flip labels for all vi ∈ C ′ with probability γ(C ′)
9: Compute Xr = {xi = (zi + 1)/2, i = 1, . . . ,M}

10: end for
11: X∗ ← argmaxX∈{X1,...,XR} p(X |I, V )
12: procedure SAMPLEBONDGIVENVERTICES (zi, zj , ψ

a
ij)

13: if (zi = zj & ψa
ij > 0)or (zi = −zj & ψa

ij < 0) then
14: Sample q ∼ U(0, 1)
15: if q < 1− exp{(−1/2)|ψa

ij|} then
16: return 1
17: end if
18: end if
19: return 0
20: end procedure

V. EXPERIMENTS

A. Data Set

The main experiments for quantitative and qualitative evalu-
ationwereperformedusingamultispectralWorldView-2 imageof
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Fig. 8. Data set used for quantitative evaluation. (a) RGB image. (b) Manually delineated polygons reflecting compound structures of interest. (c) Manually
delineated buildings inside these polygons. These buildings are used as the primitives in the validation data. The colors of the polygons and buildings correspond
to the scenarios given in Table I. (d) Candidate regions obtained by the morphological profile hierarchy. Regions appearing in different levels of the hierarchy are
shown with different pseudocolors.

TABLE I
DETECTION SCENARIOS FOR THE EXPERIMENTS. EXAMPLE PRIMITIVES

USED FOR LEARNING THE COMPOUND STRUCTURE MODEL FOR
EACH SCENARIO ARE SHOWN IN A DIFFERENT COLOR.

THE NUMBER OF POLYGONS AND BUILDINGS IN

THE VALIDATION DATA ARE ALSO GIVEN

Ankara, Turkey. The test scene consisted of 4000× 2500 pixels
and a 2-m spatial resolution covering various kinds of residen-
tial and industrial areas as shown in Fig. 8(a).

The proposed compound structure detection algorithm was
evaluated using six scenarios where the first five scenarios cor-
respond to residential structures and the sixth one corresponds
to an industrial structure as shown in Table I. All scenarios were
formed by various arrangements of four buildings used as the
main primitive object of interest in the urban test scene. In par-
ticular, the first scenario aimed at the detection of rectangular
buildings that are spatially aligned with respect to their major
axes. The second scenario aimed at the detection of a structure

composed of buildings placed in a diamond formation. The
third scenario aimed at the detection of relatively small dense
regularly arranged squarelike buildings. The fourth scenario
aimed at the detection of parallel rectangular buildings that
are aligned with respect to their minor axes. The fifth scenario
aimed at the detection of sparse randomly located squarelike
buildings that are slightly larger than those in scenario three.
The sixth scenario aimed at the detection of a structure com-
posed of regularly arranged large industrial buildings.

The validation data that were used to evaluate the perfor-
mance of the method on these scenarios were obtained by the
manual delineation of polygons corresponding to compound
structures [see Fig. 8(b)] as well as buildings inside these
polygons as primitive objects [see Fig. 8(c)]. Table I presents
the number of compound structures (polygons) and the corre-
sponding primitives (buildings) in the validation data for each
scenario. The learning process for building the compound struc-
ture model uses the manual selection of four of these primitives
for each structure of interest. This corresponds to triggering the
whole learning and inference process using only four individual
objects and can be considered a very moderate requirement as
only a few individual objects need to be delineated as opposed
to relatively large training sets needed for supervised detection
and classification algorithms.
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B. Experimental Protocol

The experimental procedure for building the example com-
pound structure model (see Section II) and learning its pa-
rameters (see Section III) used a single example structure
(N = 1) with only four primitive objects (M = 4) as described
earlier. The proximity threshold δ was set to 100 pixels. The
corresponding arrangement and shape histograms were con-
structed with five equal length bins between the minimum
and maximum possible values for each feature. The minimum
and maximum major and minor axis lengths (shmin, s

h
max) and

(swmin, s
w
max) for sampling the ellipses were both set to (2, 80).

This interval was chosen so that it covered the expected smallest
and largest primitive axis lengths. The parameters of the maxi-
mum entropy model p(V |β) were obtained using Algorithm 1.
The number of samples S that were used to approximate the
expectation Ep[H(V )] was set to 20. The number of Gibbs
sampler iterations T in Algorithm 2 was set to 100.

The experimental procedure for inference and region selec-
tion (see Section IV) starts with morphological profiles for
hierarchical region extraction. For residential structures, disk
structuring elements with radii 2 and 3 were used for construct-
ing the closing profile of the saturation band of the HSV color
space computed from the RGB bands of the multispectral im-
age, and for the industrial structures, disk structuring elements
with radii from 5 to 10 were used for constructing the opening
profile of the HSV value band, as these bands gave good con-
trast for the primitives of interest (i.e., red roof buildings and
industrial buildings, respectively) in our image. A tree structure
was constructed from the corresponding profile to extract candi-
date regions for each scenario. For the residential structures, the
number of candidate regions M in two scales was 70 644, and
for the industrial structures, the number of candidate regions in
six scales was 22 195. This makes a very large pool of candidate
regions that we should select from as shown in Fig. 8(d).
A Voronoi neighborhood between regions was constructed for
each scale, and the neighbors of a region at lower scales were
obtained through its descendants in these scales. The result-
ing graph constructed for the residential scenarios contained
752 754 edges, whereas the graph constructed for the industrial
scenario contained 490 222 edges. Considering the total number
of the candidate regions in all scales and the number of regions
in the validation data, the challenge for the selection problem
is that it is expected to select a significantly small fraction
of these candidate regions; hence, it should be very selective.
Finally, the simulated annealing procedure that was used to help
the convergence of Algorithm 3 divided the exponents in the
posterior probability in (16) by a certain power called tempera-
ture. This temperature was slowly decreased in each iteration
according to a cooling schedule such that τk = 0.995 τk−1

where the initial temperature τ0 was set to 1.

C. Baselines for Comparison

The first baseline method used sliding windows similar to
the tile-based classification tasks in the literature. In particular,
we used overlapping 150 × 150 pixel windows, and using
all primitive objects in each window, we extracted marginal
histograms, H(V ), as described in Section II-B, that modeled

the shape and arrangement characteristics of the primitives at
each scale of the hierarchy. Then, we computed the probability
that a particular spatial arrangement existed in that window
by using p(V |β), as described in Section II-C, for each scale
and obtained the overall probability for each window as the
maximum of the probabilities obtained from all scales. Finally,
the marginal probability for each primitive object was obtained
as the maximum of the probabilities of the windows that it
appeared in. This baseline method aimed to evaluate the ef-
fectiveness of the proposed selection process by combining the
shape and arrangement information from all primitives.

The second baseline method performed the selection of re-
gions satisfying only color and shape properties by dropping the
arrangement terms in the maximum entropy model. Thus, the
baseline result was obtained by computing the probability of
the candidate regions as p(X |I, V )∝(1/Zx)

∏
vi∈V exp{(ψc

i +
ψs
i )xi} instead of (11). This choice for the baseline aimed to

evaluate the effectiveness of the generic spatial arrangement
model in the proposed probabilistic region process compared
to the commonly used color and shape-only detectors.

D. Evaluation Criteria

The detection scores resulting from the inference procedure
consist of the marginal probabilities of the selected regions
(primitives) at the end of Algorithm 3. Thresholding of the
score of each region produces a binary detection map. We used
precision and recall as the quantitative performance criteria as
in [3] and [28] to compare the binary detection maps obtained
using a uniformly sampled range of thresholds to the validation
data for each scenario that was described in Section V-A. Recall
(producer’s accuracy), which is computed as the ratio of the
number of correctly detected pixels to the number of all pixels
in the validation data, can be interpreted as the number of
true positives detected by the algorithm, while precision (user’s
accuracy), which is computed as the ratio of the number of cor-
rectly detected pixels to the number of all detected pixels, eval-
uates the algorithm’s tendency for false positives. In addition
to the precision–recall curves that used a full range of thresh-
olds, we used a particular threshold value of 0.9 to provide
example detection results for all scenarios in the following
section. We observed that the particular choice for this threshold
was not very critical because, as discussed in the following sec-
tions, the inference procedure assigned very high probabilities
to most of the selected regions.

Since our selection algorithm detects regions instead of
individual pixels, we also performed an object-based evaluation
as in [29] in addition to the pixel-based evaluation. This strat-
egy, which is called focus of attention, assumes that a single
correctly detected pixel inside a target object is sufficient to
attract the operator’s attention to that target and label it as
correctly detected, but any pixel outside the target is a false
alarm because it diverts attention away from true targets. Given
the binary detection map for a particular threshold, the union
of one or more pixels inside the mask of a validation (ground
truth) region was counted as a true positive, while the number
of connected components of pixels that did not overlap with
any validation region was counted as false positives. Precision
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Fig. 9. Marginal probabilities for the selected regions for each scenario. Brighter values indicate higher probabilities. The example primitives are also shown.

and recall used counts of connected groups of pixels instead of
individual pixels for object-based evaluation.

E. Results

The learning and inference procedures summarized in
Algorithms 1 and 3, respectively, were run for each of the six
scenarios on the data set described in Section V-A. The number
of selected regions was 3191, 1828, 3819, 3201, 2027, and
1612 for each scenario, respectively. To reconcile the selection
of overlapping regions from multiple scales, we computed the
maximum of the marginal probability values for each pixel
along all scales that it was selected. This operation reduced the
number of resulting regions to 1920, 1114, 2648, 1934, 1399,
and 357, respectively. These numbers showed that, on the aver-

age, only 4% of all candidate regions in all scales were selected
for all scenarios. This meant that most of the regions in the input
hierarchy were considered as irrelevant by the proposed method
that behaved very selectively even when trained with a single
example structure that contained only four buildings for each
scenario.

Fig. 9 shows the marginal probabilities of the detected re-
gions for each scenario. The results showed that our selection
algorithm was able to detect coherent regions in the image that
had arrangements similar to the example structures. Note that a
region may belong to more than one type of compound structure
as it may form different arrangements with different neigh-
bors. For example, a region may have both close and distant
neighbors and may be aligned with different neighbors accord-
ing to the major and the minor axes at the same time.
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Fig. 10. Precision–recall curves. The columns correspond to scenarios one to six from left to right. The top row corresponds to the pixel-based evaluation, and
the bottom row is for the object-based evaluation. The solid red curves correspond to the proposed approach, dashed green ones are for the first baseline (shape
and arrangement without selection), and dashed blue ones are for the second baseline (color and shape-only selection with no arrangement).

We observed high marginal probabilities, e.g., greater than
0.9, for most of the selected regions. This indicated that most of
the selected regions appeared in most of the sampling iterations,
and showed the power of our sampling procedure compared to
the traditional Gibbs sampler that samples an individual region
at a time by considering only its neighbors. The latter has a
potential problem for regions with several irrelevant neighbors
that increase the uncertainty in the decision to flip the selection
label of a region, whereas our sampling algorithm that sampled
connected components and made the decision for a particular
region by the contribution of a larger context that contained
other regions that might be part of the same structure behaved
very selectively. This difference was especially more clear
for the boundary regions of compound structures where the
marginal probabilities of the boundary regions were as high as
the ones in the middle since their decisions were made together
through their corresponding connected components.

The next set of experiments was done to compare the perfor-
mances of the proposed detection algorithm and the baseline
methods as described in Section V-B and C, respectively.
Fig. 10 shows the precision versus recall curves obtained by ap-
plying different thresholds to the marginal probabilities. The re-
sults showed that the proposed algorithm that jointly exploited
spectral, shape, and arrangement information performed signif-
icantly better than the baselines that did not use either selection
or arrangement. Even though the two less restricted baselines
could approach higher recall levels (bottom right corner of the
precision–recall curves) with a sacrifice of substantially re-
duced precision by accepting more buildings in the output, the
proposed method could achieve significantly higher precision
values at the same level of recall. The observation that the
baseline that used shape and arrangement without selection per-
formed worse than the one that used color and shape-only se-
lection with no arrangement also confirmed the effectiveness of
the proposed selection algorithm. When we compared the re-
sults for different scenarios, we could observe that the decreases
in precision in the third and fifth scenarios were faster than the
others for increasing recall (corresponding to decreasing de-
tection threshold). This could be explained by the observation
that orientation-based features for squarelike buildings could be

noisy so that more building groups that were not in the valida-
tion data appeared in the output as we decreased the detection
threshold. This result could also be justified by a smaller ratio
of the number of buildings in the validation data versus the
number of selections for each of these scenarios.

We also observed that the quantitative evaluation did not
always reflect the quality of the results very precisely because
the validation data remained approximate. We present zoomed
versions of the results for example areas to better illustrate
the details for high-resolution imagery. Fig. 11 shows example
region hierarchies and selection results. As can be seen in the
hierarchies, different regions had better arrangements with their
neighbors and had better appearances in different scales with
respect to the structure of interest. This fact was reflected in the
algorithm by selecting only an appropriate subset of the regions
on a path from a leaf region to the highest scale region. Note that
misdetections would have occurred if we had manually selected
only one scale or attempted to find the single best scale for all
the regions. An important property of our algorithm was that it
could automatically select regions from different scales. It also
did not require a priori knowledge of the number of regions to
be selected.

Fig. 12 shows more examples of the marginal probabilities
and the detections after thresholding these probabilities. The
marginal probability values were very strong indicators of the
goodness of the detections as the highest likelihood values were
obtained for the regions that were very similar to the individual
primitives in the example structures and also satisfied the spatial
arrangements. On the other hand, the baseline method shown
detected a wide range of individual objects without any con-
sideration of their spatial arrangements as expected. This led to
very low precision levels as well as unsatisfactory localization
of the structures of interest. Furthermore, our method could
select regions that would have normally been misdetected if
only individual properties were used. For example, structures
with diamond formation involved some candidate regions with
shorter major axes than the example primitives. The baseline
could not detect these regions, whereas our algorithm se-
lected them since their selection along with the others satisfied
the arrangement distribution. This was a good example for
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Fig. 11. Zoomed detection examples. The first five rows correspond to the residential structures (scenarios one to five), and the last row corresponds to the
industrial structures (scenario six). The first column shows the RGB images for 500 × 500 subscenes. The second column shows the hierarchy of candidate
regions (two-level hierarchy for the first five rows and six-level hierarchy from left to right and top to bottom for the last row). The selected regions are colored
with red. The third column shows the marginal probabilities at the end of selection. The fourth column shows the thresholded detections overlayed as red and the
validation polygons overlayed with the corresponding colors in Table I.
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Fig. 12. Additional zoomed detection examples. The image pairs show the marginal probabilities and the overlayed detection results. Each row corresponds to a
particular scenario. The first four pairs in each row show the results of our algorithm. The last pair corresponds to the results of the second baseline.

demonstrating the importance of the local spatial context in the
selection problem.

We also analyzed different sources of errors in the detections.
One of the main reasons for the misdetections was the errors
in the input hierarchical segmentation. Some target primitives
were never selected because a corresponding candidate region
never appeared clearly in the hierarchy. That is, the candidate
regions stayed too small until they merged with their surround-
ings and got completely lost. For example, the industrial regions
had complex surfaces that made the morphological operations
unable to find some of these regions precisely and prohibited
the selection procedure from selecting them. Using additional
hierarchical segmentations obtained by different algorithms
and/or parameters can overcome this problem by introducing
more than one possible set of candidates. Detailed analysis of
the results revealed another reason for the misdetections where,
even though the arrangements of the candidate regions were
satisfying the arrangement distribution of an example scenario,
their color and shape properties were not supportive enough for
the decision of being selected. Also, in particular, some of the
misdetections for the fifth scenario occurred because the primi-
tives were relatively distant from each other. For a candidate re-
gion in the image, its closer neighbors might have prevented the

distant neighbors to appear in its Voronoi neighbor set. Then,
this region was not selected in the result because it could not
connect to the neighbors of interest. Some of the false alarms
were caused by single individual regions that had individual sta-
tistics that were very similar to those of the example primitives
so that the arrangement cues were dominated by the appearance
cues. However, since the validation data were subjective, most
of the regions that were reflected as false alarms could actually
be accepted as true positives under different applications.

In addition to the quantitative experiments using the urban
scene in the WorldView-2 image presented in this section, we
performed qualitative evaluation by using two additional very
high spatial resolution images to illustrate the effectiveness of
the proposed approach in detecting different compound struc-
tures that are composed of different primitive objects in other
types of settings such as agricultural and rural scenes. In partic-
ular, we used a multispectral WorldView-2 image of Kusadasi,
Turkey, for the detection of fruit orchards as agricultural struc-
tures composed of trees as the primitive objects, and we used a
panchromatic GeoEye-1 image of Darfur, Sudan, for the detec-
tion of refugee camps as rural structures composed of fences as
the primitive objects. Example results for orchard detection are
presented in Fig. 13. Target orchards are made up of circularly
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Fig. 13. Example results for the detection of orchards as agricultural structures
in two 500 × 500 pixel WorldView-2 images with 2-m spatial resolution.
The left column shows the marginal probabilities at the end of selection. The
example primitives used in the learning step are shown on the bottom left
corner. The right column shows the thresholded detections overlayed as red. We
used a 21 × 21 pixel Gaussian smoothing filter to enhance the binary detection
results before overlaying.

shaped tree primitives appearing in a near-regular repetitive
arrangement. Individual trees were localized as candidate re-
gions by using the top-hat transform of the normalized differ-
ence vegetation index that had sufficient contrast between the
trees and the background. We used a disk structuring element
with a radius of 1 pixel in the opening operation. The results
show that the method was very successful in identifying the re-
gions corresponding to orchards, with only minor misdetections
due to a few missing trees in the top-hat transform outputs.

Example results for the detection of refugee camps are
shown in Fig. 14. The goal was to identify the refugee camps
consisting of dwellings surrounded by fences made of clay or
straw. The fences appear as dark rectangular outlines with one
or more entrances (so that the outlines are not closed). More
information about the test scene can be obtained from [30].
We aimed to model the fences in terms of spatial arrangements
of line segments. Thus, we performed line fitting to the edge
detection outputs, and the resulting line segments were consid-
ered as candidate primitives in the selection process. The results
show that the proposed method could identify the perpendicular
arrangement of the fence segments with only a few false
positives. A few fence segments could not be detected because
they were missing in the line fitting result. Overall, these ex-
amples illustrate that the ellipse-based primitive representation
and the generic spatial arrangement model together with the
proposed learning and inference algorithms were successful in
the detection and localization of various compound structures
in different types of scenes.

We believe that the output of the proposed method can be par-
ticularly useful when the goal is to perform image mining when

Fig. 14. Example results for the detection of refugee camps as rural structures
in a 1102 × 971 pixel GeoEye-1 image with 0.5-m spatial resolution (GeoEye-1
2009, DigitalGlobe, Inc.). The top image shows the marginal probabilities as
well as the example primitives used for learning on the bottom left corner.
The bottom image shows the thresholded detections overlayed as red. We used
dilation with a disk with radius of 3 pixels to enhance the line segments for
display.

we do not have a detailed labeling of example target structures
but are interested in finding similar structures using a single
example. The localization ability of the algorithm is valuable
when there is no clear boundary with respect to low-level cues
such as color and texture for the structure of interest. This also
conforms to the focus-of-attention strategy that assumes that a
single correctly detected pixel inside a target object is sufficient
to attract the operator’s attention to that target. These results can
also be given as input to other algorithms so that more detailed
labeling of the image can be produced. For example, the algo-
rithm in [31] aims to estimate the spatial extents of complex
geospatial objects that are composed of multiple land use and
land cover classes. However, the method requires that at least
a single known pixel is given as input for each object so that
the procedure can be initialized and the model that was learned
from multiple examples can compute its extent. The proposed
method can provide the initializations and the models for such
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complex structures. As another example, the algorithm in [32]
performs detailed classification of urban land use according to
the shapes and spatial characteristics of buildings but requires
that complete GIS data with individual parcel boundaries and
building polygons with detailed attributes are given as input
for parcel-based classification where each parcel is assumed to
belong to a single homogeneous land use class. The proposed
method can localize different urban, rural, or agricultural struc-
tures so that the availability of parcel boundaries is no longer a
requirement for high-level semantic land use classification.

Finally, we analyzed the execution times for different steps
of the proposed algorithm. The proposed learning and inference
algorithms were implemented in Matlab with the only exception
of the Swendsen–Wang sampling step in Section IV-D imple-
mented in C. We performed a code profile analysis to investi-
gate the time spent in different steps. For the first scenario used
in the experiments, the learning process for the example com-
pound structure with four primitives took 774 s using the un-
optimized Matlab code on a laptop with a 2.67-GHz Intel Core
i5 processor. The sampling process in Section III took 99% of
the time where the number of samples was empirically set as
described in Section V-B. More samples can take longer but can
produce a better model with a higher likelihood. The inference
and selection process for an example 500 × 500 pixel image
took 162 s. Of the total time, the hierarchical region extraction
in Section IV-A took 1% of the time to produce 854 candidate
regions, the feature extraction in Section II-B took 2.5% of the
time, finding the Voronoi neighbors in Section IV-A took 26%
of the time, and the region selection in Section IV-B took 62%
of the time. The hierarchical region extraction step can take
longer if the number of scales in the segmentation increases.
Using faster algorithms for computing the Voronoi tessellation
for the neighborhood graph could decrease the running time.

Another note regarding the implementation is that the pro-
posed algorithm can directly run on large images as the se-
lection algorithm considers only local interactions between the
regions within connected components of the large scene graph.
However, if the resulting segmentation tree structures are very
large with a resulting large number of vertices and edges in the
neighborhood graph, sliding windows can be used to process
the image where the window size can be selected based on the
expected sizes of compound structures. Since the decision in the
selection algorithm is based on individual connected compo-
nents of the graph, it also does not matter how many different
structures exist in the same window as the decision for each com-
pound structure is made independently from other structures.
This is one of the major advantages over traditional tile-based
approaches with tiling being at the core of the image represen-
tation where each tile is assumed to correspond to a compound
structure and the features are extracted from whole tiles.

VI. CONCLUSION

We described a generic method for the modeling and detec-
tion of compound structures that consisted of arrangements of
an unknown number of primitive objects in large scenes. The
modeling process used a single example structure and built an
MRF-based contextual model for the compound structure of

interest whose parameters were learned via sampling from the
corresponding maximum entropy distribution. The detection
task involved a combinatorial selection problem where multiple
subsets of candidate regions from a hierarchical segmentation
were selected via the joint sampling of groups of regions
by maximizing the likelihood of their individual appearances
and relative spatial arrangements. Experiments using very high
spatial resolution images showed that the proposed method
could effectively localize an unknown number of instances of
different compound structures that could not be detected by
using spectral and shape features alone.
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