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Abstract

We develop an approach for detection of ruins of live-
stock enclosures in alpine areas captured by high-resolution
remotely sensed images. These structures are usually of
approximately rectangular shape and appear in images as
faint fragmented contours in complex background. We ad-
dress this problem by introducing a new rectangularity fea-
ture that quantifies the degree of alignment of an optimal
subset of extracted linear segments with a contour of rect-
angular shape. The rectangularity feature has high values
not only for perfect enclosures, but also for broken ones
with distorted angles, fragmented walls, or even a com-
pletely missing wall. However, it has zero value for spu-
rious structures with less than three sides of a perceivable
rectangle. Performance analysis using large imagery of an
alpine environment is provided. We show how the detection
performance can be improved by learning from only a few
representative examples and a large number of negatives.

1. Introduction

We address the problem of detecting remains of man-

made enclosures used to hold livestock in grassland of

mountainous regions. The livestock enclosures (LE) are of

special archaeological interest because they offer important

insights into historical development of alpine pastoralism.

Their automated spotting was questioned in a recent ar-

chaeological project [18]. Examples of such enclosures are

shown in Fig. 1. These structures are usually composed of

linear walls that may be heavily ruined. The most common

shape of LE resembles a rectangular contour with greatly

varying size and aspect ratio. Rectangle angles may deviate

from right angles, and rectangle sides may be fragmented.

The angle between adjacent fragments of the same (broken)

side may deviate from 180 degrees. Moreover, the rectan-

gular contours are sometimes incomplete such that even an

entire side may be missing.

Figure 1. Livestock enclosures (LE) in alpine environment

We use satellite and aerial images of 0.5m resolution

where the width of linear walls does not exceed two pixels.

The ruined walls are of low height, which results in low con-

trast linear features in the images. The spectral properties of

LE are similar to the spectral properties of the surrounding

terrain, rocks, and other irrelevant objects. The first row of

Fig. 5 shows a satellite and an aerial image with structures

corresponding to the LE shown in Fig. 1. Nearby irrele-

vant structures, such as rivers, trails, or rocks, are often of

similar or higher contrast either due to larger size (e.g. big

rocks) or distinctive spectral properties (e.g. rivers). Detec-

tion of such faint structures in a complex terrain is a chal-

lenging task. Even the detection of easily modeled circular

soil structures [32] had very limited success due to their low

contrast and complex terrain. Only few examples of LE are

available in our case, which presents another difficulty mak-

ing most approaches that learn from the data inappropriate.

Because of these difficulties, commonly used methods for

rectangle detection are hardly applicable.

In contrast to spectral properties, the geometrical proper-

ties of LEs appear to be more distinctive and do not depend

on image modality and conditions under which an image

was captured. We therefore develop a measure that quan-

tifies the distinctive geometry of approximately rectangular

enclosures. Our approach relies on a new rectangularity fea-

ture that discriminates rectangular patterns from other struc-

tures in complex cluttered background. The feature is based

on a prior model of a fragmented rectangle, which is a con-

vex polygon with constrained angles.
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1.1. Related work

Detection of rectangular structures has previously been

addressed in different contexts. Examples are detection of

buildings in remotely sensed images [24, 19, 14, 3, 12, 15,

1, 31, 30, 23, 26], traffic signs [21, 13, 22], and particles

of a rectangular shape in cryo-electron microscopy images

[36, 35]. The methods used were based on Markov Random

Fields [15, 21], Marked Point Processes [1, 26], search on a

graph [14, 38], Hough Transform and other voting schemes

[3, 12, 36, 13, 22], template matching [25], aggregation of

local features [1, 23, 31], and heuristic rules [19].

Most techniques for detection of rectangular structures

dealt with buildings in remotely sensed images. For exam-

ple, in the graph-based approach [14], a search for cycles

was used to generate building hypotheses. The search was

accompanied by an extensive set of rules and thresholds,

which limits the robustness of the approach.

Markov Random Fields (MRF) were used in [15] to de-

lineate buildings. More recently, a similar approach was

used in [21] for detection of traffic signs in color images.

The approach is sensitive to inaccuracy of extracted edges

and cannot detect incomplete rectangles, as it requires the

presence of all four sides of a rectangular structure. The

marked point processes (MPP) [4] recently became popular

for extraction of various structures in remotely sensed im-

ages, including buildings (e.g. in [1, 26]). The MPP proved

to be very powerful when applied to real data. However,

these stochastic methods are still computationally expen-

sive. Similarly to the MRF, they may not converge to a

globally optimal solution and usually need careful tuning

of a large number of parameters. Attempts have recently

been made to address some of these problems, which are

crucial for the analysis of large images. In [33] substantial

improvements in performance have been achieved for the

extraction of line networks (roads and rivers). In this work

also the potential of GPUs was efficiently exploited.

An approach for detection of rectangular contours based

on the Hough transform was developed in [12]. The ap-

proach relies on certain strict geometrical rules making it

not suitable for detection of fragmented or incomplete struc-

tures. It may also result in detection of rectilinear configu-

rations that cannot form a rectangular contour. Detection of

such configurations is prevented in our approach by adding

a convexity constraint.

In [31] a set of local features that carried local corner in-

formation were used to produce a probability map of build-

ing rooftops. Unfortunately, in the case of fragmented en-

closures corners are not reliable features. Moreover, local

features in general do not suffice in the case of faint con-

tours appearing in a cluttered background. A more global

description that takes into account spatial relations between

local features is necessary. For example, in [1, 23] the gra-

dient orientation density function (GODF) was computed

from image gradients. A correlation of this function with a

mixture of two Gaussians having mean values separated by

ninety degrees served as a GODF-based feature indicating

the presence of buildings.

Although there is a variety of methods developed for

building detection, they are not applicable to our task be-

cause buildings are much more salient structures. In con-

trast to building rooftops, walls of ruined livestock enclo-

sures are narrow and are of low hight (low contrast fea-

tures), may be highly fragmented, or even completely miss-

ing. Higher contrast irrelevant structures may appear inside

or outside of rectangular structures in the immediate neigh-

borhood. Various cues (rooftop color, shadows, 3D cues

etc.) usually employed in building detection algorithms are

not available.

1.2. Overview of our approach

Our approach relies on the basic detection scheme,

which includes localization of candidate points, we pre-

sented in [38]. A binary map of edges accompanied by

angle information is computed first. Linear segments are

then found and modeled by a few parameters with the use

of a local Hough transform. An undirected graph is con-

structed, nodes of which correspond to linear segments and

graph edges encode spatial relations between linear seg-

ments. Particularly, we use angle and convexity properties

to encode spatial relations. Due to the construction of the

graph, its maximal cliques correspond to valid configura-

tions of linear segments. The valid configurations are then

ranked by a new rectangularity measure that encodes the

goodness of grouping the segments into a rectangular struc-

ture (Sec. 2.3). In contrast to [38], the new rectangularity

measure does not rely on a heuristic partitioning of the set of

linear segments into four subsets. Hard decisions are soft-

ened. Configurations better matching the rules result in a

higher rectangularity measure. The rectangularity feature is

defined as the maximal rectangularity measure of all valid

configurations (Sec. 2.4). In practice, the number of cor-

responding maximal cliques within the analysis window is

low, allowing exact and efficient maximization. The result-

ing rectangularity feature captures the presence of Π-like

structures and is robust to their fragmentation.

We introduce the new rectangularity feature in Sec. 2. In

Sec. 2.5 we show how to improve the detection performance

based solely on the rectangularity feature by introducing an

additional feature proportional to enclosure size and learn-

ing from the large number of negative examples and just few

positives. Using remotely sensed imagery in Sec. 3, we, for

the first time, evaluate the performance of the normalized

maximal rectangularity (NMR) measure [38] and the intro-

duced here rectangularity features for enclosure detection.

We also compare them with the GODF-based feature from

[1] used for building detection. We conclude in Sec. 4 and



discuss future directions.

2. Measuring structure rectangularity
We introduce a rectangularity feature fR computed from

a set of linear segments W = {Si, i = 1, ...,m} that were

extracted from a gray-scale image.

2.1. Grouping edge points into linear segments

In Sec. 3.1 we provide details on approaches we used to

extract ridges and valleys (bar edges) and to detect candi-

date locations. Given a candidate location and edge points

accompanied by estimated orientations we extract and pa-

rameterize linear segments, each of which is a group of

aligned edge points. Linear segments are represented by

a triple of parameters (θ, r, l) found by the use of a local

Hough transform centered at the candidate points. We use

the Hough transform in the form introduced in [6], where

a line is defined by the orientation θ of the normal and a

distance r from the origin

r = x cos θ + y sin θ. (1)

The spatial coordinates of an edge point are x, y, θ ∈
[0, 360), and r ∈ (0,∞). A peak at (θ, r) in the Hough

plane corresponds to a line. The peaks are detected as re-

gional maxima in the Hough plane that was discretized with

Δθ = 3◦ and Δr = 1 pixel. The detected line corresponds

to either a single connected linear segment S , or to sev-

eral aligned connected components. In the latter case, the

connected components with gaps smaller than a predefined

threshold (3 pixels in our experiments) are considered a sin-

gle linear segment (see the segment Sj in Fig. 2), otherwise

they are considered separate linear segments. This was not

allowed in [38], where Hough lines always corresponded to

a single linear segment (connected or fragmented), which

restricted the number of candidate configurations of linear

segments. The parameter l in the triple (θ, r, l) is the num-

ber of points that belong to the linear segment. To better

relate the parameter l to the length and avoid its dependence

on the width of the extracted edges, we perform their thin-

ning [17] prior to clustering in a Hough plane.

Since edges were extracted together with their orienta-

tions, r can be directly computed for each edge point (x, y)
using Eq. (1). Thus, each edge point votes for a single point

in the (θ, r) plane instead of voting for a curve as suggested

in [6]. This idea, which was used already in [7] for cluster-

ing of short ridge features, considerably eases extraction of

meaningful peaks in the Hough plane.

2.2. Valid configurations of linear segments

Below we define a valid configuration of linear segments

C ⊆ W that can be a part of a rectangular structure. We

require angles βk,j between linear segments Sk,Sj ∈ C of

the valid configuration to be close to either zero, 180◦, or

right angles. An angle tolerance α will be set to control the

strictness of the angle constraint. We define βk,j as

βk,j = min(|θSk
− θSj |, 360− |θSk

− θSj |). (2)

Note that βj,k = βk,j and β ∈ [0, 180], since θ ∈ [0, 360).
The angle constraint alone does not suffice to restrict config-

urations to be perceptually close to rectangles or rectangle

parts. We therefore define a second constraint that requires

the valid configuration to be nearly convex in the sense that

extension of all linear segments of the configuration can

form an nearly convex contour. The convexity tolerance

t will be defined to control the strictness of the convexity

constraint. For a convex configuration of linear segments it

is required that a half plane generated by each segment in-

cludes all other segments of the configuration. Additionally,

we require that all these half planes contain the candidate

point around which we search for a rectangular structure.

Pair-wise convexity constraints suffice to verify the convex-

ity of a configuration containing the given candidate point.

We define the pair-wise convexity measure τ for a pair of

linear segments Sk,Sj , each with corresponding attributes

of size lS , orientation θS , and distance rS to the candidate

point p0, as

τk,j = max(τ̃k,j , τ̃j,k), (3)

τ̃k,j =
1

lj

∑
p∈Sj

H((p− p0)
T · nk − rk), (4)

where nk = (cos θk, sin θk)
T is the unit normal of Sk and

H(u) is an indicator function equal one for u > 0 and zero

otherwise. τ̃k,j measures the relative number of points in

the segment Sj that are behind the segment Sk, relative to

the given candidate point p0 as illustrated in Fig. 2. Note

that τ ∈ [0, 1], and τk,j = τj,k, while τ̃k,j �= τ̃j,k.

Figure 2. The fraction of points p of Sj that violates the convexity

constraint relative to Sk and p0 is given by τ̃k,j . Note that linear

segments can be fragmented having small gaps as in Sj .

Definition 1. Let α ∈ [0, 45], t ∈ [0, 1], a candidate point

p0, and a configuration C of linear segments be given. If

for all pairs Sk,Sj ∈ C, j �= k, one of the inequalities of

the angle constraint

βk,j ≤ α or |90− βk,j | ≤ α or 180− βk,j ≤ α (5)



and the convexity constraint

τk,j ≤ t (6)

both hold, then C is called a (t,α)-valid configuration lo-

cated around p0, and denoted by Ct,α
p0

.

For the sake of brevity, we usually omit the indices t,
α and the reference point p0, mentioning that C is a valid

configuration. Valid configurations include not only perfect

rectangles, but also convex polygons or their parts with an-

gles around either 90 or 180 degrees. This is important in

practice since approximately rectangular structures are bet-

ter modeled by such polygons rather than by perfect rectan-

gles.

2.3. Rectangularity measure of a valid configuration

A couple of poorly aligned short segments can be a valid

configuration as far as the tolerances t, α allow. There is

a need to rank valid configurations according to their simi-

larity to a canonical rectangle. To find and rank valid con-

figurations we construct an undirected graph Gw from the

given set W of linear segments in a window centered at a

candidate point p0. The graph Gw has nodes j = 1, ..,m
corresponding to the segments S1, ..,Sm ∈ W. Each node

j is attributed by a triple of parameters (θj , rj , lj), i.e. ori-

entation, distance to the reference point p0, and size of the

linear segment. An edge {k, j} is attributed with the angle

βk,j and the pair-wise convexity τk,j of the corresponding

pair of segments Sk,Sj . An edge {k, j} is included in the

graph Gw if βk,j and τk,j satisfy the constraints in Eqs.

(5, 6). This attributed graph encodes properties of linear

segments and their spatial relationships. Due to the graph

construction and Definition 1, valid configurations C corre-

spond to fully connected subgraphs Gc, also called cliques,

of the graph Gw.

Below we introduce the new rectangularity measure

ρ(Gc) that ranks a clique Gc corresponding to a valid con-

figuration C ⊆ W. We define the measure with the follow-

ing properties in mind. The rectangularity measure shall

yield higher values for configurations with

1. higher degree of convexity given by lower values of

the convexity measure τ

2. higher degree of angle alignments given by angles β

3. longer linear segments given by larger l.

In addition, the proposed rectangularity measure shall

4. have the increasing property ρ(Gc
1) ≤ ρ(Gc

2) for

Gc
1 ⊆ Gc

2. Thus, the rectangularity measure of a larger

encompassing clique has a higher value

5. yield a zero value for configurations of linear segments

with less than three sides of a rectangle.

We define the rectangularity measure of a graph clique Gc

in terms of sums over its undirected edges {k, j} ∈ Ec

ρ(Gc) =

⎛
⎝
⎛
⎝ ∑

{k, j} ∈ Ec

lkljf90(βk,j)fcv(τk,j)

⎞
⎠ ×

⎛
⎝ ∑

{k, j} ∈ Ec

lkljf180(βk,j)fcv(τk,j)

⎞
⎠
⎞
⎠

1
4

, (7)

where f90, f180, and fcv are mode functions depicted in Fig.

3. f90 and f180 equal zero for angles β that deviate from the

mode center larger than the angle tolerance α. fcv equals

zero for the convexity measure τ larger than the convexity

tolerance t. In our experiments we used α = 35◦ and t =
0.3. The exact definition of the mode function is not critical

and is not given here due to space constraints.

0 45 90 135 180

0.5

1

f90
f180

0 0.3 0.6 0.9

0.5

1
fcv

Figure 3. Functions f90 (left figure, solid blue curve), f180 (left fig-

ure, dashed red curve), and fcv (right figure) used in the definition

of the rectangularity measure in Eq. (7).

The first factor of ρ(Gc) in Eq. (7) yields a non-zero

value only if the valid configuration C contains at least one

pair of approximately perpendicular linear segments that

fulfill the convexity constraint in Eq. (6). The second factor

is non-zero only if the valid configuration contains at least

one pair of approximately parallel linear segments1. The

product of these two factors is non-zero only if the valid

configuration C contains at least one pair of parallel and one

pair of perpendicular linear segments. The angles between

linear segments of these parallel and perpendicular pairs are

restricted to be approximately 0, 180, or 90 degrees since C
is a valid configuration with linear segments constrained by

Eq. (5). Thus, a non-zero rectangularity measure insures a

valid configuration C containing at least one triple of seg-

ments arranged in a Π-like structure, as stated in property

5 above. This property allows suppression of a large num-

ber of configurations originating from clutter (e.g. lines,

corners, junctions etc.). It is easy to verify that the other

four properties above are also satisfied by the rectangularity

measure in Eq. (7).

1fcv in the second term has only a small impact on results. It reduces

the rectangularity measure for configurations with badly aligned opposite

sides with a non-zero convexity measure.



Note that the rectangularity measure is a function of

graph node and edge attributes and does not require explicit

partitioning of a valid configuration of linear segments into

four subsets corresponding to four sides of a hypothesized

rectangle as required in [38].

2.4. Rectangularity feature

Given a set of linear segments W in an analysis win-

dow, we define the rectangularity feature fR of the corre-

sponding graph Gw using the rectangularity measure of its

cliques Gc. Let us denote the set of cliques as K(Gw). The

rectangularity feature of Gw is defined as

fR(G
w) = max

Gc∈K(Gw)
ρ(Gc). (8)

The corresponding optimal clique is

Gc
opt = argmax

Gc∈K(Gw)

ρ(Gc). (9)

Due to the increasing property of ρ (the fourth property of

the rectangularity measure stated in Sec. 2.3), the maximum

can be searched over the set of maximal cliques2 only, de-

noted here by M(Gw)

fR(G
w) = ρ(Gc

opt) = max
Gc∈M(Gw)

ρ(Gc). (10)

Since the set of maximal cliques M(Gw) ⊆ K(Gw) is

much smaller than the set of graph cliques K(Gw), the

number of times the rectangularity measure ρ needs to be

evaluated in Eq. (10) is considerably reduced in compari-

son to Eq. (8). Since, in addition, there are efficient algo-

rithms for the search of maximal cliques [2], computing the

rectangularity feature is not computationally demanding.

Fig. 4 (left) shows an example of a given set W =
{S1,S2, ..,S6} of linear segments and the optimal config-

uration Copt = {S1,S2,S3,S5} in red, while Fig. 4 (right)

shows the corresponding graph Gw and the optimal max-

imal clique Gc
opt in red. There are two additional max-

imal cliques Gc
1 and Gc

2 and corresponding valid config-

urations C1 = {S2,S3,S4,S6}, C2 = {S1,S2,S3,S4}.

They, however, have lower rectangularity values ρ(Gc
1) <

ρ(Gc
opt), ρ(G

c
2) < ρ(Gc

opt).

2.5. Adjusted rectangularity feature

The rectangularity feature scales with the structure size

having lower values for small structures. A detector based

on such a feature is prone to dismiss small rectangles. On

the other hand, false structures of a small size are more fre-

quent. We, therefore, introduce an additional feature fS
proportional to the structure size and learn a classifier from

the available data in the two-dimensional feature space.

2Maximal cliques are cliques that are not contained in larger cliques.

Figure 4. Left: A given set W = {S1,S2, ..,S6} of linear seg-

ments around a candidate point p0. Right: A graph Gw for the set

of linear segments. We assume an angle tolerance α such that all

angle constraints are satisfied. Several node pairs of the graph are

not connected by an edge due to the convexity constraint, which is

not satisfied for an assumed convexity tolerance t. The red nodes

of the graph are the nodes of the optimal maximal clique Gc
opt.

The corresponding valid configuration Copt is marked in red on

the left figure.

This may improve the trade-off between the sensitivity and

the number of false detections in comparison to the one-

dimensional case. We define the size of the structure, rep-

resented by the optimal clique Gc
opt ⊆ Gw, as

fS(G
w) =

∑
j ljrj∑
j lj

, (11)

where the sums are over all nodes of the optimal clique

Gc
opt. fS is computed as the weighted distance of the linear

segments of Copt from the corresponding candidate point,

where the weights are segment sizes.

Since only a few positive examples are available in our

case, a classification approach should be carefully chosen.

The linear classifiers are favorable when there is a danger

of overfitting the data due to a limited number of avail-

able examples. They also are not computationally demand-

ing. Simple linear classifiers may be powerful enough when

used together with a few category-specific features as op-

posed to the use of many generic features, [34]. We care-

fully constructed such rectangularity and size features. The

normal w of the separating hyperplane of a linear classifier

can be found by means of the Fisher Linear Discriminant

analysis (FLD). In this approach, the optimal direction is

determined such that the data from two classes projected

on w is maximally separated. The separation is measured

by the squared distance between class means normalized by

the sum of their variances [9, 7]. This approach results in

a simple solution represented in terms of class means and

covariance matrices. In our case, however, the number of

positive examples is very limited and the covariance matrix

cannot reliably be estimated.

We optimize the normal direction w based on the large

number of available samples from the dominant class of

negatives and just a few examples from the class of posi-

tives (novelties). Let us define the expected signed distance



between an arbitrary point y and the distribution X of neg-

atives, both projected to the direction w and normalized by

the standard deviation of the projected distribution by

Dw(y,X) ≡ Ex

[
wT y − wTx

]
√
Ex [(wTx− wTμx)2]

=
wT (y − μx)√

wTCxw
,

(12)

where μx and Cx are the mean and the covariance matrix of

the distribution X , respectively. Next, we define the average

signed distance between a set of points {yi, i = 1, ..., n}
and the distribution X

D̄w({yi}, X) ≡ 1

n

n∑
i=1

Dw(yi, X) =
wT (ȳ − μx)√

wTCxw
, (13)

where ȳ = 1
n

∑n
i=1 yi. We now define the optimal direc-

tion w as the direction that maximizes the absolute value

of the average signed distance between a set of points cor-

responding to positive examples and the distribution of the

dominant class of negatives X , i.e.

wopt ≡ argmax
w

|D̄w({yi}, X)|. (14)

From Eqs. (13, 14) we obtain

wopt = argmax
w

|wT (ȳ − μx)|√
wTCxw

. (15)

It can be shown that

wopt = C−1
x (ȳ − μx) (16)

is a solution of Eq. (15). The obtained direction wopt is

similar to the one in the FLD analysis [7]. In contrast to the

FLD solution, Eq. (16) includes the covariance matrix of the

class of negatives only, preferring the solution in the direc-

tion of the small variance of negatives. Negatives are well

sampled in our problem and their covariance matrix can be

robustly estimated. The positives are treated as determinis-

tic points in the feature space and influence the solution only

via their average. Literally, the average only weakly guides

the solution showing were the novelties of our interest re-

side. The samples of X may include outliers. Therefore, in

Eq. (16) we use the robust Multivariate Trimming estimates

of the mean and the covariance matrix [5].

Given the optimal hyperplane defined by wopt, samples

with coordinates (fS , fR) in feature space can be character-

ized by the adjusted rectangularity feature

f̂R = (fS fR)wopt. (17)

Thereby, the adjusted rectangularity feature is an optimal

linear combination of the rectangularity and size features.

Note that this approach is not limited to two dimensional

feature spaces, but directly extends to higher dimensions.

3. Experiments

We evaluate the discrimination ability of the introduced

rectangularity features and provide comparison with the

NMR measure in [38] and the GODF-based feature in [1]

using our implementation, see Sec. 3.3.

3.1. Data used and preprocessing

In our experiments we used panchromatic images cap-

tured by the GeoEye1 satellite and the red channel of Swiss

Topo aerial images. Both types of images are at 0.5m res-

olution. Nine examples of enclosures taken from aerial and

satellite images were available for us. A large number of

negative examples was generated from 19000×10000 pixel

size satellite image of the Silvretta mountains, which corre-

sponds to about 48km2. The data stems from a recent ar-

chaeological project in the Silvretta mountains [18].

We used the preprocessing flow as in [38]. Bar edges

were extracted using the Morphological Feature Contrast

based line detector [40, 39]. This technique extracts lin-

ear features, while suppressing texture elements of cluttered

background. We also experimented with other approaches

[20, 10, 28], but these are either not sensitive enough to ex-

tract faint edges of enclosures, or generate lots of clutter

edges depending on the parameters used. The parameter-

less line segment detector [11], which is known to provide

robust results for a large range of images, misses faint edges

of enclosures. Extraction of candidate points was carried

out by sampling the skeleton points of a complementary bi-

nary map of detected bar edges [38]. The second row of

Fig. 5 shows examples of maps of bar edges and candidate

points for the corresponding images in the first row. Along

with the skeleton, we computed the distance transform of

the set of bar edges. The values of the distance transform

at the candidate points were used to adaptively define the

sizes of an analysis window. We discarded all candidate

points having a distance smaller than 10 or greater than 90

pixels, which limits the distances between opposite walls

of the structures. High contrast texture regions were fil-

tered out using the Morphological Texture Contrast descrip-

tor [40, 39, 37] thresholded with the Otsu method [27]. This

filters out urban areas, forests, rocky mountains, and other

high contrast texture regions, but preserves individual struc-

tures.

3.2. Measuring discrimination power

To detect LE, an appropriate threshold on the value of

the rectangularity features must be set. Setting a particular

threshold defines the true positives rate (TPR) and the false

positives rate (FPR), or correspondingly the number of de-

tected true and false positives (TP and FP). In our case, the

effectiveness of the rectangularity features is their ability

to discriminate LE from irrelevant structures and clutter. A



Figure 5. First row: 600 × 600 satellite ( c©GeoEye 2011) and

aerial (SWISSTOPO) images of 0.5m resolution with structures

corresponding to livestock enclosures in Fig. 1. Second row: Bar

edges (black) and candidate points (red) generated from the im-

ages in the first row. Third row: The rectangularity feature com-

puted at each candidate point and visualized by a colored disk.

Fourth row: The GODF-based feature. Color saturation increases

and hue is changing from yellow to red for growing values of the

features in accordance with the color bar in the bottom.

possible measure of this ability is the minimal number of FP

detected with the threshold that insures TPR ≥ ξ, where

ξ is the predefined rate of true positives3. We computed

FP for ξ = 1, denoted in the following by FP100. This

was done by setting the detection threshold to the minimum

value of the rectangularity feature computed for nine avail-

able positives. Obviously, the threshold used to obtain the

detection rate TPR = 1 on a small number of available ex-

amples does not insure a detector with 100% detection rate.

However, it allows us to measure and compare the discrim-

ination ability of the rectangularity features.

We also used an alternative measure of the discrimina-

tion ability that is the area under receiver operating char-

acteristic (ROC) curve. It is especially useful in the pres-

ence of unbalanced classes [8, 16]. In contrast to FP100,

the area under receiver operating characteristic (AUC) does

not rely on a particular threshold and a corresponding oper-

ating point on the ROC curve, but instead summarizes the

detection performance for different values of the threshold.

3.3. The gradient orientation density function
(GODF) based feature

The GODF-based feature was recently used in [1, 23] for

detection of buildings. The GODF, denoted λ(θ), captures

the distribution of orientations of intensity gradients. The

correlation of λ(θ) with a function having two modes sepa-

rated by 90◦ served as a GODF-based feature fG indicating

the presence of rectilinear structures. Let A be the neigh-

borhood around a candidate point and let us denote by g(p)
the intensity gradient (the Prewitt operator was used) and

by ϕg(p) the gradient orientation at p. λ(θ) is computed

as a weighted gradient orientation histogram with gradi-

ent magnitudes ‖g(p)‖ as weights, and discrete orientation

θ ∈ [0, 180), θ = kΔθ, where k = 0, 1, 2, ...,

λ(θ) =
1

B

∑
p∈A

‖g(p)‖I(θ, ϕg(p)). (18)

The discrimination step Δθ was set to one. B is a normal-

izing constant such that λ(θ) is a unit vector4, and I(θ, ϕ)
is the indicator function that equals one if ϕ ∈ [θ, θ +Δθ),
and zero otherwise. The GODF-based feature fG at the can-

didate point is then defined as a circular correlation of the

orientation histogram λ(θ) with the function fΔ90

fG = max
ϑ∈[0,90)

∑
θ

λ(θ)fΔ90((θ − ϑ) modulo 180). (19)

fΔ90 is defined in the interval [0, 180) and composed of

modes separated by 90◦. The shape of the modes was the

same as for the modes of f90 and f180 in Eq. (7).

3.4. Results

The rectangularity feature f2
R computed at the candidate

points is visualized by colored disks in Fig. 5 (third row).

3This corresponds to the so-called Neyman-Pearson task [29].
4This gave us better results than for B =

∑
p∈A ‖g(p)‖ used in [1].



It was squared in order to visually better distinguish its low

and high values. As expected, high values were obtained at

positions of LE while zero or low values were obtained at

most other candidate positions. Visually similar results are

obtained with the NMR measure from [38]. We do not show

the corresponding images here (see examples in [38]) due

to space limitations. Less convincing results were obtained

for the GODF-based feature f8
G in Fig. 5 (fourth row). The

GODF-based feature was raised to the eighth power, since

the second power did not suffice to visually distinguish its

low and high values. One can see that the rectangularity

feature map is much sparser than the GODF-based feature

map. This is partially because the rectangularity feature has

zero value for spurious structures with less than three sides,

while the GODF-based feature may have only small non-

zero values for such structures.

The quantitative measures of performance are summa-

rized in Table 1. The structures were detected out of 403716

candidate positions in the 19000× 10000 pixel image. The

results show that the discrimination ability of the adjusted

rectangularity feature f̂R is superior to the others. It allows

reduction of FP by 24% relatively to fR, which is in turn

considerably better than the NMR measure in [38]. Though

effective for building detection, the GODF-based feature

turned out to be far worse for detecting faint enclosures

in cluttered background. This feature is not useful when

computed over large windows, where the relative number of

points belonging to an enclosure is very low. Fig. 6 shows

typical FP obtained for the rectangularity features. These

FP were caused by streams and roads. The use of 3D data

(e.g. LiDAR) would allow the discrimination of such FP.

Figure 6. Typical false positives (within color rectangles).

The experiments were carried out using Matlab on a ma-

chine with an Intel Core i5 3.3 GHz processor. Generation

of candidate locations and computation of the introduced

rectangularity features took about two hours. Generation of

the NMR measure and the GODF-based feature took about

forty and ninety minutes, respectively.

4. Discussion and Conclusion

The introduced rectangularity and the adjusted (learnt)

rectangularity features have shown good performance dis-

criminating ruined enclosures from irrelevant structures and

clutter in remotely sensed images. Due to the inherent diffi-

fG fN fR f̂R

FP100 6522 334 133 101

AUC × 102 99.683 98.292 99.993 99.994

Table 1. Detection performance using the GODF-based feature fG
([1]), the normalized maximum rectangularity measure fN ([38]),

the rectangularity fR, and the adjusted rectangularity f̂R features.

culties of our problem, such a performance is hardly achiev-

able with other approaches for detection of rectangular con-

tours, nor with related approaches, e.g. for detection of

buildings. As an example we have shown that the GODF-

based feature used for detection of buildings (e.g. in [1]) re-

veals a poor discrimination ability for our task. Note that we

did not compare the rectangularity features with the whole

approach developed in [1], because it is based on additional

features not appropriate in the case of enclosures. Also, pa-

rameters of the data model would be hard to estimate from

only few available examples of enclosures. We have also

tested other methods for building detection (e.g. [31, 12])

applied to detection of livestock enclosures. Unfortunately,

these methods completely fail to detect the enclosures, pre-

venting us from reporting the corresponding quantitative

comparison.

In general, methods for building detection are not suit-

able for our case because of considerably lower heights

(related to low feature contrasts) and feature sizes (ruined

walls versus building rooftops), and due to the absence of

various cues (roof colors, roof homogeneity, shadows, 3D

cues, etc.). Some walls or parts of them may be missing or

may also be missed in the edge extraction (the width of lin-

ear features does not exceed two pixels in images of 0.5m

resolution). Various irrelevant structures (trails, streams,

rocks etc.) with sizes or/and reflectance properties similar to

those of enclosure walls may occasionally form rectilinear

configurations. In contrast to enclosures, building rooftops

are much more distinctive structures.

It is interesting to investigate the usefulness of the rectan-

gularity features for detection of targets other than livestock

enclosures. We believe, for example, that our approach may

have comparative performance for detection of abandoned

buildings or other architectural structures in rural or moun-

tainous areas5. Building contours can be extracted with

standard edge detection algorithms and used as an input for

our approach. Note that, while building detection problem

can be transformed to detection of enclosures6, it does not

work in the opposite direction. We also plan to incorporate

additional features and apply the FLD-based detector to vast

alpine areas in order to spot unknown livestock enclosures.

5In urban areas our approach is likely to be too sensitive. Walls of

adjacent buildings may cause a large number of false detections within

urban areas.
6Cues such as roof color or corner features will not be used, however.



References
[1] C. Benedek, X. Descombes, and J. Zerubia. Building devel-

opment monitoring in multitemporal remotely sensed image

pairs with stochastic birth-death dynamics. IEEE Trans. Pat-
tern Anal. Mach. Intell., 34(1):33–50, 2012.

[2] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques

of an undirected graph. Commun. ACM, 16(9):575–577,

Sept. 1973.

[3] A. Croitoru and Y. Doytsher. Right-angle rooftop polygon

extraction in regularised urban areas: Cutting the corners.

The Photogrammetric Record, 19(108):311–341, 2004.

[4] X. Descombes and J. Zerubia. Marked point process in im-

age analysis. Signal Processing Magazine, IEEE, 19(5):77–

84, 2002.

[5] S. J. Devlin, R. Gnanadesikan, and J. R. Kettenring. Ro-

bust estimation of dispersion matrices and principal com-

ponents. Journal of the American Statistical Association,

76(374):354–362, 1981.

[6] R. O. Duda and P. E. Hart. Use of the Hough transforma-

tion to detect lines and curves in pictures. Commun. ACM,

15(1):11–15, Jan. 1972.

[7] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. John Willey & Sons, 1973.

[8] T. Fawcett. An introduction to ROC analysis. Pattern
Recogn. Lett., 27(8):861–874, June 2006.

[9] K. Fukunaga. Introduction to Statistical Pattern Recognition.

Academic Press., 1990.

[10] C. Grigorescu, N. Petkov, and M. Westenberg. Contour

and boundary detection improved by surround suppression

of texture edges. Image and Vision Computing, 22:609 –

622, 2004.

[11] R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and

G. Randall. LSD: A fast line segment detector with a false

detection control. IEEE Trans. Pattern Anal. Mach. Intell.,
32(4):722–732, Apr. 2010.

[12] C. R. Jung and R. Schramm. Rectangle detection based on a

windowed Hough transform. In Proceedings of the Com-
puter Graphics and Image Processing (SIBGRAPI), XVII
Brazilian Symposium, pages 113–120, 2004.

[13] C. G. Keller, C. Sprunk, C. Bahlmann, J. Giebel, and

G. Baratoff. Real-time recognition of US speed signs. In

Intelligent Vehicles Symposium, pages 518–523. IEEE, 2008.

[14] T. Kim and J.-P. Muller. Development of a graph-based

approach for building detection. Image Vision Comput.,
17(1):3–14, 1999.

[15] S. Krishnamachari and R. Chellappa. Delineating buildings

by grouping lines with MRFS. IEEE Transactions on Image
Processing, 5(1):164–168, 1996.

[16] W. J. Krzanowski and D. J. Hand. ROC Curves for Continu-
ous Data. Chapman & Hall/CRC, 2009.

[17] L. Lam, S.-W. Lee, and C. Y. Suen. Thinning methodologies-

a comprehensive survey. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 14(9):869 – 885, 1992. p.879.

[18] K. Lambers and I. Zingman. Towards detection of archae-

ological objects in high-resolution remotely sensed images:

the Silvretta case study. In G. Earl et al., editors, Archaeol-
ogy in the digital era (e-papers). Proc. of Computer Applica-
tions and Quantitative Methods in Archaeology, volume II,

pages 781–791, Southampton, UK, March 2012. Amsterdam

University Press.

[19] C. Lin and R. Nevatia. Building detection and description

from a single intensity image. Computer Vision and Image
Understanding, 72(2):101–121, 1998.

[20] T. Lindeberg. Edge detection and ridge detection with au-

tomatic scale selection. International Journal of Computer
Vision, 30(2):117–156, 1998.

[21] Y. Liu, T. Ikenaga, and S. Goto. An MRF model-based ap-

proach to the detection of rectangular shape objects in color

images. Signal Processing, 87(11):2649–2658, 2007.

[22] G. B. Loy and N. M. Barnes. Fast shape-based road sign

detection for a driver assistance system. In 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Sendai, Japan, pages 70–75, 2004.

[23] A. Manno-Kovacs and T. Sziranyi. Multidirectional Build-

ing Detection in Aerial Images Without Shape Templates. IS-
PRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, (1):010000–232,

May 2013.

[24] H. Mayer. Automatic object extraction from aerial imagery -

a survey focusing on buildings. Computer Vision and Image
Understanding, 74(2):138–149, 1999.

[25] H. Moon, R. Chellappa, and A. Rosenfeld. Optimal edge-

based shape detection. IEEE Transactions on Image Pro-
cessing, 11(11):1209–1227, 2002.

[26] M. Ortner, X. Descombes, and J. Zerubia. A marked point

process of rectangles and segments for automatic analysis

of digital elevation models. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 30(1):105–119, 2008.

[27] N. Otsu. A Threshold Selection Method from Gray-level

Histograms. IEEE Transactions on Systems, Man and Cy-
bernetics, 9:62–66, Jan. 1979.

[28] G. Papari and N. Petkov. An improved model for sur-

round suppression by steerable filters and multilevel inhibi-

tion with application to contour detection. Pattern Recogni-
tion, 44:1999 – 2007, 2011.

[29] M. I. Schlesinger and V. Hlavac. Ten lectures on statistical
and structural pattern recognition. Springer, 2002.

[30] B. Sirmacek and C. Unsalan. Urban-area and building detec-

tion using SIFT keypoints and graph theory. IEEE T. Geo-
science and Remote Sensing, 47(4):1156–1167, 2009.

[31] B. Sirmacek and C. Unsalan. A probabilistic framework to

detect buildings in aerial and satellite images. IEEE Tran.
Geoscience and Remote Sensing, 49(1-1):211–221, 2011.

[32] Ø. D. Trier, S. Ø. Larsen, and R. Solberg. Automatic detec-

tion of circular structures in high-resolution satellite images

of agricultural land. Archaeological Prospection, 16:1–15,

2009.

[33] Y. Verdie and F. Lafarge. Detecting parametric objects in

large scenes by Monte Carlo sampling. International Journal
of Computer Vision, 106(1):57–75, 2014.

[34] M. Vidal-Naquet and S. Ullman. Object recognition with

informative features and linear classification. In Proc. of the



International Conference on Computer Vision, pages 281–

288 vol.1, Oct 2003.

[35] Z. Yu and C. Bajaj. Detecting circular and rectangular parti-

cles based on geometric feature detection in electron micro-

graphs. Journal of Structural Biology, 145(12):168 – 180,

2004.

[36] Y. Zhu, B. Carragher, F. Mouche, and C. S. Potter. Automatic

particle detection through efficient hough transforms. IEEE
Trans. Med. Imaging, 22(9):1053–1062, 2003.

[37] I. Zingman, D. Saupe, and K. Lambers. Morphological op-

erators for segmentation of high contrast textured regions in

remotely sensed imagery. In Proc. of the IEEE Int. Geo-
science and Remote Sensing Symposium, pages 3451–3454,

Munich, Germany, July 2012.

[38] I. Zingman, D. Saupe, and K. Lambers. Automated search

for livestock enclosures of rectangular shape in remotely

sensed imagery. In L. Bruzzone, editor, Proc. SPIE, Im-
age and Signal Processing for Remote Sensing XIX, volume

8892, pages 88920F–1 – 88920F–11, Dresden, Germany,

2013.

[39] I. Zingman, D. Saupe, and K. Lambers. Detection of texture

and isolated features using alternating morphological filters.

In C. Hendriks, G. Borgefors, and R. Strand, editors, Math-
ematical Morphology and Its Applications to Signal and Im-
age Processing, volume 7883 of Lecture Notes in Computer
Science, pages 440–451. Springer, 2013.

[40] I. Zingman, D. Saupe, and K. Lambers. A morphological

approach for distinguishing texture and individual features

in images. Pattern Recognition Letters, 47:129 – 138, 2014.

Advances in Mathematical Morphology.


