3,345 research outputs found

    Characterising polynomial time computable functions using theories with weak set existence principles

    Get PDF
    AbstractSeveral authors have independently introduced second order theories whose provably total functionals are polynomial time computable functions on strings (e.g. [4], [6] and [7]), including the first author ([3], meant to be the second part of [2]). In this paper we give a detailed proof of the bi-interpretability result between such a second order theory and Buss' first order bounded arithmetic, based on an elegant definition of multiplication due to the second author

    Strengths and Limitations of Formal Ontologies in the Biomedical Domain

    Get PDF
    We propose a typology of representational artifacts for health care and life sciences domains and associate this typology with different kinds of formal ontology and logic, drawing conclusions as to the strengths and limitations for ontology in a description logics framework. The four types of domain representation we consider are: (i) lexico-semantic representation, (ii) representation of types of entities, (iii) representations of background knowledge, and (iv) representation of individuals. We advocate a clear distinction of the four kinds of representation in order to provide a more rational basis for using ontologies and related artifacts to advance integration of data and enhance interoperability of associated reasoning systems. We highlight the fact that only a minor portion of scientifically relevant facts in a domain such as biomedicine can be adequately represented by formal ontologies as long as the latter are conceived as representations of entity types. In particular, the attempt to encode default or probabilistic knowledge using ontologies so conceived is prone to produce unintended, erroneous models

    Delineating Classes of Computational Complexity via Second Order Theories with Weak Set Existence Principles (I)

    No full text
    Aleksandar Ignjatović. Delineating Classes of Computational Complexity via Second Order Theories with Weak Set Existence Principles (I)

    Empiricism and Philosophy

    Get PDF
    Though Quine's argument against the analytic-synthetic distinction is widely disputed, one of the major effects of his argument has been to popularise the belief that there is no sharp distinction between science and philosophy. This thesis begins by distinguishing reductive from holistic empiricism, showing why reductive empiricism is false, refuting the major objections to holistic empiricism and stating the limits on human knowledge it implies. Quine's arguments (and some arguments that have been mistakenly attributed to him) from holism against the analytic-synthetic are considered, and while many of them are found wanting one good argument is presented. Holism does not, however, imply that there is no sharp distinction between science and philosophy, and indeed implies that the distinction between scientific and philosophical disputes is perfectly sharp. The grounds upon which philosophical disputes may be resolved are then sought for and deliniated

    Empiricism and Philosophy

    Get PDF
    Though Quine's argument against the analytic-synthetic distinction is widely disputed, one of the major effects of his argument has been to popularise the belief that there is no sharp distinction between science and philosophy. This thesis begins by distinguishing reductive from holistic empiricism, showing why reductive empiricism is false, refuting the major objections to holistic empiricism and stating the limits on human knowledge it implies. Quine's arguments (and some arguments that have been mistakenly attributed to him) from holism against the analytic-synthetic are considered, and while many of them are found wanting one good argument is presented. Holism does not, however, imply that there is no sharp distinction between science and philosophy, and indeed implies that the distinction between scientific and philosophical disputes is perfectly sharp. The grounds upon which philosophical disputes may be resolved are then sought for and deliniated

    Systematic quantum cluster typical medium method for the study of localization in strongly disordered electronic systems

    Get PDF
    Great progress has been made in the last several years towards understanding the properties of disordered electronic systems. In part, this is made possible by recent advances in quantum effective medium methods which enable the study of disorder and electron-electronic interactions on equal footing. They include dynamical mean field theory and the coherent potential approximation, and their cluster extension, the dynamical cluster approximation. Despite their successes, these methods do not enable the first-principles study of the strongly disordered regime, including the effects of electronic localization. The main focus of this review is the recently developed typical medium dynamical cluster approximation for disordered electronic systems. This method has been constructed to capture disorder-induced localization, and is based on a mapping of a lattice onto a quantum cluster embedded in an effective typical medium, which is determined self-consistently. Here we provide an overview of various recent applications of the typical medium dynamical cluster approximation to a variety of models and systems, including single and multi-band Anderson model, and models with local and off-diagonal disorder. We then present the application of the method to realistic systems in the framework of the density functional theory.Comment: 58 pages, 46 figure

    Epistemic Modality, Mind, and Mathematics

    Get PDF
    This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the computational theory of mind; metaphysical modality; the types of mathematical modality; to the epistemic status of large cardinal axioms, undecidable propositions, and abstraction principles in the philosophy of mathematics; to the modal profile of rational intuition; and to the types of intention, when the latter is interpreted as a modal mental state. Chapter \textbf{2} argues for a novel type of expressivism based on the duality between the categories of coalgebras and algebras, and argues that the duality permits of the reconciliation between modal cognitivism and modal expressivism. Chapter \textbf{3} provides an abstraction principle for epistemic intensions. Chapter \textbf{4} advances a topic-sensitive two-dimensional truthmaker semantics, and provides three novel interpretations of the framework along with the epistemic and metasemantic. Chapter \textbf{5} applies the fixed points of the modal μ\mu-calculus in order to account for the iteration of epistemic states, by contrast to availing of modal axiom 4 (i.e. the KK principle). Chapter \textbf{6} advances a solution to the Julius Caesar problem based on Fine's "criterial" identity conditions which incorporate conditions on essentiality and grounding. Chapter \textbf{7} provides a ground-theoretic regimentation of the proposals in the metaphysics of consciousness and examines its bearing on the two-dimensional conceivability argument against physicalism. The topic-sensitive epistemic two-dimensional truthmaker semantics developed in chapter \textbf{4} is availed of in order for epistemic states to be a guide to metaphysical states in the hyperintensional setting. Chapter \textbf{8} examines the modal commitments of abstractionism, in particular necessitism, and epistemic modality and the epistemology of abstraction. Chapter \textbf{9} examines the modal profile of Ω\Omega-logic in set theory. Chapter \textbf{10} examines the interaction between epistemic two-dimensional truthmaker semantics, epistemic set theory, and absolute decidability. Chapter \textbf{11} avails of modal coalgebraic automata to interpret the defining properties of indefinite extensibility, and avails of epistemic two-dimensional semantics in order to account for the interaction of the interpretational and objective modalities thereof. The hyperintensional, topic-sensitive epistemic two-dimensional truthmaker semantics developed in chapter \textbf{2} is applied in chapters \textbf{7}, \textbf{8}, \textbf{10}, and \textbf{11}. Chapter \textbf{12} provides a modal logic for rational intuition and provides four models of hyperintensional semantics. Chapter \textbf{13} examines modal responses to the alethic paradoxes. Chapter \textbf{14} examines, finally, the modal semantics for the different types of intention and the relation of the latter to evidential decision theory

    The Abstract Language: Symbolic Cogniton And Its Relationship To Embodiment

    Get PDF
    Embodied theories presume that concepts are modality specific while symbolic theories suggest that all modalities for a given concept are integrated. Symbolic and embodied theories do fairly well with explaining and describing concrete concepts. Specifically, embodied theories seem well suited to describing the actual content of a concept while symbolic theories provide insight into how concepts operate. Conversely, neither symbolic nor embodied theories have been fully sufficient when attempting to describe and explain abstract concepts. Several pluralistic accounts have been put forth to describe how the semantic/lexical system interacts with the conceptual system. In this respect, they attempt to “embody” abstract concepts to the same extent as concrete concepts. Nevertheless, a concise and comprehensive theory for explaining how we learn/understand abstract concepts to the extent that we learn/understand concrete concepts remains elusive. One goal of the present review paper is to consider if abstract concepts can be defined by a unified theory or if subsets of abstract concepts will be defined by separate theories. Of particular focus will be Symbolic Interdependency Theory (SIT). It will be argued that SIT is suitable for grounding abstract concepts, as this theory infers that symbols bootstrap meaning from other symbols, highlighting the importance of abstract-to-abstract mapping in the same way that concrete-to-abstract mappings are created. Research will be considered to help outline a cohesive strategy for describing and understanding abstract concepts. Finally, as research has demonstrated efficiencies with concrete concept processing, analogous efficiencies will be explored for developing an understanding of abstract concepts. Such efforts could have both theoretical and practical implications for bolstering our knowledge of concept learning

    On the role of theory and modeling in neuroscience

    Full text link
    In recent years, the field of neuroscience has gone through rapid experimental advances and extensive use of quantitative and computational methods. This accelerating growth has created a need for methodological analysis of the role of theory and the modeling approaches currently used in this field. Toward that end, we start from the general view that the primary role of science is to solve empirical problems, and that it does so by developing theories that can account for phenomena within their domain of application. We propose a commonly-used set of terms - descriptive, mechanistic, and normative - as methodological designations that refer to the kind of problem a theory is intended to solve. Further, we find that models of each kind play distinct roles in defining and bridging the multiple levels of abstraction necessary to account for any neuroscientific phenomenon. We then discuss how models play an important role to connect theory and experiment, and note the importance of well-defined translation functions between them. Furthermore, we describe how models themselves can be used as a form of experiment to test and develop theories. This report is the summary of a discussion initiated at the conference Present and Future Theoretical Frameworks in Neuroscience, which we hope will contribute to a much-needed discussion in the neuroscientific community
    corecore