
y

Characterising polynomial time computable
functions using theories with weak set existence

principles

Aleksandar Ignjatovic 1

School of Computer Science and Engineering
University of New South Wales, Sydney, Australia

Phuong Nguyen 2

School of Computer Science and Engineering
University of New South Wales, Sydney, Australia

and
Department of Computer Science,

University of Toronto, Toronto, Canada

Abstract

Several authors have independently introduced second order theories whose provably
total functionals are polynomial time computable functions on strings (e.g. [4], [6]
and [7]), including the first author ([3], meant to be the second part of [2]). In
this paper we give a detailed proof of the bi-interpretability result between such a
second order theory and Buss’ first order bounded arithmetic, based on an elegant
definition of multiplication due to the second author.

1 Introduction

In this paper we consider a sequence of second order theories with one sort
of variables ranging over natural numbers and another sort ranging over sets
of natural numbers, whose provably recursive functions from the domain of
sets into sets (with a naturally restricted complexity of the graphs) are ex-
actly functions of the corresponding levels of the polynomial hierarchy. In
particular, the collection of provably recursive functions of the first theory of
this sequence is exactly the class of polynomial time computable functions.
These theories are most natural, without any special operations, capturing

1 Email: ignjat@cse.unsw.edu.au
2 Email: ntp@cs.toronto.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

112

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82094684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ignjatovic and Nguyen

computational complexity classes using a weak comprehension principles for
formulas of a simple and natural class, defined by purely set theoretic means.
In this way polynomial time computable functions are captured using set the-
oretic definitions without any concepts in any direct way related to polynomial
time computability. Unlike the approaches to feasibility via weak set existence
principles of [2] and [5], here the domain of feasible functions is the domain of
second order variables, while the domain of first order variables is the auxiliary
one. This approach provides a suitable starting point for a project whose aim
is to extend the notion of feasibility to arbitrary sets (of any cardinality) with
a hope that such an extension will shed more light on the standard notion of
polynomial time computability.

2 Technical Preliminaries

We assume familiarity with Buss’s theories of bounded arithmetic S i
2 , see

[1]. Our theories will have two sorts: (finite) sets X,Y, Z, . . . and numbers
x, y, z, Operations and relations on numbers are +, · 0,1 and ≤ only.
There is one operation mapping sets into numbers, /X/ = max{x : x ∈ X}+1
if X is nonempty and with /∅/ = 0, and the membership relation x ∈ X .
First order quantifiers of the form ∀x ∈ X , ∀x ≤ y and the corresponding
existential quantifiers are called sharply bounded quantifiers. Second order
quantifiers of the form ∀X(/X/ ≤ z) and ∃X(/X/ ≤ z) are called bounded
quantifiers. The hierarchies of bounded formulas are obtained as usual, by
ignoring the sharply bounded quantifiers and counting only alternations of
bounded quantifiers. Thus, a ΣB

0 formula is one which is logically equivalent
to a formula which belongs to the least set of formulas containing atomic and
negated atomic formulas, closed for conjunctions, disjunctions and sharply
bounded quantifiers; a ΣB

i+1 formula is one which is logically equivalent to a
formula which belongs to the least set of formulas containing ΣB

i and negated
ΣB

i formulas, closed for conjunctions, disjunctions, sharply bounded quanti-
fiers and the existential bounded quantifier of the form ∃X(/X/ ≤ z).

Axioms of Ai consist of the basic properties of +, ·, 0, 1,=,≤ which are
the axioms of bounded arithmetic Si

2 (see [1]), restricted to the language
{+, ·, 0, 1,=,≤} (< can be taken as symbol defined from ≤), plus

• extensionality

X = Y ↔ ∀x(x ∈ X ↔ x ∈ Y)

• finiteness:

∀X∃w∀y(y ∈ X → y < w)

• definition of the length function /X/ :

x = /X/ ↔ (X = ∅∧x = 0)∨(X = ∅∧∀y ∈ X(y < x)∧∃y ∈ X(y+1 = x))

113

Ignjatovic and Nguyen

• the finite ΣB
i comprehension axiom:

∃X∀x(x ∈ X ↔ x ≤ z ∧ ϕ(x, �Y , �y))

for a ΣB
i formula ϕ not containing variable X .

Clearly the finite ΣB
i comprehension principle implies comprehension prin-

ciple for arbitrary Boolean combinations of ΣB
i formulas (and, with a little

more work, one can add closure for sharply bounded quantifiers as well).

The least element principle:

X = ∅ → ∃x ∈ X(∀z < x(z ∈ X))

is a consequence of the finite ΣB
i comprehension axiom and the defining axiom

for the length function. This can be seen as follows. Given z ∈ X , form the
set Y = {x : x < z ∧ ∀u ≤ x(u ∈ X)} then it is easy to show that /Y/ is the
minimal element in X .

We want to show that Si
2 is interpretable in Ai with the domain of sets

as the domain of interpretation, as well as that Ai is interpretable in Si
2 with

numbers as sets of Ai and with lengths of numbers as numbers of Ai .

3 Bi-interpretability

Theorem 3.1 Ai is interpretable in Si
2 .

Proof: Let N be a model for Si
2 with domain N , we construct a model M

for Ai as follows. The domain of set of M is the same as N , while the domain
of numbers in M is the image of N under the length function || . The relation
x ∈M X is defined as “x appears in the binary expansion of X” which is
definable by a ∆b

1 formula (i.e., x ∈ X ↔ Bit(x,X) = 1, see [1]). The length
function // in M is the same as the length function || in N . Functions and
relations on numbers of M are the same as those in N .

Extensionality and definition of length function are easily seen to hold. We
need to show that the finite Σb

i -comprehension axiom is provable in Si
2 :

∃X(/X/ ≤M z)∀u(u ∈M X ↔ u <M z ∧ ϕ(u, �Y , �y))

or in interpretation, taking into account that numbers get mapped into lengths:

∃x(|x| ≤N |w|)∀u(Bit(u, x) = 1 ↔ u <N |w| ∧ ϕ∗(u,�h, �|g|))
where ϕ∗ is obtained from ϕ by interpretation. It is easy to show that if ϕ
is ΣB

i , then its interpretation is Σb
i .

The above formula is clearly equivalent to the formula

∃x(|x| ≤N |w|)∀u < |w|(Bit(u, x) = 1 ↔ u <N |w| ∧ ϕ∗(u,�h, �|g|))
which can be proved by using Σb

0(Σ
b
i)−PIND which holds in Si

2 , as follows.
For w = 0, we can take x = 0. Now suppose that x is the witness for |w| .

114

Ignjatovic and Nguyen

Then if ¬ϕ∗(|w|, �v) holds then x is also the witness for |2w| . Otherwise, if
ϕ∗(|w|, �v) holds then 2|w| + x is the witness for |2w| = |w|+ 1. ✷

Before we prove the main result which, together with the previous theorem
implies that provably total functions of Ai which map sets into sets are exactly
the polynomial time computable functions, we prove the following Lemma.

Lemma 3.2 Set of numbers in Ai satisfies ΣB
i -induction:

ϕ(0, �X, �x) ∧ ∀z < a(ϕ(z, �X, �x) → ϕ(z + 1, �X, �x)) → ϕ(a, �X, �x)

where ϕ is a ΣB
i formula.

Proof:

As usual, it is enough to prove ΠB
1 induction principle. Assume ϕ(0, �X, �x)

and ∀z < a(ϕ(z, �X, �x) → ϕ(z + 1, �X, �x)), and that ¬ϕ(a, �X, �x). Then by
finite comprehension principle there exists the set

W = {x : x ≤ a ∧ (∀u ≤ x)ϕ(u, �X, �x)}
because (∀u ≤ x)ϕ(u, �X, �x) is also a ΠB

1 formula. Clearly a ∈ W and W = ∅
so 0 < /W/ ≤ a . But then

ϕ(/W/− 1, �X, �x) → ϕ(/W/, �X, �x)

fails, which is a contradiction. ✷

The above lemma allows us to use basic notions of bounded arithmetic,
formulated using only multiplication, addition and inequality.

Theorem 3.3 Si
2 is interpretable in Ai .

Proof: Let M be an arbitrary model of Ai with the domain of numbers M1

and the domain of finite sets M2 . We construct a model N for Si
2 as follows.

The domain N of N is the same as M2 where a number is identified with the
finite set of numbers appearing as exponents in its binary expansion, and 0N

is defined to be the empty set ∅ . We need now to define the functions and
relations in N .

X#Y = {/X/./Y/}

|X| = {x : x appears as an exponent in the binary expansion of /X/}
This definition is correct because, by Lemma 3.2 Ai satisfies enough induction
to formalise the relation “appears in binary expansion of”.

�1
2
X� = {x− 1 : 1 ≤ x ∧ x ∈ X} .

We define the ordering on (finite) sets as the lexicographical ordering:

X <N Y ↔
/X/ ≤ /Y/ ∧ ∃y ∈ Y (y ∈ X ∧ ∀z ≤ /Y/(z > y → (z ∈ X → z ∈ Y)))

and

X ≤N Y ↔ X = Y ∨X <N Y

115

Ignjatovic and Nguyen

Successor is defined as a “bit-wise” operation:

Y = S(X) ↔ (/Y/ ≤ /X/+ 1) ∧ ∃x ≤ /X/[x ∈ X∧
(∀y < x(y ∈ X ∧ y ∈ Y)) ∧ (∀y ≤ /X/(x < y → (y ∈ X ↔ y ∈ Y))]

Addition is defined “by recursion on bits” using the standard algorithm for
summation of numbers written in binary, with an auxiliary set W encoding
the carries:

X +N Y = Z ↔ ∃W (/W/ ≤ /X/+ /Y/)Sum(X,Y, Z,W)

where Sum(X,Y, Z,W) stands for

0 ∈ W ∧ (∀u ≤ /X/+ /Y/)CarryAdder(u,X, Y, Z,W)

and CarryAdder(u,X, Y, Z,W) stands for the formula specifying the bit–wise
addition rule to add the uth bits of X and Y with carry in W . Details are
as follows:

CarryAdder(u,X, Y, Z,W) ↔
(u ∈ X ⊕ u ∈ Y ⊕ u ∈ W ↔ u ∈ Z) ∧
((u ∈ X ∧ u ∈ Y) ∨ (u ∈ X ∧ u ∈ W) ∨ (u ∈ Y ∧ u ∈ W) ↔ u+ 1 ∈ W)

We will use the pairing function (on numbers of M):

〈x, y〉 = (x+ y)(x+ y + 1) + x

We now define multiplication. Note that the way that we normally carry out
the multiplication is to add the rows of either a /X/×(/X/+/Y/−1) matrix
or a /Y/ × (/X/ + /Y/ − 1) matrix. To make the mulplication symmetric
with respect to X and Y , we “stretch out” these matrices to a (2/X//Y/)×
(/X/+ /Y/) matrix. First we introduce some auxiliary operations as follows

z ∈ X × Y ↔ ∃x ∈ X∃y ∈ Y (z = 〈xy, x+ y〉∨
(x = y ∧ x ∈ Y ∧ y ∈ X ∧ z = 〈xy + /X//Y/, x+ y〉))

X × Y can be seen as a (2/X//Y/) × (/X/ + /Y/) matrix of digits, where
the presence of 〈z, w〉 in X × Y indicate the bit 1 at the position (z, w). We
now define the sum of the rows in X × Y :

X ⊗ Y = Q ↔ (∀z ≤ /X/+ /Y/)(〈0, z〉 ∈ Q ↔ 〈0, z〉 ∈ P)∧
∀u ≤ 2/X//Y/(0 ≤ u → Row(u,Q) +N Row(u+ 1, P) = Row(u+ 1, Q))

where P = X × Y . Here Row(x,X) stands for {y : y ≤ /X/ ∧ 〈x, y〉 ∈ X} .
Finally

X ·N Y = Row(2/X/./Y/,X ⊗ Y)

It is routine to check that all axioms of S i
2 are satisfied with this interpretation.

For convenience, we omit the superscripts M and N for the functions and
relations when it is clear from the context.

116

Ignjatovic and Nguyen

Remark 1: For an x ∈ M1 , denote by Bin(x) the set

{i : i appears in the binary representation of x}
Let x, y be numbers in M then it is easy to check that

Bin(x) + Bin(y) = Bin(x+ y)

Bin(x) · Bin(y) = Bin(x.y)

x ≤ y → Bin(x) ≤ Bin(y)

Remark 2: 1N = S0 = {0}
Remark 3: S(X) = X + S0

Remark 4: {a} ·X = {a+ x : x ∈ X}
Remark 5: 2N = SS0 = {1}

Details of the proofs for BASIC are as follows.

1 Y ≤ X → Y ≤ S(X): It is straightforward from the definition of < (i.e.,
<N) above that X < S(X). Thus, the formula follows from transitivity of ≤
below.

2 X = S(X): This is trivial.

3 0 ≤ X : From the definition of ≤ above.

4 X ≤ Y ∧X = Y ↔ S(X) ≤ Y :
Let Z = S(X). Let x0 ≤ /X/ be such that x0 ∈ X and

∀x < x0(x ∈ X ∧ x ∈ Z) ∧ ∀x ≤ /X/(x0 < x → (x ∈ X ↔ x ∈ Z))

For the “only if” direction, let y0 ∈ Y be such that y0 ∈ X and

∀z ≤ /Y/(y0 < z → (z ∈ X → z ∈ Y))

then since ∀x < x0(x ∈ X) it follows that x0 ≤ y0 , hence Z ≤ Y .

For the reverse direction, it is trivial that X < S(X). Thus it follows from
transitivity (8) of ≤ that X ≤ Y . Also, it follows from (2) and (7) that
X = Y .

5 X = 0 → 2 ·X = 0: This follows from remark 4.

6 Y ≤ X ∨X ≤ Y : Suppose ¬(X < Y), then ¬(/X/ < /Y/) and

/Y/ < /X/ ∨ ∀y ∈ Y (y ∈ X ∨ ∃z ≤ /Y/(y < z ∧ z ∈ X ∧ z ∈ Y))

If /Y/ < /X/ then Y < X . Otherwise we have

/Y/ = /X/ ∧ ∀y ∈ Y (y ∈ X ∨ ∃z ≤ /Y/(y < z ∧ z ∈ X ∧ z ∈ Y))

117

Ignjatovic and Nguyen

If for all y ∈ Y we have y ∈ X then clearly Y ≤ X . Otherwise, let y0 be the
largest element of Y such that y0 ∈ X , then we have

∀y ∈ Y (y > y0 → y ∈ X)

Also

∃z ≤ /Y/(y0 < z ∧ z ∈ X ∧ z ∈ Y)

Let z0 be the largest such number, then we have z0 ∈ X ∧ z0 ∈ Y , and hence

z0 ∈ X ∧ z0 ∈ Y ∧ ∀z ≤ /Y/(z0 < z → (z ∈ Y ↔ z ∈ X))

Thus Y < X .

7 X ≤ Y ∧ Y ≤ X → X = Y : If X = ∅ then since Y ≤ X , Y = ∅ , and
hence X = Y . Similarly, if Y = ∅ then X = Y . Now suppose that X,Y = ∅
and that X = Y . Then we have /X/ = /Y/ and

∃y0 ∈ Y (y0 ∈ X ∧ ∀z ≤ /Y/(z > y0 → (z ∈ X → z ∈ Y)))

∃x0 ∈ X(x0 ∈ Y ∧ ∀z ≤ /X/(z > x0 → (z ∈ Y → z ∈ X)))

Comparison of x0 and y0 leads to contradiction.

8 X ≤ Y ∧ Y ≤ Z → X ≤ Z : This is trivial from the definition.

9 |0| = 0: This is trivial from the definition.

10 X = 0 → |2 ·X| = S(|X|) ∧ |2 ·X + 1| = S(|X|): From remark 4:

2 ·X = {1 + x : x ∈ X} and 2 ·X + 1 = {0} ∪ {1 + x : x ∈ X}
Therefore |2 ·X| = Bin(/X/+ 1) = Bin(/X/) +Bin(1) = |X|+ S0 = S(|X|)
by remark 3. Also, |2 ·X + 1| = |2 ·X| and hence |2 ·X + 1| = S(|X|) (qed).

11 |1N| = 1N: This is trivial from definition.

12 X ≤ Y → |X| ≤N |Y | : Suppose X ≤ Y , by definition we have /X/ ≤
/Y/ . The conclusion then follows from remark 1.

13 |X#Y | = S(|X| · |Y |). Since X#Y = {/X/./Y/} : we have (by definition
of ||) |X#Y | = Bin(/X/./Y/+ 1) = S(|X| · |Y |) by remark 1.

14 0#Y = 1: We have 0#Y = {0./Y/} = {0} = 1 (qed).

15 X = 0 → 1#(2 · X) = 2 · (1#X) ∧ 1#(S(2 · X)) = 2 · (1#X): We have
(from remark 4) 1#(2 · X) = {1(1 + /X/)} = {1 + /X/} and 2 · (1#X) =
2 ·{/X/} = {1+/X/} . Also 1#(S(2 ·X)) = {1(1+/X/)} = {1+/X/} (qed).

16 X#Y = Y#X : This is trivial from the definition.

118

Ignjatovic and Nguyen

17 |X| = |Y | → X#Z = Y#Z : This is trivial.

18 |X| = |U |+ |V | → X#Y = (U#Y) · (V#Y): From the definition:

U#Y = {/U//Y/}, V#Y = {/V//Y/}
From remark 4 we have

(U#Y) · (V#Y) = {/U//Y/+ /V//Y/} = {(/U/+ /V/)/Y/}
Also, it follows from remark 1 that /X/ = /U/+ /V/ (qed).

19 X ≤ X + Y : Let Z = X + Y and W such that Sum(X,Y, Z,W) (see
definition of +N). If Y = 0 then X+Y = X . Otherwise, let z = max (Y ∪W).
Since z ≥ max (W) it follows that z belongs to exactly one of X,Y,W .
Therefore z ∈ X and also z ∈ Z . In addition, for all x > z we have
x ∈ Y, x ∈ W , hence x ∈ X → x ∈ Z . Thus X ≤ X + Y (qed).

Remark 6 Y = 0 → X < X + Y .

20 X < Y → S(2 · X) < 2 · Y : From remarks 2,3,4,5 we have S(2 · X) =
{0} ∪ {1 + x : x ∈ X} . The conclusion then follows from definition of <N.

21 X + Y = Y +X : From definition of +N.

22 X + 0 = X : From definition of +N.

23 X + SY = S(X + Y): This follows from number 21, 24 and remark 3.

24 (X + Y) + Z = X + (Y + Z): We prove by induction on w that

w ∈ (X + Y) + Z ↔
∃W (/W/ ≤ w + 1)∃U1(/U1/ ≤ w + 1)∃U2(/U2/ ≤ w + 1)[

0 ∈ U1 ∧ 0 ∈ U2 ∧ 1 ∈ U2 ∧
(∀u ≤ w)TripleCarryAdder(u,X, Y, Z,W,U1, U2)]

for w ≤ /X/ + /Y/ + /Z/ . Here TripleCarryAdder(u,X, Y, Z,W,U1, U2)
stands for the formula specifying the bit–wise rule to add the uth bits of
X,Y, Z using carries in U1 and U2 . In other words, it is the conjunction of
32 formulas similar to the following formula
u ∈ X ∧ u ∈ Y ∧ u ∈ Z ∧ u ∈ U1 ∧ u ∈ U2 → u ∈ W ∧ u+1 ∈ U1 ∧ u+2 ∈ U2

The base case is trivial. The induction step follows from the definition of
addition.

Similarly, for w ≤ /X/+ /Y/+ /Z/ we have

w ∈ X + (Y + Z) ↔
∃W (/W/ ≤ w + 1)∃U1(/U1/ ≤ w + 1)∃U2(/U2/ ≤ w + 1)[

0 ∈ U1 ∧ 0 ∈ U2 ∧ 1 ∈ U2 ∧
(∀u ≤ w)TripleCarryAdder(u, Y, Z,X,W,U1, U2)]

119

Ignjatovic and Nguyen

The conclusion follows from the fact that TripleCarryAdder(u,X, Y, Z,W,U1, U2)
and TripleCarryAdder(u, Y, Z,X,W,U1, U2) are the same.

Now we will prove the following result:
Remark 7 Y ≤ Z → ∃W (/W/ ≤ /Z/)(Y +W = Z)
If Y = Z then W = 0. So suppose that Y < Z , it follows that /Y/ ≤ /Z/
and there exists z0 ∈ Z such that

z0 ∈ Y ∧ ∀y ≤ /Z/(y > z0 → (y ∈ Y ↔ y ∈ Z))

Let

W1 = {w : w < z0 ∧ w ∈ Y } and W2 = {w : w < z0 ∧ w ∈ Z}
Then it is easy to check that

((Y +W1) + {0}) +W2 = Z

By (24) we have

Y + ((W1 + {0}) +W2) = Z

and we can let W = (W1 + {0}) +W2 .

25 X + Y ≤ X + Z ↔ Y ≤ Z : For the “only if” direction, by remark 7 we
have Y +W = Z , therefore by (24):

(X + Y) +W = X + Z

By (19) it follows that X + Y ≤ X + Z .

For the other direction, let a = /X/+ /Y/+ /Z/ and

U = {u : u < a ∧ u ∈ X}+ {0}
then

U + (X + Y) = (U +X) + Y = {a} ∪ Y

and

U + (X + Z) = (U +X) + Z = {a} ∪ Z

It follows that if X + Y = X + Z then U + (X + Y) = U + (X + Z) and
hence Y = Z . Otherwise, if X + Y < X + Z then by the previous direction,

U + (X + Y) ≤ U + (X + Z)

Now the witness for Y < Z is the same as the witness for U + (X + Y) <
U + (X + Z) (qed).

26 X · 0 = 0: From definition.

27 X · (SY) = (X · Y) +X : From (29) and remarks 2,3,4.

28 X · Y = Y · X : This follows from the fact that X × Y = Y × X . To
show this fact, observe that (i) x + y = x′ + y′ and xy = x′y′ implies either

120

Ignjatovic and Nguyen

x = x′ ∧ y = y′ or x = y′ ∧ y = x′ , and (ii) there do not exist x′, y′ such that
x′ < /X/, y′ < /Y/ and x′y′ = xy + /X//Y/.

29 X · (Y + Z) = X · Y +X · Z : We will show the following results:

(i) /X/ < a → (X + {a}) ·W = X ·W + {a} ·W
(ii) {a} · (Y + Z) = {a} · Y + {a} · Z
This is straightforward from remark 4, since the carry set used for {a} · Y +
{a} · Z is {a} · U , where U is the carry set for the addition of Y + Z .

(iii) Let ϕ(x, U, Y, Z) be

/U/ ≤ x → (U · (Y + Z) = U · Y + U · Z)
we will prove ϕ(a, Y, Z) using lemma 3.2.

Base case: x = 0 then /U/ ≤ x implies U = 0 and the statement is trivial.

Induction step: Suppose the result is true for x , we will show it for x + 1.
Let /U/ = x + 1, then U = U ′ + {x} , where /U ′/ ≤ x . By the induction
hypothesis and (i), (ii):
U · (Y +Z) = U ′ · (Y +Z)+ {x} · (Y +Z) = U ′ ·Y +U ′ ·Z + {x} ·Y + {x} ·Z
hence by (ii) and (24):

U · (Y + Z) = (U ′ + {x}) · Y + (U ′ + {x}) · Z = U · Y + U · Z

(iv) Finally, the conclusion follows from ϕ(/X/,X, Y, Z).

30 S0 ≤ X → (X ·Y ≤ X ·Z ↔ Y ≤ Z): For the “only if” direction, suppose
that Y ≤ Z , then by remark 7 let W be such that Y +W = Z . Then by
(29), X · Z = X · Y +X ·W , thus from (19) we have X · Y ≤ X · Z .

For the other direction, suppose that ¬(Y ≤ Z), then by (6) it follows that
Z < Y . Then by remark 7, there exist W such that Z+W = Y and W = 0.
Then X ·Y = X ·Z+X ·W . Here X ·W = 0, hence by remark 6 X ·Z < X ·Y
(contradiction).

31 X = 0 → |X| = S(|� 1
2
X�|): We have

S(|�1
2
X�|) = |�1

2
X�|+ S0 = Bin(max (X)) + Bin(1) = Bin(/X/) = |X|

(qed).

32 X = �1
2
Y � ↔ (2 ·X = Y ∨ S(2 ·X) = Y): From definition of � 1

2
Y � and

remark 4 we have

2 ·X = {y : y ∈ Y ∧ 0 < y}
Therefore if 0 ∈ Y then S(2 ·X) = Y , otherwise 2 ·X = Y (qed).

Finally, Σb
i−PIND follows easily from ΣB

i finite comprehension. (see Lemma
1) ✷

121

Ignjatovic and Nguyen

The main consequence easily follows from the above interpretability results:

Theorem 3.4 Provably total functions of A1 with ΣB
1 graphs are exactly poly-

nomial time computable functions, i.e.,

Ai � ∀X∃Y ϕ(X,Y)
for a ΣB

1 formula ϕ(X,Y) if and only if there exists a polynomial time com-
putable function f(X) such that

〈P<∞(N), N〉 |= ∀Xϕ(X, f(X))

where N denotes natural numbers and P<∞(N) denotes all finite sets of nat-
ural numbers.

Acknowledgement: We are grateful to Professor Stephen Cook for many
helpful discussions and suggestions.

References

[1] Buss, S. Bounded Arithmetic, Bibliopolis, (1986).

[2] Ignjatovic, A. Delineating computational complexity classes via second order
theories with weak set existence principles (I), The Journal of Symbolic Logic,
60 (1995), 103–121.

[3] Ignjatovic, A. Delineating computational complexity classes via second order
theories with weak set existence principles (II), unpublished manuscript, 1994

[4] Krajicek, J. Exponentiation and second order bounded arithmetic, Annals of
Pure and Applied Logic, 48 (1990), 261–276.

[5] Daniel Leivant, A foundational delineation of computational feasibility, LICS
(1991), 2–11.

[6] Razborov, A. An equivalence between second order bounded domain bounded
arithmetic and first order bounded arithmetic, Arithmetic, proof theory and
computational complexity (P. Clote and J. Krajicek, editors), Oxford University
Press, Oxford, (1993) 247–277.

[7] Takeuti, G. RSUV isomorphisms, Arithmetic, proof theory and computational
complexity (P. Clote and J. Krajicek, editors), Oxford University Press, Oxford,
(1993) 364–386.

122

