27,112 research outputs found

    Robust passivity and passification of stochastic fuzzy time-delay systems

    Get PDF
    The official published version can be obtained from the link below.In this paper, the passivity and passification problems are investigated for a class of uncertain stochastic fuzzy systems with time-varying delays. The fuzzy system is based on the Takagi–Sugeno (T–S) model that is often used to represent the complex nonlinear systems in terms of fuzzy sets and fuzzy reasoning. To reflect more realistic dynamical behaviors of the system, both the parameter uncertainties and the stochastic disturbances are considered, where the parameter uncertainties enter into all the system matrices and the stochastic disturbances are given in the form of a Brownian motion. We first propose the definition of robust passivity in the sense of expectation. Then, by utilizing the Lyapunov functional method, the Itô differential rule and the matrix analysis techniques, we establish several sufficient criteria such that, for all admissible parameter uncertainties and stochastic disturbances, the closed-loop stochastic fuzzy time-delay system is robustly passive in the sense of expectation. The derived criteria, which are either delay-independent or delay-dependent, are expressed in terms of linear matrix inequalities (LMIs) that can be easily checked by using the standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the proposed results.This work was supported by the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China, the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers 200802861044, the National Natural Science Foundation of China under Grant 60804028 and the Royal Society of the United Kingdom

    Delay-dependent stabilization of stochastic interval delay systems with nonlinear disturbances

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this paper, a delay-dependent approach is developed to deal with the robust stabilization problem for a class of stochastic time-delay interval systems with nonlinear disturbances. The system matrices are assumed to be uncertain within given intervals, the time delays appear in both the system states and the nonlinear disturbances, and the stochastic perturbation is in the form of a Brownian motion. The purpose of the addressed stochastic stabilization problem is to design a memoryless state feedback controller such that, for all admissible interval uncertainties and nonlinear disturbances, the closed-loop system is asymptotically stable in the mean square, where the stability criteria are dependent on the length of the time delay and therefore less conservative. By using Itô's differential formula and the Lyapunov stability theory, sufficient conditions are first derived for ensuring the stability of the stochastic interval delay systems. Then, the controller gain is characterized in terms of the solution to a delay-dependent linear matrix inequality (LMI), which can be easily solved by using available software packages. A numerical example is exploited to demonstrate the effectiveness of the proposed design procedure.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Delay-dependent robust stability of stochastic delay systems with Markovian switching

    Get PDF
    In recent years, stability of hybrid stochastic delay systems, one of the important issues in the study of stochastic systems, has received considerable attention. However, the existing results do not deal with the structure of the diffusion but estimate its upper bound, which induces conservatism. This paper studies delay-dependent robust stability of hybrid stochastic delay systems. A delay-dependent criterion for robust exponential stability of hybrid stochastic delay systems is presented in terms of linear matrix inequalities (LMIs), which exploits the structure of the diffusion. Numerical examples are given to verify the effectiveness and less conservativeness of the proposed method

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Robust H∞ filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the robust H∞ filtering problem is studied for a class of uncertain nonlinear networked systems with both multiple stochastic time-varying communication delays and multiple packet dropouts. A sequence of random variables, all of which are mutually independent but obey Bernoulli distribution, are introduced to account for the randomly occurred communication delays. The packet dropout phenomenon occurs in a random way and the occurrence probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution in the interval. The discrete-time system under consideration is also subject to parameter uncertainties, state-dependent stochastic disturbances and sector-bounded nonlinearities. We aim to design a linear full-order filter such that the estimation error converges to zero exponentially in the mean square while the disturbance rejection attenuation is constrained to a give level by means of the H∞ performance index. Intensive stochastic analysis is carried out to obtain sufficient conditions for ensuring the exponential stability as well as prescribed H∞ performance for the overall filtering error dynamics, in the presence of random delays, random dropouts, nonlinearities, and the parameter uncertainties. These conditions are characterized in terms of the feasibility of a set of linear matrix inequalities (LMIs), and then the explicit expression is given for the desired filter parameters. Simulation results are employed to demonstrate the effectiveness of the proposed filter design technique in this paper.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the Alexander von Humboldt Foundation of Germany, National Natural Science Foundation of China under Grant 60825303, 60834003, 973 Project under Grant 2009CB320600, Fok Ying Tung Education Foundation under Grant 111064, and the Youth Science Fund of Heilongjiang Province under Grant QC2009C63

    On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters

    Get PDF
    Copyright [2002] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we investigate the stochastic stabilization problem for a class of bilinear continuous time-delay uncertain systems with Markovian jumping parameters. Specifically, the stochastic bilinear jump system under study involves unknown state time-delay, parameter uncertainties, and unknown nonlinear deterministic disturbances. The jumping parameters considered here form a continuous-time discrete-state homogeneous Markov process. The whole system may be regarded as a stochastic bilinear hybrid system that includes both time-evolving and event-driven mechanisms. Our attention is focused on the design of a robust state-feedback controller such that, for all admissible uncertainties as well as nonlinear disturbances, the closed-loop system is stochastically exponentially stable in the mean square, independent of the time delay. Sufficient conditions are established to guarantee the existence of desired robust controllers, which are given in terms of the solutions to a set of either linear matrix inequalities (LMIs), or coupled quadratic matrix inequalities. The developed theory is illustrated by numerical simulatio
    corecore