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V. CONCLUSION

In this note, we have considered the control of partially linear
cascade nonlinear systems. We have given conditions under which
switching of the gains of the linear controller can stabilize the cascade.
Our condition, Assumption 1 for the existence of an invariance region
is different than ISS and weaker than minimum phase assumptions. Of
course, the tradeoff is that the switching policy depends on the state of
both subsystems and that in general, only boundedness of trajectories
is achieved. It would be of great interest to investigate the precise
relationship between the conditions of this note and these other more
familiar notions. For example, in the simulated system (27)–(29),
the invariance condition (40) shows that the ratiok2=k1 grows with
the radiusR of the invariance regionG. The gains of a nonpeaking
constant gain controller have this same property [1]. However, since
the initial condition forz does not enter into that calculation we have
more freedom in the design of the gains. It appears that the switching
controller automatically adjusts the output gain� to find a nonpeaking
controller.

Since the trajectories of the invariance controlled system are
bounded by the prescribed invariance region one of the additional
advantages of invariance control is that it may also be useful to enforce
constraints on the states of the internal dynamics. There are many
applications which require not only output regulation and internal sta-
bility but also that the internal states remain bounded below prescribed
values. Further studies along these lines would also be valuable.
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On Stabilization of Bilinear Uncertain Time-Delay
Stochastic Systems With Markovian

Jumping Parameters

Zidong Wang, Hong Qiao, and K. J. Burnham

Abstract—In this note, we investigate the stochastic stabilization
problem for a class of bilinear continuous time-delay uncertain systems
with Markovian jumping parameters. Specifically, the stochastic bilinear
jump system under study involves unknown state time-delay, parameter
uncertainties, and unknown nonlinear deterministic disturbances. The
jumping parameters considered here form a continuous-time discrete-state
homogeneous Markov process. The whole system may be regarded as a
stochastic bilinear hybrid system that includes both time-evolving and
event-driven mechanisms. Our attention is focused on the design of a
robust state-feedback controller such that, for all admissible uncertainties
as well as nonlinear disturbances, the closed-loop system is stochastically
exponentially stable in the mean square, independent of the time delay.
Sufficient conditions are established to guarantee the existence of desired
robust controllers, which are given in terms of the solutions to a set of
either linear matrix inequalities (LMIs), or coupled quadratic matrix
inequalities. The developed theory is illustrated by numerical simulation.

Index Terms—Bilinear systems, linear matrix inequalities (LMIs), mar-
kovian jump, stochastic exponential stability, time-delay, uncertainty.

I. INTRODUCTION

A lot of dynamical systems have variable structures subject to
random abrupt changes, which may result from abrupt phenomena
such as random failures and repairs of the components, changes in
the interconnections of subsystems, sudden environment changes,
modification of the operating point of a linearized model of a nonlinear
systems, etc. The hybrid systems, which involve both time-evolving
and event-driven mechanisms, may be employed to model the above
problems. A special class of hybrid systems is the so-called jump
linear systems (JLSs). The jump linear system has many operation
modes, and the system mode switching is governed by a Markov
process. The parameter jumps among different modes may be seen as
discrete events. The control of JLSs has been a research subject and
attracted a lot of interest since the mid 1960s. The optimal regulator,
controllability, observability, stability and stabilization problems have
been extensively studied for JLSs, see [4], [11], [14], [16], [22], [26],
[34], [36], [40], and the references therein.

It has been recognized that the time-delays and parameter uncertain-
ties, which are inherent features of many physical processes, are very
often the cause for instability and poor performance of systems [18]. In
the past few years, considerable attention has been given to the robust
and/orH1 controller design problems for linear uncertain state de-
layed systems. A great many of papers have appeared on this general
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topic, see, e.g., [25], [27], [35], [37], [38], and the references therein. As
for the JLSs with parametric uncertainties, the issues of stability, stabi-
lization,H2 control,H1 control,H2=H1 control, Kalman filtering
have been well investigated, and recent results can be found in [1],
[5], [6], [10], [13], [28]–[30], and [32]. Also, the control problem for
time-delay uncertain JLSs has been tackled in [31] for the discrete-time
case. In [20] and [21], the exponential stability analysis problem for
a general class of linear/nonlinear stochastic jumping delay systems
has been intensively studied, and a number of useful stability criteria
have been established. In particular, for the linear case in [21], the ex-
ponential stability can be easily tested by checking the existence of
the solution to a linear matrix inequality. Unfortunately, the parametric
uncertainties and the nonlinear exogenous disturbance have not been
considered in [20] and [21] for stabilization problem.

On the other hand, bilinear systems have been of great interest in
the past three decades, since many real-world systems can be ade-
quately approximated by a bilinear model. The application areas in-
clude nuclear, thermal, chemical processes, biology, socioeconomics,
immunology, etc.; see [8], [23], and [24] for more details. In partic-
ular, the stochastic bilinear systems, also called state-dependent noise
systems or multiplicative noise systems, have been dealt with by many
authors. Among them, we quote DeKoning [12], Bernstein and Haddad
[3], Yasudaet al. [41], Skeltonet al. [33], Yaz [42], and Johnston and
Krishnamurthy [17]. However, a literature search reveals that the issue
of stabilization of jump bilinear systems with or without uncertainty
and time-delay has not been fully investigated and remains important
and challenging. This situation motivates the present study on the ro-
bust stabilization of bilinear continuous time-delay jump systems.

It is now worth pointing out that the essential differences between
the JLS which has been extensively studied as mentioned above and
the jump bilinear stochastic system (JBSS) that is to be considered in
this note. For JLS, every mode corresponds to adeterministic dynamics,
that is, when the mode is fixed, the system state evolves according to
the corresponding deterministic dynamics. However, the JBSS can be
regarded as the result of severalstochastic systems(systems with mul-
tiplicative noises) switching from one to the others according to the
movement of a Markov chain. For JBSS, every mode corresponds to a
stochastic dynamics. Obviously, the JLS is a special case of the JBSS.

This note is concerned with the stochastic stabilization problem for
a class of bilinear continuous time-delay uncertain systems with Mar-
kovian jumping parameters. We aim at designing a robust state-feed-
back controller such that, for all admissible uncertainties as well as
nonlinear disturbances, the closed-loop system is stochastically expo-
nentially stable in the mean square, independent of the time delay. We
show that the analysis problem can be tackled in terms of the solutions
to a set of linear matrix inequalities (LMIs) (see [15]), and the associ-
ated synthesis problem can be dealt with by solving a set of coupled
quadratic matrix inequalities. We demonstrate the usefulness and ap-
plicability of the developed theory by means of a numerical simulation
example.

Notation: The notations in this note are quite standard.n and
n�m denote, respectively, then dimensional Euclidean space and

the set of alln � m real matrices. The superscript “T ” denotes
the transpose and the notationX � Y (respectively,X > Y )
where X and Y are symmetric matrices, means thatX � Y is
positive–semidefinite (respectively, positive–definite).I is the identity
matrix with compatible dimension. We leth > 0 andC([�h; 0]; n)
denote the family of continuous functions' from [�h; 0] to n

with the normk'k = sup�h���0 j'(�)j, where j � j is the Eu-
clidean norm in n. If A is a matrix, denote bykAk its operator
norm, i.e.,kAk = supfjAxj: jxj = 1g = �max(ATA) where
�max(�) (respectively, �min(�)) means the largest (respectively,
smallest) eigenvalue ofA. l2[0;1] is the space of square integrable

vector. Moreover, let(
;F ; fFtgt�0; P ) be a complete probability
space with a filtrationfFtgt�0 satisfying the usual conditions
(i.e., the filtration contains allP -null sets and is right continuous).
Denote by LpF ([�h; 0]; n) the family of all F0-measurable
C([�h; 0]; n)-valued random variables� = f�(�):�h � � � 0g
such thatsup�h���0 j�(�)jp <1 where f�g stands for the math-
ematical expectation operator with respect to the given probability
measureP . Sometimes, the arguments of a function will be omitted in
the analysis when no confusion can arise.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Let fr(t); t � 0g be a right-continuous Markov process
on the probability space which takes values in the finite space
S = f1; 2; . . . ; Ng with generator� = (ij) (i; j 2 S) given by

Pfr(t+�) = jjr(t) = ig =
ij�+ o(�) if i 6= j

1 + ii�+ o(�) if i = j

where� > 0 andlim�!0 o(�)=� = 0, ij � 0 is the transition rate
from i to j if i 6= j andii = �

j 6=i ij .
In this note, we consider the following class of bilinear uncertain

continuous-time state delayed stochastic systems of the Itô type:

dx(t) =[A(r(t)) + �A(t; r(t))]x(t)dt

+

m

k=1

Jk(r(t))x(t)dwk(t)

+ [Ad(r(t))x(t� h) +B(r(t))u(t)

+D(r(t))f(r(t); x(t))]dt; (1)

x(t) ='(t); r(t) = r(0); t 2 [�h; 0] (2)

wherex(t) 2 n is the state,u(t) 2 m is the control input,
f(�): n! n is an unknown nonlinear exogenous disturbance input,
h denotes theunknownstate delay,'(t) is a continuous vector valued
initial function. Here,w(t) := [w1(t) w2(t) � � � wm(t)]T 2 m

is an m-dimensional Brownian motion, and it is assumed that the
Markov processr(�) is independent ofwk(�) (k = 1; 2; . . . ; m). For
fixed system mode,A(r(t)), Jk(r(t)) (k = 1; 2; . . . ; n), Ad(r(t)),
B(r(t)), D(r(t)) are known constant matrices with appropriate
dimensions.�A(t; r(t)) is a real-valued matrix function representing
norm-bounded parameter uncertainty.

Assumption 1:The uncertain matrix�A(t; r(t)) satisfies

�A(t; r(t)) = M(r(t))F (t; r(t))N(r(t)) (3)

where for fixed system mode,M(r(t)) 2 n�i andN(r(t)) 2 j�n

are known real constant matrices which characterize how the deter-
ministic uncertain parameter inF (t; r(t)) enters the nominal matrix
A(r(t)); andF (t; r(t)) 2 i�j is an unknown time-varying matrix
function meeting

F T (t; r(t))F(t; r(t)) � I; 8 t � 0; r(t) = i 2 S: (4)

Assumption 2:For fixed system mode, there exists a known real
constant matrixH(r(t)) 2 n�n such that the unknown nonlinear
vector functionf(�; �) satisfies the following boundedness condition:

jf(r(t); x(t))j � jH(r(t))x(t)j; 8 (r(t); x(t)) 2 S � n: (5)

Assumption 3:For all� 2 [�h; 0], there exists a scalar� > 0 such
that jx(t + �)j � �jx(t)j.
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Remark 1: It is noted that, in the system model (1)–(2), there are
two kinds of uncertainties acting on the nominal matrixA(r(t)),
that is, thedeterministicuncertainty�A(t; r(t)) which can be re-
garded as the energy-bounded noise, and thestochasticperturbation

m

k=1
Jk(r(t))dwk(t) which is the multiplicative noise with known

statistics. Both kinds of uncertainties have been extensively studied in
the literature. If the multiplicative noise disappears and there are no
time-delay and nonlinear exogenous disturbance, the system model
(1)–(2) will be reduced to the usual jump linear system that has received
considerable attention. Note that when the mode is fixed, the system
(1)–(2)corresponds toabilinearstochastic time-delayuncertainsystem.

Remark 2: The parameter uncertainty structure as in (3)–(4) has
been widely used in the problems of robust control and robust filtering
of uncertain systems (see, e.g., [31], [42] and references therein). We
point out that the exogenous nonlinear time-varying disturbance term
f(r(t); x(t)) in the system model (1)–(2) has not been taken into ac-
count in the research literature concerning jump systems. Such kind of
disturbance may result from the linearization process of an originally
highly nonlinear plant or may be an actual external nonlinear input.
Also, as mentioned in [9], Assumption 3 is not restrictive as the scalar
� > 0 can be chosen arbitrarily.

Observe the system (1)–(2) and letx(t; �) denote the state trajectory
from the initial datax(�) = �(�) on�h � � � 0 inL2F ([�h; 0]; n).
Clearly, the system (1)–(2) admits a trivial solutionx(t; 0) � 0 corre-
sponding to the initial data� = 0.

We now introduce the following stability concepts.
Definition 1: For the uncertain time-delay bilinear jump system

(1)–(2) withu(t) � 0 and every� 2 L2F ([�h; 0]; n), the trivial
solution is asymptotically stable in the mean square if

lim
t!1

jx(t; �)j2 = 0

and is exponentially stable in the mean square if there exist scalars
� > 0 and� > 0 such that

jx(t; �)j2 � �e
��t sup

�h���0

j�(�)j2: (6)

Definition 2: We say that the system (1)–(2) is exponentially sta-
bilizable in the mean square (respectively, asymptotically stabilizable
in the mean square) if, for every� 2 L2F ([�h; 0]; n), there exists
a linear state feedback control lawu(t) = G(r(t))x(t) (the feedback
gainG(r(t)) is constant for each fixed mode) such that the closed-loop
system is exponentially stable in the mean square (respectively, asymp-
totically stable in the mean square).

In this note, we assume that all jump statesr(t) = i 2 S (t � 0) and
the system statesx(t) (t � 0) are accessible, i.e., they are measurable
for feedback.

The purpose of this note is to design a delay-independent memory-
less state feedback controller of the form

G(r(t)): u(t) = G(r(t))x(t) (7)

based on the statex(t) and the system moder(t), such that the fol-
lowing closed-loop system of (1)–(2) withG(r(t)):

dx(t) =[A(r(t)) +B(r(t))G(r(t))+ �A(t; r(t))]x(t)dt

+

m

k=1

Jk(r(t))x(t)dwk(t)

+ [Ad(r(t))x(t� h) +D(r(t))f(r(t); x(t))]dt (8)

is exponentially stable in the mean square.

III. M AIN RESULTS AND PROOFS

Let us first give the following lemmas which will be frequently used
in the proofs of our main results in this note.

Lemma 1: (Schur Complement):Given constant matrices
1, 
2,

3 where
1 = 
T

1 and0 < 
2 = 
T
2 , then
1 +
T

3 

�1
2 
3 < 0 if

and only if


1 
T
3


3 �
2

< 0

or, equivalently

�
2 
3


T
3 
1

< 0:

Lemma 2: (See, e.g., [39]):Let M , N andF be real matrices of
appropriate dimensions withF TF � I whereF may be time varying.
Then, for any scalar� > 0, we have

MFN +N
T
F
T
M

T � �
2
MM

T + �
�2
N

T
N:

Recall that the Markov processfr(t); t � 0g takes values in the
finite spaceS = f1; 2; . . . ; Ng. For the sake of simplicity, we write

A(i) :=Ai Ad(i) := Adi B(i) := Bi Jk(i) := Jki

D(i) :=Di M(i) := Mi N(i) := Ni H(i) := Hi

G(i) :=Gi f(i; x(t)) := fi(x(t)) 8 i 2 S:

and

Aci := A(i) +B(i)G(i) = Ai +BiGi (9)

and then for the moder(t) = i, the closed-loop system (8) becomes

dx(t) = [Aci +MiF (t; i)Ni]x(t)dt+

m

k=1

Jkix(t)dwk(t)

+[Adix(t � h) +Difi(x(t))]dt: (10)

In the following theorem, we establish the analysis results, i.e., for
a given controller, we derive the sufficient conditions under which the
closed-loop system (10) is exponentially stable in the mean square.

Theorem 1: Let the controller gainG(r(t)) be given. If there exists
a positive scalar� > 0 such that the followingN matrix inequalities:

A
T
ciPi + PiAci +

m

k=1

J
T
kiPiJki +

N

j=1

ijPj + Pi AdiA
T
di

+DiD
T
i + �

2
MiM

T
i Pi + �

�2
N

T
i Ni +H

T
i Hi + I < 0 (11)

have positive–definite solutionsPi > 0 (i 2 S), then the system (10)
is exponentially stable in the mean square.

Proof: First, we letC2;1( n � + � S; +) denote the family
of all nonnegative functionsY (x; t; i) on n � + � S which are
continuously twice differentiable inx and once differentiable int.

Fix � 2 L2F ([�h; 0]; n) arbitrarily and writex(t; �) = x(t).
Define a Lyapunov function candidateY (x; t; i) 2 C2;1( n � + �
S; +) by

Y (x(t); t; i) = x
T (t)Pix(t) +

t

t�h

x
T (s)x(s)ds: (12)

It can be derived by Itô’s formula (see, e.g., [19]) that

Y (x(s); s; i) := Y (x(0);0; r(0))+
s

0

LY (x(t); t; i)dt (13)
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where

LY (x(t); t; i) =xT (t) (Aci +�A(t; i))TPi

+ Pi(Aci +�A(t; i))

+

m

k=1

J
T
kiPiJki +

N

j=1

ijPj + I x(t)

+ x
T (t� h)AT

diPix(t)

+ x
T (t)PiAdix(t� h) + x

T (t)PiDifi(x(t))

+ f
T
i (x(t))D

T
i Pix(t)� x

T (t� h)x(t� h):

(14)

Note that�A(t; i) = MiF (t; i)Ni andF T (t; i)F (t; i) � I . It
follows from Lemma 2 that, for any scalar� > 0:

Pi(�A(t; i)) + (�A(t; i))TPi =(PiMi)F (t; i)Ni

+N
T
i F

T (t; i)(PiMi)
T

��2PiMiM
T
i Pi

+ �
�2
N

T
i Ni: (15)

Moreover, it results from (5) and the following inequality:

f
T
i (x(t))� x

T (t)PiDi f
T
i (x(t))� x

T (t)PiDi

T

� 0

that

x
T (t)PiDifi(x(t))+ f

T
i (x(t))D

T
i Pix(t)

� f
T
i (x(t))fi(x(t))+ x

T (t)PiDiD
T
i Pix(t)

� x
T (t) H

T
i Hi + PiDiD

T
i Pi x(t): (16)

Denote

�i :=A
T
ciPi + PiAci + �

2
PiMiM

T
i Pi

+ �
�2
N

T
i Ni +

m

k=1

J
T
kiPiJki +

N

j=1

ijPj

+H
T
i Hi + PiDiD

T
i Pi + I (17)

Si :=
�i PiAdi

AT
diPi �I

: (18)

Then, substituting (15) and (16) into (14) results in

LY (x(t); t; i) �xT (t)�x(t) + x
T (t� h)AT

diPix(t)

+ x
T (t)PiAdix(t� h)� x

T (t� h)x(t� h)

= [ xT (t) xT (t� h) ]Si
x(t)

x(t� h)

=xTe (t)Sixe(t) (19)

wherexe(t) := [xT (t) xT (t � h)]T .

From the Schur Complement Lemma (Lemma 1), we know that
Si < 0 if and only if

�i + PiAdiA
T
diPi < 0 (20)

which is the same as the inequality (11). Therefore, we arrive at the
conclusion thatLY (x(t); t; i) < 0.

Note thatjx(t)j � jxe(t)j, Si < 0, andPi > 0. It follows from
Assumption 3 that

LY (x(t); t; i)

Y (x(t); t; i)
�

xTe (t)Sixe(t)

xT (t)Pix(t) +
t

t�h
xT (s)x(s)ds

��min
i2S

�min(�Si)

�max(Pi) + h�2
:= ��

and, therefore,� > 0 andLY (x(t); t; i) � ��Y (x(t); t; i). Then,
similar to the proof of Theorem 1 in [9], by employing the Dynkin’s
formula and the Gronwall–Bellman lemma, we can easily show that,
the uncertain time-delay bilinear jump system (10) is asymptotically
stable in the mean square provided that the inequality (11) is met.

Based on the inequality (19), the exponential stability (in the mean
square) of the system (10) can be proved as follows by using the tech-
niques developed in [20] and [21].

Define

�P =max
i2S

�max(Pi) �S = min
i2S

(��max(Si))

�p =min
i2S

�min(Pi)

wherePi > 0 is the solution to (11) andSi is defined in (18). Let� be
the unique root to

� �P + he
�h = �S +min 1; �Se

�h
:

To prove the mean square exponential stability, we modify the Lya-
punov function candidate (12) as

Y1(x(t); t; i) = e
�t

x
T (t)Pix(t) +

t

t�h

jx(s)j2ds : (21)

Along the similar line for the proof [21, Th. 3.1], we can show that

e
�t
�p jx(t)j2 � �P + h(1 + e

�h) k�k2

or

lim
t!1

sup
1

t
log( jx(t; �)j2) � ��:

This indicates that the trivial solution of the system (10) is exponen-
tially stable in the mean square. This completes the proof of this the-
orem.

Remark 3: Theorem 1 provides the analysis results for the exponen-
tial stability of the system (10). It can be seen from (11) that we need
to check whether there exist a positive scalar� andN positive–defi-
nite matricesPi > 0 (i = 1; 2; . . . ; N) meeting theN coupled matrix
inequalities. This may be done by converting theN coupled nonlinear
(on Pi and�) inequalities into the associated LMIs [7], and then we
are able to determine exponential stability of the system (10) readily
by checking the solvability of the LMIs [15].
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The following theorem offers a LMI representation of Theorem 1.
Theorem 2: Let the controller gainG(r(t)) be given. If there exist a

positive scalar" > 0 andN positive–definite matricesPi > 0 (i 2 S)
satisfying the following LMIs:

�i PiAdi PiDi "NT
i PiMi

AT
diPi �I 0 0 0

DT
i Pi 0 �I 0 0

"Ni 0 0 �"I 0

MT
i Pi 0 0 0 �"I

< 0 (22)

where�i is defined by

�i := A
T
ciPi + PiAci +

m

k=1

J
T
kiPiJki

+

N

j=1

ijPj +H
T
i Hi + I (23)

then the system (10) is exponentially stable in the mean square.
Proof: To begin with, we rewrite (11) as

�i + [PiAdi PiDi ��1NT
i �PiMi ]

�

AT
diPi

DT
i Pi

��1Ni

�MT
i Pi

< 0: (24)

If follows from the Schur Complement Lemma (Lemma 1) that the
previous inequality holds if and only if

�i PiAdi PiDi ��1NT
i �PiMi

AT
diPi �I 0 0 0

DT
i Pi 0 �I 0 0

��1Ni 0 0 �I 0

�MT
i Pi 0 0 0 �I

< 0: (25)

Note that (25) is not linear in�. Let " := ��2. Pre- and postmul-
tiplying the inequality (25) bydiagfI; I; I; ��1I; ��1Ig yield (22).
The proof follows from Theorem 1 immediately.

Remark 4: It is observed that the inequality (22) is linear in" and
Pi > 0 (i = 1; 2; . . . ; N), and thus the standard LMI techniques
can be exploited to check the exponential stability of the closed-loop
system (10) when the controller is given. The analysis result given in
Theorem 3 is also useful to determine the exponential stability of the
free system (1)–(2) (i.e.,u(t) � 0).

Finally, the following result solves the addressed stochastic stabiliza-
tion problem of bilinear continuous time-delay jump uncertain systems
in terms of quadratic matrix inequalities.

Theorem 3: Consider the system (1)–(2) satisfying the Assumption
1 and Assumption 2. Let� > 0 be a positive scalar. If there exist a
scalar" > 0 andN positive–definite matricesPi > 0 (i 2 S) such
that the following quadratic matrix inequalities:

A
T
i Pi + PiAi +

m

k=1

J
T
kiPiJki +

N

j=1

ijPj

+ Pi �2�BiB
T
i + AdiA

T
di +DiD

T
i + �

2
MiM

T
i Pi

+ �
�2
N
T
i Ni +H

T
i Hi + I < 0 (26)

hold, then the uncertain time-delay jump system (1)–(2) with nonlinear
disturbances can be exponentially stabilized (in the mean square) by

the memoryless state feedback controller of the form (7) with the gain
matrix

Gi = ��BT
i Pi (27)

for all admissible parameter uncertainty.
Proof: The proof follows from Theorem 1 immediately by sub-

stituting (27) into (11).
Remark 5: It is shown in Theorem 3 that the robust stochastic ex-

ponentially stabilization of system (1)–(2) with (7) is guaranteed if the
inequalities (26) are valid. Note that when the system (1)–(2) is linear
(i.e.,Jk = 0 for k = 1; . . . ;m), the time-delay term disappears, and
the parameter uncertainty�A(r(t)) equals zero, Theorem 3 will re-
duce to the results in [16] and [22]. Furthermore, if the modesr(t) are
all equal to 1, Theorem 3 will recover the results of those, for example,
[25]. Also, if the matricesAd(r(t)) andB(r(t)) in system (1)–(2) con-
tain parameter uncertainties, say�Ad(r(t)) and�B(r(t)), similar re-
sults to Theorem 3 can be obtained.

Remark 6: It is worth mentioning that, bilinear systems in real
world are often bilinear of the states and controlled inputs of the
systems. The research on such kind of bilinear systems should be
interesting, which gives us one of future important research topics.

IV. NUMERICAL SIMULATION

In this section, for the purpose of illustrating the usefulness and
flexibility of the theory developed in this note, we present a simula-
tion example. Attention is focused on the design of a robust stabilizing
controller for an uncertain time-delay jump bilinear system that is as-
sumed to have two modes. The Markov process that governs the mode
switching has generator� = (ij) (i; j = 1; 2).

The system data of (1)–(2) are as follows:

A1 =
�2:1 0:1

0:1 1:1
A2 =

�1:9 �0:1

�0:1 0:9

B1 =I2 B2 =
0:9 0

0 1:1

Ad1 =0:1I2 Ad2 = �0:1I2

J11 =0:2I2; J12 = 0:2I2;

D1 =
0:2

0
; D2 =

0

�0:2

H1 =0:1I2 H2 = 0:1I2

M1 =0:3I2 M2 = �0:3I2;

N1 =0:4I2 N2 = �0:4I2

� =
�3 3

2 �2
f1(x(t)) = 0:1 sinx1(t)

f2(x(t)) =0:1 sinx2(t) F (t; 1) = F (t; 2) = sin tI2

h =0:1 '(t) = 0:1:

We choose� = 0:5 and� = 1. Solving (26) gives

P1 =
1:4208 0:0448

0:0448 2:8533
P2 =

1:5751 �0:0425

�0:0425 2:4390

and then a set of gain matrices can be obtained as

G1 =
�1:4208 �0:0448

�0:0448 �2:8533
; G2 =

�1:4176 0:0382

0:0467 �2:6829
:

The responses of closed-loop system dynamics to initial conditions
are shown in Figs. 1 and 2. The simulation results imply that the desired
goal is well achieved.
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Fig. 1. x (solid),x (dashed). Mode 1: responses of system dynamics to initial conditions.

Fig. 2. x (solid),x (dashed). Mode 2: responses of system dynamics to initial conditions.
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V. CONCLUSION

This note has introduced an algebraic matrix inequality approach to
the robust stabilization for a class of bilinear continuous time-delay
uncertain systems with Markovian jumping parameters. We have fo-
cused on the design of a robust state-feedback controller such that,
for all admissible uncertainties as well as nonlinear disturbances, the
closed-loop system is stochastically exponentially stable in the mean
square, independent of the time delay. Sufficient conditions have been
derived to ensure the existence of desired robust controllers, which
are given in terms of the solutions to a set of either LMIs, or coupled
quadratic matrix inequalities. A numerical example has demonstrated
the applicability of the proposed approach.
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