224 research outputs found

    On the Performance of the Relay-ARQ Networks

    Full text link
    This paper investigates the performance of relay networks in the presence of hybrid automatic repeat request (ARQ) feedback and adaptive power allocation. The throughput and the outage probability of different hybrid ARQ protocols are studied for independent and spatially-correlated fading channels. The results are obtained for the cases where there is a sum power constraint on the source and the relay or when each of the source and the relay are power-limited individually. With adaptive power allocation, the results demonstrate the efficiency of relay-ARQ techniques in different conditions.Comment: Accepted for publication in IEEE Trans. Veh. Technol. 201

    Data Transmission in the Presence of Limited Channel State Information Feedback

    Get PDF

    Performance Analysis and Cooperation Mode Switch in HARQ-based Relaying

    Get PDF
    We study the optimal, in terms of power-limited outage probability (OP), placement of the relay and investigate the effect of relay placement on the optimal cooperation mode of the source and the relay nodes. Using hybrid automatic repeat request (HARQ) based relaying techniques, general expressions for the OP and the average transmit power are derived. The results are then particularized to the repetition time diversity (RTD) protocol. The analytical expressions are used to find the transmit powers minimizing the power-limited OP. Our results demonstrate that adaptive power allocation reduces the OP significantly. For instance, consider a Rayleigh fading channel, an OP of 10^-3 and a maximum of 2 RTD-based retransmissions. Then, compared to equal power allocation, the required transmission signal-to-noise ratio (SNR) is reduced by 5 dB, if adaptive power allocation is utilized. Another important observation is that, depending on the relay positions and the total power budget, the system should switch between the single-node transmission mode and the joint transmission mode, in order to minimize the outage probability

    Finite-SNR Diversity-Multiplexing-Delay Tradeoff in Half-Duplex Hybrid ARQ Relay Channels

    No full text
    International audienceIn this paper, we consider a delay-limited hybrid automatic repeat request (HARQ) protocol that makes use of incremental redundancy over the three-node decode-and-forward (DF) relay fading channel where one source cooperates with a relay to transmit information to the destination. We provide an estimate of the diversity-multiplexing tradeoff (DMT) at finite signal to noise ratio (SNR) based on tight bounds on outage probabilities for two channel models. The results for the long term quasi-static channel highlight the distributed diversity, ie. the cooperative space diversity, and the HARQ coding gain, achieved by soft combining the successive transmitted punctured codewords via incremental redundancy. On the other hand, the results for the short term quasi-static channel illustrate the diversity gains obtained thanks to cooperative space diversity and time diversity, along with the HARQ coding gain. Using the DMT formulation, we show that equal power partitioning between the source and the relay nodes provides close to optimal performance. Furthermore, thanks to the extension of the finite-SNR DMT to the finite-SNR diversity-multiplexing-delay tradeoff, we show that, unlike the asymptotic SNR analysis, the ARQ delay, defined as the number of retransmissions rounds, impacts the performance of the HARQ relay protocol for high effective multiplexing gain

    Analysis of Outage Probability and Throughput for Half-Duplex Hybrid-ARQ Relay Channels

    No full text
    International audienceWe consider a half-duplex wireless relay network with hybrid-automatic retransmission request (HARQ) and Rayleigh fading channels. In this paper, we analyze the average throughput and outage probability of the multirelay delay-limited (DL) HARQ system with an opportunistic relaying scheme in decode-and-forward (DF) mode, in which the best relay is selected to transmit the source's regenerated signal. A simple and distributed relay selection strategy is considered for multirelay HARQ channels. Then, we utilize the nonorthogonal cooperative transmission between the source and selected relay for retransmission of source data toward the destination, if needed, using space-time codes. We analyze the performance of the system. We first derive the cumulative density function (cdf) and probability density function (pdf) of the selected relay HARQ channels. Then, the cdf and pdf are used to determine the exact outage probability in the lth round of HARQ. The outage probability is required to compute the throughput-delay performance of this half-dublex opportunistic relaying protocol. The packet delay constraint is represented by L, which is maximum number of HARQ rounds. Furthermore, simple closed-form upper bounds on outage probability are derived. Based on the derived upper bound expressions, it is shown that the proposed schemes achieve the full spatial diversity order of N+1, where N is the number of potential relays. In addition, simulation shows that our proposed scheme can achieve higher average throughput, compared with direct transmission and conventional tho-phase relay networks

    Relay communications over frequency-selective fading channels

    Get PDF
    Wireless communications over long distances can be assisted by a third radio acting as a relay. If the relay is placed close to the source, then the source-relay link will be characterized as a fairly benign additive white Gaussian noise (AWGN) channel. However, the long distance link from relay to destination is susceptible to frequency-selective fading. This thesis explores the design and analysis of a particular relay communication system characterized by a low power source, a relay that is close to the source, and a frequency-selective channel from relay to destination. Because the direct link from source to destination is very weak, it is not exploited, but rather communications is via a traditional two-hop process.;Link design is based on the high speed download packet access (HSDPA) standard, which uses a combination of turbo coding, hybrid-ARQ, and multicode CDMA. To provide further diversity, the relay-destination link uses a secondary spreading code, rake reception, and multiple receive antennas. An extensive analysis was conducted to study the influence of a wide variety of link configurations and channel conditions. The study was accelerated through the use of a quasi-analytical approach based on the concept of information-outage, which allows the link to be simulated without requiring a turbo decoder

    Towards Context Information-based High-Performing Connectivity in Internet of Vehicle Communications

    Get PDF
    Internet-of-vehicles (IoV) is one of the most important use cases in the fifth generation (5G) of wireless networks and beyond. Here, IoV communications refer to two types of scenarios: serving the in-vehicle users with moving relays (MRs); and supporting vehicle-to-everything (V2X) communications for, e.g., connected vehicle functionalities. Both of them can be achieved by transceivers on top of vehicles with growing demand for quality of service (QoS), such as spectrum efficiency, peak data rate, and coverage probability. However, the performance of MRs and V2X is limited by challenges such as the inaccurate prediction/estimation of the channel state information (CSI), beamforming mismatch, and blockages. Knowing the environment and utilizing such context information to assist communication could alleviate these issues. This thesis investigates various context information-based performance enhancement schemes for IoV networks, with main contributions listed as follows.In order to mitigate the channel aging issue, i.e., the CSI becomes inaccurate soon at high speeds, the first part of the thesis focuses on one way to increase the prediction horizon of CSI in MRs: predictor antennas (PAs). A PA system is designed as a system with two sets of antennas on the roof of a vehicle, where the PAs positioned at the front of the vehicle are used to predict the CSI observed by the receive antennas (RAs) that are aligned behind the PAs. In PA systems, however, the benefit is affected by a variety of factors. For example, 1) spatial mismatch between the point where the PA estimates the channel and the point where the RA reaches several time slots later, 2) antenna utilization efficiency of the PA, 3) temporal evolution, and 4) estimation error of the PA-base station (BS) channel. First, in Paper A, we study the PA system in the presence of the spatial mismatch problem, and propose an analytical channel model which is used for rate adaptation. In paper B, we propose different approximation schemes for the analytical investigation of PA systems, and study the effect of different parameters on the network performance. Then, involving PAs into data transmission, Paper C and Paper D analyze the outage- and the delay-limited performance of PA systems using hybrid automatic repeat request (HARQ), respectively. As we show in the analytical and the simulation results in Papers C-D, the combination of PA and HARQ protocols makes it possible to improve spectral efficiency and adapt the transmission parameters to mitigate the effect of spatial mismatch. Finally, a review of PA studies in the literature, the challenges and potentials of PA as well as some to-be-solved issues are presented in Paper E.The second part of the thesis focuses on using advanced technologies to further improve the MR/IoV performance. In Paper F, a cooperative PA scheme in IoV networks is proposed to mitigate both the channel aging effect and blockage sensitivity in millimeter-wave channels by collaborative vehicles and BS handover. Then, in Paper G, we study the potentials and challenges of dynamic blockage pre-avoidance in IoV networks
    • …
    corecore