13 research outputs found

    Degenerate Crossing Numbers

    Get PDF
    Let G be a graph with n vertices and e≥4n edges, drawn in the plane in such a way that if two or more edges (arcs) share an interior point p, then they properly cross one another at p. It is shown that the number of crossing points, counted without multiplicity, is at least constant timese and that the order of magnitude of this bound cannot be improved. If, in addition, two edges are allowed to cross only at most once, then the number of crossing points must exceed constant times(e/n)

    Degenerate crossing numbers

    Get PDF
    Let G be a graph with n vertices and ea parts per thousand yen4n edges, drawn in the plane in such a way that if two or more edges (arcs) share an interior point p, then they properly cross one another at p. It is shown that the number of crossing points, counted without multiplicity, is at least constant times e and that the order of magnitude of this bound cannot be improved. If, in addition, two edges are allowed to cross only at most once, then the number of crossing points must exceed constant times (e/n)(4)

    Degenerate crossing numbers

    Get PDF

    Diszkrét és kombinatórikus geometriai kutatások = Topics in discrete and combinatorial geometry

    Get PDF
    A most lezárult OTKA grant, 8 résztvevő diszkrét geometriai kutatását támogatta. Itt a témák ilusztrálására kiemelünk néhányat az elért 72 publikációból. 1. Jelentős eredmények születtek (8 cikk) gráfok síkba rajzolhatóságáról, például az úgynevezett metszési számról. 2. Többek között sikerült igazolni Katchalski és Lewis 20 éves sejtését, mely szerint diszjunkt egységkörökből álló rendszereknél ha bármely három körnek van közös metsző egyenese akkor van olyan egyenes, amely legfeljebb 2 kör kivételével valamennyit metsz. 3. Littlewood (1964) problémájaként ismert volt az a kérdés, hogy hány henger érintheti kölcsönösen egymást? Viszonylag alacsony felső korlátot találtunk és egy régóta ismert elhelyzés valótlanságát igazoltuk. 4. Többszörös fedések egyszerű fedésekre való szétbontását vizsgáltuk és értünk el lényeges előrelépést. 5. A Borsuk-féle darabolási problémanak azt a variánsát vizsgáltuk, amelyben a darabolást u. n. hengeres darabolásra korlátozták. 6. Bebizonyítottuk, hogy ''nem nagyon elnyúlt'' ellipszisek esetében a sík legritkább fedésének meghatározásánál el lehet tekinteni az u.n. nem-keresztezési feltételtől. 7. A sejtetthez nagyon közeli korlátot találtunk arra a problémára, hogy az n-dimenziós térben legfeljebb hány homotetikus konvex test helyezhető el úgy, hogy bármely kettő érintse egymást. | Discrete geometry in Hungary flourished since the sixties as a result of the work of László Fejes Tóth. The supported research of 8 participant also belongs to this area. Here we illustrate the achieved 72 publications by mentioning a few results. 1. Important theorems (8 papers) were proved concerning graph drawing. 2. Among others, a 20 year old problem of Katchalsky was proved, stating that in a packing of congruent circles, if any three has a common transversal, then there is a line, which avoids at most two of the circles. 3. Concerning a conjecture of Littlewood we found a small upper bound for the number of infinite cylinders which mutually touch each other. 4. We studied decomposability of multiple coverings into single coverings. 5. We studied that variant of the famous Borsuk problem where the partitions are restricted to cylindrical partitions. 6. We proved that in case of ellipses which are not ''too long'' at determining the thinnest covering one can omit the usually needed noncrossing condition. 7. A bound close to the conjectured bound was found concerning the number of n-dimensional homothetic convex solids which mutually touch each other

    Degenerate crossing number and signed reversal distance

    Full text link
    The degenerate crossing number of a graph is the minimum number of transverse crossings among all its drawings, where edges are represented as simple arcs and multiple edges passing through the same point are counted as a single crossing. Interpreting each crossing as a cross-cap induces an embedding into a non-orientable surface. In 2007, Mohar showed that the degenerate crossing number of a graph is at most its non-orientable genus and he conjectured that these quantities are equal for every graph. He also made the stronger conjecture that this also holds for any loopless pseudotriangulation with a fixed embedding scheme. In this paper, we prove a structure theorem that almost completely classifies the loopless 2-vertex embedding schemes for which the degenerate crossing number equals the non-orientable genus. In particular, we provide a counterexample to Mohar's stronger conjecture, but show that in the vast majority of the 2-vertex cases, the conjecture does hold. The reversal distance between two signed permutations is the minimum number of reversals that transform one permutation to the other one. If we represent the trajectory of each element of a signed permutation under successive reversals by a simple arc, we obtain a drawing of a 2-vertex embedding scheme with degenerate crossings. Our main result is proved by leveraging this connection and a classical result in genome rearrangement (the Hannenhali-Pevzner algorithm) and can also be understood as an extension of this algorithm when the reversals do not necessarily happen in a monotone order.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    The bundled crossing number

    Full text link
    We study the algorithmic aspect of edge bundling. A bundled crossing in a drawing of a graph is a group of crossings between two sets of parallel edges. The bundled crossing number is the minimum number of bundled crossings that group all crossings in a drawing of the graph. We show that the bundled crossing number is closely related to the orientable genus of the graph. If multiple crossings and self-intersections of edges are allowed, the two values are identical; otherwise, the bundled crossing number can be higher than the genus. We then investigate the problem of minimizing the number of bundled crossings. For circular graph layouts with a fixed order of vertices, we present a constant-factor approximation algorithm. When the circular order is not prescribed, we get a 6c/c - 2 -approximation for a graph with n vertices having at least cn edges for c > 2. For general graph layouts, we develop an algorithm with an approximation factor of 6c/c - 3 for graphs with at least cn edges for c > 3. © Springer International Publishing AG 2016

    Removing Independently Even Crossings

    Full text link

    Bundled Crossings Revisited

    Get PDF
    International audienceAn effective way to reduce clutter in a graph drawing that has (many) crossings is to group edges that travel in parallel into bundles. Each edge can participate in many such bundles. Any crossing in this bundled graph occurs between two bundles, i.e., as a bundled crossing. We consider the problem of bundled crossing minimization: A graph is given and the goal is to find a bundled drawing with at most k bundled crossings. We show that the problem is NP-hard when we require a simple drawing. Our main result is an FPT algorithm (in k) for simple circular layouts where vertices must be placed on a circle and edges must be drawn inside the circle. These results make use of the connection between bundled crossings and graph genus. We also consider bundling crossings in a given drawing, in particular for storyline visualizations

    Degenerate crossing numbers

    No full text
    corecore