205 research outputs found

    Continuous roadmapping in liver TACE procedures using 2D–3D catheter-based registration

    Get PDF
    PURPOSE: Fusion of pre/perioperative images and intra-operative images may add relevant information during image-guided procedures. In abdominal procedures, respiratory motion changes the position of organs, and thus accurate image guidance requires a continuous update of the spatial alignment of the (pre/perioperative) information with the organ position during the intervention. METHODS: In this paper, we propose a method to register in real time perioperative 3D rotational angiography images (3DRA) to intra-operative single-plane 2D fluoroscopic images for improved guidance in TACE interventions. The method uses the shape of 3D vessels extracted from the 3DRA and the 2D catheter shape extracted from fluoroscopy. First, the appropriate 3D vessel is selected from the complete vascular tree using a shape similarity metric. Subsequently, the catheter is registered to this vessel, and the 3DRA is visualized based on the registration results. The method is evaluated on simulated data and clinical data. RESULTS: The first selected vessel, ranked with the shape similarity metric, is used more than 39 % in the final registration and the second more than 21 %. The median of the closest corresponding points distance between 2D angiography vessels and projected 3D vessels is 4.7–5.4 mm when using the brute force optimizer and 5.2–6.6 mm when using the Powell optimizer. CONCLUSION: We present a catheter-based registration method to continuously fuse a 3DRA roadmap arterial tree onto 2D fluoroscopic images with an efficient shape similarity

    Rigid‐body motion correction of the liver in image reconstruction for golden‐angle stack‐of‐stars DCE MRI

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141403/1/mrm26782_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141403/2/mrm26782.pd

    Improved Image Guidance in TACE Procedures

    Get PDF
    Purpose of the work in this thesis is to improve the image guidance in TACE procedures. More specifically, we intend to develop and evaluate technology that permits dynamic roadmapping based on a 3D model of the liver vasculature

    Development of a Surgical Assistance System for Guiding Transcatheter Aortic Valve Implantation

    Get PDF
    Development of image-guided interventional systems is growing up rapidly in the recent years. These new systems become an essential part of the modern minimally invasive surgical procedures, especially for the cardiac surgery. Transcatheter aortic valve implantation (TAVI) is a recently developed surgical technique to treat severe aortic valve stenosis in elderly and high-risk patients. The placement of stented aortic valve prosthesis is crucial and typically performed under live 2D fluoroscopy guidance. To assist the placement of the prosthesis during the surgical procedure, a new fluoroscopy-based TAVI assistance system has been developed. The developed assistance system integrates a 3D geometrical aortic mesh model and anatomical valve landmarks with live 2D fluoroscopic images. The 3D aortic mesh model and landmarks are reconstructed from interventional angiographic and fluoroscopic C-arm CT system, and a target area of valve implantation is automatically estimated using these aortic mesh models. Based on template-based tracking approach, the overlay of visualized 3D aortic mesh model, landmarks and target area of implantation onto fluoroscopic images is updated by approximating the aortic root motion from a pigtail catheter motion without contrast agent. A rigid intensity-based registration method is also used to track continuously the aortic root motion in the presence of contrast agent. Moreover, the aortic valve prosthesis is tracked in fluoroscopic images to guide the surgeon to perform the appropriate placement of prosthesis into the estimated target area of implantation. An interactive graphical user interface for the surgeon is developed to initialize the system algorithms, control the visualization view of the guidance results, and correct manually overlay errors if needed. Retrospective experiments were carried out on several patient datasets from the clinical routine of the TAVI in a hybrid operating room. The maximum displacement errors were small for both the dynamic overlay of aortic mesh models and tracking the prosthesis, and within the clinically accepted ranges. High success rates of the developed assistance system were obtained for all tested patient datasets. The results show that the developed surgical assistance system provides a helpful tool for the surgeon by automatically defining the desired placement position of the prosthesis during the surgical procedure of the TAVI.Die Entwicklung bildgefĂŒhrter interventioneller Systeme wĂ€chst rasant in den letzten Jahren. Diese neuen Systeme werden zunehmend ein wesentlicher Bestandteil der technischen Ausstattung bei modernen minimal-invasiven chirurgischen Eingriffen. Diese Entwicklung gilt besonders fĂŒr die Herzchirurgie. Transkatheter Aortenklappen-Implantation (TAKI) ist eine neue entwickelte Operationstechnik zur Behandlung der schweren Aortenklappen-Stenose bei alten und Hochrisiko-Patienten. Die Platzierung der Aortenklappenprothese ist entscheidend und wird in der Regel unter live-2D-fluoroskopischen Bildgebung durchgefĂŒhrt. Zur UnterstĂŒtzung der Platzierung der Prothese wĂ€hrend des chirurgischen Eingriffs wurde in dieser Arbeit ein neues Fluoroskopie-basiertes TAKI Assistenzsystem entwickelt. Das entwickelte Assistenzsystem ĂŒberlagert eine 3D-Geometrie des Aorten-Netzmodells und anatomischen Landmarken auf live-2D-fluoroskopische Bilder. Das 3D-Aorten-Netzmodell und die Landmarken werden auf Basis der interventionellen Angiographie und Fluoroskopie mittels eines C-Arm-CT-Systems rekonstruiert. Unter Verwendung dieser Aorten-Netzmodelle wird das Zielgebiet der Klappen-Implantation automatisch geschĂ€tzt. Mit Hilfe eines auf Template Matching basierenden Tracking-Ansatzes wird die Überlagerung des visualisierten 3D-Aorten-Netzmodells, der berechneten Landmarken und der Zielbereich der Implantation auf fluoroskopischen Bildern korrekt ĂŒberlagert. Eine kompensation der Aortenwurzelbewegung erfolgt durch Bewegungsverfolgung eines Pigtail-Katheters in Bildsequenzen ohne Kontrastmittel. Eine starrere IntensitĂ€tsbasierte Registrierungsmethode wurde verwendet, um kontinuierlich die Aortenwurzelbewegung in Bildsequenzen mit Kontrastmittelgabe zu detektieren. Die Aortenklappenprothese wird in die fluoroskopischen Bilder eingeblendet und dient dem Chirurg als Leitfaden fĂŒr die richtige Platzierung der realen Prothese. Eine interaktive Benutzerschnittstelle fĂŒr den Chirurg wurde zur Initialisierung der Systemsalgorithmen, zur Steuerung der Visualisierung und fĂŒr manuelle Korrektur eventueller Überlagerungsfehler entwickelt. Retrospektive Experimente wurden an mehreren Patienten-DatensĂ€tze aus der klinischen Routine der TAKI in einem Hybrid-OP durchgefĂŒhrt. Hohe Erfolgsraten des entwickelten Assistenzsystems wurden fĂŒr alle getesteten Patienten-DatensĂ€tze erzielt. Die Ergebnisse zeigen, dass das entwickelte chirurgische Assistenzsystem ein hilfreiches Werkzeug fĂŒr den Chirurg bei der Platzierung Position der Prothese wĂ€hrend des chirurgischen Eingriffs der TAKI bietet

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    Vessel target location estimation during the TIPS procedure

    Get PDF
    Creation of a Transjugular Intrahepatic Portosystemic Shunt (TIPS) requires passage of a needle toward a moving target that is only seen transiently by x-ray prior to needle passage. Intraoperative, 3D target localization would facilitate target access and improve the safety of the procedure. The clinical assumption is that patients undergoing the TIPS procedure possess rigid, cirrhotic livers that undergo only intraoperative translation without significant deformation or rotation. Based upon this assumption, we hypothesize that the position of any unseen, 3D target point within the liver can be determined intraoperatively by precalculation of the relative positions of the target point to a different 3D point that can be tracked intraoperatively. This paper examines this hypothesis using intraoperatively acquired, biplane, x-ray images of 7 patients. In 6, we tracked the effects of cardiac and respiratory motion, and in 3 the effects of needle pressure. Methods involved reconstruction of 3D vessel bifurcation and other trackable intrahepatic points from biplane angiograms, measurement of liver deformation by examining changing distances between these 3D points over time, and comparison of expected to actual displacements of these points with respect to a fixed reference point in the liver. We conclude that, for the rigid livers associated with patients undergoing TIPS, that there is less intraoperative deformation than previously reported by other groups addressing healthy liver deformation, and that the location of an unseen target can be predicted within 3 mm accuracy

    Image-Guided Interventions Using Cone-Beam CT: Improving Image Quality with Motion Compensation and Task-Based Modeling

    Get PDF
    Cone-beam CT (CBCT) is an increasingly important modality for intraoperative 3D imaging in interventional radiology (IR). However, CBCT exhibits several factors that diminish image quality — notably, the major challenges of patient motion and detectability of low-contrast structures — which motivate the work undertaken in this thesis. A 3D–2D registration method is presented to compensate for rigid patient motion. The method is fiducial-free, works naturally within standard clinical workflow, and is applicable to image-guided interventions in locally rigid anatomy, such as the head and pelvis. A second method is presented to address the challenge of deformable motion, presenting a 3D autofocus concept that is purely image-based and does not require additional fiducials, tracking hardware, or prior images. The proposed method is intended to improve interventional CBCT in scenarios where patient motion may not be sufficiently managed by immobilization and breath-hold, such as the prostate, liver, and lungs. Furthermore, the work aims to improve the detectability of low-contrast structures by computing source–detector trajectories that are optimal to a particular imaging task. The approach is applicable to CBCT systems with the capability for general source–detector positioning, as with a robotic C-arm. A “task-driven” analytical framework is introduced, various objective functions and optimization methods are described, and the method is investigated via simulation and phantom experiments and translated to task-driven source–detector trajectories on a clinical robotic C-arm to demonstrate the potential for improved image quality in intraoperative CBCT. Overall, the work demonstrates how novel optimization-based imaging techniques can address major challenges to CBCT image quality

    AUGMENTED REALITY AND INTRAOPERATIVE C-ARM CONE-BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED ROBOTIC SURGERY

    Get PDF
    Minimally-invasive robotic-assisted surgery is a rapidly-growing alternative to traditionally open and laparoscopic procedures; nevertheless, challenges remain. Standard of care derives surgical strategies from preoperative volumetric data (i.e., computed tomography (CT) and magnetic resonance (MR) images) that benefit from the ability of multiple modalities to delineate different anatomical boundaries. However, preoperative images may not reflect a possibly highly deformed perioperative setup or intraoperative deformation. Additionally, in current clinical practice, the correspondence of preoperative plans to the surgical scene is conducted as a mental exercise; thus, the accuracy of this practice is highly dependent on the surgeon’s experience and therefore subject to inconsistencies. In order to address these fundamental limitations in minimally-invasive robotic surgery, this dissertation combines a high-end robotic C-arm imaging system and a modern robotic surgical platform as an integrated intraoperative image-guided system. We performed deformable registration of preoperative plans to a perioperative cone-beam computed tomography (CBCT), acquired after the patient is positioned for intervention. From the registered surgical plans, we overlaid critical information onto the primary intraoperative visual source, the robotic endoscope, by using augmented reality. Guidance afforded by this system not only uses augmented reality to fuse virtual medical information, but also provides tool localization and other dynamic intraoperative updated behavior in order to present enhanced depth feedback and information to the surgeon. These techniques in guided robotic surgery required a streamlined approach to creating intuitive and effective human-machine interferences, especially in visualization. Our software design principles create an inherently information-driven modular architecture incorporating robotics and intraoperative imaging through augmented reality. The system's performance is evaluated using phantoms and preclinical in-vivo experiments for multiple applications, including transoral robotic surgery, robot-assisted thoracic interventions, and cocheostomy for cochlear implantation. The resulting functionality, proposed architecture, and implemented methodologies can be further generalized to other C-arm-based image guidance for additional extensions in robotic surgery
    • 

    corecore