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Abstract 

Cone-beam CT (CBCT) is an increasingly important modality for intraoperative 

3D imaging in interventional radiology (IR). However, CBCT exhibits several factors that 

diminish image quality — notably, the major challenges of patient motion and detectability 

of low-contrast structures — which motivate the work undertaken in this thesis. 

A 3D–2D registration method is presented to compensate for rigid patient motion. 

The method is fiducial-free, works naturally within standard clinical workflow, and is 

applicable to image-guided interventions in locally rigid anatomy, such as the head and 

pelvis. A second method is presented to address the challenge of deformable motion, 

presenting a 3D autofocus concept that is purely image-based and does not require 

additional fiducials, tracking hardware, or prior images. The proposed method is intended 

to improve interventional CBCT in scenarios where patient motion may not be sufficiently 

managed by immobilization and breath-hold, such as the prostate, liver, and lungs. 

Furthermore, the work aims to improve the detectability of low-contrast structures 

by computing source–detector trajectories that are optimal to a particular imaging task. The 

approach is applicable to CBCT systems with the capability for general source–detector 

positioning, as with a robotic C-arm. A “task-driven” analytical framework is introduced, 

various objective functions and optimization methods are described, and the method is 

investigated via simulation and phantom experiments and translated to task-driven source–

detector trajectories on a clinical robotic C-arm to demonstrate the potential for improved 

image quality in intraoperative CBCT. 

Overall, the work demonstrates how novel optimization-based imaging techniques 

can address major challenges to CBCT image quality.  
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Chapter 1: Introduction 

1.1. Image-Guided Interventions 

Image-guided interventions (IGI) are medical procedures that use images of the 

patient to help the physician precisely visualize and target anatomical structures in a 

minimally invasive manner. Conventionally, images obtained prior to the procedure and 

spatially registered to the patient at the time of intervention form the basis of surgical 

“navigation.” However, images acquired during the procedure (i.e., intraoperative images) 

provide numerous benefits — most notably, visualization of anatomy, implanted devices, 

and other therapeutic agents introduced at the time of intervention. The last several decades 

have seen great advances in intraoperative imaging techniques and computing power, 

offering to improve the accuracy and outcomes of current procedures and enabling new 

procedures altogether (Cleary and Peters 2010). 

IGI has its main applications in interventional radiology (IR, including abdominal, 

cardiovascular, and neurovascular interventions), image-guided radiation therapy (IGRT, 

including external beam radiation therapy and brachytherapy), and surgery (including 

neurosurgery, orthopedic surgery, and otolaryngology – head and neck surgery). The main 

applications discussed in the context of this thesis include neuro-IR and abdominal IR. 

Both subspecialties use intraoperative imaging to assist in delivering treatment 

endovascularly. Such treatments include embolization of vascular anomalies, tumors, and 

feeder vessels, performing biopsies, and various methods of tissue ablation (Cleary and 

Peters 2010). 
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A wide range of imaging modalities and techniques are used for IGI, and 

combinations of one or more are often used throughout a case to provide image guidance. 

Prior to the procedure, a pre-operative image (or images) are obtained typically using either 

a diagnostic multi-detector CT (MDCT) system and / or magnetic resonance (MR) 

imaging, depending on the anatomical structures of interest. The pre-operative image is 

used for planning purposes and can be referenced throughout the case. At the start of the 

case, ultrasound imaging may be utilized to visualize vessels and blood flow to introduce 

a catheter into the vascular system (either arterial or venous, depending on the approach). 

With vascular access achieved, fluoroscopy may be acquired to visualize the catheter as it 

is advanced to the treatment site. Once at the treatment site, 3D cone-beam CT (CBCT) 

may be acquired to better visualize the target lesion and / or local vasculature and to ensure 

that the catheter is in the correct location. 2D fluoroscopy and 3D CBCT may continue to 

be acquired throughout the treatment phase of the case for additional guidance and quality 

assurance. Following the procedure, diagnostic quality MDCT and / or MR images may be 

used again to assess the outcome. 

Figure 1.1 shows several examples of images acquired during an abdominal IGI to 

treat hepatocellular carcinoma. Figure 1.1a shows a 2D fluoroscopy image acquired to help 

the clinician guide the catheter to the hepatic vasculature. The catheter can be seen in the 

superior-inferior (SI) direction parallel to the spine, and the hepatic vasculature is filled 

with iodine contrast making it radiopaque. Figure 1.1b shows a 3D rendering of the patient 

anatomy after contrast injection. This type of rendering is created from a 3D CBCT image 

and can provide the clinician more complete understanding of complicated 3D structures. 

Figures 1.1c and 1.1d show axial slices of two CBCT images acquired during the case. The 
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first (Figure 1.1c) was acquired when the iodine contrast was in the arterial system of the 

patient. The arteries are bright in the image, allowing the clinician to visualize a “roadmap” 

that will allow the catheter to traverse to the treatment area through the arterial system. The 

second image (Figure 1.1d) was acquired after the contrast had perfused into the tumor. 

The tumor is bright in the image, allowing the clinician to visualize the treatment area. 

 

Figure 1.1. Example images used for an abdominal IGI. (a) A fluoroscopy image showing 

the catheter, spine, and contrast-enhanced hepatic vasculature. (b) A 3D rendering of the 

CBCT image acquired during the intervention, showing the high-contrast structures (spine, 

ribs, contrast-filled kidneys and hepatic vasculature, catheter). (c) A 3D CBCT image 

acquired when contrast is entering the arterial vasculature (indicated by the white arrow). 

(d) A 3D CBCT image acquired after contrast has perfused throughout the hepatic tumor 

(indicated by the white arrow). 

The following sections of this chapter focus on the use of CBCT imaging during 

IGI. Section 1.2 provides details on CBCT imaging systems used in the clinical setting and 
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an overview of CBCT system geometry. Section 1.3 discusses CBCT image reconstruction 

using both analytic and iterative methods, and Section 1.4 addresses basic principles of 

image registration, including 3D–3D and 3D–2D image registration. Section 1.5 discusses 

several image quality challenges in CBCT to provide a basis for the novel methods 

presented in the following chapters of this thesis. Finally, Section 1.6 presents the outline 

of the thesis and the overarching thesis statement. 

1.2. Cone-Beam CT Systems 

1.2.1. Clinical Systems 

A wide variety of CBCT systems have been developed in recent years, with 

increased utilization in IGRT (Jaffray et al 2002), image-guided surgery (Siewerdsen et al 

2005), and IR (Fahrig et al 2006). Several clinical CBCT systems are shown in Figure 1.2. 

Figure 1.2a shows a mobile C-arm system (Cios Spin 3D, Siemens Healthineers, 

Forchheim Germany) that supports use between operating rooms in image-guided surgery. 

The open gantry can be brought to the operating table and rotated around the patient with 

minimal disruption to the operating setup. Figure 1.2b shows a mobile O-arm system (O-

arm, Medtronic, Dublin Ireland). The O-arm system has similar surgical applications to the 

mobile C-arm system in Figure 1.2a, with the exception that it has a breakable, closed-ring 

gantry to house the x-ray source and detector (cf., an open gantry). 

Figure 1.2c shows a fixed-room biplane system (Artis Zee Biplane, Siemens 

Healthineers, Forchheim Germany) used for procedures in IR. The fixed-room setup allows 

higher power to be delivered to the x-ray tube and includes dedicated room features (e.g., 

large television screens to display images and a motorized patient table integrated with the 
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imaging system). The biplane aspect indicates that there are two orthogonal x-ray sources 

and detectors. As such, 2D projections can be acquired from orthogonal views to provide 

3D localization. Fixed-room systems are ideal for IR procedures, in which the imaging 

system is used throughout the case and relied on heavily for guidance and verification 

during the intervention. Figure 1.2d shows a fixed-room robotic C-arm system (Artis 

Zeego, Siemens Healthineers, Forchheim Germany) with similar interventional 

applications to the biplane system. However, the robotic C-arm has additional degrees of 

freedom (DoF) of movement around the patient and table and can move to pre-programmed 

positions desired by the clinician. 

 

Figure 1.2. Examples of clinical CBCT systems. (a) Mobile C-arm system for image-

guided surgery (Siemens Healthineers). (b) Mobile O-arm system for image-guided 

surgery (Medtronic, photo courtesy of Dr. A. Uneri, Johns Hopkins University). (c) Fixed-

room biplane system for IR (Siemens Healthineers). (d) Fixed-room robotic C-arm system 

for IR (Siemens Healthineers). 
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Additional clinical systems beyond those shown in Figure 1.2 include variations of 

fixed-room systems used in IR with C-arms mounted to the floor, wall, or ceiling, CBCT 

systems in which the x-ray source and detector are mounted to the rotating gantry of a 

linear accelerator for IGRT (Jaffray et al 2002), and a wide variety of dedicated CBCT 

systems, including dental / maxillofacial imaging (Miracle and Mukherji 2009), extremity 

imaging (Carrino et al 2014), breast imaging (Boone et al 2001), and head imaging (Xu et 

al 2016). 

1.2.2. System Geometry 

All of the CBCT systems discussed in Section 1.2.1 are composed of an x-ray 

source, a divergent beam of x-rays passing through the object / patient, and a flat-panel 

detector (FPD). The position and orientation of these three components represents the 

system geometry. The x-ray source and FPD typically move in a circle about the patient to 

acquire the set of 2D projections that are reconstructed into a 3D image. CBCT systems 

differ from diagnostic MDCT systems in that the longitudinal coverage of the x-ray beam 

is extended and only a single rotation of the source and FPD is needed to reconstruct a 

volumetric field of view (FOV). Due to mechanical differences in such open geometries, 

CBCT systems also tend to be much slower in acquiring an image than MDCT acquisitions 

(~5–60 s vs 0.2 s / rotation). 

3D image reconstruction requires accurate specification of the system geometry and 

errors in geometric calibration result in artifacts, distortion, and other undesirable image 

features (Li et al 1994, Jaffray et al 2002). System geometry for each projection in a CBCT 

scan can be divided into intrinsic and extrinsic parameters. Intrinsic parameters define the 

x-ray source position relative to the FPD and can be parameterized by 3 DoF. Most CBCT 
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systems have fixed intrinsic geometry, including dental, extremity, and head CBCT 

scanners, and some mobile C-arms. Conversely, some systems have adjustable intrinsic 

geometry, such as robotic C-arm systems. Extrinsic parameters relate the patient pose to 

the detector coordinate frame and are represented by a 6 DoF translation and rotation. 

The projection geometry for a single view is illustrated in Figure 1.3. The origin of 

the world coordinate frame is located at the lower left corner of the detector with the x and 

y axes parallel to the detector edge and the z axis formed by their cross product. The patient 

coordinate frame is located at the center of the CBCT volume. Its position and orientation 

with respect the world coordinate frame (extrinsic parameters) are represented as a 6-

element vector of translations and rotations (𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝜃𝑥, 𝜃𝑦, 𝜃𝑧). The projection geometry 

is parameterized by the source position (𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) with respect to the detector coordinates 

(intrinsic parameters), where 𝑠𝑧 represents the length of the perpendicular line from the 

source to the detector (source-to-detector distance, SDD) and (𝑠𝑥, 𝑠𝑦) represents the 

detector piercing point. 

 

Figure 1.3. Projection geometry and parameters associated with the x-ray source, CBCT 

volume, and detector coordinate frames.  
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These nine parameters come together to form a projection matrix (PM), which 

relates a 3D location in the image volume (𝑥, 𝑦, 𝑧)𝑇 to a 2D location in the projection 

(𝑢, 𝑣)𝑇 according to: 

(
𝑢
𝑣
)~PM(

𝑥
𝑦
𝑧
1

) = (
𝑠𝑧 0
0 𝑠𝑧

𝑠𝑥 0
𝑠𝑦 0

0   0 1     0

)(
ℛ3𝑥3(𝜃𝑥, 𝜃𝑦, 𝜃𝑧)

𝑡𝑥 − 𝑠𝑥
𝑡𝑦 − 𝑠𝑦
𝑡𝑧 − 𝑠𝑧

0 0 0 1

)(

𝑥
𝑦
𝑧
1

) (1.1) 

The system geometry can be broadly defined by the SDD, corresponding to 𝑠𝑧, and the 

source-to-axis distance (SAD), corresponding to (𝑠𝑧 − 𝑡𝑧), with the geometric 

magnification of the system given by: 

Mag =
SDD

SAD
(1.2) 

1.3. Image Reconstruction 

1.3.1. Filtered Backprojection 

CT reconstruction computes a 3D image from a series of 2D projections acquired 

from many angles around the object / patient using the defined system geometry. One of 

the most widely used reconstruction algorithms for CT is filtered backprojection (FBP). 

FBP is an analytic method that relates weighted, ramp-filtered projection data to the 

attenuation coefficient of the original object. FBP for a 2D object with 1D projections may 

be defined as 

𝑓(𝑥, 𝑦) = ∫ [ ∫ 𝑃(𝜌, 𝜃)|𝜌|𝑒2𝜋𝑗𝜌𝑢
∞

−∞

d𝜌]

𝑢=𝑥 cos𝜃+𝑦 sin𝜃

d𝜃

𝜋

0

(1.3) 

where 𝑓(𝑥, 𝑦) represents the object (spatial distribution of attenuation coefficient), and 

𝑃(𝜌, 𝜃) is the Fourier transform of the projection at angle 𝜃. The inner integral is the 
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inverse Fourier transform of 𝑃(𝜌, 𝜃) multiplied with a frequency-domain ramp filter, |𝜌|. 

Therefore, the reconstructed image 𝑓(𝑥, 𝑦) at location (𝑥, 𝑦) is the summation of all filtered 

projection samples that pass through that point. With this definition of the reconstruction 

process, it is a requirement for FBP that the source–detector geometry follow a circular 

orbit. 

Equation (1.3) describes the underlying essence of FBP in terms of the Fourier slice 

theorem for a 2D image with 1D projections (Hsieh 2003). A practical algorithm for 3D 

FBP developed by Feldkamp et al (1984) extended this 2D slice reconstruction algorithm 

to three dimensions using additional weighting factors to account for the cone-beam 

geometry of the system. The resulting Feldkamp-Davis-Kress (FDK) algorithm is the basis 

for many of the CBCT reconstructions used throughout this thesis. 

A practical, voxel-driven method for backprojection for 3D image reconstruction 

is illustrated in Figure 1.4. Each 3D location (𝑥, 𝑦, 𝑧)𝑇 in the reconstructed image volume 

is related to a 2D location (𝑢, 𝑣)𝑇 in the projection data via the PM defined by 

Equation (1.1). Since the resulting location (𝑢, 𝑣)𝑇 will likely not fall at the center of a 

pixel in the discretized filtered projections, 2D bilinear interpolation is performed to 

determine the value that is assigned to the voxel. 
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Figure 1.4. Depiction of voxel-driven backprojection used in CBCT reconstruction by 

FBP. The 3D location (𝑥, 𝑦, 𝑧)𝑇 in the image volume is related to the 2D location (𝑢, 𝑣)𝑇 

in the filtered projection image using the system geometry. 2D interpolation is used in the 

discrete projection to determine the value assigned to the voxel. 

1.3.2. Model-Based Iterative Reconstruction 

An alternative class of 3D image reconstruction techniques is often referred to as 

optimization-based, or more commonly, model-based iterative reconstruction (MBIR), 

whereby the image is estimated through successive iterations that maximize an objective 

function. MBIR methods have become attractive in part because of their ability to 

incorporate prior knowledge in the reconstruction process through statistical modeling and 

their ability to reconstruct images from non-circular orbits. For example, anatomical 

images can be reasonably expected to be piece-wise constant, and such desirable image 
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properties (i.e., sharp edges) can be included in the reconstruction process. Enforcement of 

such properties makes MBIR methods particularly attractive when reconstructing low-

contrast image features from noisy (i.e., low dose) projection data. Figure 1.5a shows the 

reconstruction of a low-dose image using FBP as described in Section 1.3.1, whereas 

Figure 1.5b shows the same data reconstructed using an MBIR method. The noise in the 

soft-tissue regions is markedly decreased for the MBIR method, allowing improved 

visualization of soft-tissue structures. 

 

Figure 1.5. Reconstruction of a low-dose image using (a) FBP and (b) MBIR methods. 

The MBIR method results in markedly decreased noise in the reconstructed image and 

better visualization of the low-contrast soft-tissue structures (yellow arrows). 

MBIR starts with an initial guess of the attenuation values within the reconstruction 

and successively refines these values using an optimization algorithm. In general, the 

objective function for optimization can be written as 

𝝁̂ = arg min
𝝁

‖𝒚, 𝐀𝝁‖ (1.4) 

where 𝒚 represents the projection measurements, 𝝁 represents the current image estimate, 

and 𝐀 represents a mathematical forward model that relates the 3D image voxel values to 

2D pixel values and can be arbitrarily complex with the inclusion of various aspects of x-

ray imaging physics such as quantum noise, x-ray scatter, and polyenergetic effects. To 

minimize the objective in Equation (1.4), with each iteration, the true projection 
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measurements are compared to the forward-projected values from the current image 

estimate, and the optimization algorithm updates the image estimate to minimize the 

difference. 

The specific form of MBIR used throughout this thesis is penalized-likelihood (PL) 

estimation. The PL objective includes a log-likelihood term that incorporates a Poisson 

model of image statistics (quantum noise) and a regularization term to enforce particular 

properties in the image: 

𝝁̂ = arg max
𝝁

𝐿(𝒚; 𝝁) − 𝛽𝑅(𝝁) (1.5) 

In Equation (1.5), the regularization term 𝑅(𝝁) is subtracted from the log-likelihood term 

𝐿(𝒚; 𝝁) with the parameter 𝛽 controlling the balance between the terms. The regularization 

term commonly takes the form: 

𝑅(𝝁) =  ∑∑ 𝛹(𝜇𝑣 − 𝜇𝑗)

𝑗∈𝑁𝑗𝑣

(1.6) 

where the difference of voxels in a defined neighborhood penalizes according to the 

potential function 𝛹. A common choice is a quadratic penalty related to the squared 

difference between voxels: 

𝛹(𝜇𝑣 − 𝜇𝑗) =
(𝜇𝑣 − 𝜇𝑗)

2

2
(1.7) 

where (𝜇𝑣 − 𝜇𝑗) denotes a difference between neighboring voxels in the 3D image 

reconstruction (described in greater detail in Chapter 2). Alternatively, a Huber penalty 

may be used, providing regularization that is quadratic for small differences (smoothing 

noise) and linear for large differences (enforcing sharp edges): 
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𝛹(𝜇𝑣 − 𝜇𝑗) =

{
 
 

 
 (𝜇𝑣 − 𝜇𝑗)

2

2𝛿
                                   for |𝜇𝑣 − 𝜇𝑗| < 𝛿

|(𝜇𝑣 − 𝜇𝑗) −
𝛿

2
sgn(𝜇𝑣 − 𝜇𝑗)| , otherwise.            

(1.8) 

where sgn(∙) is the sign function and 𝛿 is an adjustable parameter below which the penalty 

is quadratic and above which it is linear. 

1.4. Image Registration 

1.4.1. 3D–3D Registration 

Registering medical images is a challenging task, subject to a broad spectrum of 

ongoing research. For IGI, it is especially useful in localizing information that is defined 

in a previous image (e.g., the pre-operative image) relative to an image acquired during the 

procedure. Image registration is the process of aligning two images (of the same underlying 

object — e.g., the patient) in a common coordinate system such that shared image features 

are spatially coincident. One image is designated as the “fixed” image and the other as the 

“moving” image. With these designations, the moving image is transformed into the 

coordinate system of the fixed image such that the structures within the images align as 

well as possible. Image registration involves application of a transformation (e.g., rigid or 

deformable) to the moving image, a similarity objective (e.g., cross-correlation of the 

images), and an optimization algorithm (e.g., gradient descent). 

The basic process of 3D–3D image registration is illustrated in Figure 1.6a. The 

fixed image is held static, while a transformation (either deformable or rigid) is applied to 

the moving image to maximize a similarity objective computed between the fixed image 

and the transformed moving image. The optimization algorithm works to maximize the 
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similarity objective by updating the transformation parameters such that the similarity 

calculated at the next iteration is increased. With the similarity objective maximized, the 

resulting transformation is applied to the moving image to generate the final registered 

image and to resolve information defined in the previous image within the context of the 

current image. 

 

Figure 1.6. Illustrative flowcharts for image registration. (a) 3D–3D image registration. 

(b) 3D–2D image registration. 

1.4.2. 3D–2D Registration 

Registering a 3D image to a 2D image is often helpful in IGI that uses 2D 

fluoroscopy. For example, it may be desirable to register a prior 3D MDCT or CBCT image 

to 2D fluoroscopic images acquired at various times during the case. 3D–2D image 

registration is similar to 3D–3D image registration in that it relies on a transformation 

applied to the moving image, a similarity objective, and an optimization algorithm. 

However, the similarity between the 3D image (e.g., CBCT) and the 2D image (e.g., 

fluoroscopy) involves an additional step that transforms the 3D image to 2D. 

The basic process of 3D–2D registration is illustrated in Figure 1.6b. Typically the 

3D image is designated the moving image, and the fixed 2D projection image is held static. 

The transformation (e.g., a 6 DOF rigid translation and rotation) is applied to the 3D image, 
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and the transformed volume is forward-projected (according to the system geometry) to 

generate a 2D digitally reconstructed radiograph (DRR). Similarity is calculated between 

the fixed 2D projection and the 2D DRR, and the optimization algorithm seeks to maximize 

the similarity by updating the transformation with each iteration. 

1.5. Challenges to Image Quality in Cone-Beam CT 

CBCT involves a number of factors that diminish image quality compared to 

MDCT that are the subject of a wide range of ongoing research. Image quality degradation 

(image artifacts) in CBCT can arise from many components of the imaging system and 

image reconstruction pipeline, including detector defects, image lag, lateral truncation of 

the object, sparse sampling, the cone-beam null space, geometric error, high scatter-to-

primary ratio, and patient motion. 

The sources of image degradation listed above are distinct from MDCT, and many 

methods have been developed to address them. Two major challenges that underlie the bulk 

of this thesis relate to the challenges presented by patient motion and to the detectability of 

fine or low-contrast structures. The first stems from involuntary motion during relatively 

slow (~5–60 s) CBCT scans, and the latter from numerous factors of the CBCT imaging 

chain (e.g., blur and noise). 

Figure 1.7 illustrates a number of such image quality challenges in a CBCT image. 

During the intraoperative CBCT scan, the patient was overly-sedated and unable to comply 

with breath-hold techniques. As a result, significant motion artifacts are seen throughout 

the image as indicated by cyan arrows. Motion artifacts manifest as streaks, blur, and 

distortion within the image. Streaks are particularly evident about the small contrast-
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enhanced vessels throughout the image as well as the ribs at the anterior of the patient. The 

deformable nature of the motion is evident in that the anterior is more severely affected by 

such artifacts (motion of the abdominal surface during respiration), whereas the posterior 

is relatively unaffected (patient laying prone on the operating table). Artifacts from x-ray 

scatter and beam-hardening are evident as dark shading indicated by yellow arrows 

between highly attenuating bone structures. 

 

Figure 1.7. An intraoperative CBCT image demonstrating the effects of patient motion 

and x-ray scatter on image quality. The cyan arrows indicate locations where motion 

artifacts are obvious, typified by blurring and streaks about structures of interest, and the 

yellow arrows indicate locations where artifact from x-ray scatter is obvious, typified by 

loss of contrast and reduced attenuation value (shading). 
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1.6. Outline of the Thesis 

Thesis Statement: Image quality in CBCT for IGI can be improved through patient 

motion compensation and task-based design of CBCT imaging protocols. Motion 

compensation methods presented in this thesis focus on both rigid and deformable motion, 

and methods to design a task-based imaging protocol focus on the source–detector 

trajectory. 

In Chapter 2 we present a method to compensate for rigid patient motion that can 

occur during the long scan times associated with CBCT (~5–60 s) with applications in 

neuro-IR. Motion compensation is achieved through image registration of the 2D 

projections images to a prior, motion-free 3D image. The method is applied to both the 

simulated motion of a phantom and real patient motion in clinical datasets. The results 

demonstrate the potential to recover image quality nearly identical to that of a motion-free 

reference image while compensating for large motion magnitude. Research in Chapter 2 

was presented at the following scientific conference: 

Ouadah, S., Jacobson, M., Stayman, J. W., Ehtiati, T., and Siewerdsen, J. H. 

(2016). Correction of patient motion in C-arm cone-beam CT using 3D–2D 

registration. AAPM 58th Annual Meeting & Exhibition, Washington, D.C., July 31–

August 4, 2016, Oral presentation. 

and published in the following peer-review journal and conference proceeding: 

Ouadah, S., Jacobson, M., Stayman, J. W., Ehtiati, T., Weiss, C., and Siewerdsen, 

J. H. (2017). Correction of patient motion in cone-beam CT using 3D–2D 

registration. Physics in Medicine & Biology, 62(23), 8813–8831. 

Ouadah, S., Jacobson, M., Stayman, J. W., Ehtiati, T., and Siewerdsen, J. H. 

(2016). Correction of patient motion in C-arm cone-beam CT using 3D–2D 

registration. Medical Physics, 43(6Part38), 3792–3793. 

S. Capostango, née S. Ouadah – here and throughout this thesis. 
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In Chapter 3 we extend motion compensation to the more difficult problem of 

deformable motion that occurs in the soft-tissue of the abdomen. Deformable motion 

compensation is performed by estimating rigid motion for multiple small regions 

throughout the image. Motion is estimated through use of an autofocus objective with 

regularization to maximize sharpness of image gradients while enforcing constraints on the 

smoothness of the motion in both time and space. The subsequent interpolation of a 4D 

deformation field captures the deformable nature of the motion. This method is shown to 

be successful in cadavers undergoing complex, deformable motion throughout the 

abdomen. Research in Chapter 3 was presented at the following scientific conferences: 

Capostagno, S., Sisniega, A., Stayman, J. W., Ehtiati, T., Weiss, C. R., and 

Siewerdsen, J. H. (2020). Image-based deformable motion compensation in cone-

beam CT: translation to clinical studies in interventional body radiology. SPIE 

Medical Imaging 2020, Houston, TX, February 15–20, 2020, Oral presentation. 

Capostagno, S., Sisniega, A., Ehtiati, T., Stayman, J. W., Weiss, C. R., and 

Siewerdsen, J. H. (2019). Correction of organ motion in cone-beam CT-guided 

transarterial chemoembolization. SIR 2019 Annual Scientific Meeting, Austin, TX, 

March 23–28, 2019, ePoster presentation. 

Capostagno, S., Sisniega, A., Ehtiati, T., Stayman, J. W., Weiss, C. R., and 

Siewerdsen, J. H. (2019). Deformable motion correction for interventional cone-

beam CT. APS March Meeting 2019, Boston, MA, March 4–8, 2019, Oral 

presentation. 

Sisniega, A., Capostagno, S., Zbijewski, W., Weiss, C. R., and Siewerdsen, J. H. 

(2019). Image-based deformable motion compensation for interventional cone-

beam CT. SPIE Medical Imaging 2019, San Diego, CA, February 16–21, 2019, 

Oral presentation. 

and published in the following peer-review journal and conference proceedings: 

Capostagno, S., Sisniega, A., Stayman, J. W., Ehtiati, T., Weiss, C. R., and 

Siewerdsen, J. H. (2020). Image-based deformable motion compensation for 

interventional cone-beam CT. Physics in Medicine & Biology, under review. 

Capostagno, S., Sisniega, A., Stayman, J. W., Ehtiati, T., Weiss, C. R., and 

Siewerdsen, J. H. (2020). Image-based deformable motion compensation in cone-

beam CT: translation to clinical studies in interventional body radiology. Medical 
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Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, 

11315, 113150B. 

Capostagno, S., Sisniega, A., Ehtiati, T., Stayman, J., Weiss, C., and Siewerdsen, 

J. (2019). Correction of organ motion in cone-beam CT-guided transarterial 

chemoembolization. Journal of Vascular and Interventional Radiology, 30(3), 

S215. 

Capostagno, S., Sisniega, A., Ehtiati, T., Stayman, J., Weiss, C., and Siewerdsen, 

J. (2019). Deformable motion correction for interventional cone-beam CT. Bulletin 

of the American Physical Society, 64(2), L30.00003. 

Sisniega, A., Capostagno, S., Zbijewski, W., Weiss, C. R., Ehtiati, T., and 

Siewerdsen, J. H. (2019). Image-based deformable motion compensation for 

interventional cone-beam CT. Medical Imaging 2019: Physics of Medical Imaging, 

10948, 109481O. 

In Chapter 4 we present the theory of task-based design of source–detector 

trajectories for CBCT. Task-based imaging can be considered analogous to personalized 

(precision) medicine in the sense that imaging parameters are tailored to the specific patient 

and procedure. The task is modeled mathematically in terms of its location, contrast, and 

spatial frequencies of interest, and the optimization aims to maximize the “detectability 

index” associated with the imaging task by changing the sampling pattern — i.e., the 

source–detector trajectory. Research in Chapter 4 was published in the following peer-

review journal: 

Stayman, J. W.,* Capostagno, S.,* Gang, G. J., and Siewerdsen, J. H. (2019). Task-

driven source–detector trajectories in cone-beam computed tomography: I. Theory 

and methods. Journal of Medical Imaging, 6(2), 025002. 

In Chapter 5 we present a geometric calibration method that uses a 3D–2D image 

registration technique like that of Chapter 2. Since task-driven source–detector trajectories 

deviate from a standard circular orbit, a method for geometric calibration of such orbits is 

necessary to reconstruct task-driven images. When compared to standard calibration 

*J. W. Stayman and S. Capostagno contributed equally to this work. 
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techniques for a circular orbit, the so called “self-calibration” method performed as well as 

or better than the standard methods. Research in Chapter 5 was presented at the following 

scientific conferences: 

Ouadah, S., Stayman, J. W., Gang, G., Jacobson, M., Ehtiati, T., and Siewerdsen, 

J. H. (2015). Self-calibration of cone-beam CT geometry using 3D–2D image 

registration. 5th Annual Hopkins Imaging Conference, Baltimore, MD, October 26, 

2015, Poster presentation. 

Ouadah, S., Stayman, J. W., Gang, G., Uneri, A., Ehtiati, T., and Siewerdsen, J. 

H. (2015). Self-calibration of cone-beam CT geometry using 3D–2D image 

registration: development and application to task-based imaging with a robotic C-

arm. SPIE Medical Imaging 2015, Orlando, FL, February 21–26, 2015, Oral 

presentation. 

and published in the following peer-review journal and conference proceeding: 

Ouadah, S., Stayman, J. W., Gang, G. J., Ehtiati, T., and Siewerdsen, J. H. (2016). 

Self-calibration of cone-beam CT geometry using 3D–2D image registration. 

Physics in Medicine & Biology, 61(7), 2613–2632. 

Ouadah, S., Stayman, J. W., Gang, G., Uneri, A., Ehtiati, T., and Siewerdsen, J. 

H. (2015). Self-calibration of cone-beam CT geometry using 3D–2D image 

registration: development and application to task-based imaging with a robotic C-

arm. Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, 

and Modeling, 9415, 94151D. 

In Chapter 6 we apply the methodology detailed in Chapter 4 to scenarios emulating 

imaging tasks in neuro-IR. The task-driven imaging framework is used to optimize the 

CBCT source–detector trajectory by maximizing a detectability index. The approach was 

applied to simulated cases of endovascular embolization of an aneurysm and arteriovenous 

malformation (AVM) and was translated to real data first using a CBCT test bench 

followed by implementation on an interventional robotic C-arm. The improvements in 

detectability and the demonstration of the task-driven workflow using a real interventional 

imaging system show the potential of the task-driven imaging framework to improve 
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imaging performance on motorized, multi-axis C-arms in neuro-IR. Research in Chapter 6 

was presented at the following scientific conference: 

Ouadah, S., Jacobson, M., Stayman, J. W., Ehtiati, T., Weiss, C., and Siewerdsen, 

J. H. (2017). Task-driven orbit design and implementation on a robotic C-arm 

system for cone-beam CT. SPIE Medical Imaging 2017, Orlando, FL, February 11–

16, 2017, Oral presentation. 

and published in the following conference proceeding and peer-review journal: 

Capostagno, S.,* Stayman, J. W.,* Jacobson, M. W., Ehtiati, T., Weiss, C. R., and 

Siewerdsen, J. H. (2019). Task-driven source–detector trajectories in cone-beam 

computed tomography: II. Application to neuroradiology. Journal of Medical 

Imaging, 6(2), 025004. 

Ouadah, S., Jacobson, M., Stayman, J. W., Ehtiati, T., Weiss, C., and Siewerdsen, 

J. H. (2017). Task-driven orbit design and implementation on a robotic C-arm 

system for cone-beam CT. Medical Imaging 2017: Physics of Medical Imaging, 

10132, 101320H. 

In the final chapter of the thesis, the key findings from each chapter are reviewed, 

and the underlying theme of optimization-based imaging intrinsic to each of the methods 

is reflected upon within a larger context and potential future work. We discuss the clinical 

utility of each method, including how such methods may be incorporated into clinical 

workflow to improve intraoperative CBCT image quality. This final discussion aims to 

bridge the translational gap between research and clinical application with the hope of 

seeing such advanced imaging techniques brought to the benefit of patient safety and 

outcomes for procedures in IGI. 
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Chapter 2: Rigid Motion Compensation 

for Interventional Cone-Beam CT Using 

3D–2D Registration 

2.1. Introduction 

CBCT for IGI involves relatively long scan times (~5–60 s) and can be subject to 

artifacts from patient motion. A similar challenge exists in CBCT for IGRT where 

acquisition times may be even longer (~30–120 s, Jaffray et al 2002). Patient motion can 

arise from respiration, the cardiac cycle, gas moving in the intestines, or involuntary muscle 

motion or twitches; motion artifacts are evident as blurring, streaks, and / or distortion of 

the reconstructed image. Such motion, even at the millimeter scale, can confound accurate 

localization of anatomical structures, which is critical for IGI. For example, in studying 

motion of the head in 20 patients undergoing CT without rigid fixation, Wagner et al (2003) 

found that all 20 patients exhibited detectable motion, with four patients showing 

perceptible motion artifacts in the reconstructed image. Li et al (2010a) similarly concluded 

in a study of 19 volunteers that all subjects displayed head motion while undergoing CT 

scans without rigid fixation, and further estimated that the head motion of patients without 

rigid fixation will not be smaller than 0.35 mm, which cannot be neglected in high-

resolution CBCT imaging. 

A variety of methods for motion compensation in CBCT have been proposed. Many 

of these methods were developed in the context of 4D imaging. For example, several 

motion compensation methods have employed gating for cyclical motion (either 

prospective or retrospective), most notably for periodic motion of the lungs and heart in 
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thoracic imaging (Rit et al 2009, Rohkohl et al 2013, Müller et al 2014). These methods 

typically use a general or patient-specific motion model to divide projection data into 

various phases, with the quality of the resulting images dependent on the accuracy of the 

model and the number and distribution of projection views in each phase bin. Other 4D 

imaging techniques employ deformable image registration to solve for the motion vector 

field (MVF) on a voxel-wise basis (Isola et al 2010, Tang et al 2012, Brehm et al 2013). 

For static 3D imaging — e.g., imaging of the head — involuntary motion rarely 

follows a pre-defined model, and the 4D motion “model” is usually of secondary or no 

interest compared to clear visualization and static localization of the anatomy. Methods to 

minimize motion during the scan include instructions to the patient (e.g., breath-hold) 

and / or physical immobilization (e.g., frames and / or straps), but may be impractical or 

insufficient in many interventional imaging scenarios. 

A number of approaches have been described to compensate for motion in 3D 

image reconstruction using fiducial markers. Tracking systems can be used to optically 

track the positions of fiducial markers placed on the patient (Dinelle et al 2006); however, 

tracker-based motion measurement introduces additional hardware, may face difficulty 

with line-of-sight occlusion by the imaging gantry or interventional devices, and the 

geometric accuracy may not be sufficient to correct for sub-millimeter errors (i.e., at the 

level of the voxel size in 3D image reconstruction). The tracked motion measurements must 

also be accurately synchronized with projection data acquisition, and proper calibration is 

needed to convert tracker coordinates to image coordinates (Nazarparvar et al 2012). 

Recognizing such drawbacks to motion estimation from externally tracked 

fiducials, various methods have been proposed to track radiopaque fiducial markers within 
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the projection data. Jacobson and Stayman (2008) simultaneously estimated marker 

positions and their corresponding orientation using 6 DoF for each projection, allowing the 

marker configuration to adjust for different patients. Marchant et al (2011) tracked the 3D 

locations of fiducial markers placed on a patient and warped the 2D projection images to 

match the 2D locations of their forward-projected 3D locations. Choi et al (2013) extended 

this idea by comparing simple projection shifting with projection warping using methods 

that prevent unrealistic warping due to noise in the marker locations. Choi et al (2013) also 

studied a 3D rigid body warping method and found it to outperform both 2D methods. 

Overall, such image fiducial methods (including fiducials placed internal to the patient) 

appear advantageous to externally tracked fiducials, but they still require placement of 

fiducials that can interrupt clinical workflow and may not accurately represent the internal 

motion of the patient — i.e., the fiducials give a fairly sparse representation of motion and 

convey only the motion of structures to which the fiducials are attached. 

Other work seeks to correct patient motion by maximizing (or minimizing) various 

characteristics of the resulting 3D image reconstruction (e.g., image sharpness). Yu and 

Wang (2007) estimated patient motion by minimizing an objective function based on data 

redundancy in the sinogram. Similarly, Wicklein et al (2013) minimized an entropy 

criterion to optimize the underlying geometric parameters of the imaging system, thereby 

adjusting for system misalignments as well as patient motion. Sisniega et al (2017) 

combined a gradient objective and an entropy term with a penalty that encourages smooth 

motion for high-resolution extremity imaging. Such methods can accommodate complex 

source–detector trajectories, as they only rely on the reconstructed image and have shown 

promising results for improving image quality. 



25 

Other methods employ a motion-free prior image to correct for motion in a 

subsequent scan. For example, Berger et al (2016) used 3D–2D registration to estimate the 

motion of individual bones in the weight-bearing knee, showing that registration based on 

image similarity (specifically, gradient correlation (GC) and normalized gradient 

information (NGI)) outperformed motion compensation using fiducial markers. Chen et al 

(2008) used prior image constrained compressed sensing (PICCS) to reconstruct images 

from highly undersampled projection data sets, providing a method to reconstruct dynamic 

data without motion or undersampling artifacts. 

In this chapter we report the development and characterization of a fiducial-free 

method for motion compensation in interventional CBCT. The focus of clinical application 

is 3D imaging of the head, as in otolaryngology – head and neck surgery, intracranial 

neurosurgery, or neuro-IR, where involuntary patient motion can give rise to severe 

artifacts. The method registers all projection views to a previously acquired, motion-free 

3D image, providing the information necessary to reconstruct a motion-compensated 

image using MBIR. Using this framework, the method aims to correct large-scale or small-

scale rigid motion that occurs during a scan and restore image quality to that of the motion-

free image. 

The similarity objective is based on GO, which is robust against mismatch in image 

content between the prior 3D image and the current acquisition (demonstrated by De Silva 

et al 2016). This is an important characteristic when the prior image is acquired at the 

beginning of the case, and the current image is acquired with a variety of devices and 

instrumentation in the FOV (e.g., retractors, catheters, stents, coils, clips, staples, and / or 

implants) that may otherwise confound the registration. A fast scan (5 s, 200° orbit) is 
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employed for the prior image, providing a 3D CBCT image that is less susceptible to 

motion (assumed nominally motion-free). The fast, low-dose scan exhibits lower image 

quality (higher quantum noise and view sampling effects) compared to a longer, higher-

dose scan and requires a registration method that is robust against such image quality 

degradation. 

Finally, the applicability of the algorithm is demonstrated in patient data exhibiting 

strong, realistic motion in which factors such as complexity of the motion pattern and 

mismatch between a prior image and the projection data present a challenge to the 

registration. By treating the motion of the C-arm gantry and the motion of the patient 

simultaneously in 3D–2D registration, the method corrects for both the motion of the 

patient and potential errors in the system geometric calibration. 

The work appearing in this chapter was reported in the following conference 

proceeding and journal paper: (S. Ouadah et al, Med. Phys. 46(38), 2016) and (S. Ouadah 

et al, Phys. Med. Biol. 62(23), 2017). 

2.2. Motion Compensation Framework 

2.2.1. Overview 

The motion compensation method is illustrated in Figure 2.1 (with associated 

parameters summarized in Table 2.1) assuming a previously acquired, motion-free 3D 

image denoted 𝝁𝐩𝐫𝐢𝐨𝐫 and a current CBCT scan that contains patient motion with projection 

data denoted 𝒚. The algorithm performs a 3D–2D image registration for each projection in 

the current scan (alternatively, a subset of projections could be used — subject to 

smoothing or regularization — to reduce computational burden and improve runtime). 
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Each 2D projection is registered to a forward-projection of the previously acquired image 

(the DRR, denoted 𝒚𝐩𝐫𝐢𝐨𝐫). The nominal PM for system geometric calibration (Navab et al 

1998, Cho et al 2005, Ouadah et al 2016) is used to initialize the first registration and the 

result of previous registrations is used to initialize subsequent registrations. The PM used 

to initialize each registration is denoted 𝐏𝐌𝐢𝐧𝐢𝐭
𝒌 . The 6 or 9 DoF transformation that 

optimizes each registration yields a new PM (denoted 𝐏𝐌𝐌𝐂
𝒌 ) that encodes the motion of 

the object at the 𝑘th projection view (𝑘 = 1,… , 𝑁proj). This process is performed for each 

projection in the uncompensated CBCT acquisition (typically 𝑁proj ~ 200–500 

projections), and a motion-compensated 3D image is reconstructed according to the system 

geometry defined by 𝐏𝐌𝐌𝐂. Using this method, the rigid motion of the object is defined 

within 𝐏𝐌𝐌𝐂, which combines both the source and detector motion with that of the object 

(patient). For cases in which the patient motion is small (or more specifically, in which 

𝐏𝐌𝐌𝐂 describes an approximately circular system geometry), conventional 3D FBP using 

the FDK algorithm (Feldkamp et al 1984) is applicable as a reasonable approximation. 

However, stronger motion amplitude, as investigated below, results in an effective system 

geometry that is markedly non-circular and violates basic assumptions in conventional 

FDK. This invites the application of more general MBIR methods that are free from strong 

assumptions on system geometry. In the work reported below, we use PL estimation to 

reconstruct the motion-compensated CBCT image. 
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Table 2.1. Notation for the rigid motion compensation method. 

Property Symbol 

3D–2D registration 

2D projections 𝒚 

Projection view 𝑘 = 1,… ,𝑁proj 

Prior 3D volume 𝝁𝐩𝐫𝐢𝐨𝐫 

Digitally reconstructed radiograph (DRR) 𝒚𝐩𝐫𝐢𝐨𝐫 

Forward-projection operator 𝐀 

Bare-beam x-ray fluence 𝑏0 

Estimated 6 or 9 DoF motion 𝑻 

Source translation 𝒔 

Object (patient) translation 𝒕 
Object (patient) rotation 𝜽 

3D rotation matrix ℛ3𝑥3 

Initial projection matrix (PM) 𝐏𝐌𝐢𝐧𝐢𝐭 

Motion-compensated PMs 𝐏𝐌𝐌𝐂 

Similarity objective 

Gradient orientation GO(𝒚, 𝒚𝐩𝐫𝐢𝐨𝐫) 

Gradient information GI(𝒚, 𝒚𝐩𝐫𝐢𝐨𝐫) 

Gradient correlation GC(𝒚, 𝒚𝐩𝐫𝐢𝐨𝐫) 

Pixels in projection data 𝑝 = 1,… ,𝑁𝑝 

Gradient operator ∇ 

Gradient magnitude thresholds 𝑡1, 𝑡2 

Angle between gradient vectors 𝜃𝑝 

Penalized-likelihood reconstruction 

Motion-compensated volume 𝝁𝐌𝐂 

Log-likelihood 𝐿(𝝁𝐌𝐂; 𝒚) 
Regularization strength 𝛽 

Roughness penalty 𝑅(𝝁𝐌𝐂) 
Voxels in volume reconstruction 𝑣 = 1,… ,𝑁𝑣 

Experimental variables 

Rotation amplitude 𝐴𝜙 

Rotation period 𝑃𝜙 

Translation amplitude 𝐴𝑧 
Rotation phase 𝜑𝜙 

Scan time 𝑇scan 

Performance evaluation 

Motion-free reference image 𝝁𝐫𝐞𝐟 
Structural similarity SSIM(𝝁𝐌𝐂, 𝝁𝐫𝐞𝐟) 
Average attenuation 𝜇̅ 

Image variance 𝜎2 
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2.2.2. Initialization 

Registration of the first projection image is initialized with a PM taken from the 

system geometric calibration. The second projection is initialized with the PM resulting 

from the first registration (𝐏𝐌𝐢𝐧𝐢𝐭
𝟐 ← 𝐏𝐌𝐌𝐂

𝟏 ). For the third and subsequent projections 

(through the 𝑁proj
th projection), 𝐏𝐌𝐢𝐧𝐢𝐭

𝒌  is generated by bilinear extrapolation of the 

extrinsic parameters of the previous two projection matrices to predict the pose of the 

current projection. Alternative constraints on realistic motion of the C-arm could be 

implemented, including those that do not depend on sequential registration of projections 

to better parallelize the 3D–2D registration process described below. 

2.2.3. 3D–2D Registration 

The motion compensation method has at its “inner loop” a 3D–2D registration 

method based on work by Penney et al (1998) and Pluim et al (2000), and later expanded 

to include alternative similarity objectives and optimizers as in Otake et al (2013), Uneri 

et al (2013), and De Silva et al (2016). The method involves a moving 3D volume (𝝁𝐩𝐫𝐢𝐨𝐫) 

registered to a fixed 2D projection (𝒚) by means of its DRR (denoted 𝒚𝐩𝐫𝐢𝐨𝐫). For this work 

we used the gradient orientation (GO) similarity objective as in De Silva et al (2016), 

defined as: 

GO =  
1

𝑁p
∑ 

2 − ln(|𝑎𝑝| + 1)

2
𝑝

(2.1) 

where 𝑎𝑝 = cos
−1(cos𝜃𝑝) and 𝑝 ∈ {|∇𝐲(𝑝)| > 𝑡1 ∩ |∇𝒚𝐩𝐫𝐢𝐨𝐫(𝑝)| > 𝑡2}. The GO 

similarity objective describes how well image gradient vectors align, with 𝜃𝑝 indicating the 

angle between gradient vectors. To exclude small gradients associated with image noise, 
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the summation in Equation (2.1) includes only gradient magnitude values exceeding 

thresholds 𝑡1 and 𝑡2, defined as the median gradient magnitude in 𝒚 and 𝒚𝐩𝐫𝐢𝐨𝐫, 

respectively, and is normalized by the number of overlapping pixels, 𝑁p. As shown by De 

Silva et al (2016), GO is robust against mismatch in image content (e.g., soft-tissue 

deformation and / or instrumentation present in 𝒚 but not 𝒚𝐩𝐫𝐢𝐨𝐫), since it relies on the 

orientation of gradients, rather than their magnitude. 

The similarity objective was iteratively optimized using the covariance matrix 

adaptation-evolution strategy (CMA-ES, Hansen 2006) to solve for the 6 or 9 DoF 

transform: 

𝑻̂ =  arg max
𝑻

GO (𝒚, 𝒚𝐩𝐫𝐢𝐨𝐫(𝑻)) (2.2) 

where 𝑻 = (𝒕, 𝜽) for 6 DoF and 𝑻 = (𝒔, 𝒕, 𝜽) for 9 DoF. The vector 𝒕 = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧]
𝑇 

represents a 3D translation of the object (patient) with respect to the detector in mm,𝜽 =

[𝜃𝑥, 𝜃𝑦, 𝜃𝑧]
𝑇 represents a 3D rotation of the object (patient) with respect to the detector in 

degrees, and 𝒔 = [𝑠𝑥 , 𝑠𝑦, 𝑠𝑧]
𝑇 represents a 3D translation of the source with respect to the 

detector in mm. CMA-ES is a non-linear, non-convex evolutionary optimizer that adjusts 

the covariance matrix of a population (set to 𝜆CMAES = 200, consistent with previous 

studies (Ouadah et al 2016)) with each iteration. The optimization was taken to be complete 

(converged) when the change in each parameter in 𝑻 between iterations was < 0.1 mm or 

degrees, corresponding to sub-voxel changes in the placement of backprojected rays. 

A linear forward-projector (i.e., the adjoint of a standard voxel-driven 

backprojector) was used to compute 𝒚𝐩𝐫𝐢𝐨𝐫, where 𝒚𝐩𝐫𝐢𝐨𝐫 = 𝑏0𝑒
−𝐀(𝑻)𝝁𝐩𝐫𝐢𝐨𝐫, with matrix 𝐀 

being a linear projection operator and 𝑏0 indicating the bare-beam image signal. A linear 
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projector was chosen for speed, although other forms are available, such as Siddon’s 

method (Siddon 1985, as used in Otake et al 2013) or a simplified separable footprints 

projector as shown in Wang et al (2014). The final PM for the motion-compensated 

geometry was computed as: 

𝐏𝐌𝐌𝐂
𝒌 = 𝐏𝐌𝐢𝐧𝐢𝐭

𝒌 (
ℛ3𝑥3(𝜃𝑥, 𝜃𝑦, 𝜃𝑧)

𝑡𝑥
𝑡𝑦
𝑡𝑧

0 0 0 1

) (2.3) 

for 6 DoF and 

𝐏𝐌𝐌𝐂
𝒌 = (

𝑠𝑧 0
0 𝑠𝑧
0 0

𝑠,𝑥 0

𝑠𝑦 0

1 0

)(
ℛ3𝑥3(𝜃𝑥, 𝜃𝑦, 𝜃𝑧)

𝑡𝑥 − 𝑠𝑥
𝑡𝑦 − 𝑠𝑦
𝑡𝑧 − 𝑠𝑧

0 0 0 1

) (2.4) 

for 9 DoF. The formulation of the final PM for 9 DoF does not rely on 𝐏𝐌𝐢𝐧𝐢𝐭
𝒌  as in the 6 

DoF case; rather, it is constructed using intrinsic and extrinsic parameters de novo for each 

projection. 

2.3. Experimental Methods 

2.3.1. Imaging Systems 

Phantom experiments (described in Section 2.3.2) used a robotic C-arm (Artis 

Zeego, Siemens Healthineers, Forchheim Germany), shown in Figure 2.2a. Three scan 

protocols were used, each based on standard head scan protocols available on the system 

(all 102 kV with a 200o circular orbit): (Scan Protocol A) 𝑁proj = 496 projections acquired 

in 20 s (with reference point air kerma 37 mGy as reported by the system); (Scan Protocol 

B) 𝑁proj = 248 projections acquired in 10 s (19 mGy); and (Scan Protocol C) 𝑁proj = 133 

projections acquired in 5 s (10 mGy). 
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The motion compensation method was applied in clinical studies (described in 

Section 2.3.5) using a prototype CBCT head scanner (Xu et al 2016) to image patients with 

suspected intracranial hemorrhage (ICH). The fairly long (30 s) scan time combined with 

the sometimes unstable condition of critically ill patients (prone to involuntary movement) 

made the system susceptible to patient motion. Scan protocols involved 

𝑁proj = 450 projections acquired in a 360° rotation at 100 kV, 216 mAs (23 mGy). Each 

patient received an MDCT scan prior to the CBCT scan using a standard, non-contrast-

enhanced head scan protocol (120 kV, 274 mAs, 44.4 mGy) and reconstructed with 

0.44 × 0.44 × 0.5 mm3 voxels and a H20s soft-tissue kernel (Somatom Definition AS, 

Siemens Healthineers, Forchheim Germany). The MDCT scan was taken as the 3D prior 

image for 3D–2D registration with the CBCT projection data. 

 

Figure 2.2. Experimental setup. (a) Robotic C-arm system. (b) Custom motion phantom 

consisting of an anthropomorphic head attached to a motion controller showing direction 

of motion in 𝜙 and z. 
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2.3.2. Phantom Experiments 

A custom motion phantom was built by attaching an anthropomorphic head 

phantom to a motion controller (Figure 2.2b). The head phantom consisted of a human 

skull encased in tissue-equivalent plastic (RANDO, The Phantom Laboratory, Greenwich 

NY) with a 0.13 mm diameter tungsten wire placed in the trachea for spatial resolution 

assessment. The CIRS Dynamic Thorax Phantom (Model 008A) and software (CIRS, 

Norfolk VA) were used for computer-controlled motion of the head phantom during the 

scan. 

The motion phantom provided 2 DoF under computer control: longitudinal rotation 

in the 𝜙 direction (approximately about the z axis of the object and opposite to the C-arm 

gantry rotation) following a sigmoidal profile; and periodic SI translation along the z axis 

following a sinusoidal profile that persisted for the duration of the scan. The amplitude 

(𝐴𝜙, units of degrees) and duration (𝑃𝜙, units of seconds) of rotational motion and the 

amplitude (𝐴𝑧, units of mm) of translational motion were variable. For experiments 

containing periodic translational motion, the period was held constant at 4 s, comparable 

to the respiratory cycle. The phase of rotational motion during the scan (𝜑𝜙, units of 

degrees) was adjusted so that the midpoint of the motion profile occurred near the 

beginning (50°), middle (100°), or end (150°) of the 200° scan. The motion profiles 

transferred to the anthropomorphic head were not precisely reproducible, owing to friction 

between the phantom and its support base and instability or backlash in the attachment 

piece, so the requested motion profiles were not taken as “truth.” However, this was not a 

factor in experiments described below since the performance of the motion compensation 
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method was assessed with respect to the quality of the resulting 3D image reconstruction 

and not in comparison to the motion profiles. 

The performance of the 6 DoF motion compensation method was tested for motion 

profiles defined by the amplitude of longitudinal rotation (𝐴𝜙), the duration of longitudinal 

rotation (𝑃𝜙), the angular phase of the motion relative to the scan (𝜑𝜙), the amplitude of 

SI translation (𝐴𝑧), and the scan time (𝑇scan), as defined by protocols A, B, and C described 

in Section 2.3.1. For each experiment, the values of each variable are shown in Table 2.1, 

and the corresponding motion profiles are shown in Figure 2.3. 

Table 2.2. Experimental variables. Corresponding motion profiles are shown in Figure 2.3. 

One motion-free scan was acquired for each of the three scanning protocols as a 

basis of comparison and taken as the “true” reference image without motion artifact. The 

motion-free image from Protocol C was used as the 3D volume input (𝝁𝐩𝐫𝐢𝐨𝐫) to the motion 

compensation algorithm for all experiments. Using the fast scan image from Protocol C as 

the motion-free prior corresponds to a clinical scenario in which a fast (𝑇scan = 5 s) CBCT 

is acquired at the beginning of a case and is subsequently used as the 3D input for slower 

scans (higher quality, but susceptible to motion) taken later in the procedure. This also 

stresses the algorithm in that the 3D input image from Protocol C is of fairly low quality, 

containing a high degree of noise due to low dose and angular sampling artifacts due to the 

low angular sampling of 𝑁proj = 133 projections over 200°. 

Exp 𝑨𝝓 (°) 𝑷𝝓 (s) 𝝋𝝓 (°) 𝑨𝒛 (mm) 𝑻𝐬𝐜𝐚𝐧 (s) 

1 {5, 10, 15} 6 100 0 20 

2 10 {2, 6, 10} 100 0 20 

3 10 2 {50, 100, 150} 0 20 

4 5 6 100 {2.5, 5, 7.5} 20 

5 5 2 100 5 {20, 10, 5} 
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Figure 2.3. Motion profiles for each experiment. (a) Experiment 1 involved three 

amplitudes of rotational motion. (b) Experiment 2 involved three durations of rotational 

motion. (c) Experiment 3 involved three phases (relative to the scan orbit) at which motion 

occurred. (d) Experiment 4 involved three amplitudes of periodic longitudinal translation. 

(e) Experiment 5 involved three scan durations according to the three scan protocols. 

2.3.3. Image Reconstruction 

Projection data were read from the robotic C-arm system in Digital Imaging and 

Communications in Medicine (DICOM) format at isotropic pixel size of 0.308 mm. Since 

automatic exposure control (AEC, in which the mAs varies from view to view according 

to the minimum detected signal in the previous view) was implemented on this system, a 

frame-to-frame intensity correction was performed by dividing each frame by the mAs for 

each projection as recorded in the DICOM header. A simple scatter correction was 

performed by subtracting a fraction of the minimum pixel value for each frame. A fraction 

equal to 0.97 was found to minimize cupping artifact and was used throughout phantom 

experiments shown below. 
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The FDK algorithm was used to reconstruct uncompensated images to illustrate the 

magnitude of motion artifacts without compensation. A 512 × 512 × 512 voxel grid size 

was used with 0.75 mm isotropic voxel size, apodization filter cutoff at 50% of the Nyquist 

frequency, and 200 mm lateral extrapolation to reduce truncation effects. An MBIR 

method based on PL estimation was used to reconstruct images using 𝐏𝐌𝐌𝐂. The method 

is irrespective of the non-circular geometry implicit in 𝐏𝐌𝐌𝐂 and formulates the 

reconstructed image (𝝁𝐌𝐂) by maximizing an objective function comprising the log-

likelihood of the projection data 𝐿(𝝁𝐌𝐂; 𝒚) and a regularization term with roughness 

penalty 𝑅(𝝁𝐌𝐂) and penalty strength 𝛽: 

𝝁̂𝐌𝐂 = arg max
𝝁𝐌𝐂

𝐿(𝝁𝐌𝐂; 𝒚) − 𝛽𝑅(𝝁𝐌𝐂) (2.5) 

The log-likelihood is: 

𝐿(𝝁𝐌𝐂; 𝒚) ≅ −∑[𝑏0 exp(−𝐀𝝁𝐌𝐂)]𝑖 + 𝑦𝑖[𝐀𝝁𝐌𝐂]𝑖
𝑖

(2.6) 

and relates the consistency of 𝝁𝐌𝐂 with the projection measurements 𝒚 through the 

forward-projection operator 𝐀. For simplicity, a quadratic penalty was used: 

𝑅(𝝁𝐌𝐂) =∑∑
(𝜇𝑣 − 𝜇𝑗)

2

2
𝑗∈𝑁𝑗𝑣

(2.7) 

with 𝑣 indexing all voxels, and 𝑗 indexing the 6 nearest-neighbor voxels around voxel 𝑣 in 

3D (Wang et al 2014). For phantom experiments, the penalty strength 𝛽 was set to a low 

value of 1×102 relative to a bare-beam 𝑏0 value of 1×105 photons per pixel. The relatively 

low penalty strength decreased the strength of regularization (smoothing) in the 

reconstruction, which in turn emphasized high-spatial resolution characteristics of the 

reconstructed images. The MBIR was initialized using an FDK image reconstructed using 



38 

the motion-compensated projection matrices. A 512 × 512 × 512 voxel grid was used with 

0.75 mm isotropic voxel size, and the optimization used 50 iterations with 10 subsets each. 

Linear forward-projectors and backprojectors implemented on a graphics processing unit 

(GPU) were used for both FDK and PL reconstructions. 

2.3.4. Figures of Merit 

Image reconstructions were qualitatively and quantitatively assessed to evaluate 

performance of the motion compensation method. Qualitative assessment of motion 

artifacts included visualization of high-contrast bone details in regions of the temporal bone 

and sinuses. Quantitative assessment involved analysis of structural similarity (SSIM) 

measured between the motion-compensated images (𝝁𝐌𝐂) and the corresponding motion-

free reference images (𝝁𝐫𝐞𝐟) as in Wang et al (2004): 

SSIM(𝝁𝐌𝐂, 𝝁𝐫𝐞𝐟) =  
(2𝜇̅MC𝜇̅ref)(2𝜎MC−ref)

(𝜇̅MC
2 + 𝜇̅ref

2 )(𝜎MC
2 + 𝜎ref

2 )
(2.8) 

where 𝜇̅MC and 𝜇̅ref are the mean value of images 𝝁𝐌𝐂 and 𝝁𝐫𝐞𝐟, respectively, 𝜎MC
2  and 𝜎ref

2  

are the variance of 𝝁𝐌𝐂 and 𝝁𝐫𝐞𝐟, respectively, and 𝜎MC−ref is the cross-covariance of 𝝁𝐌𝐂 

and 𝝁𝐫𝐞𝐟. The SSIM was measured over 100 corresponding axial slices about the central 

axial slice. Only voxels falling within the head (i.e., excluding air; voxel 

value > 0.01 mm-1) were used for calculating SSIM. In addition, the full-width at half-

maximum (FWHM) of the point spread function (PSF) formed by the tungsten wire placed 

in the trachea of the head phantom was measured over 10 axial slices in the motion-

compensated images and compared to that of the motion-free reference images (using PL 

reconstruction). To calculate FWHM, images were reconstructed at finer voxel size 

(0.1 × 0.1 × 0.5 mm3) to oversample the image within limitations of GPU memory. Line 
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profiles through the center of the wire were sampled radially over 360°. A Gaussian 

distribution was fit to each line profile, and the FWHM was averaged over all line profiles 

and slices. The uncompensated images were not suitable to analysis of FWHM, because 

the wire PSF was too severely degraded by motion artifact. 

2.3.5. Clinical Data 

The method was further tested in clinical data for patients with known or suspected 

ICH under an Institutional Review Board (IRB)-approved study. Two cases were selected 

that exhibited strong patient motion artifacts and presented several challenges beyond the 

phantom studies. First, of course, was that motion patterns were unknown, uncontrolled, 

and realistic — with one of the cases exhibiting up to ~50 mm motion (noncompliant or 

involuntary raising of the head during the CBCT scan). Overall motion of the head, jaw, 

and neck was complex and non-rigid. The CBCT scan data were also collimated to ~12 cm 

FOV along the SI axis to limit patient dose, with the reduced FOV presenting an additional 

challenge to 3D–2D registration. Registration parameters were as described in 

Section 2.3.1, and pose was estimated using both 6 and 9 DoF motion models for each 

projection in the CBCT scan. 3D images were reconstructed with and without motion 

compensation using 250 projections covering a 200o arc (half-scan) centered on the 

occurrence of motion. The quadratic PL algorithm was used with 200 iterations and 10 

subsets to reach convergence (0.44 × 0.44 × 0.44 mm3 voxels). 

To further evaluate the performance of the GO objective under such challenging 

conditions, the motion compensation algorithm was repeated for Patient #2 (who 

demonstrated large motion with limited FOV and, therefore, a more difficult registration) 

using GC and GI as a similarity objective, leaving other parameters unchanged. Images 
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were reconstructed with the resulting 𝐏𝐌𝐌𝐂 using the PL algorithm and compared with the 

motion-compensated image obtained using the GO similarity objective. 

2.4. Results 

2.4.1. Phantom Images 

Images of the anthropomorphic head phantom with and without motion 

compensation are shown in Figure 2.4. All motion profiles described in Section 2.3.2 

resulted in strong motion artifacts, and none of the uncompensated images would be 

clinically acceptable. The motion-compensated images are shown in the right column of 

Figure 2.4 for the most severe motion profile. Motion-compensated images for less severe 

motion profiles (not shown in Figure 2.4) were qualitatively indistinguishable from the 

worst case (right column) and are quantified below. The motion-compensated images 

appear to be free from motion artifact and are qualitatively indistinguishable from the 

motion-free image for even the most extreme cases (𝐴𝜙 = 15°, 𝑃𝜙 = 10 s, 𝜑𝜙 = 150°, 

𝐴𝑧 = 7.5 mm, and 𝑇scan = 5 s). 
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Figure 2.4. Axial slices from the uncompensated reconstructions (left three columns) for 

five experiments exhibiting various motion profiles in 𝐴𝜙, 𝑃𝜙, 𝜑𝜙, 𝐴z, and 𝑇scan. The right 

column shows the same axial slice reconstructed using the motion compensation method 

for the worst-case motion pattern (corresponding to the 3rd column from the left). 
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Considering the results in Figure 2.4 more closely, it can be noted that different 

types of motion artifacts resulted from the various motion profiles imparted in the five 

experiments. In Experiment 1, the severity of motion artifact increases with the magnitude 

of 𝐴𝜙 as expected. As evident in Experiment 2, 𝑃𝜙 has a less obvious effect, but it appears 

that a shorter rotation period (i.e., faster speed of rotation, as in a sudden twitch of the head) 

results in more severe artifact than a slower rotation (as in a slow drift of head angulation). 

The effect of 𝜑𝜙with respect to the scan orbit is shown in Experiment 3 to affect the 

appearance of motion artifact, and one may distinguish to some extent the pose of the 

source and detector during object motion based on the directionality of the motion artifacts. 

Moreover, motion at the midpoint of the scan results in the strongest artifacts, associated 

with sampling over a short scan (i.e., there is less data redundancy at the mid-point of a 

short scan to lessen the conspicuity of the motion artifact). In Experiment 4 in-plane 

features become nearly indistinguishable due to out-of-plane motion contamination that 

worsens with increasing 𝐴z, as expected. The severity of motion artifact in Experiment 5 

appears to be greatest for the longest scan time, which corresponds to the scan with the 

highest frequency of projection sampling during the period of motion. 

2.4.2. Structural Similarity 

Measurements of SSIM for uncompensated and motion-compensated images are 

shown in Figure 2.5. In each case, SSIM was restored to > 0.995 following motion 

compensation, a statistically significant difference (increase) compared to the uncorrected 

image (p < 0.001) in each case. For the uncompensated images, many of the trends in SSIM 

match the qualitative observations of artifact magnitude discussed in Section 2.4.1. For 
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example, SSIM decreases with increasing 𝐴𝜙, decreases with increasing 𝐴z, and increases 

with 𝑃𝜙. For Experiment 4, SSIM for the uncompensated images appears better (perhaps 

surprisingly, given the strong artifacts exhibited in Figure 2.4) than in other experiments, 

indicating that SSIM as a figure of merit is more sensitive to strong gradients about high-

contrast bones and the skin line than it is to an overall loss of resolution. The SSIM 

measured for Experiment 3 shows a somewhat unexpected trend increasing with 𝜑𝜙, 

compared to visual impression of images in Figure 2.4 suggesting worst performance for 

motion centered about 𝜑𝜙 = 100°. The SSIM measurements for Experiment 5 also show a 

somewhat unexpected trend in that the 20 s scan time might be expected to exhibit the 

worst SSIM, rather than the 5 s scan. However, these trends have more to do with 

limitations in SSIM as a metric of visual image quality than the performance of the motion 

compensation method. In each case, the compensation method restored SSIM to a level 

that was equivalent to (or at least statistically indistinguishable from) the motion-free case. 
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Figure 2.5. SSIM (measured across 100 axial slices) for each of the five motion 

experiments. The SSIM for the uncompensated images is shown on the left of each plot, 

and the SSIM for the motion-compensated images is shown on right (> 0.995 for all cases). 

2.4.3. FWHM of the PSF 

Figure 2.6 shows the FWHM of the wire PSF following motion compensation. The 

mean FWHM measured for the motion-free reference image was (0.94 ± 0.01 mm). By 

comparison, the FWHM for the various cases of object motion was ~0.94 mm, indicating 

that the motion compensation algorithm was able to recover spatial resolution to 



45 

approximately the same level as the motion-free case. Without motion compensation, the 

PSF images (not shown) were entirely confounded by artifact and did not permit FWHM 

analysis. 

 

Figure 2.6. FWHM of the PSF of a thin (0.13 mm) tungsten wire placed in the head 

phantom. The FWHM for the motion-compensated images is shown for each of the five 

motion studies, compared to the motion-free (reference) image. Each plot indicates the full 

range (whiskers), interquartile range (box), and median (horizontal line) FWHM analyzed 

in 10 axial slices. 

2.4.4. Application to Clinical Data 

Application of the motion compensation algorithm to clinical data is illustrated in 

Figures 2.7 and 2.8. Patient motion artifacts are evident in the uncompensated images as 

distortion (streaks, blur, and doubling), particularly in relation to high-contrast structures. 

The motion compensation method is seen to significantly improve image quality for both 

cases. For such complex motion, the 9 DoF model outperformed the 6 DoF (not shown for 

brevity) due to the ability to solve for both the source and object positions simultaneously, 
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resulting in greater accuracy in translation and rotation parameters. This is similar to results 

found in previous studies comparing 3D–2D registration using 6 DoF with 9 DoF (e.g., 

Otake et al 2015). For Patient #1, the motion profile resulting from the registration 

suggested ~10 mm motion at approximately the midpoint of the scan due to involuntary 

tremor. The most noticeable improvement is increased delineation of the anterior skull base 

(Figure 2.7e) and hard palate (Figure 2.7f). Patient #2 exhibited even stronger motion 

artifacts (Figure 2.8a) that render the uncorrected image largely unusable. In this case, the 

registration suggested ~50 mm motion during the latter half of the scan, during which the 

patient lifted his / her head from the support. The motion compensation algorithm resolved 

most of the motion artifacts from the image (Figure 2.8d) with strongly improved 

visualization of a metal mesh placed within a craniotomy (Figure 2.8e) and an 

intraventricular shunt within the cranium (Figure 2.8f). Residual artifacts (e.g., at the 

posterior skin line) may be due to motion / truncation at the edge of the FOV and possibly 

to non-rigidity of superficial soft tissues and / or patient support. 
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Figure 2.7. Motion compensation applied to clinical data exhibiting moderate motion 

artifacts (Patient #1). (a–c) Uncompensated and (d–f) compensated CBCT images. Images 

in (b) and (e) show a magnified axial view of the anterior skull base marked by the dashed 

box in (a) and (d). Images in (c) and (f) show a magnified sagittal view of the hard palate. 

 

Figure 2.8. Motion compensation applied to clinical data exhibiting severe motion artifacts 

(Patient #2). (a–c) Uncompensated and (d–f) compensated CBCT images. Images in (b) 

and (e) show a magnified axial view in the region of a craniotomy and implanted mesh 

marked by the dashed box in (a) and (d). Images in (c) and (f) show a magnified axial view 

in the region of an intraventricular shunt.  
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The results of the clinical study demonstrate the robustness of the algorithm under 

realistic conditions, including challenges of complex motion and mismatch between 

MDCT and CBCT images. Both cases exhibited a mismatch in FOV between MDCT and 

CBCT — with CBCT exhibiting less coverage in the SI direction due to patient positioning 

and / or narrow collimation — such that the shoulders, neck, and jaw (including dental 

implants) appear in the DRRs but not in the CBCT projections. The additional gradients 

can confound the registration by driving the solution to false local maxima associated with 

high contrast features. 

Such sensitivity was especially evident for the GI and GC similarity objectives, 

which rely on gradient magnitude. As shown in Figure 2.9 for Patient #2, the GI objective 

(Figure 2.9a) failed to give reliable registration for such strong and complex motion. The 

GC objective (Figure 2.9b) performed better but was subject to spurious registration failure 

(false maxima) for numerous views, and the resulting reconstructions demonstrated 

correspondingly severe artifacts. The GO objective (Figure 2.9c), on the other hand, better 

incorporated the broad distribution of strong and subtle gradients across the image. These 

results are consistent with previous studies (De Silva et al 2016) in which GO demonstrated 

superior robustness to image mismatch compared to GI, GC, and other similarity objectives 

under conditions of challenging registration.  
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Figure 2.9. Comparison of (a) GI, (b) GC, and (c) GO similarity objectives in motion 

compensation applied to clinical data exhibiting strong motion (Patient #2). The GI and 

GC objectives were subject to false local maxima arising from high-contrast features, 

whereas GO was more robust and better incorporated the full distribution of strong and 

subtle gradients in the registration process. 

2.5. Discussion and Conclusions 

The motion compensation method presents a promising framework for the 

mitigation of large-amplitude motion artifacts in CBCT images acquired during IGI, 

specifically for non-periodic, involuntary motion (e.g., the head) that can be assumed to be 

locally rigid and well described by 6 or 9 DoF. The method yields a fiducial-free approach 

that has been shown to be robust against misregistration in the presence of image mismatch 

between the prior and current scan (e.g., introduction of surgical instruments, collimation, 

and / or additional anatomy) by virtue of the GO similarity objective. The resulting 

transform incorporates the intrinsic and extrinsic parameters of the system geometry with 

patient motion and can therefore be used in combination with systems that have a non-

reproducible orbit and / or vibration in the rotation of the gantry. 

The method demonstrated compensation of images with image quality that was 

quantitatively and qualitatively indistinguishable from the motion-free CBCT image. The 

registration method underlying the compensation technique is also highly parallelizable in 
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that multiple projections can be registered simultaneously. The current work initialized 

each pose with bilinear extrapolation of the two preceding poses, which is not parallelizable 

but provides a good estimate and fast convergence. Alternatively, one may envision a fully 

parallelized implementation without such initialization. In such an implementation 

(depending on the form and search range of the optimizer), the time required for each pose 

estimate would likely increase due to coarser initialization; however, the total time for 

registration of all projections would likely decrease and be more compatible with clinical 

workflow than the current sequential implementation. The method could in principle be 

run with every scan to remove image artifact stemming from both geometric errors and 

patient motion; alternatively, the method could run on-demand in cases where motion 

artifacts appear to confound the imaging task. 

The method is well suited to IGI in which a prior 3D image is available (e.g., MDCT 

acquired for diagnosis and / or planning, or a CBCT scan acquired at the beginning of the 

case for surgical navigation). Similarly, in IGRT, treatment planning normally involves an 

MDCT acquired with the patient in the treatment position, and many therapies involve 

repeat CBCT on successive treatment fractions. In such scenarios, the prior MDCT or 

CBCT may be suitable as input to the 3D–2D registration underlying the motion 

compensation method. 

Note that the motion-compensated CBCT image is reconstructed in the coordinates 

of the input 3D image, since the 3D–2D registration algorithm takes the origin of the 

transformation to be the center of the prior 3D image. This may be beneficial for purposes 

of image guidance, since the motion compensation yields an image that is automatically 

registered to the prior 3D image, which is often the pertinent coordinate system for the 
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surgical navigation system, surgical robot, or linear accelerator. Put another way, the 

motion compensation method described here can be alternatively viewed as a means of 

automatically registering a CBCT image to a prior MDCT (or CBCT) via 3D–2D 

registration. 

The phantom study used a fast, low-dose, short scan CBCT as the motion-free prior, 

and results were unchanged (i.e., not improved) when using a high-quality MDCT as the 

prior image, indicating the robustness of the registration framework to image quality 

(quantum noise) in the 3D image. Additionally, the clinical cases demonstrated realistic 

situations of moderate to severe motion, as well as mismatch between a prior MDCT image 

and the projection data, indicating the robustness of the registration framework using the 

GO objective. 

The primary objective of this study was to assess the feasibility of motion 

compensation in conjunction with geometric calibration in cases of strong, involuntary, 

non-periodic motion, and therefore the run-time of the algorithm was not fully optimized. 

The framework was implemented in Matlab (The MathWorks, Inc., Natick MA) and the 

average registration time per projection was 9 s, with total runtime scaling according to the 

number of projections in the uncompensated dataset. Although the method in its current 

form registers projections sequentially, a parallel registration scheme (all projections 

registered simultaneously) could certainly be implemented and decrease total runtime for 

practical clinical implementation. 

One limitation to the motion compensation algorithm is that the accuracy of the 

registration and subsequent artifact correction is somewhat dependent on the quality of the 

3D volume and the 2D images. The method appears to be robust against quantum noise, 
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evidenced by performance achieved using the lowest-dose CBCT image as the input 3D 

image for phantom studies. Although the algorithm is robust to many types of artifact 

present in either of the images (e.g., cone-beam artifacts, scatter, truncation, and / or 

angular sampling), anatomical gradients must be sufficiently distinct for their orientation 

to be matched between DRRs and projection views. Another limitation is the assumption 

of local rigid motion, which may be applicable for the skull, pelvis, and extremities, but 

limits the algorithm in application to scenarios such as the abdomen and thorax. However, 

even in cases of non-rigid deformation of soft tissue, the method may still be applicable to 

local regions of interest (ROIs) where motion can be approximated as rigid. 

Overall, the motion compensation method produced CBCT images of the same 

quality as motion-free images, demonstrating robustness in cases of strong non-periodic 

motion of the object (patient) using either a low-dose, fast, short-scan prior CBCT image 

or high quality MDCT. 
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Chapter 3: Deformable Motion 

Compensation for Interventional Cone-

Beam CT Using Autofocus 

3.1. Introduction 

In addition to the neurological procedures discussed in the previous chapter, CBCT 

is increasingly prevalent in minimally invasive IGI in the abdomen as a means of 3D image 

guidance and quality assurance. Transarterial chemoembolization (TACE) is an established 

technique that leverages CBCT guidance, treating hepatocellular carcinoma by delivery of 

chemotherapeutic / embolic agents to the tumor via the hepatic artery (Tacher et al 2015). 

Identification of the tumor and surrounding vascular structures — small feeder vessels in 

particular — is crucial to selective embolization that delivers the embolic agent as close as 

possible to the tumor to concentrate the chemotherapeutic effect while sparing adjacent 

healthy tissue. Selective embolization, with or without combined injection of cytotoxic 

drugs, can also be extended to the treatment of benign prostate hyperplasia (McWilliams 

et al 2014), renal carcinoma (Hall et al 2000), neuroendocrine tumors (Gupta et al 2005), 

uterine fibroids (Goodwin et al 1997), aneurysms (Brilstra et al 1999), and AVM (Miracle 

and Mukherji 2009). CBCT guidance offers better identification of small tumors and feeder 

vessels than conventional 2D fluoroscopic techniques and enables super-selective 

embolization with substantial benefit to treatment outcomes (Kakeda et al 2007). 

However, as discussed in Chapter 2, CBCT for IGI involves moderately long scan 

time (~5–60 s), making it susceptible to patient motion. For awake interventional 

procedures such as TACE, patients can have difficulty with breath-hold and remaining still, 
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and even with ideal compliance, CBCT can be confounded by involuntary organ motion 

from peristalsis or gas movement in the abdomen. Consequently, motion artifacts evident 

as streaks, blurring, and loss of soft-tissue edges often diminish CBCT image quality. For 

example, in CBCT-guided TACE, up to 25% of images demonstrated moderate to severe 

motion artifacts (Lee et al 2014). 

Chapter 2 discussed in detail the current methods for motion compensation in 

CBCT and showed a method for compensation of rigid-body motion (e.g., the cranium) 

based on a prior 3D image and 3D–2D image registration. In this chapter, we focus on 

challenges of deformable motion (as in soft tissues of the abdomen) and develop a 

compensation method that operates without a prior 3D image and instead enforces image 

sharpness criteria in the image reconstruction in a manner analogous to “autofocus” 

(Bueno-Ibarra et al 2005, Kyriakou et al 2008, Kingston et al 2011, Wicklein et al 2012, 

Sisniega et al 2017, Sisniega et al 2019b). Previously reported autofocus methods for 

CBCT are promising but are largely constrained to rigid motion applied to the entire CBCT 

volume. This work, first reported by Sisniega et al (2019a) and Capostagno et al (2020), 

develops a deformable motion compensation method that leverages the autofocus concept 

to compute a 4D spatiotemporal MVF for soft-tissue CBCT in the abdomen. 

As detailed below, MVFs are estimated by interpolating 𝑀 locally rigid motion 

trajectories across 𝑁 temporal nodes and are incorporated in a modified 3D FBP approach. 

Because the method is entirely image-based, it does not require additional input beyond 

the raw projection data — for example, the method operates without respiratory or cardiac 

gating or external monitoring of the patient. The studies reported below describe the 

development of the method in simulation studies that test the robustness of algorithm 
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parameters over a wide range of operating conditions and translate the method to cadaver 

studies involving realistic, complex motion as precursors to translation to the interventional 

setting. 

The work appearing in this chapter was reported in the following conference 

proceeding: (A. Sisniega et al, Proc. SPIE Medical Imaging, 10948, 2019), (S. Capostagno 

et al, APS March Meeting, 64(2), 2019), (S. Capostagno et al, J. Vasc. Int. Rad., 30(3), 

2019), and (S. Capostagno et al, Proc. SPIE Medical Imaging, 11315, 2020). 

3.2. Motion Compensation Framework 

3.2.1. Overview 

The motion compensation algorithm is built on the premise that a complex 

deformable motion field can be formed as a composition of locally rigid motion trajectories 

sparsely sampled across the volumetric FOV. The algorithm is illustrated in Figure 3.1, 

with parameters summarized in Table 3.1. The process begins by selecting a set of 𝑀 ROIs 

throughout the uncompensated volume 𝝁. Each ROI is presumed to undergo locally rigid 

motion described by 6 DoF (3 translations and 3 rotations) defined relative to the center of 

each ROI. This is a fair assumption in that the motion is expected to be spatially smooth, 

making it quasi-rigid for reasonably small ROIs (e.g., ~50 × 50 × 50 mm3 as described 

below). The motion trajectory for each ROI (𝑻𝒎), therefore consists of a sequence of 6 

DoF transformations — one transformation for each projection view (𝑘 = 1,… , 𝑁proj), 

with projection views corresponding to scan time (𝑡 ∈ [0 𝑇scan]). The vector 𝑻 contains all 

𝑻𝒎 (𝑚 = 1,… ,𝑀) trajectories.  
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Table 3.1. Notation for the deformable motion compensation method. 

Property Symbol 

Motion estimation 

Uncompensated image 𝝁 

Region of interest (ROI) 𝑚 = 1,… ,𝑀 

Degree of freedom (DoF) 𝑗 = 1,… ,6 

Projection view 𝑘 = 1,… ,𝑁proj 

Gantry angle 𝜃 ∈ [0 𝛩scan] 
Scan time 𝑡 ∈ [0 𝑇scan] 
Spatial location 𝒙 

Estimated motion trajectory 𝑻 

Motion trajectory for ROI m 𝑻𝒎(𝑘, 𝑗) 
Motion vector field ∆𝒑(𝑘, 𝒙) 
Motion magnitude |∆𝒑| 
Temporal motion model 

Cubic b-spline kernel 𝐵 

B-spline knot 𝑛 = 1,… ,𝑁 

B-spline kernel coefficient 𝑐𝑛𝑗 

Autofocus objective 

Motion-compensated reconstruction for ROI m 𝝁𝒎 

Autofocus objective (see Table 2) 𝑆(𝝁𝒎) 

Voxel in reconstructed image 𝑣 = 1,… ,𝑁𝑣 

Directional gradient operator ∇𝑥, ∇𝑦, ∇𝑧 

Normalized intensity histogram ℎ 

Histogram bin 𝑙 = 1, … , 𝐿 

Spatiotemporal regularization 

Temporal regularization parameter 𝛽𝑡 
Spatial regularization parameter 𝛽𝒙 

Temporal regularization penalty 𝑅𝑡(𝑻𝒎) 
Spatial regularization penalty 𝑅𝒙(𝑻𝒎) 
Reference point location 𝒑 

Reference point 𝑝 = 1,… , 𝑃 

CMA-ES optimization 

Population size 𝜆CMAES 
Search range 𝜎CMAES 

Performance evaluation 

Motion-free reference image 𝝁𝐫𝐞𝐟 
Motion-compensated image 𝝁𝐌𝐂 

Structural similarity SSIM(𝝁𝐫𝐞𝐟, 𝝁𝐌𝐂) 
SSIM regularization constant 𝑐1, 𝑐2 

Average attenuation 𝜇̅ 

Image variance 𝜎2 
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The algorithm estimates 𝑻̂ by minimizing the cost function in Equation (3.1) 

consisting of: (1) an autofocus objective that is applied to each ROI to provide a measure 

of image sharpness; (2) a temporal regularization term that encourages smooth motion 

trajectories in time 𝑡, alternatively, projection view 𝑘 or gantry angle 𝜃; and (3) a spatial 

regularization term that encourages smooth changes in motion over the spatial extent of the 

image volume: 

𝑻̂ = arg min
𝑻

∑ 𝑆(𝝁𝒎) + 𝛽𝑡𝑅𝑡(𝑻𝒎) + 𝛽𝐱𝑅𝐱(𝑻𝒎)

𝑀

𝑚=1

(3.1) 

In Equation (3.1), 𝑚 enumerates the ROIs (𝑚 = 1,… ,𝑀), 𝑆 is the autofocus objective 

(detailed in Section 3.2.4), 𝑻𝒎 is the sequence of 6 DoF local transforms for ROI 𝑚 

(detailed in Section 3.2.2), 𝝁𝒎 is the motion-compensated reconstruction of ROI 𝑚, 𝛽𝑡 and 

𝛽𝒙 are scalars controlling the strength of temporal and spatial regularization, respectively, 

and 𝑅𝑡 and 𝑅𝒙 are temporal and spatial regularization penalties, respectively (detailed in 

Section 3.2.5). The motion-compensated reconstruction for each ROI (𝝁𝒎) is obtained 

using the FDK algorithm (Feldkamp et al 1984) with 𝑻𝒎 applied during backprojection by 

adjusting the position of the reconstructed ROI according to the 6 DoF motion estimate at 

each projection view 𝑘. 

Minimization of Equation (3.1) yields a set of transforms 𝑻̂ that are spatially 

interpolated to form a 4D MVF described by displacements ∆𝒑 at each voxel such that 

motion at the center of each ROI is described by the 6 DoF motion estimate, and motion 

throughout the local and surrounding regions is estimated by interpolation between each 

ROI. The interpolated MVF ∆𝒑 is incorporated into the final image reconstruction using a 
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variation of FDK with a warped backprojector, forming the motion-compensated image 

𝝁𝐌𝐂 (detailed in Section 3.2.6). 

3.2.2. B-Spline Representation of 6 DoF Motion 

To reduce the dimensionality of motion estimation, each DoF in 𝑻𝒎 is modeled as 

a cubic b-spline with 𝑁 knots that are nominally placed at equally distributed timepoints 

(i.e., projection view angles) of the scan: 

𝑻𝒎(𝑘, 𝑗) = ∑𝑐𝑛𝑗𝐵(𝑘 − 𝑘𝑛)

𝑁

𝑛=0

(3.2) 

where 𝑘 represents projection views (𝑘 = 1,… ,𝑁proj), 𝑗 enumerates the DoF (𝑗 = 1,… ,6), 

𝑛 enumerates the b-spline knots (𝑛 = 0,… ,𝑁), 𝑐𝑛𝑗 are constants estimated using 

Equation (3.1), and 𝐵 is a cubic b-spline kernel. The number of estimated motion 

parameters is thereby reduced from (𝑁proj projections × 6 DoF × 𝑀 ROIs) with 

𝑁proj ~ 1×102 to (𝑁 knots × 6 DoF × 𝑀 ROIs) with 𝑁 ~ 1×101. A b-spline representation 

assumes a temporally smooth motion trajectory, which is consistent with the use of 

temporal regularization in the cost function. Additionally, the average transformation 

across all 𝑁proj projections is subtracted from each 𝑻𝒎 to ensure that the resulting 

transformations do not significantly displace the reconstructed ROIs from their original 

position and orientation. 

3.2.3. Optimization of Motion Parameters 

The non-convex optimization in Equation (3.1) challenges conventional gradient-

based methods. The CMA-ES algorithm (Hansen 2006) was shown in previous work to 

perform well in similar non-convex optimization for 3D–2D image registration (Otake et 
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al 2012, Ouadah et al 2016), CBCT source–detector orbit optimization (Stayman et al 2019, 

Capostagno et al 2019), and, of particular interest for this work, autofocus motion 

compensation in CBCT for estimation of rigid motion trajectories (Sisniega et al 2017). As 

described in Chapter 2, the CMA-ES algorithm iteratively generates a set of 𝜆CMAES 

candidate solutions sampled from a normal distribution. Initially, the optimization 

parameters are taken as independent random variables with zero mean and standard 

deviation 𝜎CMAES. During CMA-ES iterations, the mean and covariance matrix of the joint 

probability distribution of the motion parameters evolve to solutions that minimize the cost 

function. In the experiments outlined below, a convergence criterion was defined such that 

the estimated parameters changed from iteration to the next by < 1×10-2 mm (translation) 

and < 1×10-3 degrees (rotation). 

3.2.4. Autofocus Objectives for Soft-Tissue CBCT 

Sisniega et al (2017) previously evaluated autofocus objectives suitable to rigid 

motion compensation for high-contrast (bone) imaging. With those findings as a starting 

point, autofocus objectives suitable for motion estimation in low-contrast (soft-tissue) 

CBCT were investigated including gradient variance, gradient norm, entropy, and gradient 

entropy as summarized in Table 3.2. 
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3.2.5. Spatiotemporal Regularization 

Two regularization terms are explicit in Equation (3.1): (1) a temporal 

regularization term to discourage abrupt motion; and (2) a spatial regularization term to 

encourage similar motion for ROIs that are close together. The temporal regularization 

penalizes the squared 2-norm of the displacement of a set of reference points associated 

with each ROI computed between projection views: 

𝑅𝑡(𝑻𝑚) = ∑ ∑ ‖𝒑𝑝,𝑘 − 𝒑𝑝,𝑘−1‖2
2

𝑁proj

𝑘=2

𝑃

𝑝=1

(3.4) 

where 𝑝 enumerates the reference points (𝑝 = 1,… , 𝑃), 𝑘 enumerates projection views, and 

𝒑𝑝,𝑘 indicates the spatial coordinates of the 𝑝th reference point at the timepoint 

corresponding to the 𝑘th projection view. This temporal regularization penalty is similar to 

that in Sisniega et al (2017); however, in this work, a set of 𝑃 = 2 reference points per ROI 

was selected, with one point corresponding to a vertex of the ROI and the second 

corresponding to the center of the ROI. 

The spatial regularization penalizes the magnitude of the difference between 

motion trajectories normalized by the Euclidean distance between ROIs: 

𝑅𝐱(𝑻𝒎) = ∑
‖∆𝒑𝒊(𝑻𝒊) − ∆𝒑𝒎(𝑻𝒎)‖

‖𝒑𝑖 − 𝒑𝑚‖2
𝑖≠𝑚

(3.5) 

where 𝒑 contains the spatial coordinates of a reference point (chosen here to be the center 

of the ROI), and ∆𝒑𝒎 is the displacement of the reference point over scan time 𝑡 according 

to the motion trajectory 𝑻𝒎. 
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3.2.6. FBP Reconstruction Using a 4D MVF and Warped Backprojector 

The motion estimates for each ROI are interpolated via thin plate spline to obtain 

∆𝒑: 

∆𝒑(𝑘, 𝒙) = ∑ 𝒄𝒎(𝑘)𝐵(𝒙 − 𝒙𝒎)

𝑀+8

𝑚=1

(3.6) 

where 𝒄𝒎 are spline coefficients that give the displacement of a reference point associated 

with each ROI (chosen to be the center of the ROI) as estimated by the motion 

compensation algorithm, 𝑚 enumerates ROIs, 𝑘 enumerates projection views, 𝒙 represents 

3D spatial coordinates, and 𝐵 is a cubic b-spline kernel. Eight additional reference points 

were included at the eight corners of a volume expanded from the size of the reconstructed 

volume 𝝁𝐌𝐂 by 10 cm to provide boundary conditions with zero motion, ensuring that 

∆𝒑(𝑘) smoothly decreases at the edges of 𝝁𝐌𝐂. Spatial interpolation is repeated for all 

𝑁proj projection views using the temporally interpolated motion profiles (Section 3.2.2 and 

Equation (3.2)) to generate ∆𝒑. 

The motion-compensated volume (𝝁𝐌𝐂) is formed by 3D FBP incorporating ∆𝒑 for 

each projection view (“warped backprojection”). Each view is backprojected using the 

nominal system geometry and weighting factors according to the FDK algorithm, and 

∆𝒑(𝑘) is applied to resample the position of the voxels according to the motion estimate at 

time 𝑡 corresponding to projection view 𝑘. 

By virtue of the 4D motion estimate, the reconstruction 𝝁𝐌𝐂 can be formed at any 

(or all) time points by shifting ∆𝒑 to a specific projection view 𝑘. As noted below, the mid-

point of the scan (𝑘 = 𝑁proj 2⁄ ) is nominally selected for reconstruction of 𝝁𝐌𝐂. 
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3.3. Experimental Methods 

A systematic progression of experiments outlined below investigated the parameter 

settings and performance of the deformable motion compensation algorithm. The first 

experiment focused on selection of the autofocus objective for use in Equation (3.1) 

suitable to soft-tissue CBCT using a digital phantom (Table 3.2). The second used a 

simulated CBCT dataset to test the performance of deformable motion compensation in 

realistic anatomy, specifically investigating the effect of regularization strength as a 

function of the amplitude of deformable motion. The third experiment involved a CBCT-

capable mobile C-arm and cadavers subjected to simple or complex motion during the scan 

to investigate performance with realistic anatomy and other image quality considerations 

(e.g., truncation, scatter, and geometric calibration). 

3.3.1. Determination of an Autofocus Objective for Soft-Tissue CBCT 

The first experiment determined which of the autofocus objectives in Table 3.2 is 

best suited to soft-tissue motion compensation. A digital phantom was used to generate 

motion-contaminated CBCT volumes consisting of spheres placed in a cylinder (240 mm 

diameter × 350 mm height) with attenuation approximately equal to that of liver (50 HU). 

Five hundred 12 mm diameter spheres (–50 to 150 HU) were added to the cylinder at 

random, non-overlapping locations. 

A sinusoidal motion trajectory with variable magnitude |𝚫𝒑| ranging from 4 mm to 

20 mm in 4 mm increments was applied to the phantom with equal motion magnitude 

allocated to the three cardinal directions. For each projection view 𝑘, the phantom was 

shifted according to the motion trajectory and then projected using a linear forward-
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projector on GPU to generate CBCT projections. 𝑁proj = 360 projections were computed 

over total scan angle 𝛩scan = 360°, with the simulated CBCT geometry matching that of a 

clinical robotic C-arm system (Artis Zeego, Siemens Healthineers, Forchheim Germany, 

SAD = 800 mm, SDD = 1200 mm). 

Each autofocus objective in Table 3.2 was investigated as a basis for motion 

estimation with the number of bins set to 𝐿 = 256 for calculation of the normalized intensity 

histogram ℎ in entropy (Equation (3.3c)) and gradient entropy (Equation (3.3d)). A single 

ROI (𝑀 = 1) of 50 × 50 × 50 voxels with size 1.0 × 1.0 × 1.0 mm3 was placed at the center 

of the phantom. CMA-ES optimization used 𝜆CMAES = 20 candidate solutions and 

𝜎CMAES = 0.5 mm for translations and 0.05° for rotations. To provide equivalent temporal 

regularization strength when using different autofocus objectives in Equation (3.1) and to 

ensure that the estimated motion was primarily dependent on the objective (as opposed to 

strength of regularization), the nominal value of 𝛽𝑡 was set to 0.001 × the value of each 

objective calculated in the motion-free image (units mm-2). Reconstruction of the motion-

compensated volume (𝝁𝐌𝐂) used a grid of 512 × 512 × 512 voxels of size 

0.5 × 0.5 × 0.5mm3. 

The performance of motion compensation was evaluated using SSIM (Wang et al 

2004) to compare 𝝁𝐌𝐂 with the motion-free reference image (𝝁𝐫𝐞𝐟), similar to analysis in 

Chapter 2: 

SSIM(𝝁𝐫𝐞𝐟, 𝝁𝐌𝐂) =
(2𝜇̅ref𝜇̅MC + 𝑐1)(2𝜎ref−MC + 𝑐2)

(𝜇̅ref
2 + 𝜇̅MC

2 + 𝑐1)(𝜎ref
2 + 𝜎MC

2 + 𝑐2)
(3.7) 

where 𝜇̅ref is the average attenuation of 𝝁𝐫𝐞𝐟 with variance 𝜎ref
2 , 𝜇̅MC is the average 

attenuation of 𝝁𝐌𝐂 with variance 𝜎MC
2 , and 𝜎ref−MC is the cross-covariance between the two 
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images. The regularization terms 𝑐1 and 𝑐2 were assigned values of 5×10-3 mm-2 and 

1×10-2 mm-2, respectively. 

3.3.2. Selection of Spatiotemporal Regularization Parameters 

The second experiment investigated the sensitivity of the motion compensation 

algorithm to the temporal and spatial regularization parameters (𝛽𝑡 and 𝛽𝒙), seeking stable 

settings that can be applied over a broad range of potential motion magnitudes |𝚫𝒑|. 

Figure 3.2 illustrates the phantom and motion trajectories investigated in this study. An 

MDCT dataset from The Cancer Imaging Archive (TCIA) was used as a digital phantom 

and 𝑁proj = 248 projections were computed over 𝛩scan = 195°, with CBCT geometry as 

described in Section 3.3.1. Motion was modeled as a sequence of 3D MVFs with the 

motion at each voxel implementing one cycle of a cosine wave over the simulated scan 

time 𝑡 (alternatively, projection views 𝑘 or scan angles 𝜃), as in Figure 3.2c. The applied 

motion magnitude |𝚫𝒑| was maximized near the anterior skin line and decreased to 

|𝚫𝒑| = 0 mm at the posterior skin line (Figure 3.2a–b). Variable maximum motion 

magnitude |𝚫𝒑|max ranged from 10 mm to 25 mm in 5 mm increments. The motion 

trajectory allocated 70% of the motion along the anterior-posterior (AP) direction (y axis, 

Figures 3.2a, c) and 30% along the SI direction (z axis, Figures 3.2b, c). 
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Figure 3.2. Deformable motion applied to an image from the TCIA dataset. (a) An axial 

plane of the applied 3D MVF (∆𝒑(𝑘)) at the timepoint corresponding to 𝑘 = 𝑁proj 2⁄ , with 

maximum motion magnitude |𝚫𝒑|max = 25 mm. (b) A sagittal plane of ∆𝒑(𝑁proj 2⁄ ). 

(c) Sinusoidal profile of the applied motion at a single location (∆𝒑(𝒙)) over the scan time 

𝑡, alternatively, projection views 𝑘 or scan angles 𝜃. The relative motion magnitude applied 

along the x, y, and z axes is indicated in (c) and reflected in the length and color of the 

arrows in (a–b). 

For motion estimation, 𝑀 = 27 ROIs of 50 × 50 × 20 voxels with size 

1.0 × 1.0 ×1.0 mm3 were placed in a grid throughout the volume. The parameter 𝛽𝑡 was 

assigned values {0.1, 0.5, 1, 5, 10} mm-2, and 𝛽𝒙 was assigned values 

{0.01, 0.05, 0.1, 0.5,1}. The b-spline representation of each DoF used 𝑁 = 4 knots 

resulting in a total of 648 motion parameters to be estimated (𝑁 = 4 knots × 𝑗= 6 DoF 

× 𝑀 = 27 ROIs). CMA-ES optimization used 𝜆CMAES = 50 and 𝜎CMAES = 2.0 mm in 

translations (and 0.2° in rotations). Image reconstruction of 𝝁𝐌𝐂 used a grid of 

650 × 650 × 200 voxels with size 0.5 × 0.5 × 0.5 mm3. 
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The motion-compensated image 𝝁𝐌𝐂 was evaluated for each (𝛽𝑡, 𝛽𝒙; |𝚫𝒑|max) 

combination in terms of SSIM using the same regularization constants 𝑐1 and 𝑐2 as in 

Section 3.3.1. The SSIM was calculated for 248 instances of the motion-compensated 

volume 𝝁𝐌𝐂 by shifting the estimated MVF 𝚫𝒑 to the timepoint corresponding to each of 

the 𝑁proj = 248 projection views. Similarly, 248 instances of a reference volume 𝝁𝐫𝐞𝐟 were 

reconstructed using the applied MVFs. For each reconstruction instance, a rigid registration 

was performed between 𝝁𝐌𝐂 and 𝝁𝐫𝐞𝐟 to align image structures, and SSIM was calculated 

at the central axial slice, excluding the skin line and surrounding air regions. The SSIM 

values for the uncompensated images 𝝁 were also calculated as a basis of comparison. 

3.3.3. Performance Evaluation with Complex Anatomical Motion 

The third experiment advanced the method to realistic imaging scenarios with 

additional challenges such as scatter, truncation, and geometric calibration. Two cadaver 

specimens (one male with BMI > 25 and one female with BMI < 25) were imaged on a 

mobile C-arm system (Cios Spin 3D, Siemens Healthineers, Forchheim Germany, 

Figure 3.3), and applied simple and complex motion during the CBCT scan. Simple motion 

was achieved by translating the bed superiorly (along the z axis at approximately 1 mm per 

second during the middle third of the scan), and complex motion involved flexing the 

pelvic and lower abdominal regions anteriorly through a range of approximately 20 mm. 

Each scan acquired 𝑁proj = 400 projections over 𝛩scan = 195° with 𝑇scan = 60 s at 111 kV 

totaling 153 mAs. A motion-free scan for each cadaver was obtained using the same 

parameters. 
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Figure 3.3. Cadaver setup with a mobile C-arm. Two motion profiles were applied during 

scanning: (1) simple motion in which the cadaver was translated in the SI direction; and 

(2) complex motion in which the pelvis and abdomen were flexed anteriorly and superiorly 

by means of an inflatable air bladder placed under the pelvis. 

Motion estimation used 𝑀 = 27 ROIs (40 × 40 × 40 voxels with size 

1.0 × 1.0 × 1.0 mm3) placed in a grid throughout the volume, b-splines used 𝑁 = 4 knots, 

and CMA-ES optimization used 𝜆CMAES = 50 and 𝜎CMAES = 2.0 mm (and 0.2°). The 

regularization constants (𝛽𝑡 and 𝛽𝒙) were selected according to the results of Section 3.3.2. 

Reconstruction of 𝝁𝐌𝐂 used a grid of 512 × 512 × 512 voxels with size 

0.313 × 0.313 × 0.313 mm3. 
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To evaluate image quality, three ROIs (100 × 100 × 100 voxels with size 

0.313 × 0.313 × 0.313 mm3) containing anatomical features of interest were identified in 

both 𝝁 and 𝝁𝐌𝐂, and each ROI was rigidly registered to corresponding structures in 𝝁𝐫𝐞𝐟 

The SSIM was calculated for each ROI, with the 𝑐2 regularization term increased to 

1×10-1 mm-2 to reduce the influence of image noise. The root-mean-square error (RMSE) 

between registered ROIs was also computed. 

As a final demonstration of performance in complex anatomical motion, an 

exemplary result from initial translation of the method to clinical studies is shown. 

3.4. Results 

3.4.1. Determination of an Autofocus Objective for Soft-Tissue CBCT 

Figure 3.4 shows motion compensation for the digital cylindrical phantom with 

applied motion magnitude |𝚫𝒑| = {4, 8, 12, 16, 20} mm. Figure 3.4a shows the 

uncompensated volume 𝝁, the motion-free reference volume 𝝁𝐫𝐞𝐟, and the motion-

compensated volume 𝝁𝐌𝐂 using gradient variance, gradient norm, entropy, and gradient 

entropy (Equations (3.3a–d), respectively) as the autofocus objective in Equation (3.1) for 

|𝚫𝒑| = 8 mm. Gradient variance produced images with distorted features, while entropy 

and gradient norm produced images with residual blur. Gradient entropy performed best 

overall by reducing blur without distorting the spherical features. 

Figure 3.4b shows SSIM over the full range of |𝚫𝒑| investigated, with gradient 

entropy producing the highest SSIM values overall. For gradient norm, entropy, and 

gradient variance the SSIM is seen to increase with motion magnitude, indicating that the 

nominal temporal regularization strength had a more pronounced positive effect on the cost 
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function in the presence of larger motion. This was not seen for gradient entropy, indicating 

that the objective is more robust in the presence of weak regularization. Based on this 

result, gradient entropy was used as the autofocus objective in the following experiments. 

 
Figure 3.4. Motion compensation with four choices of autofocus objective. Images in (a) 

show the uncompensated volume 𝝁 of the digital phantom with motion magnitude 

|𝚫𝒑| = 8 mm and the motion-free reference volume 𝝁𝐫𝐞𝐟. Motion-compensated volumes 

𝝁𝐌𝐂 are shown using the autofocus objectives listed in Table 3.2. (b) SSIM for the resulting 

𝝁𝐌𝐂 compared to 𝝁𝐫𝐞𝐟 measured as a function of |𝚫𝒑| for each autofocus objective. 

3.4.2. Selection of Spatiotemporal Regularization Parameters 

Figure 3.5 shows SSIM for motion compensation applied to cases of simulated 

motion in the TCIA dataset. The SSIM values were calculated for each maximum motion 

magnitude |𝚫𝒑|max over the specified range of 𝛽𝑡 and 𝛽𝒙. For |𝚫𝒑|max = 10 mm 

(Figure 3.5a), the maximum SSIM value was 0.88, occurring at (𝛽𝑡 = 5 mm-2, 𝛽𝒙 = 0.1). 

For |𝚫𝒑|max = 15 mm (Figure 3.5b), the maximum SSIM value was 0.82, occurring at 

(𝛽𝑡 = 5 mm-2, 𝛽𝒙 = 0.1). For |𝚫𝒑|max = 20 mm (Figure 3.5c), the maximum SSIM value was 

0.79 occurring at (𝛽𝑡 = 1 mm-2, 𝛽𝒙 = 0.1), and for |𝚫𝒑|max = 25 mm (Figure 3.5d), the 

maximum SSIM value was 0.74 occurring at (𝛽𝑡 = 0.5 mm-2, 𝛽𝒙 = 0.1). These results 

indicate that 𝛽𝑡 is sensitive to |𝚫𝒑| in that the optimal value of 𝛽𝑡 decreases from 5 to 
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0.5 mm-2 as |𝚫𝒑|max increases from 10 to 25 mm. In contrast, 𝛽𝒙 does not appear sensitive 

to |𝚫𝒑| and maintains a constant optimal value (0.1) for all |𝚫𝒑|max for the smooth spatial 

distribution of motion amplitude in this experiment. Based on this result and considering a 

typical range of anatomical motion (~20 mm), 𝛽𝑡 = 1 mm-2 and 𝛽𝒙 = 0.1 were selected for 

motion estimation in the following experiment. 

 

Figure 3.5. Selection of spatiotemporal regularization. SSIM values were evaluated over 

a range of maximum motion magnitude (|𝚫𝒑|max = {10, 15, 20, 25} mm), showing optimal 

temporal regularization (i.e., maximum SSIM marked by the *) to range from 𝛽𝑡 = 0.5 to 

5 mm-2, whereas optimal spatial regularization was relatively constant at 𝛽𝒙 = 0.1. 

Figure 3.6 shows the improvement in SSIM of the motion-compensated volume 

𝝁𝐌𝐂 compared to the uncompensated volume 𝝁 for the optimal (𝛽𝑡, 𝛽𝒙) pairs determined 

in Figure 3.5. The vertical bars for 𝝁𝐌𝐂 indicate the range of SSIM calculated over 248 

reconstruction instances — i.e., reconstructed at various points in time 𝑡, or alternatively, 

projection views 𝑘 over the course of the scan. Deformable motion compensation is seen 

to increase the maximum SSIM value (from its uncorrected value in 𝝁) by 42%, 64%, 78%, 

and 92% for |𝚫𝒑|max = {10, 15, 20, 25} mm, respectively. 
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Figure 3.6. Measurements of SSIM for the motion-compensated volume 𝝁𝐌𝐂 compared to 

the uncompensated volume 𝝁 as a function of the maximum motion magnitude |𝚫𝒑|max. 

The range bars show SSIM calculated over 248 instances of 𝝁𝐌𝐂 (i.e., at the 248 time-

points corresponding to each projection view). 

The resulting images for |𝚫𝒑|max = 25 mm are shown in Figure 3.7. The 

uncompensated volume (𝝁) is shown in the left-most column, the motion-compensated 

volume (𝝁𝐌𝐂, with optimal (𝛽𝑡, 𝛽𝒙) from Figure 3.5) is shown in the middle column, and 

the motion-free reference volume (𝝁𝐫𝐞𝐟) is shown in the right-most column. Axial slices 

(Figure 3.7a–c), demonstrate the ability to compensate for large deformations in soft-tissue 

near the anterior skin line while maintaining structures that are relatively stable at the 

posterior skin line. This exemplifies the need for a deformable motion model to achieve 

compensation throughout the entire volume. Sagittal slices (Figure 3.7d–f) demonstrate 

that the 3D aspect of the motion was successfully compensated. 
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Figure 3.7. Motion compensation for simulated deformable motion in CT of the abdomen 

from the TCIA dataset: uncompensated (𝝁), motion-compensated (𝝁𝐌𝐂), and motion-free 

reference (𝝁𝐫𝐞𝐟) for maximum motion magnitude of |𝚫𝒑|max = 25 mm. (a–c) Soft-tissue 

details in the central axial slice (3 mm thickness). (d–f) Soft-tissue details in the central 

sagittal slice (3 mm thickness). 

3.4.3. Performance Evaluation with Complex Anatomical Motion 

Figure 3.8 shows images resulting from motion compensation applied to images of 

the cadaver undergoing a relatively simple motion profile (translation roughly along its SI 

axis). The sagittal slice in Figure 3.8a shows the uncompensated volume (𝝁, sagittal plane) 

with blurring artifacts obscuring much of the soft-tissue anatomy and streak artifacts 

around high-contrast structures. Motion compensation (Figure 3.8b) brings these features 

into focus, including the vertebrae, calcifications in the aorta, the soft-tissue boundary of 
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the liver, and a cardiac stent (shown in the zoomed inset and indicated by the arrow in 

Figure 3.8b). 

 

Figure 3.8. Motion compensation in cadaver (simple motion). (a) Uncompensated (𝝁) and 

(b) motion-compensated (𝝁𝐌𝐂). Sagittal slices are shown (top row) with a zoomed-in view 

(bottom row) in the region of a cardiac stent. 

The performance of motion compensation is further illustrated in Figure 3.9, 

showing local SSIM and RMSE for the cadaver undergoing simple motion. Structures of 

interest include a transverse process in the coronal plane (Figure 3.9a) and aortic 

calcifications in the axial (Figure 3.9b) and sagittal (Figure 3.9c) planes. The SSIM values 

improved with motion compensation from (a) 0.68 to 0.87 (28%), (b) 0.73 to 0.85 (16%), 

and (c) 0.75 to 0.87 (16%), respectively. The improvement is further quantified by the 

reduction in RMSE from (a) 0.10 to 0.05 mm-1 (50%), (b) 0.09 to 0.06 mm-1 (33%), and 

(c) 0.11 to 0.06 mm-1 (45%). 
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Figure 3.9. Visualization of structures of interest along with quantitative analysis (local 

SSIM and RMSE) in motion-compensated reconstructions. (a) Vertebral transverse process 

(coronal image). (b) Aortic calcification (axial plane). (c) Aortic calcification (sagittal 

plane). Columns from left to right show ROIs for 𝝁, 𝝁𝐌𝐂, and 𝝁𝐫𝐞𝐟 and the difference 

|𝝁 – 𝝁𝐫𝐞𝐟| and |𝝁𝐌𝐂 – 𝝁𝐫𝐞𝐟|. 

Similar results were observed for the cadaver undergoing complex motion 

(Figure 3.10). Figure 3.10a shows the uncompensated volume (𝝁, sagittal plane) with 

blurring and distortion of the vertebral bodies, aorta, and major vessels within the liver. 

Motion compensation recovered features throughout the volume, as seen in Figure 3.10b. 

The zoomed-in regions in the bottom row of Figure 3.10 show the improvement in image 

quality around a compression fracture in a thoracic vertebrae and nearby aortic 

calcifications (indicated by arrows). 
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Figure 3.10. Motion compensation in cadaver (complex motion). (a) Uncompensated (𝝁) 

and (b) motion-compensated (𝝁𝐌𝐂) shown as sagittal slices with a zoomed-in region 

showing a vertebral compression fracture and aortic calcification indicated by arrows in 

(b). 

Figure 3.11 shows local SSIM and RMSE for the cadaver undergoing complex 

motion. Anatomical structures of interest include a gallstone (coronal plane, Figure 3.11a) 

and aortic calcifications (axial plane in Figure 3.11b and sagittal plane in Figure 3.11c). 

Deformable motion compensation increased local SSIM from (a) 0.68 to 0.80 (18%), 

(b) 0.65 to 0.76 (17%), and (c) 0.60 to 0.77 (28%). The corresponding reduction in RMSE 

was from (a) 0.13 to 0.08 mm-1 (38%), (b) 0.14 to 0.11 mm-1 (21%), and (c) 0.11 to 

0.07 mm-1 (36%). 
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Figure 3.11. Visualization of structures of interest along with quantitative analysis (local 

SSIM and RMSE) in motion-compensated reconstructions of the cadaver undergoing 

complex deformation. Local SSIM and difference images (with RMSE) are shown for 

structures of interest: (a) gallstone (coronal plane), (b) aortic calcification (axial plane), and 

(c) aortic calcification (sagittal plane). Columns from left to right show ROIs for 𝝁, 𝝁𝐌𝐂, 

and 𝝁𝐫𝐞𝐟 and the difference |𝝁 – 𝝁𝐫𝐞𝐟| and |𝝁𝐌𝐂 – 𝝁𝐫𝐞𝐟|. 

Initial translation of the method to clinical studies is illustrated in Figure 3.12. In 

this case, visualization of the catheter and hepatic vessels is confounded by involuntary 

motion artifacts arising from inconsistent breath-hold during the scan. The complex 

deformable nature of the motion is evident in that the anterior aspect of the image exhibits 

much more severe artifacts than the posterior, which is relatively stable, as the patient laid 

prone on the operating table. The motion-compensated result shows substantial 

improvement in visualization of features in the region of interest, illustrated further by 
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zoomed-in views. Residual artifact (streaks) is attributable to unresolved motion and beam-

hardening effects. 

 

Figure 3.12. Initial demonstration of deformable motion compensation results in clinical 

data. (a) Axial slice of the uncompensated image. (b–c) Zoomed regions corresponding to 

the cyan and blue boxes in (a), respectively, showing a reduction of blurring and streaks 

about contrast-enhanced arteries due to motion. (d–f) The same image after deformable 

motion compensation. 

3.5. Discussion and Conclusions 

A deformable, image-based motion compensation method was developed to 

improve image quality in CBCT of soft-tissue anatomy, as in abdominal IGI. In this 

chapter, we investigated the performance of various autofocus objectives suitable to soft-

tissue structures, determined the selection of spatiotemporal regularization parameters, and 
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assessed the performance of the algorithm in the presence of realistic anatomy undergoing 

simple and complex motion of various magnitudes. 

Among the autofocus objectives investigated (gradient variance, gradient norm, 

entropy, and gradient entropy), gradient entropy was shown to be best suited to soft-tissue 

CBCT. Previously, Sisniega et al (2017) evaluated entropy, negative variance, total 

variation, gradient norm, and gradient variance as autofocus objectives for high-contrast 

CBCT of musculoskeletal extremities, finding gradient variance to be best suited to that 

application. Negative variance and total variation were found to be highly unstable for this 

application and were therefore excluded from the study. The results of Sisniega et al (2017) 

served as a starting point for selection of a suitable soft-tissue autofocus objective, and the 

current finding (best performance with gradient entropy) is attributed to differences in 

subject contrast and spatial-frequency content (viz., soft-tissue structures forming the focus 

of this work). 

The experiments also guided selection of algorithm parameters and identification 

of stable settings — most notably, the spatiotemporal regularization strength (𝛽𝑡 and 𝛽𝒙). 

For the smooth deformation fields applied, the studies showed the ideal temporal 

regularization strength (𝛽𝑡) to be dependent on the magnitude of motion (varying by a 

factor of 10 for motion magnitudes ranging from 10 to 25 mm), whereas the ideal spatial 

regularization strength (𝛽𝒙) is relatively insensitive (constant at 0.1 over the range of 

motion investigated). These findings informed the parameter selection for subsequent 

studies, choosing 𝛽𝑡 = 1 mm-2 as a value roughly correspondent with the anticipated motion 

magnitude (and fixing 𝛽𝒙 = 0.1). Note also that (due to the summations in Equations (3.1) 
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and (3.5)) these parameters scale with the number of ROIs (held fixed at 𝑀 = 27 for these 

studies). 

While these settings of spatiotemporal regularization strength were well justified 

for the experiments herein, one can imagine scenarios for which the parameter settings may 

require adjustment — for example, a motion pattern featuring abrupt change (“jerk”) or 

sliding motion between soft-tissue interfaces. There may also be realistic motion scenarios 

not well described by a low-order spline (e.g., spasm, tremor, dyskinesia) for which an 

increase in the number of spline knots or a different basis function all together may be 

needed to represent the motion accurately. Furthermore, the performance of motion 

estimation may benefit from allowing the regularization strength to vary either in time or 

space. Such considerations are the subject of ongoing and future work, including strategies 

to estimate the motion magnitude directly from the scan data and / or uncompensated 

reconstruction to set parameters accordingly. Such methods for estimation of the motion 

magnitude could also be extended to parameters of the CMA-ES algorithm (e.g., 𝜎CMAES), 

allowing regions with large estimated deformation to be solved via larger search space. 

Conversely, regions with small estimated deformations would undergo motion 

compensation with larger values of temporal / spatial regularization and a smaller search 

space. A refined variation could also apply directional weights in the spatial regularization, 

discouraging similarity between regions close in space but with largely different motion 

amplitude / direction. 

In the current work, we developed and tested the feasibility of deformable motion 

compensation, but computational speed was far from optimal. Runtime depended on 

numerous factors, including the magnitude of deformation and number of parameters. For 
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example, the case of complex motion in the cadaver required ~7 hours to reach the solution 

shown in Figures 3.10 and 3.11. Further parallelization could be implemented in 

calculation of the cost function (in parallel for each ROI) and in the CMA-ES sampling 

process. The use of a morphological pyramid may also improve convergence time. Initially, 

a small number of ROIs with coarse voxel size and a large value of 𝜎CMAES could be used 

to estimate large components of the motion. Finer scale motion components would be 

estimated by progressively increasing the number of ROIs while simultaneously decreasing 

the voxel size and value of 𝜎CMAES. Additionally, improved initialization of the motion 

estimate (currently initialized as zero motion) would speed optimization by requiring fewer 

iterations of the CMA-ES algorithm. An initialization method is currently being developed 

to estimate the magnitude and spatial distribution of deformation (Sisniega et al 2020). As 

noted above, such estimation could be used not only for selection of spatiotemporal 

regularization and optimization parameters, but also to appropriately tune the number of b-

spline knots and add directional information to discourage exploration of unlikely 

directions of motion (e.g., reducing 𝜎CMAES in the lateral direction if motion is along the 

AP direction) to provide more rapid convergence. 

It can also be recognized that there may be cases in which a fully deformable 

compensation method is not necessary to produce a clinically acceptable image. For 

example, the simple motion case (simple translation of the cadaver) could potentially have 

been solved by a single 3D motion trajectory applied to the entire image, similar to the 

method presented by Sisniega et al (2017). In this special case, one may reasonably expect 

performance comparable to that shown above with deformable motion compensation. 
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Rigid motion compensation may be sufficient for scenarios in which only a small, 

targeted ROI is needed for IGI. However, it should be recognized that complex motion in 

regions outside the ROI may confound the result. Confounding effects from regions with 

motion trajectories deviating from that of the target ROI are particularly conspicuous in 

scenarios combining motion compensation with MBIR methods. For example, Sisniega et 

al (2018) and Wu et al (2020) showed that treating motion separately between interior and 

exterior ROIs benefited image quality in CBCT of the head, where the motion of the head 

(interior) was distinct from that of the head support (exterior). Appreciable image quality 

improvement with minimal increase in computational burden was achieved through a 

combination of two motion fields (interior and exterior) and a multi-resolution penalized 

weighted least-squares (PWLS) reconstruction method featuring a reconstruction voxel 

grid with coarse voxels in the exterior region and fine voxels in the interior ROI. Similar 

techniques could be envisioned in abdominal CBCT implementing rigid motion 

compensation inside a small ROI and coarse sampling (in time and space) of the 

deformable motion field outside that region, in combination with multi-resolution MBIR. 

These issues deserve further investigation in future work and would also benefit from 

methods to estimate / initialize motion profiles from the uncorrected image. 

In summary, the experiments presented above advanced an algorithm for 

compensation of deformable soft-tissue motion in CBCT from initial digital simulations to 

semi-realistic conditions using a mobile C-arm, including factors of complex anatomy, 

scatter, truncation, and geometric calibration. Following motion compensation, the SSIM 

and RMSE in images of the cadaver improved by up to ~30% and ~50%, respectively, with 

clear improvement in visualization of numerous structures of interest. Translation to 
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clinical studies is the subject of ongoing work to demonstrate utility in real clinical 

scenarios.  
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Chapter 4: Task-Driven Source–Detector 

Trajectories for Interventional Cone-

Beam CT 

4.1. Introduction 

CBCT is prevalent in a growing scope of medical interventions to provide 

intraoperative imaging for improved localization and assessment of treatment delivery 

(Siewerdsen et al 2005, Daly et al 2006, Hirota et al 2006, Orth et al 2008, Hohenforst-

Schmidt et al 2014). As introduced in Chapter 1, interventional CBCT imaging systems 

include a variety of mobile or fixed-room C-arms capable of radiography / fluoroscopy in 

addition to 3D CBCT. Such systems are commonly motorized for computer-controlled 

motion of the x-ray source and detector about several axes — for example, floor-mounted 

and ceiling-mounted C-arms as well as robotic C-arms (Binder et al 2005) with multiple 

DoF. In addition to C-arm systems, some CBCT mammography (Shah et al 2018) and body 

imaging systems (Fieselmann et al 2016, Zhao et al 2019) are also capable of complex 

source–detector trajectories. 

The additional flexibility provided by these systems permits more general orbits 

beyond the traditional circular and helical source–detector trajectories that have been the 

norm for CT for decades. To date, these flexible orbits have mainly been used to address 

FOV and sampling issues in interventional CBCT. For example, non-circular trajectories 

have been used to provide extended axial (Yu et al 2016) and elliptical (Herbst et al 2015) 

FOV and improve 3D sampling and data completeness (Tuy 1983, Zeng and Gullberg 
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1992, Noo et al 1998, Tang and Ning 2001) to avoid cone-beam artifacts that arise from 

traditional circular cone-beam orbits. 

Tilted circular orbits are commonly used for their ability to positively impact image 

quality. For example, tilting the CT gantry relative to the patient's longitudinal axis is used 

to improve image quality adjacent to the skull base (Menzel et al 2000), reduce eye lens 

dose (Nikupaavo et al 2015), improve localization in CT-guided biopsies (Hussain 1996, 

Yamagami et al 2004), and reduce metal artifacts associated with prostheses (Lewis et al 

2010). These examples suggest that modifications of the orbit beyond simple tilts may also 

provide clinical advantages. However, selection of an optimal trajectory presents many 

challenges. For example, the simple tilt examples above depend on the patient anatomy 

and / or the interventional procedure — e.g., aligning the gantry along the canthomeatal 

line or the axis of the biopsy needle. Thus, the “optimal” trajectory is both patient-

dependent and task-dependent. Moreover, data acquired from non-circular trajectories can 

be difficult to reconstruct, since the sampling conditions for traditional FBP methods no 

longer apply. 

There is a growing trend in the use of task-based measures in performance 

assessment (Siewerdsen and Antonuk 1998, Park et al 2010, Reiser and Nishikawa 2010). 

Such measures have also been used in prospective task-driven optimization of system 

design (Siewerdsen and Jaffray 2000, Prakash et al 2011, Xu et al 2016, Cao et al 2018), 

regularization in MBIR (Dang et al 2015), and CT data acquisition parameters like dual-

energy imaging (Richard and Siewerdsen 2008), tube current modulation (Gang et al 

2017a), and fluence-field modulation (Gang et al 2017b). Thus, it is expected that task-
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based performance models similarly provide a basis for optimizing the source–detector 

orbit in CBCT.  

Interventional CBCT presents an ideal opportunity to customize orbits to the patient 

and imaging task for a number of reasons: (1) previous imaging studies are usually 

available, giving a detailed representation of the patient-specific anatomy; (2) additional 

information regarding the surgical plan, the location and type of implants or tools, and 

particular anatomical targets is known prior to the intervention; and (3) the imaging task in 

interventional procedures tends is relatively well-defined (compared to diagnostic 

imaging), including the volume of interest and specific image features that need to be 

identified or localized. 

In this chapter, we present a mathematical framework that leverages a model of 

signal and noise performance in CBCT along with prior knowledge of patient anatomy to 

predict imaging task performance for different source–detector trajectories. The predictor 

is integrated into an optimization framework that seeks the source–detector trajectory that 

maximizes performance. This “task-driven” imaging framework builds upon previous 

work by Stayman and Siewerdsen (2013), Stayman et al (2015), and Ouadah et al (2017). 

This chapter details the analytical and algorithmic basis of the framework as well as 

optimization for multiple tasks that vary in location and / or spatial-frequency content. 

Subsequent chapters address practical issues of implementation and application of the task-

driven imaging approach. 

The work appearing in this chapter was reported in the following journal paper: (J. 

W. Stayman* and S. Capostagno* et al, J. Med. Imag., 6(2), 2019). 

*J. W. Stayman and S. Capostagno contributed equally to this work. 
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4.2. Task-Driven Trajectory Framework 

4.2.1. Overview and Proposed Imaging Workflow 

CBCT image quality can be highly dependent on patient size, anatomical site, and 

the presence of interventional hardware in the FOV. Even within a scan for a single patient, 

the data fidelity can vary widely with orders of magnitude differences in the noise for 

different measurements. The “task-driven” approach introduces a new imaging workflow 

in which CBCT scans are defined by the particular patient anatomy, selecting projections 

that maximize data fidelity for a specific imaging task. In general, some knowledge of 

patient anatomy is required for prospective trajectory design. Such information is often 

available in IGI but is typically not used directly by the imaging device. 

 

Figure 4.1. Illustration of prospective task-driven imaging using a robotic C-arm. 

Preoperative data from a diagnostic MDCT scan may be used for both preoperative 

planning (e.g., defining the interventional approach) as well as prospective design of the 

intraoperative scan. That is, an initial MDCT may be used to define the location of interest 

and the anatomical model used in predicting data characteristics like noise in projection 

data. The proposed task-driven workflow (white arrows) integrates knowledge that is 

conventionally ignored (gray arrows) directly into acquisition design with the goal of 

optimized performance.  
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Figure 4.1 illustrates a proposed imaging workflow that leverages preoperative 

imaging and planning data and contrasts the proposed methodology with a conventional 

workflow. Conventionally, a patient’s diagnosis is obtained via MDCT (or other modality) 

to define and plan the interventional approach. In many procedures involving implantation 

of exogenous devices, the interventional plan includes specification of the hardware 

required for the procedure (e.g., device size, location for deployment, and model number). 

Unfortunately, intraoperative image quality is often challenged by the surgical tools and 

implants delivered during the procedure — often metallic and / or high density — and 

image quality tends to suffer most in the vicinity of the implant (which is often the ROI 

where complications are most likely to occur). In a conventional workflow, the imaging 

system ignores the wealth of knowledge about the patient anatomy, planned hardware 

delivery, and specifics of the imaging task. In contrast, the task-driven imaging workflow 

leverages this information to improve performance for pertinent imaging tasks associated 

with the intervention. 

 

Figure 4.2. Illustration of the task-driven imaging framework. 
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An overview of the task-driven optimization is illustrated in Figure 4.2, and 

parameters are summarized in Table 4.1. The approach combines an anatomical model of 

the patient (as well as planning information), which is important for predicting the fidelity 

of the projection data, with an imaging system model, which accounts for the entire 

imaging chain and any parameters to be optimized (e.g., source–detector trajectory). 

Patient and system models incorporate prediction of imaging performance, including local 

spatial resolution and noise in the reconstructed image volume. Such measures of imaging 

performance may then be used to compute task performance using an observer model. With 

the ability to model the end-to-end system from data collection to observer performance, 

various parameters may be tuned in an iterative process to find the optimal source–detector 

trajectory that maximizes imaging performance. The modeling and predictive framework 

in Figure 4.2 are detailed in the following sections. 
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Table 4.1. Notation for task-driven source–detector trajectories. 

Property Symbol 

Detectability 

Imaging parameters 𝛀 

Spatial frequencies 𝒇 

Location of interest 𝑣 

Region of interest (ROI) 𝒗𝐑𝐎𝐈 
Detectability index 𝑑′(𝛀; 𝑣) 
Modulation transfer function MTF(𝒇,𝛀; 𝑣) 
Noise power spectrum NPS(𝒇,𝛀; 𝑣) 
Task definition 𝐻task(𝒇; 𝑣) 

System model 

Projection measurements 𝒚 

Measurement gain 𝑏0 

Projection operator 𝐀 

Image volume 𝝁 

Log-likelihood 𝐿(𝝁; 𝒚) 
Roughness penalty 𝑅(𝝁) 
Regularization strength parameter 𝛽 

Performance prediction 

Local impulse response 𝒍𝒗 

Local covariance 𝒄𝒗 

Unit vector for location 𝑣 𝒆𝒗 

Diagonal matrix operator 𝐷{∙} 
Fourier transform operator 𝐹{∙} 
Fourier transform of projection-

backprojection operation 
𝑳𝒗 

Statistical weighting 𝒘 

Prior patient image 𝝁𝐩𝐫𝐢𝐨𝐫 

Source–detector trajectory 

Rotation angle 𝜃 

Tilt angle 𝜙 
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4.2.2. Task-Based Performance Prediction and Optimization 

Various mathematical observer models have been used for performance prediction. 

Gang et al (2011) previously demonstrated basic agreement between human observer 

performance and a non-prewhitening observer model over a broad range of imaging 

conditions, therefore this model has been elected to evaluate imaging tasks in this work. 

Alternative objectives could be considered in future work — e.g., a prewhitening observer 

model to examine fundamental signal and noise content or a channelized Hoteling observer 

model to potentially capture aspects more closely related to a human observer. An objective 

based on large-area transfer characteristics (e.g., contrast-to-noise ratio) captures only the 

low-frequency performance and would likely miss aspects related to spatial resolution and 

frequency response. The non-prewhitening model chosen here derives detectability in 

terms of the local spatial resolution and noise properties of the reconstructed image as well 

as a task function that specifies the spatial frequencies of interest. The detectability index 

for the non-prewhitening observer model is written as: 

𝑑′(𝛀; 𝑣) = [
[∭(MTF(𝒇,𝛀; 𝑣) ⋅ 𝐻task(𝒇; 𝑣))

2
 𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧]

2

∭NPS(𝒇,𝛀; 𝑣) ⋅ (MTF(𝒇,𝛀; 𝑣) ⋅ 𝐻task(𝒇; 𝑣))
2
𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧

]

1/2

(4.1) 

where MTF(𝒇,𝛀; 𝑣) denotes the local modulation transfer function, NPS(𝒇,𝛀; 𝑣) is the 

local noise-power spectrum, and 𝐻task(𝒇; 𝑣) is the task function describing the location of 

interest (𝑣) and the spatial frequencies of interest (𝒇, formed by the difference of Fourier 

transforms between two stimuli in a binary hypothesis test, such as signal-present vs. 

signal-absent, or discrimination between two stimuli). The parameter 𝑣 indicates the 

locality of the various measures, centered at voxel 𝑣 within the reconstructed image. The 
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various quantities associated with image acquisition and / or reconstruction technique are 

denoted generally as 𝛀, which in this work refers to the source–detector trajectory. 

The detectability index provides an objective for the design of an optimal source–

detector orbit. The most straightforward objective that seeks to optimize detectability index 

for a single location in the imaging volume is written as: 

𝛀̂ = arg max
𝛀∈𝛀𝐟𝐞𝐚𝐬𝐢𝐛𝐥𝐞

𝑑′(𝛀; 𝑣) (4.2) 

where the parameter set 𝛀̂ that yields the maximum detectability index constrained by the 

physical or practical limitations (𝛀 ∈ 𝛀𝐟𝐞𝐚𝐬𝐢𝐛𝐥𝐞) is desired. Constraints on the acquisition 

parameters permit specification of maximum tilt angles achievable by the system as well 

as limits to avoid collision of the gantry with the patient, table, or other structures. 

While optimization with respect to a single location and task may be appropriate 

for some scenarios, a single-location objective does not consider performance at any other 

location in the image, leading to solutions that may be highly optimized to a single point 

and sacrifice image quality everywhere else in the image. As such, multi-location 

objectives are also considered. There are many possible choices for a multi-location 

objective; however, the principal concern is how to weight the relative importance of 

performance at different locations in the FOV. Three choices are explored in this work: 

1. Maximum mean detectability (maxi-mean) — in which the average detectability 

index over an ensemble of locations within a specified ROI, 𝒗𝐑𝐎𝐈, is computed and 

maximized. Mathematically, this objective is written: 

𝛀̂ = arg max
𝛀∈𝛀𝐟𝐞𝐚𝐬𝐢𝐛𝐥𝐞

mean
𝑣∈𝒗𝐑𝐎𝐈

{𝑑′(𝛀; 𝑣)} (4.3) 
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The maxi-mean objective treats all performance gains equally throughout the ROI, 

including potential solutions where detectability is decreased in one region for a 

larger gain in another region.  

2. Maximum median detectability (maxi-median) — in which the median detectability 

index over the regional ensemble is maximized. Mathematically: 

𝛀̂ = arg max
𝛀∈𝛀𝐟𝐞𝐚𝐬𝐢𝐛𝐥𝐞

median
𝑣∈𝒗𝐑𝐎𝐈

{𝑑′(𝛀; 𝑣)} (4.4) 

The maxi-median objective is like the maxi-mean objective, except that it permits 

larger outliers. For example, overall detectability can be increased at the cost of a 

significant decrease at a few locations. 

3. Maximum minimum detectability (maxi-min) — in which one seeks to achieve the 

highest minimum detectability over an ensemble of locations. Mathematically: 

𝛀̂ = arg max
𝛀∈𝛀𝐟𝐞𝐚𝐬𝐢𝐛𝐥𝐞

minimum
𝑣∈𝒗𝐑𝐎𝐈

{𝑑′(𝛀; 𝑣)} (4.5) 

The maxi-min objective indicates that the location of minimum performance drives 

the design, and that imaging performance cannot be sacrificed in one location (in 

the designated ROI) for an improvement in another location. 

Both the single-location and multi-location objectives are investigated below. We 

used the CMA-ES algorithm (Hansen 2006) to estimate the solution to the objective 

functions. As described previously, in CMA-ES, a population sample size of 𝜆CMAES is 

randomly drawn according to a multivariate normal distribution at each iteration. The best 

solutions in the population are used to estimate the local covariance matrix of the objective 

function in an adaptive manner. The mean, covariance matrix, step size, and evolutionary 

paths are updated to generate the next population with the goal of maximizing the number 

of successful samples in each successive population. Updates are repeated until 
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convergence, defined as the iteration beyond which changes in function evaluation are 

negligible. A stochastic algorithm is attractive since only function evaluations are required 

and populations of solutions are used, helping to find global optima in nonlinear and 

nonconvex objectives. Another attractive feature of CMA-ES is its improved robustness 

with increased function evaluations (e.g., increasing 𝜆CMAES), which can be tuned to help 

avoid local optima. 

4.2.3. Imaging System and Reconstruction Model 

Imaging properties (viz., local spatial resolution and noise) must be predicted to use 

the performance objectives defined in the previous section. Such predictions are made 

through an imaging system model that includes both imaging physics and acquisition 

parameters as well as the reconstruction process. Starting with data acquisition, the 

following forward model for a CBCT system was adopted, for which mean measurements 

are modeled as: 

𝑦̅𝑖 = 𝑏0 exp (−[𝐀(𝛀)𝝁]𝑖) (4.6) 

where the subscript 𝑖 denotes values associated with the 𝑖th measurement in vector 𝒚, 𝑏0 

denotes a measurement gain (e.g., unattenuated x-ray fluence and detector sensitivity), 𝝁 

is a vector of attenuation values specifying the image volume, and 𝐀 represents the 

projection operation for a particular trajectory, parameterized by the vector 𝛀. The specific 

parameterization of 𝛀 is discussed below. 

Traditional analytic reconstruction methods are challenged by orbits that deviate 

from standard designs (e.g., circular and helical). However, MBIR methods are 

straightforward to apply to unusual and even incomplete data orbits — providing the “best” 

possible estimates given the data that was collected. Thus, a statistically motivated MBIR 
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method was adopted for this work. Presuming a Poisson noise model for the measurements, 

the following PL estimator may be written: 

𝝁̂ = arg max
𝝁

𝐿(𝝁; 𝒚) − 𝑅(𝝁) (4.7) 

where 𝐿(𝝁; 𝒚) = ∑ 𝑦𝑖 log(𝑏0 exp(−[𝐀(𝛀)𝝁]𝑖)) − 𝑏0 exp(−[𝐀(𝛀)𝝁]𝑖)
𝑁
𝑖=1  and denotes the 

log-likelihood function, which is a function of the pre-log transformed measurements, 𝒚, 

and 𝑅(𝝁) = 𝛽𝝁𝑇𝐑𝝁, representing a roughness penalty used to control noise in the 

reconstruction with a strength parameter 𝛽. We used a quadratic penalty that is specified 

by the matrix 𝐑, a constant matrix that defines how voxels are combined and penalized 

such that 𝑅(𝝁) =
1

2
∑ ∑ 𝑤𝑗,𝑘(𝜇𝑗 − 𝜇𝑘)

2
𝑘𝑗 , where 𝑤𝑗,𝑘 = 1 for the 6 nearest neighbors in 

3D space and 0 otherwise. While there are many more sophisticated regularization 

schemes, this particular choice of roughness penalty is well-suited to previously developed 

imaging performance predictors (Fessler and Rogers 1996). 

Another advantage of the PL framework is that arbitrary source–detector 

trajectories may be reconstructed without modification of the underlying algorithm used to 

solve Equation (4.2). In contrast, many direct reconstruction approaches will not implicitly 

handle noncircular or non-helical trajectories without substantial modification or re-

derivation of the algorithm. In this work, we solved Equation (4.7) iteratively using the 

ordered subsets, separable quadratic surrogate approach discussed in Erdogan and Fessler 

(1999). At each iteration, all voxels were updated simultaneously, requiring one forward-

projection and one backprojection to compute the likelihood gradient. The penalty gradient 

and curvature were computed directly from the image. In experiments described below, the 

PL estimator was run to convergence using a specific number of iterations and a zero image 

was used for initialization. 
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4.2.4. Parameterization of the Source–Detector Trajectory 

As described above, the system geometry associated with the source–detector 

trajectory is parameterized by the vector 𝛀. Parameterization of the trajectory can take 

many possible forms that depend on the capabilities of the imaging system. Two 

parameterizations of the orbit are considered in this work, concentrating on orbits that 

sample a sphere around a common center of rotation whose x-ray source positions are 

specified by the coordinate pair (𝜃, 𝜙) with rotation angle 𝜃 and tilt angle 𝜙. Other 

geometric parameters, such as SDD and translations remained fixed in the current studies. 

The experiments described below used orbits that are continuous functions of the rotation 

angle 𝜃 such that the gantry tilt 𝜙 is defined by the rotation angle.  

A simple parameterization of the source–detector trajectory involves periodic basis 

functions using constant, sine, and cosine terms such that: 

𝜙(𝜃) =∑Ω𝑖𝑏𝑖(𝜃)

𝐾

𝑖=1

 (4.8) 

with 𝑏1(𝜃) = 1, 𝑏2(𝜃) = sin 𝜃, 𝑏3(𝜃) = cos 𝜃, 𝑏4(𝜃) = sin 2𝜃,…, as shown in Figure 5.3. 

Both short scans and full 360° orbits may be defined using this scheme with, for example, 

uniform sampling of the rotation angle 𝜃. Periodic basis functions provide a low-

dimensional space to perform the orbital optimization. Because there are practical 

limitations of the orbit (e.g., collision with the table or patient), hard constraints are applied 

on the orbit by limiting the maximum tilt angle. 
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Figure 4.3. Illustration of a short scan orbit parameterized by constant, sine, and cosine 

basis functions. 

A second parameterization of the source–detector trajectory uses b-spline basis 

functions, where the individual parameters Ω𝑖 define a limited set of knot locations. Each 

knot is fixed to a single rotation angle with equal spacing throughout the orbit and allowed 

to vary in tilt angle. Using b-spline basis functions may more easily admit non-periodic 

designs while maintaining relatively low dimensionality. The orbit may be similarly 

constrained to those feasible with a given C-arm gantry and to avoid table collision. Using 

either the periodic or b-spline basis functions as presented here not only reduces the 

dimensionality of the parameterization but also imposes the additional constraint that the 

trajectory be smoothly changing, which is beneficial for practical implementation of a task-

driven orbit from a mechanical point of view. 

4.2.5. Imaging Performance Prediction and Anatomical Modeling 

For prospective design of source–detector trajectories, the imaging performance 

must be estimated for various orbits. While exhaustive simulation of projection data, 

reconstruction, and assessment is possible, it is more practical to estimate the imaging 

properties of the reconstruction directly. Previous work derived closed-form 
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approximations for local spatial resolution (Fessler and Rogers 1996) and noise (Fessler 

1996) in PL reconstructions of the type in Equation (4.7). Specifically, the local impulse 

response, 𝒍𝒗, and local covariance, 𝒄𝒗, may be approximated as: 

𝒍𝒗 ≈ [𝐀(𝛀)
TD{𝒚̅}𝐀(𝛀) + 𝛽𝐑]−1𝐀(𝛀)TD{𝒚̅}𝐀(𝛀)𝒆𝒗 (4.9) 

𝒄𝒗 ≈ [𝐀(𝛀)
TD{𝒚̅}𝐀(𝛀) + 𝛽𝐑]−1[𝐀(𝛀)TD{𝒚̅}𝐀(𝛀)][𝐀(𝛀)TD{𝒚̅}𝐀(𝛀) + 𝛽𝐑]−1𝒆𝒗(4.10) 

where 𝒆𝒗 denotes the 𝑣th unit vector (all zeros except for the 𝑣th location, which is unity), 

and D{∙} denotes the operator that places its vector argument on the diagonal of a matrix. 

Note that Equations (4.9) and (4.10) capture the various dependencies of the reconstructed 

image on system geometry (𝐀(𝛀)), regularization (𝛽𝐑), location (𝑣), and the patient 

anatomy via projections (𝒚) of the attenuation distribution (𝝁𝐩𝐫𝐢𝐨𝐫) via Equation (4.6). 

Recent work (Wang et al 2017) extended these predictors to non-ideal detectors and 

validated predictions in flat-panel CBCT reconstructions. 

Using Equations (4.9) and (4.10), local noise and resolution properties may be 

predicted prospectively given knowledge of 𝝁𝐩𝐫𝐢𝐨𝐫 and a system model through which 𝒚 

may be simulated. As discussed previously, preoperative MDCT (or CBCT acquired earlier 

in the procedure) can provide an anatomical model for prediction, recognizing that the 

model may be mismatched to the intraoperative data for a number of reasons. First is 

registration of the previous image to the current measurements. For many anatomical sites 

(e.g., intracranial), a rigid registration may be sufficient, allowing the designed trajectory 

to be transformed into the intraoperative patient coordinates using, for example, 3D–2D 

registration as in Uneri et al (2013). In this chapter, we presume that an accurate registration 

is achieved and focus on the subsequent improvements in imaging performance gained 

from a task-driven design of the orbit. 
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Other mismatches in patient anatomy include the delivery of hardware and changes 

in anatomy that might be found in the intraoperative data. Again, the workflow presented 

in Figure 4.1 offers a means to model implanted hardware. Since the preoperative scan is 

often used for planning — e.g., to determine the size and location of an implant — it is 

relatively straightforward to include these attenuation changes in a modified anatomical 

model. Modeling of significant attenuation changes like metal implants is important since 

such changes have a significant impact on the statistics of the data (i.e., the diagonal 

weighting D{𝒚̅} in the predictors). In contrast, soft-tissue differences like hemorrhage (an 

important complication one would like to detect) have a relatively small effect on noise in 

the projection data, suggesting that those more subtle changes do not need to be modeled 

explicitly for the proposed trajectory design. In this work, only changes associated with 

highly attenuating implants were modeled and not the soft-tissue changes that the 

radiologist seeks to detect. 

4.2.6. Approximate Predictors and Practical Implementation 

While the predictors in Equations (4.9) and (4.10) describe the basic imaging 

performance metrics required for evaluation of detectability index, they contain large 

matrix inversions that challenge efficient computation of the local spatial resolution and 

noise for such a large optimization space. Previous work used local Fourier approximation 

(Qi and Leahy 1999, Stayman and Fessler 2000) to yield approximate forms for the local 

MTF(𝒇,𝛀; 𝑣) and local NPS(𝒇,𝛀; 𝑣) as: 

MTF(𝒇,𝛀; 𝑣) = F{𝒍𝒗} ≈
F{𝐀(𝛀)TD{𝒚̅}𝐀(𝛀)𝒆𝒗}

F{𝐀(𝛀)TD{𝒚̅}𝐀(𝛀)𝒆𝒗 + 𝛽𝐑𝒆𝒗}
(4.11) 
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NPS(𝒇,𝛀; 𝑣) = F{𝒄𝒗} ≈
F{𝐀(𝛀)TD{𝒚̅}𝐀(𝛀)𝒆𝒗}

|F{𝐀(𝛀)TD{𝒚̅}𝐀(𝛀)𝒆𝒗 + 𝛽𝐑𝒆𝒗}|
2

(4.12) 

where F{∙} denotes the 3D discrete Fourier transform and the division is element-by-

element. While Equations (4.11) and (4.12) eliminate the computationally expensive 

matrix inverse, they still require repeated computations involving projection, 

backprojection, and Fourier transforms. Following Stayman and Fessler (2004), several 

observations permit additional speedups for practical implementation. In particular, one 

may compute the regularization term once for a shift-invariant penalty, and only local 

volumes within an 𝑁 × 𝑁 × 𝑁 ROI of the voxel 𝑣 are required. Repeated calculation of the 

Fourier transform of the weighted projection-backprojection (F{𝐀(𝛀)TD{𝒚̅}𝐀(𝛀)𝒆𝒗}) 

represents a significant computational burden in direct computations of Equations (4.11) 

and (4.12). However, efficient calculation is possible by leveraging the fact that the 

projection-backprojection term is linear in the diagonal weighting. Specifically, it may be 

written 

F{𝐀(𝛀)TD{𝒘}𝐀(𝛀)𝒆𝒗} = 𝑳𝒗𝒘 (4.13) 

which means that a linear operator, 𝑳𝒗, may be precomputed and stored for fast application. 

Additionally, noting that the projection of a single point 𝐀(𝛀)𝒆𝒗 is sparse with nonzero 

values located at about one point per projection view, one may precompute a much smaller 

𝑳𝒗 that is only 𝑁3 × 𝑁views for each location 𝑣. One may form 𝑳𝒗 by substituting 𝒘 = 𝒆𝒌 

for 𝑘 = 1,… ,𝑁views to build up 𝑳𝑣 column by column. Thus, as long as the number of 

potential view angles is sufficiently small (e.g., one needs to store 𝑁views Fourier volumes 

of 𝑁 × 𝑁 × 𝑁), this precomputation approach becomes tractable without additional 

modification. 
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For a large number of projection views, memory limitations may challenge the 

precomputation approach. In the spirit of Schmitt and Fessler (2015) and Schmitt et al 

(2017), one can also recognize that 𝑳𝑣 may be replaced with an analytic form. That is, each 

column of 𝑳𝑣 is the Fourier transform of the backprojection of a single projection view 

consisting of a single point projection. The backprojection of a point is a line in 3D space 

through the original location 𝑣 connecting both the source and detector. The Fourier 

transform of this line is a Fourier plane centered at the origin at the same angle as the line. 

However, for a discrete system model with finite-sized detector elements and voxels, the 

Fourier plane will not be infinitely thin. While Schmitt derived closed-form analytic 

expressions that specify the form and profile through this plane, this work uses a plane 

whose profile is Gaussian with a width specified by fitting an empirical calculation of the 

Fourier-domain projection-backprojection, resulting in a very fast analytic form for 𝑳𝑣 that 

may be computed given the location 𝑣 and the coordinates of the x-ray source. This on-

the-fly computation approach is another efficient alternative to calculation of 

Equations (4.11) and (4.12). The difference between the precomputation and on-the-fly 

approaches is largely computational (without significant difference in noise and resolution 

estimates) and represents a classic computing trade-off between storage and speed. Since 

both approaches are potentially useful, both are presented in studies below. 
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4.3. Experimental Methods 

Three experiments were conducted to investigate various aspects of the proposed 

task-driven trajectory design process, summarized in Figure 4.4. Each experiment is 

detailed in the following subsections. 

Two simulation configurations were used in these studies. Studies that investigated 

basic trajectory design behavior used a compact geometry to better illustrate dependencies 

on location and task, specifically: SDD = 700 mm and SAD = 350 mm. A flat-panel 

detector with 560 × 1000 pixels at 1 mm pitch was simulated. A second system geometry 

emulated a C-arm geometry with SDD = 1200 mm, SAD = 800 mm, and a 

960 × 1240 pixel detector at 0.308 mm pitch. 

 

Figure 4.4. Summary of the three simple scenarios studied. Cases are distinguished by the 

stimulus and anatomical model (a–c) and the frequency-domain task function (d–f). 

Different task functions were explored, including Gaussian detection, line pair 

discrimination, and mid-frequency discrimination.  
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4.3.1. Location Dependence: A Sphere in a Cylinder 

The first experiment used a simple object to illustrate location dependence. 

Specifically, a 20 cm diameter cylinder was simulated with 1 mm voxels and attenuation 

coefficient 𝜇 = 0.05 mm-1 (Figure 4.4a). A relatively high attenuation was used to 

exaggerate location-dependent effects. Two 3 mm spheres with 0.03 mm-1 contrast relative 

to background were added to the cylinder centered in the axial plane at both the central 

slice and 15 cm below the central slice. This experiment used the compact geometry, and 

bare-beam fluence was set to 1×105 photons per pixel. 

Trajectory design was conducted using the single-location objective in 

Equation (4.2) using nine periodic basis functions given by Equation (4.8), constrained to 

tilts in the range 𝜙 = −50° to 50°, and with rotation angles 𝜃 = 1° to 360° with 

1° increments. The task function in the objective corresponded to the 3 mm spherical 

stimulus (Figure 4.4d) and optimization was performed for each stimulus location 

individually. For computation of detectability, the on-the-fly method was applied with 

statistical weights (𝒘, calculated as described in Section 4.2.6) sampled over 110 equally 

spaced rotation angles and 51 equally spaced tilt angles. To estimate the solution to 

Equation (4.2), the CMA-ES optimization was applied using 𝜆CMAES = 40 without restarts 

due to the simplicity of the search space. 

PL reconstruction using the optimized trajectory found for each sphere location 

(central slice and 15 cm below the central slice) was performed using dynamically relaxed 

ordered subsets with the number of subsets changing every five iterations through the 

sequence {54, 24, 12, 6, 4, 2, 1} for a total of 50 iterations. This schedule was chosen to 

accelerate convergence of the simple object. Quadratic regularization with a regularization 
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strength of 𝛽 = 1×106 was applied using 1 mm isotropic voxels on a 240 × 240 × 500 grid. 

Regularization strength was empirically selected based on visual assessment of noise and 

resolution in the images. 

4.3.2. Task Dependence: Line Pairs in a Cylinder 

The second experiment used the same 20 cm cylinder as the first experiment — in 

this case involving a line-pair stimulus placed in the center of the central slice. Specifically, 

the line pairs were a 20 × 20 × 20 mm3 cube with 2 lp / mm and a contrast of 0.015 mm-1 

relative to background. The cube was rotated 20° around the x axis to angulate the features 

relative to the coordinate axes (Figure 4.4b). 

Trajectory design was performed using the single-location objective, nine periodic 

bases, and the same angular sampling, constraints, geometry, and bare-beam fluence as in 

the first experiment. Two task functions were examined: (1) the 3 mm sphere detection 

task from the first experiment; and (2) a line pair discrimination task. The discrimination 

task was defined as the difference between the true rotated line pair stimulus and a stimulus 

consisting of an identically rotated solid cube of the same dimensions and attenuation — 

i.e., a binary hypothesis of line pairs “present” or “absent” (Figure 4.4e). As in the first 

experiment, on-the-fly detectability computations were adopted, and the same CMA-ES 

parameters used. PL ordered-subset reconstructions were computed as in the first 

experiment, using the {54, 24, 12, 6, 4, 2, 1} schedule, 50 iterations to reach convergence, 

β = 1×106, and 1 mm isotropic voxels on a 240 × 240 × 500 grid. 
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4.3.3. Multiple Locations: Elliptical Cylinder with a Needle 

The third experiment examined task-driven imaging in a situation for which the 

precise task location is unknown. Several potential task locations were chosen, and a single 

trajectory was solved that maximized a multi-location objective. A digital elliptical 

cylinder phantom was modeled with major and minor axis diameters of 25 and 17.5 cm, 

respectively, and height 25 cm. The elliptical cylinder had a 12 mm outer shell with 

𝜇 = 0.04 mm-1 and the core was filled with low contrast spheres of diameter 80 mm and 

𝜇 ∈ [0.0175 0.0225] mm-1. A high contrast cylinder (𝜇 = 0.2 mm-1) with diameter 5 mm 

and length 75 mm was added at a 10° angle in the central coronal plane to simulate a needle 

entering the body (shown in Figure 4.4c). Nine 8 mm spheres with 0.08 mm-1 contrast were 

added along the length and tip of the cylinder and all nine locations were used for multi-

location optimization. The C-arm geometry was used with bare-beam fluence lowered to 

1×104 photons per pixel to mimic scanning at lower dosage. 

Trajectory design was first performed for each task location using the single-

location objective in Equation (4.2), followed by the three multi-location objectives in 

Equations (4.3), (4.4), and (4.5). B-spline basis functions were used with eight equally 

spaced knots, and the trajectories were constrained to tilt angles in the range 

𝜙 = −30° to 30° and rotation angles 𝜃 = 1° to 360°. The task function at all nine locations 

consisted of mid-frequency content (Figure 4.4f) corresponding to the discrimination of a 

single object from two separate objects (needle and sphere) as described in the ICRU 

Report 54 (Sharp et al 1996). The precomputation approach was used with 𝒘 sampled over 

72 equally spaced rotation angles and 13 equally spaced tilt angles to compute detectability. 

The CMA-ES optimization algorithm was used to estimate 𝛀̂ using 𝜆CMAES = 200 with six 
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restarts and random initialization to ensure that the optimal detectability values were 

achieved due to the more complicated search space compared to the previous two 

experiments. 

Quadratic PL reconstructions for the nominal circular orbit, nine independent 

single-location optimizations, and three variations of multi-location optimization were 

performed using 10 ordered subsets over 200 iterations. The total number of iterations was 

increased and number of subsets decreased from previous experiments to achieve stability 

in convergence of the structurally more complex object. Regularization strength 𝛽 was set 

to 1×105.5 to decrease noise in the highly attenuating object, and 0.5 mm isotropic voxels 

were used in a 512×  512 × 512 grid. 

To illustrate the convergence of the CMA-ES algorithm, the optimization for a 

single sphere was computed as described above, using a circular orbit for initialization as 

opposed to random initialization. Detectability index and the associated reconstructed 

image were compared for the initial circular orbit, an intermediate (suboptimal) orbit, and 

the resulting optimal orbit. 

4.4. Results 

4.4.1. Location Dependence: A Sphere in a Cylinder 

Results from the first experiment are summarized in Figure 4.5. Task-driven source 

trajectories are shown for the cylindrical object and two optimizations: maximum 

detectability of the spherical stimulus at Location #1 (Figure 4.5b) and Location #2 

(Figure 4.5c). Source orbits are shown for each case in magenta as well as a sampled sphere 

of all possible source locations (blue dots). Note that the designed orbits suggest that a 
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simple equatorial source trajectory around each stimulus is optimal for detection of that 

stimulus. Reconstructions using the two orbits confirms that conspicuity of each sphere is 

maximized for such an equatorial orbit, with reduced detectability for the stimulus in the 

location that was not optimized. That is, the stimulus at Location #2 is more difficult to 

detect when using the orbit designed to maximize detectability at Location #1, and vice 

versa. 

 

Figure 4.5. Location-dependence of task-driven orbits. (a) Spherical stimuli were placed 

at the center (Location #1) and 15 cm below (Location #2) in a cylindrical object. (b) Task-

driven trajectory design for the sphere detection task at Location #1. (c) Task-driven design 

for the same task at Location #2. Sample reconstructions and the fluence through each 

location for all potential views (analogous to the statistical weighting) are shown. Optimal 

orbits are identified in magenta. 

The simple, idealized simulation presented here offers basic intuition to the 

optimization by considering the fluence through each stimulus location for all potential 

views. Fluence is equal to the statistical weighting (𝒘 in Equation (4.13)) and it is seen that 

the orbit (dashed magenta line) in each case maximizes fluence through the target location, 
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thereby maximizing data fidelity by selecting projection views with the shortest path length 

through the object. This result illustrates the importance of location in task-driven designs 

and shows that using a single-location objective can maximize task performance at a given 

location but may do so at the cost of decreased performance at other locations. 

4.4.2. Task Dependence: Line Pairs in a Cylinder 

The results for a task with strong directional dependence (a line-pair stimulus 

within a cylinder) are summarized in Figure 4.6. Single-location task-driven designs were 

performed for two tasks: the sphere detection task from Section 4.3.1 (Figure 4.6b) and a 

discrimination task corresponding to the frequency content and angulation of the line-pair 

stimulus (Figure 4.6c). For the task function corresponding to the line-pair stimulus, the 

task-driven orbit (Orbit A) is tilted to match the angulation of the line-pair stimulus. 

Example reconstructions illustrate that the task-driven design outperforms the nominal 

orbit (Orbit S), showing increased noise between the line pairs for the trajectory optimized 

for the spherical task (Figure 4.6b) and improved discrimination of line pairs for the orbit 

optimized according to the line-pair task (Figure 4.6c). 
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Figure 4.6. Task-dependence of task-driven orbits. (a) Line pair stimuli are placed at the 

center of a cylindrical object. (b) Task-driven trajectory design for the sphere detection task 

(Orbit S, not optimal for this object). (c) Task-driven design for an angulated line-pair 

discrimination task (Orbit A). Sample reconstructions and the fluence through each 

location for all potential views are shown. Orbits are identified in magenta. 

4.4.3. Multiple Locations: Elliptical Cylinder with a Needle 

Figure 4.7 summarizes the task-driven trajectories resulting from optimization with 

respect to a single-location objective (in which 𝑑′ is optimized for each location 

independently), and for the three variations of a multi-location objective (maxi-mean, 

maxi-median, and maxi-min shown in Equations (4.3)–(4.5), in which 𝑑′ is optimized over 

all locations simultaneously). The fluence through the stimulus location for all potential 

views is shown for each of the nine task locations with the optimal orbits shown in magenta. 

The orbits resulting from a single-location objective are shown in the left-most column, 

and the single orbit resulting from a multi-location objective is shown in the three right 

columns for the maxi-mean, maxi-median, and maxi-min objectives for all nine locations. 
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The single-location objective shows a different orbit for each location, which can 

be considered the best possible trajectory for each location. Note that at some of the 

locations the tilt angle differs for the starting and ending views (i.e., Locations #4, #5, and 

#7). The 2-dimensional b-spline basis function representing the source trajectory was not 

constrained to be equal at the start and end vertices, allowing a discontinuity. For these 

three cases, an orbit with a discontinuity produced a higher 𝑑′ value at the task location. It 

may be theorized that allowing discontinuities at any point in the orbit (not only at start 

and end vertices) might increase 𝑑′; however, doing so loses the advantage of a low-

dimensional parametrization and increases the difficulty of implementation on a robotic C-

arm. 
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When comparing the three multi-location objectives (in which a single trajectory is 

generated for all stimulus locations), each objective function yielded a different result, as 

expected. The trajectory generated for the maxi-median objective was dictated by the 

median 𝑑′ value, which in this case corresponded to Location #3 for the optimal trajectory. 

The range of 𝑑′ values after optimization are shown in Figure 4.8a. Note that the orbit is 

not the same as that for Location #3 achieved when using a single-location objective. 

Further changes to the orbit would cause all 𝑑′ values to shift, which would generate a new 

median value that does not maximize the objective function. The maxi-min objective was 

similarly driven by a single location; Location #1.  Location #1 was at the tip of the needle 

and was subsequently obscured by the angulated needle to some extent at all possible 

views. Its location resulted in the lowest fluence compared to all other locations for all 

possible views. Since the 𝑑′ value at Location #1 was significantly smaller than values at 

Locations #2-9 due to the lower fluence, it remained the minimum 𝑑′ value for all 

trajectories examined during optimization, resulting in an equivalent optimization as when 

using a single-location objective at Location #1. In contrast, all locations jointly drove the 

orbit for the maxi-mean objective, and no single location skewed the result. 



114 

 

Figure 4.8. Optimization for multiple task locations. (a) Boxplots showing detectability 

index for the nine locations for a circular orbit, a single-location objective, maxi-mean, 

maxi-median, and maxi-min objective functions. On each box, the central line indicates the 

median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 

respectively. The whiskers indicate the range of the data excluding outliers, which are 

indicated with the ‘+’ symbol. (b) Boxplots showing the percent change in detectability 

from a nominal circular orbit after optimization at all nine locations for the single-location 

objective function and the three multi-location objective functions. (c) The resulting image 

for each orbit in a region around each stimulus location, demonstrating improved 

visualization of small spheres placed adjacent to a high contrast cylindrical ‘needle.’ 

Corresponding images from a nominal circular orbit are shown for comparison in the top 

row. 

Figure 4.8a shows detectability index for the nine task locations corresponding to a 

circular trajectory, using a single-location objective, and using the three multi-location 

objective functions. The single-location objective is seen to provide the highest 𝑑′ value 

and represents the upper limit on improvement in 𝑑′. The respective advantage of each 

multi-location objective function is evident with maxi-mean having the highest mean 𝑑′ 
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value at 3.1, maxi-median having the highest median 𝑑′ value at 3.7, and maxi-min having 

the highest minimum 𝑑′ value at 1.3. Figure 4.8b shows the percent increase (or decrease) 

in 𝑑′ compared to the location-matched 𝑑′ value for a circular orbit. For a single-location 

objective, all 𝑑′ values increase, ranging from 5.5% at Location #8 to 121.1% at Location 

#1. In contrast, for all three multi-location objectives there are locations that exhibit a 

decrease in detectability. For maxi-mean, the change in 𝑑′ ranges from −8.4% at Location 

#4 to +37.7% at Location #1. For maxi-median, the range is from −46.1% at Location #4 

to +45.4% at Location #9. For maxi-min, the range is from −35.4% at Location #3 to 

+120.9% at Location #1. 

The reconstructed image in the region around each stimulus is shown for each orbit 

in Figure 4.8c, as well as for a nominal circular orbit for comparison (top row). Either the 

axial, coronal, or sagittal plane was chosen at each location for visual representation of 

improvements, although the reconstructed plane could be arbitrary. Improvements are 

particularly apparent for Locations #2, #7, and #9. 

 

Figure 4.9. Convergence of the optimal orbit at Location #7. (a) Image reconstructed from 

a circular orbit (inset below the image, plotted in magenta overlaid on a map of statistical 

weights). (b) Image reconstructed from a suboptimal orbit representing an intermediate 

solution between a circular orbit and the optimal orbit. (c) Image reconstructed from the 

optimal orbit for this task and object model. (d) Convergence of the CMA-ES optimization 

showing detectability (𝑑′) vs iteration. The 𝑑′ value for the orbits shown in (a–c) are 

indicated on the plot. 
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Figure 4.9 demonstrates convergence of the CMA-ES algorithm for the single-

location objective performed for the task defined at Location #7. Images reconstructed for 

a circular orbit, suboptimal intermediate orbit, and optimal task-driven orbit are shown in 

Figure 4.9a–c. The 𝑑′ value for each was 2.85, 3.35, and 4.08, respectively. Visualization 

of the spherical stimulus alongside the highly attenuating needle is progressively improved 

as the algorithm converges on the optimal orbit, consistent with the increase in 𝑑′. A plot 

of detectability index vs. iteration is shown in Figure 4.9d, showing fairly smooth 

convergence for the CMA-ES optimizer when initialized with the circular orbit. The 𝑑′ 

values corresponding to the three orbits (A-B-C) in Figure 4.9a–c are indicated on the plot. 

4.5. Discussion and Conclusions 

This chapter presented a framework for task-driven trajectory design for advanced 

CBCT imaging systems that leverages knowledge of both the patient anatomy and imaging 

task and exercises the motion capabilities of motorized, multi-axis CBCT systems to 

maximize imaging performance. The task-driven approach provides a strategy to overcome 

traditional imaging limitations via orbital flexibility — e.g., challenges associated with 

highly attenuating anatomy or implants that can be mitigated through intelligent data 

collection, selecting the best projection views to accomplish a particular task. 

The importance of both the location and spatial-frequency dependence of the 

imaging task were investigated. Each of these elements can contribute significantly to 

which projection views carry the greatest information for a specific task. In general, the 

task-based approach balances the data fidelity of a view (i.e., noise) with the signal content 

(frequency response) that each view provides toward the imaging task. Because trajectory 
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design for a single stimulus location in the image volume can optimize performance at that 

location to the detriment of performance elsewhere, several multi-location design 

objectives were examined to obtain optimal performance over ROIs. 

The proposed framework is general with respect to various options for 

parameterization of the source–detector trajectory, including constraints based on system 

geometry, DoF, and collision avoidance — permitting application to robotic C-arms and 

other CBCT systems with additional flexibility to gantry tilt and other geometric 

parameters. This includes short-scan geometries which are popular in CBCT imaging. A 

short-scan can be optimized similarly to the full scans described above with additional 

parameters such as start and end rotation angles included in the optimization to seek the 

views that are best for the object and task. Moreover, it is straightforward to further 

generalize these methods with additional geometric DoF (e.g., axial translation, variation 

in SDD), acquisition parameters (e.g., tube current modulation, Gang et al 2017a and 

fluence-field modulation, Gang et al 2017b), and reconstruction parameters (e.g., 

regularization strength 𝛽, Dang et al 2015). Such factors certainly carry interdependency 

in a full multi-variate optimization over all parameters — well beyond the scope of the 

current work, which focuses specifically on optimization of the source–detector orbit 

(holding other parameters fixed). 

It can be noted that Fourier approximation of both MTF(𝒇,𝛀; 𝑣) and NPS(𝒇,𝛀; 𝑣) 

is one potential source of error in orbital design. Specifically, this presumes the term 

𝐀TD{𝐰}𝐀𝒆𝒗 is shift-invariant within an ROI. For heterogeneous objects, the diagonal 

weighting is variable with location. However, it can be noted that the data-dependence of 

this term falls between projection and backprojection operations, which have the effect of 
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strong smoothing even for very nonuniform weights. The impact of this smoothing is that 

the Fourier approximation tends to hold well even for highly nonuniform objects; however, 

there is the potential for breakdown of the approximation when shift-variance is pushed to 

the same scale as the spatial resolution of the system. 

Consideration should also be given to challenges of accurate CBCT image 

reconstruction. Physical factors not accounted in the current analysis include x-ray scatter, 

beam hardening, image lag, detector glare, and patient motion, which may produce artifacts 

that confound visualization of the task. Recent work investigated the optimization of orbits 

based on scatter and scatter-to-primary ratio for imaging the weight-bearing spine using a 

robotic CBCT system, indicating that these effects are small and can be included in the 

overall optimization (Zhao et al 2019). Effects that occur from the sampling pattern itself, 

such as streakiness and cone-beam artifacts, are included in the model of MTF(𝒇,𝛀; 𝑣) and 

are therefore represented in the task-driven image in such a way as to improve the 

detectability of the task (although they may not be eliminated from the image). 

Accurate geometric calibration of non-circular orbits is also required for accurate 

image reconstruction. The motion of the C-arm gantry as it moves through complex task-

driven orbits may result in gantry wobble. The next chapter addresses this point using a 

“self-calibration” approach that solves the geometric calibration from the same projection 

data as acquired in the CBCT scan (Ouadah et al 2016). 

Because the design objectives are generally non-convex and require many 

predictions of image quality, different strategies for efficient evaluation and solution of the 

design objective were presented. Image quality predictors in the current work focused on 
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quadratically penalized MBIR; however, future work aims to extend this methodology to 

non-quadratic regularization (Schmitt et al 2017, Zhang et al 2018, Gang et al 2019). 

Task-driven trajectory design has the potential for application in a number of 

imaging scenarios. This chapter focused on theoretical underpinnings of the framework 

and illustrated the method in a series of experiments ranging from simple to complex. 

Although the phantoms used in these scenarios had somewhat uniform backgrounds, the 

method is designed to incorporate complex anatomic variations in the optimization via the 

patient model. In fact, the complexity of the model drives the selection of optimal 

trajectory. This is demonstrated in Chapter 6 in application to imaging scenarios in neuro-

interventional radiology with complex surrounding anatomy. It is expected that the 

methodology also has potentially broad application in other interventional imaging 

scenarios (e.g., orthopedic procedures). The theoretical foundations detailed above suggest 

a new paradigm for interventional imaging wherein preoperative information is included 

explicitly within a rigorous definition of the imaging task to prospectively drive customized 

data acquisition that maximizes performance. The framework is an important first step in 

realizing advanced CBCT capabilities and more fully leveraging the wealth of information 

available in interventional imaging scenarios. 
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Chapter 5: Self-Calibration of Cone-

Beam CT Geometry Using 3D–2D 

Registration 

5.1. Introduction 

To reconstruct a 3D CBCT image from 2D projections of an object, the geometric 

parameters relating the position of the x-ray source relative to the detector must be known 

accurately for each projection. The parameters characterizing this geometric relationship 

constitute a geometric calibration of the imaging system, and errors in calibration give rise 

to image artifacts such as blur, distortion, and streaks. Systems for CBCT in IGI tend to 

include open gantries with fairly adaptable source–detector orbits (cf., closed ring gantries 

in MDCT) and are often mobile and mechanically less rigid. While there are several means 

by which nominal circular orbits can be reliably calibrated for such systems (Navab et al 

1998, Noo et al 2000, Cho et al 2005, Li et al 2010b), it may be impractical to calibrate all 

anticipated orbits, and non-circular orbits may defy conventional calibration approaches. 

Moreover, geometric errors can arise from out-of-date calibration in which system 

geometry changes over time (Daly et al 2008) or from irreproducibility in the orbit — for 

example, vibration during C-arm motion (Dennerlein and Jerebko 2012). Some scenarios 

may also concern imaging configurations for which the geometry is simply unknown. 

As discussed in Chapter 4, robotic C-arms are capable of orbits that can 

intentionally depart from a circular orbit. Such capability provides acquisition modes that 

increase FOV (Herbst et al 2015) and / or improve image quality (e.g., reduction of cone-

beam artifacts as in Noo et al (1998), Pack et al (2004), and Pearson et al (2010)). 
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Additionally, task-driven image acquisition approaches (Chapters 4 and 6) customize the 

source–detector orbit based on the individual patient anatomy and imaging task. Such 

approaches raise a challenge for geometric calibration due to the patient-specific nature of 

the orbit and the inability to anticipate all possible trajectories that the system might 

undertake. 

The geometry of a point x-ray source and a flat, rigid detector can be defined by 9 

DoF that describe the source and detector position for each projection view, forming a PM 

that maps the 3D image reconstruction voxels to the 2D projection image pixels (Rougée 

et al 1993). Various methods have been proposed to measure the geometric parameters 

associated with these DoF, largely separated into two categories: offline and online 

calibration. Offline methods perform a pre-calibration of the system (before the CBCT 

scan is acquired) using various phantoms typically consisting of a known arrangement of 

radiopaque markers. Using the measured locations of the markers within the projection 

images and a knowledge of the marker configuration, a geometric calibration of the 

imaging system can be obtained (Navab et al 1998, Noo et al 2000, Von Smekal et al 2004, 

Cho et al 2005, Yang et al 2006, Mennessier et al 2009, Li et al 2010b, Chetley Ford et al 

2011, Li et al 2011, Hu et al 2011). CBCT reconstruction proceeds under the assumption 

that the system geometry is precisely reproduced in subsequent scans, and such methods 

are common for most CBCT imaging systems. However, these calibrations can become 

out-of-date (“aging” of the calibration as the system undergoes gradual mechanical change) 

and do not account for irreproducibility in the orbit. For CBCT systems in clinical use (e.g., 

IR (Fahrig et al 2006), IGRT (Jaffray et al 2002), and surgery (Zhang et al 2009)), a fairly 

high degree of geometric reproducibility is required (and commonly achieved), and offline 
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geometric pre-calibration is the norm, with periodic quality assurance by updating 

calibrations as required through repeat calibration. 

Online calibration methods, on the other hand, compute the system geometry from 

the scan projection data directly by exploiting knowledge of the object being imaged. Some 

online methods take advantage of data redundancy in 2D projection images (Panetta et al 

2008, Patel et al 2009, Meng et al 2013) while others operate by enforcing desired 

characteristics within the 3D image reconstruction by iterative optimization — such as 

image entropy minimization or sharpness maximization (Kyriakou et al 2008, Vidal-

Migallón et al 2008, Kingston et al 2011). Such methods have demonstrated the ability to 

solve the source–detector geometry accurately for uncalibrated systems, and there is 

ongoing research concerning performance of various objective functions (e.g., entropy, 

sharpness, and combinations thereof). Such iterative algorithms can involve fairly long 

computation time for 3D image reconstruction that may not be compatible with clinical 

workflow (e.g., in IGI). 

The work described below is motivated by the potential for “task-driven” imaging 

as described in Chapter 4 and reports an online geometric calibration method that is suitable 

to non-circular, task-driven orbits based on the 3D–2D registration method presented in 

Chapter 2. The 2D projection data are registered to a previously acquired 3D image of the 

subject, providing a “self-calibration” of the system. The 3D–2D registration process 

solves for the affine transformation representing the system geometry for each projection. 

The registration is rigid but incorporates a similarity objective that has been previously 

shown to be fairly robust against realistic deformation (Otake et al 2013) and includes 

means for masking of deformed regions. Like 3D–2D registration for motion compensation 
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(Chapter 2), potential applications of the self-calibration approach include cranial 

neurosurgery, neurovascular interventions, and orthopaedic trauma surgery, where rigid 

bone structures driving the registration are consistent with the rigid transformation model. 

The method allows calibration of arbitrary source–detector orbits, since it assumes a fairly 

general 9 DoF system geometry (alternatively a 6 DoF approximation with fixed SDD, as 

investigated below), and it accommodates irreproducibility in the scan orbit, since it 

derives the system geometry from the projection data for each acquisition. The self-

calibration algorithm does not require the use of fiducial markers, and by using dense 

image-based measurements for registration (cf., a sparse array of fiducials) has potentially 

higher accuracy. The method is also less computationally intense in comparison to iterative 

image reconstruction methods. 

In the sections below, we detail the proposed method for self-calibration, assess 

registration performance, and evaluate the resulting CBCT image quality in comparison to 

conventional offline reference calibration. The method was tested on an experimental 

CBCT bench using a simple cylindrical phantom and an anthropomorphic head phantom. 

The algorithm was also applied to data acquired using a robotic C-arm to validate 

performance on a clinically realistic system. Finally, application of the method to non-

circular orbits was tested on the CBCT test bench, described in Section 5.3.2.4 below. 

Clinical applications of the method are discussed, including the capability to improve 

reconstruction accuracy for presumably well-calibrated systems, provide a sentinel alert on 

degradation of geometric calibration, and enable geometric calibration for non-circular 

orbits and task-driven imaging scenarios. 
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The work appearing in this chapter was reported in the following conference 

proceeding and journal paper: (S. Ouadah et al, Proc. SPIE Medical Imaging, 9415, 2015) 

and (S. Ouadah et al, Phys. Med. Biol. 61(7), 2016). 

5.2. Self-Calibration Framework 

5.2.1. Overview 

In IGI, a high-quality MDCT image of the patient is commonly acquired prior to 

the procedure for diagnostic or planning purposes. Furthermore, during IGI, a series of 

CBCT images may be acquired — one at the beginning of the case, followed by CBCT 

acquisitions at particular milestones during, or at the conclusion of, the procedure. In these 

scenarios, the patient-specific 3D image can be registered to the 2D projection data 

acquired in subsequent CBCT acquisitions. Similar scenarios have been described for 

prior-image-based 3D image reconstruction to improve image quality and / or reduce 

radiation dose (Chen et al 2008, Stayman et al 2013, Dang et al 2014). For 3D–2D 

registration, a PM characterizing the system geometry is required for forward-projection 

of the 3D volume (𝝁𝐩𝐫𝐢𝐨𝐫) to create a 2D DRR (𝒚𝐩𝐫𝐢𝐨𝐫) to be registered to a 2D projection 

(𝒚). The PM can be decomposed in terms of the 9 DoF describing the source position (𝒔) 

and object / patient position (𝒕) and rotation (𝜽), where 𝒔 = [𝑠𝑥 , 𝑠𝑦, 𝑠𝑧]
T, 𝒕 = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧]

T 

and 𝜽 = [𝜃𝑥, 𝜃𝑦, 𝜃𝑧]
T as shown in Figure 5.1a. A simplifying assumption is that the source 

position, 𝒔, is fixed with respect to the detector, reducing the system geometry to 6 DoF. It 

is possible to determine the system geometry for each projection by solving for these 6 or 

9 DoF using 3D–2D registration. Repeating the registration for all projections (𝑘 =
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1,… ,𝑁proj) yields a geometric calibration of the system that can be used for 3D image 

reconstruction. Figure 5.2 provides a flowchart for the self-calibration method: for each 

projection, the registration is initialized, registered via 3D–2D registration, and verified for 

accuracy. Once a system geometry is found for all projections, a 3D volume is 

reconstructed — for example, by FBP for simple circular orbits or by MBIR for non-

circular trajectories. Table 5.1 summarizes the parameters used for the self-calibration 

method. 

 

Figure 5.1. CBCT system geometry and coordinate frames. (a) The position of the prior 

MDCT volume relative to the detector coordinate system is described by 6 DoF in 

translation (𝒕) and rotation (𝜽). The source position relative to the detector is positioned by 

3 DoF in translation (𝒔). (b) Initialization of the 𝑘th registration (for views 𝑘 = 1,… ,𝑁proj) 

by linear extrapolation of the previous (𝑘 − 1) and (𝑘 − 2) registrations.  
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Figure 5.2. Flowchart for the self-calibration process. The system geometry for each 2D 

projection in a CBCT acquisition is determined by registering each projection to a 

previously acquired 3D image using a robust 3D–2D registration algorithm. The 𝑘th 

registration is initialized by a simple predictor based on previous registrations. Outliers are 

detected in results that violate constraints on the smoothness of the orbit or other known 

characteristics of system geometry (e.g., abrupt change or spurious values of 

magnification). Registration of all projection views provides the geometric calibration 

required for 3D image reconstruction.  
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Table 5.1. Notation for the self-calibration method. 

Property Symbol 

3D–2D registration 

2D projections 𝒚 

Projection view 𝑘 = 1,… ,𝑁proj 

Prior 3D volume 𝝁𝐩𝐫𝐢𝐨𝐫 

Digitally reconstructed radiograph (DRR) 𝒚𝐩𝐫𝐢𝐨𝐫 

Estimated 6 or 9 DoF motion 𝑻 

Source translation 𝒔 

Object (patient) translation 𝒕 
Object (patient) rotation 𝜽 

Normalized gradient information NGI(𝒚, 𝒚𝐩𝐫𝐢𝐨𝐫) 

Nominal system magnification Magnom 

Number of repeated registrations 𝑁rep 

Projection matrices (PM) 

Initial PM 𝐏𝐌𝐢𝐧𝐢𝐭 

Estimated PM 𝐏𝐌𝐞𝐬𝐭 

Predicted PM 𝐏𝐌𝐩𝐫𝐞𝐝 

Calibrated PM 𝐏𝐌𝐜𝐚𝐥 

3D rotation matrix ℛ3𝑥3 

5.2.2. Initialization 

A PM is required to initialize the registration of each projection, 𝐏𝐌𝐢𝐧𝐢𝐭. A coarse 

estimation of the PM based on nominal parameters of the system geometry is used for 

initialization of the first (𝑘 = 1) projection. Specifically, 𝑠𝑧 and 𝑡𝑧 are initialized according 

to the SDD and (SDD-SAD), respectively. The orientation of the 𝑘 = 1 projection with 

respect to the patient (e.g., PA, AP, LLAT, or RLAT) could be simply obtained from 

information available in the DICOM data on patient and image orientation. As a brute force 

check on the initial 𝑘 = 1 orientation, the initial rotational values in 𝜽 were changed by 

increments of 90o about the 3 cardinal axes to account for all possible orientations, 

registered each of the 24 permutations (called 𝐏𝐌𝐞𝐬𝐭 in Figure 5.2) and selected whichever 

result yielded maximum similarity as 𝐏𝐌𝐜𝐚𝐥
𝟏 . The second (𝑘 = 2) view was initialized 
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simply using 𝐏𝐌𝐜𝐚𝐥
𝟏  from registration of the first projection. For projections 𝑘 =

1,… ,𝑁proj, the registration was initialized as illustrated in Figure 5.1b using a predicted 

PM, 𝐏𝐌𝐩𝐫𝐞𝐝, computed using the geometries of the previous two views. 

5.2.3. Predicting the Next View (𝑘 > 2) 

To initialize views 𝑘 = 3,… ,𝑁proj, as illustrated in Figure 5.1b, a prediction 

estimates the position of the detector as it moves around the object and is used to compose 

𝐏𝐌𝐩𝐫𝐞𝐝
𝒌 . The prediction is a linear extrapolation in the 6 DoF describing the CT volume 

position and rotation, (𝒕, 𝜽). The three DoF describing the source position (𝒔) are not 

extrapolated as it is not expected that the source should move significantly with respect to 

the detector. The prediction is formed based on the geometries of the previous two views 

by solving the transformation from (𝒕, 𝜽)𝑘−2 to (𝒕, 𝜽)𝑘−1, where 𝑘 is the current view: 

𝑻
𝐂𝐓𝒌−𝟐
𝐂𝐓𝒌−𝟏 = 𝑻𝐝𝐞𝐭𝐞𝐜𝐭𝐨𝐫

𝐂𝐓𝒌−𝟏 (𝑻𝐝𝐞𝐭𝐞𝐜𝐭𝐨𝐫
𝐂𝐓𝒌−𝟐 )

−1
(5.1) 

The transform 𝑻𝐝𝐞𝐭𝐞𝐜𝐭𝐨𝐫
𝐂𝐓𝒌  indicates the homogeneous transformation from 3D detector 

coordinates to 3D MDCT coordinates for the 𝑘th view, and the transform 𝑻
𝐂𝐓𝒌−𝟐
𝐂𝐓𝒌−𝟏 indicates 

the homogeneous transformation from 3D MDCT coordinates for the (𝑘 − 2) view to the 

(𝑘 − 1) view. The transformation is then applied to (𝒕, 𝜽)𝑘−1 to obtain a prediction for 

(𝒕, 𝜽)𝑘: 

𝑻𝐝𝐞𝐭𝐞𝐜𝐭𝐨𝐫
𝐂𝐓𝒌 = 𝑻

𝐂𝐓𝒌−𝟐
𝐂𝐓𝒌−𝟏 (𝑻𝐝𝐞𝐭𝐞𝐜𝐭𝐨𝐫

𝐂𝐓𝒌−𝟏 ) (5.2) 

which is then taken as initialization for registering the 𝑘th view. 
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5.2.4. 3D–2D Registration 

The 3D–2D registration method central to the self-calibration method is based on 

the work of Otake et al (2012, 2013), which incorporates NGI as a robust similarity 

objective within the CMA-ES optimizer (Hansen 2006). NGI was chosen for this work (cf., 

GO explored in Chapter 2) due to its speed, since it avoids the median operation implicit 

in Equation (2.1). A linear forward-projector implemented on GPU computes the DRR for 

a particular system pose. Similarity (NGI) is computed between the MDCT (𝝁𝐩𝐫𝐢𝐨𝐫, by way 

of its DRR, 𝒚𝐩𝐫𝐢𝐨𝐫, taken as the moving image) and the 2D projection (𝒚, taken as the fixed 

image) as: 

NGI(𝒚, 𝒚𝐩𝐫𝐢𝐨𝐫) =
GI(𝒚𝐩𝐫𝐢𝐨𝐫, 𝒚)

GI(𝒚, 𝒚)
(5.3) 

where 

GI(𝑝1, 𝑝2) =∑𝑚(𝑖, 𝑗)𝑤(𝑖, 𝑗)min(|𝛻𝑝1(𝑖, 𝑗)|, |𝛻𝑝2(𝑖, 𝑗)|)

𝑖,𝑗

(5.4) 

𝜵𝒑(𝒊, 𝒋) ≜ (
𝑑

𝑑𝑖
𝑝(𝑖, 𝑗).

𝑑

𝑑𝑗
𝑝(𝑖, 𝑗)) (5.5) 

and 

𝑤(𝑖, 𝑗) =
1

2
(
∇𝑝1(𝑖, 𝑗) ∙ ∇𝑝2(𝑖, 𝑗)

|∇𝑝1(𝑖, 𝑗)| ∙ |∇𝑝2(𝑖, 𝑗)|
+ 1) (5.6) 

Previous work (e.g., Otake et al 2013) showed NGI to exhibit robustness against content 

mismatch arising from non-rigid anatomical deformation or the presence of surgical tools 

introduced in the radiograph. 
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The CMA-ES optimizer was used to solve for the transformation that maximizes 

NGI: 

𝑻̂ = arg max
𝑻

NGI (𝒚, 𝒚𝐩𝐫𝐢𝐨𝐫(𝑻)) (5.7) 

Parameter selection in the CMA-ES optimization followed that of Otake et al (2012), with 

downsampling of both 𝒚𝐩𝐫𝐢𝐨𝐫 and 𝒚 by a factor of 3 and 𝜆CMAES set to 100. The stopping 

criterion was set to changes in translation or rotation of less than 0.1 mm or 0.1o 

respectively. 

From the resulting geometry estimate of the source and detector, the calibrated PM 

is formed as: 

𝐏𝐌𝐜𝐚𝐥
𝒌 ≔ (

𝑠𝑧 0
0 𝑠𝑧

𝑠𝑥 0
𝑠𝑦 0

0   0 1     0

)(
ℛ3𝑥3(𝜃𝑥, 𝜃𝑦, 𝜃𝑧)

𝑡𝑥 − 𝑠𝑥
𝑡𝑦 − 𝑠𝑦
𝑡𝑧 − 𝑠𝑧

0 0 0 1

) (5.8) 

where ℛ3𝑥3 represents a 3D rotation matrix with center of rotation at the origin of the 

coordinate system of 𝝁𝐩𝐫𝐢𝐨𝐫. Whereas previous work solved such a registration for one view 

(Otake et al 2012, 2013) or a small number of views (Uneri et al 2013), the self-calibration 

method generates a PM for all projections acquired in a CBCT scan. 

5.2.5. Outlier Detection 

It is possible to identify outliers in pose estimation by detecting spurious values of 

the system parameters (or combinations of system parameters) resulting from image 

registration. System magnification was selected as a simple measure for outlier detection, 

because the ratio allows fluctuations in scale that do not affect the forward-projection or 

backprojection of rays in 3D image reconstruction, but traps errors that would distort the 

PM. Each registration result is checked as a possible outlier. For the 𝑘 = 1 projection, the 
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resulting magnification must be within 10% of that calculated from the known, nominal 

system magnification (Magnom, computed from the SAD (𝑠𝑧 −  𝑡𝑧) and SDD (𝑠𝑧) provided 

for initialization of the first view). If the magnification is not within this range, then the 

algorithm is reinitialized. For the 𝑘 = 2 projection, the magnification must be within 1% 

of the magnification associated with the 𝑘 = 1 projection for the algorithm to continue. If 

the magnification does not fall within this range, then registration for the 𝑘 = 2 projection 

is restarted using the same initialization method as the 𝑘 = 1 projection as detailed in 

Section 5.2.2. For all subsequent (𝑘 > 2) projections, the magnification must be within 1% 

of the magnification associated with the previous projection (Mag𝑘−1), and for any view 

implying magnification outside of this range, the registration is restarted using 𝐏𝐌𝐜𝐚𝐥
𝒌−𝟏 to 

initialize (instead of 𝐏𝐌𝐩𝐫𝐞𝐝
𝒌 ). After this second repetition of the registration (𝑁rep = 2), 

the result is accepted as the correct geometry, and the self-calibration algorithm continues 

to the next projection. (In the current study, as detailed below, there were few, if any, 

outliers for the fairly smooth orbits considered.) If the registration result is not an outlier, 

the geometry estimate is used to compose 𝐏𝐌𝐜𝐚𝐥
𝒌 . 

The outlier detection method was tested by running the self-calibration algorithm 

on CBCT data acquired in a circular orbit with 𝑁proj = 360 projections and a 

magnification of 1.5 using the experimental bench described below. The predicted pose for 

each view was purposely perturbed with Gaussian noise with standard deviation 

σ = 20 mm for translations and 20° for rotations to stress the registration. 
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5.3. Experimental Methods 

5.3.1. Imaging Systems and Phantoms 

The proposed methodology was tested using the CBCT imaging bench and clinical 

robotic C-arm (Artis Zeego, Siemens Healthineers, Forchheim Germany) shown in 

Figure 5.3a and 5.3b, respectively. The bench includes an x-ray tube (RAD13, Dunlee, 

Aurora IL), flat-panel detector (PaxScan 4030CB, Varian, Palo Alto CA), and computer-

controlled motion system (Compumotor 6k8, Parker Hannifin, Rohnert Park CA) for 

acquisition of CBCT data in a variety of system configurations. For all studies involving 

the experimental bench, 𝑡𝑧 and 𝑠𝑧 were fixed to the nominal values of the robotic C-arm 

(40 and 120 cm, respectively). Other aspects of the bench are described in previous work 

(Zhao et al 2014), and the nominal scan technique involved 𝑁proj = 360 projections over 

360° at 70 kV and 227 mAs. For the robotic C-arm system, 𝑡𝑧 and 𝑠𝑧 were nominally fixed 

to 40 and 120 cm respectively, and acquisitions obtained 𝑁proj = 496 projections over 200° 

at 87.2 kV and 229 mAs. The nominal geometric calibration for the bench system was 

formed using the method of Cho et al (2005) using a cylindrical phantom containing two 

circles of steel ball bearings (BBs) from which the full 9 DoF geometry of the source and 

detector can be determined for each projection in a CBCT scan. Alternatively, the nominal 

calibration for the robotic C-arm was obtained using the standard clinical calibration tool 

— a cylindrical phantom with a spiral BB pattern derived from the method of Navab et al 

(1998). In each case, the nominal geometric calibration is referred to below as the 

“reference calibration.” 
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Figure 5.3. Imaging systems. (a) CBCT imaging bench with an anthropomorphic phantom 

shown on the rotation stage. (b) The robotic C-arm system with phantom and coordinate 

frames. 

CBCT images from the bench and robotic C-arm systems were reconstructed by 

FBP for cases of a nominally circular orbit (Experiments 1, 2, and 3, below). An MBIR 

method was used to reconstruct images for the case of a non-circular orbit considered in 

Experiment 4 (below). The PL objective function was used for this maximization, and the 

reconstructed image was computed in 50 iterations of 20 subsets with regularization 

strength 𝛽 = 1×102 (Wang et al 2014). 

Two imaging phantoms were used to evaluate the performance of the “self-

calibration” in comparison to the “reference calibration”. The first (Figure 5.4a) used the 

same cylindrical phantom as used in the calibration of the bench system (above) with the 

addition of a 0.13 mm diameter tungsten wire suspended along the central axis and a 2 mm 

diameter lead BB and 3 acrylic spheres (5, 6.5 , and 10 mm diameter) attached to the 

surface of the cylinder. This configuration provided data in which the geometric calibration 

data (derived from the steel BBs) and the data for imaging performance assessment 
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(derived from the tungsten wire, lead BB, and acrylic spheres) were identical, eliminating 

the question of orbit reproducibility. A second phantom (Figure 5.4b) involved a natural 

human skull in tissue-equivalent plastic with the addition of a 0.13 mm diameter tungsten 

wire inserted in the oropharynx and a 2 mm diameter lead BB attached to the surface. 

 

Figure 5.4. Imaging phantoms. (a) Cylindrical phantom that combines the reference 

calibration phantom for the bench system (two circular patterns of steel BBs) with a 

tungsten wire, lead BB, and acrylic spheres to test geometric accuracy of the CBCT 

reconstruction. (b) Anthropomorphic head phantom with a tungsten wire and lead BB. 

5.3.2. Experimental Plan 

Four experiments were conducted to test the performance of the self-calibration 

method, progressing systematically from simple geometries and objects (e.g., the bench 

and cylinder phantom) to more complicated scenarios (e.g., the robotic C-arm and head 

phantom). In each case, the reference calibration was acquired using the double circle or 

spiral BB phantom as described in Section 5.3.1. The 3D image input (𝝁𝐩𝐫𝐢𝐨𝐫) to the self-

calibration method was a distinct scan in each case (i.e., not the same as the projection data 

acquired in the current CBCT scan) — formed either from a previous CBCT scan or a 
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previous MDCT scan on a diagnostic scanner. In each case, the calculated system geometry 

and CBCT images reconstructed using the self-calibration method (for both 6 and 9 DoF 

characterization of the system geometry) were compared to those from the reference 

calibration. 

5.3.2.1. Exp 1: Cylinder Phantom on an Imaging Bench 

Experiment 1 involved the cylinder phantom imaged on the CBCT bench to test the 

feasibility of the self-calibration method and obtain quantitative analysis of basic 

performance. A circular orbit was used, with the nominal scan technique described in 

Section 5.3.1. A previous CBCT scan of the phantom formed the 3D image input to the 

self-calibration method, with the previous scan acquired with an angular offset in 

projection views so that the projections used in 3D reconstruction were not identical to 

those in 3D–2D registration. 

5.3.2.2. Exp 2: Anthropomorphic Head Phantom on an Imaging Bench 

Experiment 2 involved the anthropomorphic head phantom imaged on the CBCT 

bench to test the robustness of 3D–2D registration under more clinically / anatomically 

realistic conditions of x-ray scatter, image noise, and complexity of the subject. A previous 

scan of the head phantom on a diagnostic MDCT scanner (Somatom Definition, Siemens 

Healthineers, Forchheim Germany, 120 kV, 227 mAs, 0.46 × 0.46 × 0.40 mm3 voxels) 

formed the 3D image input to the self-calibration method. 
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5.3.2.3. Exp 3: Anthropomorphic Head Phantom on a Robotic C-Arm 

Experiment 3 involved the anthropomorphic head phantom imaged on the robotic 

C-arm to test the method in a clinically realistic system geometry and orbit. A previous 

CBCT scan of the head phantom acquired using the robotic C-arm formed the 3D image 

input to the self-calibration method. To challenge the method further, a realistic, 

pronounced change in image content was introduced between the previous 3D image and 

the projection images acquired in the current CBCT scan — viz., a 2 mm diameter steel 

biopsy needle placed in the nasal sinuses and positioning the head with a strong (~30°) 

canthomeatal tilt to mimic a typical clinical setup. The reference calibration (using the 

spiral BB phantom mentioned above) was performed by the system service engineer as part 

of regular preventative maintenance within 6 months of the current scan in accordance with 

standard clinical practice. 

5.3.2.4. Exp 4: Non-Circular Orbit 

Experiment 4 tested the self-calibration algorithm on a non-circular orbit — 

specifically, a saddle-shaped orbit that could be used to extend the longitudinal FOV, 

reduce cone-beam artifacts, or improve image quality in the manner of task-driven imaging 

— all cases for which a conventional geometric calibration acquired prior to the scan may 

be irreproducible or infeasible. The scan was conducted on the CBCT bench using the 

anthropomorphic head phantom with the same nominal scan protocol as above, except that 

the source and detector were moved along the y and z axes of the detector (as defined in 

Figure 5.1 and shown in Figure 5.3) during the scan to produce the saddle trajectory 

illustrated in Figure 5.5. The total deviation in both 𝑡𝑦 and 𝑠𝑦 was ±25 mm to maintain 
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approximately the same FOV as previous experiments within the constraints of the test 

bench system. As in Experiment 2, a previous diagnostic MDCT scan of the head provided 

the 3D image input to the self-calibration method. A CBCT image was reconstructed using 

the MBIR method described above and the self-calibration result for system geometry. 

Since the reference calibration method (Cho et al 2005) strictly holds only for circular 

orbits, an image of the head phantom scanned in a circular orbit was used as a reference 

and basis of image quality comparison (using the same MBIR method for reconstruction). 

 

Figure 5.5. Illustration of the saddle orbit for Experiment 4. (a) Polar plot showing 

magnification for the saddle and circular orbits. (b) 𝑡𝑦 and 𝑠𝑦 for the saddle and circular 

orbits. 

5.3.3. Performance Evaluation 

Performance was evaluated in terms of three measures of image quality / geometric 

accuracy of the self-calibration method in comparison to conventional reference 

calibration. The first was the FWHM of a PSF measured from the tungsten wire in each 

phantom. From CBCT images reconstructed with 0.05 mm isotropic voxels, line profiles 
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through the center of the wire in 10 axial images were sampled radially over 360°. A 

Gaussian distribution was fit to each line profile, and the FWHM was averaged over all 

line profiles and slices. 

The second performance measure was the reprojection error (RPE) associated with 

the position of (the centroid of) the lead BB placed on the surface of both phantoms. The 

BB centroid was localized in each 2D projection of the scan data using a Gaussian fit about 

the BB position. The centroid position was then transformed into 3D space using the 𝐏𝐌𝐜𝐚𝐥
𝒌  

corresponding to each projection, and its location on the detector was connected to the 

calibrated 3D source location by a line segment. This process was repeated for all 

projections, and the closest point of intersection for line segments spaced 90° apart was 

computed, yielding a point cloud. The width of the point cloud was evaluated using 

principal component analysis (PCA) and averaging the lengths of the principal 

components: 

RPE =
1

𝐶
∑|𝑽𝒄|

𝐶

𝑐=1

(5.9) 

where 𝑽𝒄 is a principal component of the 3D data and 𝐶 ≤ 3. Analysis in terms of PCA is 

analogous to simply evaluating the width of the point cloud (e.g., by Gaussian fit) but better 

accommodates possible bias in the orientation of the point cloud. 

Finally, the performance of geometric calibration was assessed with respect to the 

quality of 3D image reconstructions themselves. Each was qualitatively evaluated in terms 

of blur, noise, and artifacts associated with geometric calibration errors — e.g., streak 

artifacts and distortion of high contrast details such as the temporal bone trabeculae. 
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5.4. Results 

5.4.1. Outlier Detection 

In all experiments reported below, there were no outliers detected in the self-

calibration data, indicating a suitable degree of robustness of the 3D–2D registration 

process, including the various forms of initialization for the 𝑘 = 1 and 𝑘 = 2 projections, 

the prediction method for initializing the 𝑘 > 2 projections, the similarity objective (NGI) 

even in the presence of image content mismatch (e.g., the biopsy needle in Experiment 3), 

and the CMA-ES optimization method. To stress test the outlier detection and recovery 

method, a study was conducted as described in Section 5.2.5 in which the geometry 

estimates were purposely perturbed. Example results are shown in Figure 5.6, in which the 

magnification is plotted as a function of projection view angle before outlier detection 

(dashed black line) and after detection and recovery (solid black line). Following 

perturbation, 12 outliers were detected among the 360 projections, and all were recovered 

by the re-start method described in Section 5.2.5 (re-starting and / or using the previous 

view for initialization). 
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Figure 5.6. Outlier detection. The dashed black line shows the magnification of the 

registration before outlier detection using a perturbed initialization (σ = 20 mm, 20°). The 

solid black line shows the magnification after outlier detection and re-starting the 

registration using the previous view for initialization. The grey region represents the 

window for allowable magnification (10% for the 𝑘 = 1 view, 1% for subsequent views). 

5.4.2. FWHM of the PSF 

The PSF about the tungsten wire in Experiments 1–4 is shown in Figure 5.7 for the 

reference calibration (top row) and the self-calibration using both 6 DoF (middle row) and 

9 DoF (bottom row) representation of system geometry. Overall improvement is noted for 

self-calibration compared to reference calibration — both quantitatively (FWHM for each 

case) and qualitatively (apparent distortion and intensity of the PSF). For Experiment 1 

(cylinder phantom on the imaging bench; Figures 5.7a, 5.7e, 5.7i), the PSFs are 

comparable, indicating that self-calibration performs as well as (simultaneous) reference 

calibration for a simple object on a near-perfect system (stable, high-precision imaging 

bench). 
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Experiment 2 (head phantom on the imaging bench; Figures 5.7b, 5.7f, 5.7j) shows 

improvement in FWHM (0.66 mm for self-calibration, 0.86 mm for reference calibration, 

p < 0.001) as well as the general shape and intensity of the PSF. Note that the wire in the 

head phantom was located ~9 cm inferior to the central axial slice (whereas the wire in the 

cylinder phantom of Experiment 1 was analysed at the central axial slice). The 

improvement compared to the reference calibration likely indicates that while the reference 

calibration is suitable near the central slice (Figure 5.7a) it may include errors in detector 

angulation that become apparent farther from isocenter (Figure 5.7b). An alternative 

explanation is that the scan geometry was slightly irreproducible between the reference 

calibration and the current scan (whereas Experiment 1 involved simultaneous imaging and 

calibration in the same phantom). However, this is less likely since the imaging bench is 

rated to a fairly high degree of reproducibility (~0.001 mm) in positioning of the motion 

control system. Also, previous work showed that detector angulation is among the more 

difficult parameters to estimate in reference calibration (Bronnikov 1999, Noo et al 2000) 

and can have a large impact on the geometric accuracy of CBCT reconstructions (Daly et 

al 2008). 

Experiment 3 (head phantom on the robotic C-arm; Figures 5.7c, 5.7g, 5.7k) shows 

measurable improvement of the PSF using self-calibration compared to the standard 

clinical reference calibration. The two most likely explanations are similar to those noted 

above: (1) slight intrinsic errors in the reference calibration; and / or (2) slight differences 

between the reference calibration and current scan, owing either to irreproducibility of the 

C-arm orbit and / or aging of the reference calibration over time. 
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Finally, Figures 5.7d, 5.7 h, and 5.7l show the results of Experiment 4 involving 

the head phantom on the imaging bench with a non-circular orbit. Note that the reference 

for comparison (Figure 5.7d) is for a circular orbit (calibrated with the phantom containing 

the double circular pattern of BBs), and all images were reconstructed with MBIR using 

the same regularization and optimization parameters. The results demonstrate the 

feasibility of self-calibration for non-circular orbits, suggesting the same level of geometric 

accuracy in pose estimation as for circular orbits (Experiments 1 and 2) and compatibility 

of the resulting geometry estimates with MBIR. 

Comparing the self-calibration results for 6 DoF (Figure 5.7e–h) and 9 DoF 

(Figure 5.7i–l) characterization of system geometry, no appreciable (or statistically 

significant) differences were seen in the PSF or FWHM, implying relative insensitivity to 

the additional 3 DoF associated with variations in source position relative to the detector 

for the systems considered in this work. This is not a surprising result for the imaging bench 

(for which the source is rigidly fixed with respect to the detector) and suggests that possible 

variations in source position on the robotic C-arm (e.g., due to C-arm flex under gravity) 

are minor with respect to the PSF of image reconstructions. 
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Figure 5.7. Effect of geometric calibration on spatial resolution (FWHM of the PSF). 

Images show an axial slice through the tungsten wire in the cylinder or head phantom. (Top 

row, a–d) Images reconstructed using the reference calibration. (Middle row, e–h) Images 

reconstructed using self-calibration and 6 DoF characterization of system geometry. 

(Bottom row, i–l) Images reconstructed using self-calibration and 9 DoF characterization 

of system geometry. Each column represents one of the four experiments detailed in 

Section 5.3. 

5.4.3. Reprojection Error 

Figure 5.8 summarizes the results for the four experiments in terms of the RPE, 

echoing the results of Figure 5.7. Figure 5.8a shows an example point cloud from which 

the RPE was determined as detailed in Section 5.3.3, and Figure 5.8b shows the 

improvement in RPE obtained by self-calibration in comparison to reference calibration. 

For Experiment 1, a statistically significant improvement is seen in RPE (~0.69 mm for 

self-calibration) compared to reference calibration (0.83 mm) under ideal conditions 
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(p < 0.001), which also shows RPE to be a more sensitive test of geometric calibration than 

PSF width (Figures 5.7a, 5.7e, 5.7i). 

Experiment 2 demonstrates an additional characteristic of self-calibration: the 6 

DoF self-calibration was significantly improved compared to reference calibration 

(RPE = 0.61 mm versus 0.84 mm, p < 0.001); in addition, the 6 DoF self-calibration was 

superior to the 9 DoF self-calibration (RPE = 0.61 mm versus 0.82 mm, p < 0.001). This 

result may seem counterintuitive and points to an interesting characteristic of self-

calibration: the 9 DoF method allows potentially unrealistic variations in source position 

with respect to the detector — e.g., excursions in 𝑠𝑧; while FBP reconstruction image 

quality (Figures 5.7f and 5.7j) may be relatively insensitive to such excursions since 

backprojected rays are still along the correct lines (recognizing a fairly small effect 

associated with distance weighting), the difference is evident in the RPE among orthogonal 

rays. The 6 DoF self-calibration holds the position of the source fixed with respect to the 

detector, which appears to incur less error in geometry estimation, at least for the rigid 

geometry of the imaging bench. 

For Experiment 3, the mean and median RPE are lower for the self-calibration 

methods than the reference calibration method, but the difference was not statistically 

significant (p = 0.08). The overall performance appears better (consistent with Figures 5.7c, 

5.7g, and 5.7k), but errors in finding the BB centroid in the projection images may have 

contributed to a reduction in reliability of the RPE estimates. Another factor is that the C-

arm undergoes significant deviations from a circular orbit, which broadens the point cloud 

distributions. Experiment 4 is not shown, since RPE as defined by Equation (5.9) assumes 

a circular orbit. 
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Figure 5.8. Effect of geometric calibration on RPE. (a) Example point cloud distribution 

used to measure the RPE, generated by backprojecting the centroid of a BB in each 

projection and finding the closest point of intersection between orthogonal views. (b) The 

RPE resulting from 6 and 9 DoF self-calibration compared to conventional reference 

calibration. An asterisk indicates significant difference from the reference, an open circle 

indicates mean value, a horizontal line indicates median value, a closed box indicates 

interquartile range, and whiskers indicate full range of the data. 

5.4.4. Image Quality 

Figure 5.9 illustrates the effects quantified above in terms of qualitative 

visualization of high-contrast details in the anthropomorphic head phantom, including 

streaks (from a high-contrast biopsy needle) and distortion (wisps about cortical bone and 

temporal bone trabeculae). Images from Experiment 1 are not shown because they were 

essentially identical: both reference calibration and self-calibration yielded qualitatively 

accurate reconstruction of the cylinder phantom without appreciable geometric artifacts. 

The same result is seen for Experiment 2 (Figures 5.9a, 5.9d, 5.9g), where both reference 

and self-calibration yield a qualitatively accurate reconstruction of the skull. Other sources 

of image quality degradation include x-ray scatter and beam hardening, but not geometric 

calibration. 
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Experiment 3 demonstrates noticeable improvement in images reconstructed using 

self-calibration, evident as a reduction in streak artifact arising from the high-contrast 

biopsy needle located at the anterior aspect of the axial slice in Figures 5.9b, 5.9e, and 5.9h. 

The reduction in streaks indicates that the self-calibration method reduced imprecisions in 

geometric calibration that are accentuated in the reconstruction of a high-contrast, high-

frequency objects such as a needle. The self-calibration method yields a more accurate 

geometric calibration and is more robust against such streak artifacts — analogous to the 

observation of De Man et al (1998) that patient motion causes substantially increased streak 

artifacts when metal is present in the image. 

Experiment 4 shows MBIR images formed using reference and self-calibration 

methods, the former for a circular orbit and the latter for a saddle orbit. The results are 

qualitatively identical, with both methods yielding calibration suitable for MBIR. Minor 

differences in cone-beam artifacts may be appreciated in Figures 5.9f and 5.9i compared 

to Figure 5.9c, but that is due to the non-circular orbit, not the fidelity of geometric 

calibration. Overall, even in cases for which the difference between reference calibration 

and self-calibration is negligible, the results are positive findings: they demonstrate not 

only the feasibility to compute a geometric calibration using the proposed method, but also 

that the resulting calibration is comparable to well-established methods for reference 

calibration; moreover, the self-calibration method is extensible to non-circular orbits and 

imaging systems for which reference calibration is irreproducible or infeasible. 
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Figure 5.9. Effect of geometric calibration on image quality. (a–c) Detailed region of an 

axial slice of the head phantom in Experiments 2–4 reconstructed using reference 

calibration. (d–f) The same, reconstructed using the 6 DoF self-calibration and (g–i) the 9 

DoF self-calibration. Image (j) shows the full axial FOV and detailed region. 

5.5. Discussion and Conclusions 

The self-calibration method presents a promising means to obtain accurate 

geometric calibration not only for standard circular orbits and presumably well-calibrated 

systems, but also for more complicated non-circular orbits and / or systems for which 

system geometry is unknown / irreproducible. The studies detailed above demonstrate that 

the self-calibration method yields system geometry sufficient to reconstruct images with 
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comparable or improved image quality compared to reference calibration methods and is 

extensible to cases where conventional reference calibration may not be possible—e.g., 

non-circular orbits. It is interesting to note that while both 6 and 9 DoF self-calibration 

performed better overall than the reference calibrations, the 6 DoF self-calibration method 

slightly outperformed the 9 DoF self-calibration, specifically in Experiment 2. This result 

may indicate that although the 9 DoF method yields a more complete system description, 

it may be subject to local minima in the larger search space. With the 6 DoF method, the 3 

DoF describing the source position are held fixed and reduce the search space in a manner 

that appears to reduce susceptibility to such local minima and is consistent with the 

mechanical rigidity of the robotic C-arm used in this work. It is also possible that the 9 

DoF optimization is more susceptible to image noise. The optimization was not strongly 

affected by propagation of error from previous views to the next, even though the algorithm 

is sequential in nature and uses previous views to initialize the next. In addition to trapping 

outliers as described in Section 5.2.5, the registration for each view is computed de novo 

(i.e., with a new CMA-ES population and a search for the current pose that is largely 

independent of the previous pose) and demonstrates capture range that is more than 

sufficient to recover from small errors in 𝐏𝐌𝐢𝐧𝐢𝐭 resulting from previous views. 

The primary objective of the current study was to assess the feasibility and 

geometric accuracy of the self-calibration method; accordingly, the run-time of the 

algorithm was not fully optimized. The algorithm was implemented in Matlab (The 

MathWorks, Inc, Natick MA) and yielded a run-time of approximately 3 s per registration 

for the 6 DoF method (or 5 s per registration for the 9 DoF method), excluding the 

projections for which multiple initializations are used and scale the registration time 
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accordingly. A variety of ways to reduce the run-time for a complete scan could be 

developed in future work, such as parallelizing registrations by binning the projections into 

sub-groups and registering these groups in parallel (as opposed to registering all projections 

sequentially), or simultaneously registering more than one projection during the same 

optimization as in Uneri et al (2013). 

One limitation of the algorithm is that the accuracy of registration is dependent on 

the quality of the 3D volume and the 2D images forming the basis of registration. However, 

as shown in Experiment 3 where a CBCT image acquired from the robotic C-arm system 

was used as the 3D volume for registration, the registration algorithm is fairly robust to 

artifacts present in the 3D images (e.g., cone-beam artifacts, scatter, truncation). A second 

limitation is its dependence on the initialization of the geometric parameters in the first 

view, and poor initialization could result in registration failure. Initialization is most 

important for the first projection, which requires knowledge of the nominal system 

parameters, since if the first projection fails to register correctly, the algorithm may be 

unable to proceed. Another limitation is that the registration between the 3D volume and 

2D projections is limited to affine transformations that presume rigid patient anatomy. 

Although limited to affine transformations, the registration is still fairly robust against 

anatomical deformation, as described in previous work (Otake et al 2013), since the 

similarity objective incorporated in the registration process uses strong edges consistent in 

both images, which in CBCT most likely represent rigid, bony structures. Registration 

therefore aligns consistent bony structures in the images while tending to ignore soft-tissue 

deformations. Such robustness to deformation was previously investigated in the context 

of spine surgery (Otake et al 2013), where it was found that the 3D–2D registration 
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framework was able to register images with a median projection distance error of 0.025 mm 

even under conditions of strong deformation (e.g., preoperative CT with the patient 

oriented supine and the spine straight (or lordotic) registered to an intraoperative projection 

image in which the patient is oriented prone with the spine in kyphosis). 

In summary, the self-calibration method performed as well as a reliable (up to date) 

reference calibration on a highly stable CBCT imaging bench and performed better than 

the reference calibration (subject to periodic quality assurance updates) on a clinical robotic 

C-arm. This indicates that self-calibration could improve 3D image reconstruction even for 

presumably well-calibrated systems and could offer a sentinel alert against "aging" of the 

reference calibration. The algorithm demonstrated robustness to changes in the image 

between the 3D volume and the 2D projection data, such as changes in object positioning 

and / or the presence of strong extraneous gradients in the 2D projections (e.g., the presence 

of a metal biopsy needle). Furthermore, the self-calibration method provides feasibility for 

task-driven imaging on real imaging systems, demonstrated in Chapter 6. 
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Chapter 6: Application of Task-Driven 

Source–Detector Trajectories to Neuro-

Interventional Radiology 

6.1. Introduction 

CBCT is used in a growing number of scenarios in interventional imaging including 

verification of patient positioning, 3D image guidance, and visualization of instrumentation 

or embolic agents delivered to the patient (Berris et al 2013, Carrino et al 2014). As 

introduced in Chapter 4, robotic CBCT C-arms greatly expand the possibilities for scanning 

geometries beyond those of conventional circular source–detector orbits. In clinical 

practice, such motion capabilities have been used to provide fast, reproducible positioning 

of the C-arm gantry and to increase the FOV of the reconstructed 3D image. As 

demonstrated in the work reported below, the additional DoF enabled by such robotic C-

arm gantries can be leveraged to improve image quality and / or reduce radiation dose using 

non-circular orbits computed to maximize imaging performance with respect to a particular 

imaging task(s). 

CBCT-guided interventional procedures often include a considerable amount of 

prior information regarding patient-specific anatomy, devices to be delivered to the patient 

during treatment, and the imaging task(s). As shown in Stayman et al (2015), Gang et al 

(2015), Dang et al (2017), and Ouadah et al (2017), definition of the imaging task and a 

patient-specific prior image can be used to optimize both the acquisition and reconstruction 

of CBCT image data. Such prospective design of the CBCT scan technique and / or 

reconstruction method based on a task-based objective function is referred to as “task-
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driven imaging.” This chapter focuses on task-driven design of the CBCT source–detector 

trajectory, taking the mathematical theory and methods detailed in Chapter 4, combining 

with the geometric calibration methods of Chapter 5, and applying them to scenarios 

emulating neurosurgical / neuroradiological interventions. 

An example clinical scenario in which task-driven imaging could be applied is 

neurovascular embolization, which may be performed in response to a cerebral aneurysm, 

AVM, carotid-cavernous fistula, or dural arteriovenous fistula (Miracle and Mukherji 

2009). The embolization agent occludes feeder vessels and vascular abnormalities, and 

during the procedure it is important to avoid embolization of normal / non-target vessels, 

identify incomplete embolization, and locate possible hemorrhage resulting from 

perforated vessels (Alabdulghani et al 2018). CBCT is frequently used as a tool to localize 

the target and instrumentation as well as to check against possible complications arising 

from the intervention. However, image quality is often degraded by the presence of 

materials that are highly attenuating to x-rays, including coils, plugs, balloons, particulate 

agents such as polyvinyl alcohol and microspheres, and liquids such as tissue adhesives 

and injectable liquid embolic agents (e.g., Onyx, Medtronic, Dublin Ireland) (Leyon et al 

2014). As a result, CBCT images often exhibit strong artifacts that challenge reliable 

visualization of the target and surrounding vessels. 

Task-driven imaging is applied to two clinical scenarios in this chapter: (1) the 

assessment of embolization in the case of aneurysm, where perforation of the aneurysm 

would necessitate detection of ICH adjacent to the region of embolization; and (2) AVM 

ablation, in which detection of untreated regions of the nidus requires visualization of 

incomplete embolization. These two scenarios are investigated both in simulation and in 
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real data using a CBCT test bench and a clinical robotic C-arm. We also extend the task-

driven optimization framework to situations for which multiple tasks with unknown 

location underlie the clinical objective. 

A potential clinical workflow is depicted in Figure 6.1 for practical application of 

task-driven imaging to neurovascular IGI. The process begins with some form of prior 3D 

image as a model of the patient (𝝁𝐩𝐫𝐢𝐨𝐫). The prior image could be an MDCT acquired for 

diagnostic or planning purposes or an initial CBCT acquired at the beginning of the case 

for navigation or target localization. Based on the expected surgical outcome of the 

procedure, high-contrast features are added to the anatomical model (e.g., embolization 

coils, catheters, contrast agent). The imaging tasks are defined mathematically in 

𝐻task(𝒇, 𝛀; 𝑣), where 𝒇 denotes the 3D spatial frequency dependence of the imaging task, 

𝛀 parameterizes the CBCT acquisition, and 𝑣 indicates the location specified within an 

ROI in 𝝁𝐩𝐫𝐢𝐨𝐫 (𝒗𝐑𝐎𝐈). Note that the coordinate system of 𝝁𝐩𝐫𝐢𝐨𝐫 must be registered to the 

world coordinate system of the intraoperative scene — i.e., to the C-arm gantry. To 

accomplish this, two or more projections are acquired, and the registration of the prior 3D 

image and intraoperative scene is solved via 3D–2D registration as in Uneri et al (2013). 

The resulting 6 DoF transformation 𝑻𝝁𝐩𝐫𝐢𝐨𝐫
𝐂−𝐚𝐫𝐦 (containing three rotations and three 

translations in x, y, and z) can be applied to the image coordinates (𝒙) of 𝝁𝐩𝐫𝐢𝐨𝐫 to yield 

transformed coordinates registered to the C-arm gantry. 

Maximization of task-based detectability index (𝑑′(𝛀; 𝑣)) is solved with respect to 

the source–detector orbit (parametrized by 𝛀) to yield the optimal source–detector 

trajectory 𝛀̂ — the topic of Chapter 4. An important consideration is the need for geometric 

calibration to precisely characterize the source and detector pose for each vertex on the 
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resulting orbit — the topic of Chapter 5. Even conventional circular orbits require such 

calibration to obtain accurate 3D reconstruction, usually solved by prior (offline) 

calibration techniques using a phantom of fiducial markers (Noo et al 2000, Cho et al 2005, 

Mennessier et al 2009). Offline calibration of the full range of possible vertices may or 

may not be practical; however, a solution can also be obtained using the “self-calibration” 

method described in Chapter 5 (Ouadah et al 2016), and MBIR techniques can be utilized 

to reconstruct the acquired task-driven image 𝝁̂. 

The work appearing in this chapter was reported in the following conference 

proceeding and journal paper: (S. Ouadah et al, Proc. SPIE Medical Imaging, 10132, 2017) 

and (S. Capostagno et al, J. Med. Imag., 6(2), 2019). 

6.2. Task-Driven Imaging for Design of Source–

Detector Trajectories 

Chapter 4 provided an in-depth description of the theoretical methods of trajectory 

design in task-driven imaging, briefly reviewed here. Task-driven imaging is an imaging 

framework well suited to IGI, in which a preoperative 3D image is acquired for diagnostic 

or planning purposes — or alternatively, in which multiple 3D images are acquired over 

the course of the intervention. The prior 3D image is leveraged to define the imaging task 

in terms of both the patient-specific anatomy and the clinical objective of an intraoperative 

CBCT scan. For example, after an interventional embolization of a neurovascular target, 

the imaging task may be to detect a subtle, low-contrast hemorrhage adjacent to the high-

contrast embolization coil. 
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Table 6.1. Notation for task-driven source–detector trajectories for neuro-IR. 

Property Symbol 

Detectability 

Prior patient image 𝝁𝐩𝐫𝐢𝐨𝐫 

Source–detector trajectory parameters 𝛀 

Spatial frequencies 𝒇 

Location of interest 𝑣 

Region of interest (ROI) 𝒗𝐑𝐎𝐈 
Detectability index 𝑑′(𝛀; 𝑣) 
Task definition 𝐻task(𝒇; 𝑣) 
Modulation transfer function MTF(𝒇,𝛀; 𝑣) 
Noise power spectrum NPS(𝒇,𝛀; 𝑣) 

3D–2D Registration 

6 DoF transform mapping prior image 

coordinates to C-arm coordinates 
𝑻𝝁𝐩𝐫𝐢𝐨𝐫
𝐂−𝐚𝐫𝐦 

Prior image coordinates 𝒙 

Source–detector trajectory 

Rotation angle 𝜃 

Tilt angle 𝜙 

3D source location 𝑆(𝜃, 𝜙) 
Projection views 𝑘 = 1,… ,𝑁proj 

Image reconstruction 

Reconstructed image volume 𝝁 

Attenuation coefficient 𝜇 

Projection measurements 𝒚 

Log-likelihood 𝐿(𝝁; 𝒚) 
Roughness penalty 𝑅(𝝁) 
Regularization strength parameter 𝛽 
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The imaging task can be defined mathematically according to the location, contrast, 

and spatial frequencies associated with the feature of interest. Imaging performance is 

optimized with respect to the task (𝐻task(𝒇; 𝑣)) by maximizing the detectability index, 

𝑑′(𝛀; 𝑣), which in turn is determined by the noise-power spectrum, NPS(𝒇,𝛀; 𝑣) and 

modulation transfer function, MTF(𝒇,𝛀; 𝑣). The non-prewhitening observer model for 

detectability is: 

𝑑′(𝛀; 𝑣) = [
[∭(MTF(𝒇,𝛀; 𝑣) ∙ 𝐻task(𝒇; 𝑣))

2
𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧]

2

∭NPS(𝒇,𝛀; 𝑣) ∙ (MTF(𝒇, 𝛀; 𝑣) ∙ 𝐻task(𝒇; 𝑣))
2
𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧

]

1
2

(6.1) 

where 𝛀 is a vector containing parameters that generally characterize the CBCT scan — 

e.g., beam energy (as in Gang et al 2017a), fluence (as in Gang et al 2017b), or 

reconstruction filters or regularization (as in Dang et al 2015), and fi indicates spatial 

frequencies in the 3 cardinal directions of the image coordinate system (𝑖 ∈ {𝑥, 𝑦, 𝑧}). The 

non-prewhitening observer model is advantageous in that it combines 𝐻task(𝒇; 𝑣) with 

relevant (and predictable) properties of the image, allowing detection of objects ranging 

from low-frequency (i.e., diffuse lesion) to high-frequency (i.e., stents and small vessels). 

Other objectives can be envisioned (e.g., 𝑑′(𝛀; 𝑣) or contrast-to-noise ratio per unit dose), 

additional constraints could be incorporated (e.g., maximum dose to the patient or a 

radiosensitive volume therein as in Bartolac et al (2011)), and other forms of the observer 

model could be formulated to incorporate an imaging task with predictions of image 

properties. Additionally, incorporating other technical, logistic factors such as scan time, 

collision constraints, or total number of views could be beneficial for workflow in the 

clinical setting. 



157 

 

Figure 6.1. Workflow for task-driven imaging. A prior 3D image provides a patient model 

within which the imaging tasks are defined. The coordinates of the prior image and task 

locations (𝒙 and 𝑣, respectively) are mapped to the coordinate system of the imaging 

system using the 6 DoF transform 𝑻𝝁𝐩𝐫𝐢𝐨𝐫
𝐂−𝐚𝐫𝐦, which is solved by 3D–2D registration of 𝝁𝐩𝐫𝐢𝐨𝐫 

to two or more projection views, yielding the transformed coordinates in 𝒙′ and 𝑣′. 
Optimization of 𝛀 with respect to detectability (𝑑′(𝛀; 𝑣)) yields a task- and patient-specific 

trajectory 𝑆(𝜃, 𝜙) which is carried out on the robotic C-arm and reconstructed using MBIR. 

In this work, 𝛀 comprises parameters that define the source–detector trajectory. 

This parameterization can take a variety of forms, including periodic basis functions using 

constant, sine, and cosine functions, and b-spline basis functions using equally spaced knot 

locations as described in Chapter 4. Calculation of NPS(𝒇,𝛀; 𝑣) and MTF(𝒇,𝛀; 𝑣) uses 

approximations based on PL reconstruction with a quadratic regularization penalty 

(Stayman and Fessler 2004, Gang et al 2014), also detailed in Chapter 4. 

Through NPS(𝒇,𝛀; 𝑣) and MTF(𝒇, 𝛀; 𝑣), the optimization of 𝛀 yields an orbit that 

maximizes 𝑑′(𝛀; 𝑣) with respect to 𝐻task(𝒇; 𝑣). As discussed in Chapter 4, it may be useful 

to optimize with respect to multiple task locations (e.g., when a single location is 

unknown). For the experiments presented below in which all locations are treated with 

equal importance, the minimum 𝑑′(𝛀; 𝑣) is maximized according to the maximum 

minimum in 𝑑′(𝛀; 𝑣) over 𝑁task tasks: 
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𝛀̂ = arg max
𝛀

 min {𝑑′(𝛀;𝐻task(𝒇;𝑣1)), … , 𝑑
′(𝛀;𝐻task(𝒇;𝑣𝑁task))} (6.2) 

Using the maxi-min objective better ensures that imaging performance is not sacrificed in 

some locations in favor of others, recognizing that other objectives may be used, such as 

maxi-mean or maxi-median (also investigated in Chapter 4), a weighted sum when 

additional knowledge of the importance of each defined task is available, or another 

relevant statistical representation of a population. 

The optimization was solved using CMA-ES (Hansen 2006) — a stochastic 

optimization that was previously shown to perform well in the presence of local minima 

(Otake et al 2013). Once the optimal parameters (𝛀̂) are found, the low-dimensional 

parametrization of the source–detector trajectory can be converted into a series of source 

locations (𝑆𝑘(𝜃, 𝜙); 𝑘 = 1,… ,𝑁proj), using a rotation angle 𝜃 and a tilt angle 𝜙 to indicate 

the 3D location of the x-ray source for all 𝑁proj projection views in the scan. In this work, 

we assume the position of the detector to be fixed with respect to the x-ray source (fixed 

SDD) with a single, fixed origin, allowing the source–detector trajectory to move on a 

sphere of diameter SDD. 

For image reconstruction, the PL reconstruction algorithm was used, since such 

iterative methods naturally accommodate non-circular trajectories generated by task-driven 

imaging. The PL algorithm maximizes an objective function based on the log-likelihood 𝐿 

of the current image estimate 𝝁 (given the projection data 𝒚) combined with a 

regularization term to enforce smoothness in the image with regularization strength, β: 

𝝁̂ = arg max
𝝁

𝐿(𝝁; 𝒚) − 𝛽𝑅(𝝁) (6.3) 
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A quadratic penalty for the regularization term 𝑅(𝝁) was used, matching the theoretical 

estimators for NPS(𝒇,𝛀; 𝑣) and MTF(𝒇,𝛀; 𝑣) as discussed in Chapter 4. 

6.3. Experimental Methods 

6.3.1. Digital Simulation and Physical Experiments 

Studies included a combination of simulation and physical experiments. The first 

experimental system was the CBCT test bench shown in Figure 6.2a, allowing a broad 

range of trajectories by combining a motorized rotation stage with a manual tilt platform. 

The second system was a robotic C-arm (Artis Zeego, Siemens Healthineers, Forchheim 

Germany) shown in Figure 6.2b. Each system permitted task-driven scans in which the x-

ray source moved (either in a true world-frame orbit for the robotic C-arm, or relative to 

the patient for the test bench) to each 𝑆𝑘(𝜃, 𝜙) in 𝑆(𝜃, 𝜙) in a step-and-shoot fashion to 

accumulate 𝑘 = 1,… ,𝑁proj projections constituting the task-driven image acquisition 

protocol. To accomplish this, each source location generated by the task-driven orbit was 

defined using 2 DoF: a rotational angle 𝜃 and a tilt angle 𝜙 for all 𝑁proj source locations. 
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Figure 6.2. Experimental platforms for task-driven imaging: (a) CBCT test bench with 

rotational platform and manual tilt stage. (b) Robotic C-arm system. In each system, the 

source–detector trajectory is defined by a series of 𝑁proj source locations containing 2 DoF; 

rotation angle θ and tilt angle ϕ. The patient’s right (R), left (L), superior (S), and inferior 

(I) directions are indicated in the rotating coordinate frame of the patient on the test bench 

and in the world reference frame for the C-arm. 

For the test bench system, scans were performed at 100 kV (with 2.0 mm Al + 0.2 

mm Cu added filtration) and 0.63 mAs per projection. System geometry was set to 

SDD = 120 cm and SAD = 60 cm, and the detector was read at 768 × 768 pixel format 

with 0.556 mm square pixels. A fairly complete sampling of vertices was obtained by a 

combination of rotations (1° to 360° in 1° increments of the rotation stage, equivalent to 

source-detector rotation) and tilts (–30° to +30° in 2.5° increments of a tilt platform, 

equivalent to source–detector tilt). Since the tilt platform was placed on top of the rotary 

stage (as in Figure 6.2a), this yields an incomplete sampling pattern, particularly in the 

direction orthogonal to the tilt platform; therefore, the tilt platform was also physically 

rotated by 90° on the rotation axis for additional coverage of the sphere. From each circular 

scan, 182 samples were used, giving 10,556 vertices in total (182 views × 2 tilt platform 

orientations × 29 tilt angles). Geometric calibration of each 360° orbit was performed using 
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a BB phantom and the method described in Cho et al (2005). Task-driven orbits were 

formed by selecting 364 vertices from this set of projection data as nearest match to the 

solution of Equation (6.2). The scan dose was evaluated by measurement of air kerma using 

a 0.6 cc air ionization chamber placed within a 16 cm diameter computed tomography dose 

index (CTDI) phantom at isocenter (Fahrig et al 2006, Daly et al 2006) and computing the 

weighted sum (denoted 𝐷𝑤, given by the 1/3 and 2/3 weighted sum of the central and 

average peripheral dose, respectively). 

For the robotic C-arm platform, system geometry was set to SDD = 120 cm and 

SAD = 80 cm, and the detector was read at 960 × 1240 pixel format with 

0.308 × 0.308 mm2 pixels. Rotation and tilt parameters for the C-arm gantry were 

uploaded to the Artis control system as an XML file, and individual projections were 

acquired at 102 kV and 0.18 mAs per projection to avoid saturation of the detector with 

AEC disabled and no added filtration, resulting in 63 mAs total for the scan. Raw projection 

data were collected using an engineering workstation, and the self-calibration method was 

used for geometric calibration (described in Chapter 5, Ouadah et al 2016), since only 

vertices belonging to non-circular orbits were collected (cf., full sampling of vertices on 

the test bench). 

The following sections outline experiments that translate the task-driven imaging 

method to the context of neuro-IR. First, the embolization of an intracranial aneurysm was 

simulated in a digital anthropomorphic head phantom to demonstrate the use of a multi-

task objective function, progressing from non-anthropomorphic phantoms in Chapter 4. 

The CBCT test bench described above was then used to test the embolization scenario in 

real data. Next, AVM embolization was digitally simulated to show the effect of 
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surrounding anatomy on optimal orbits by moving the location of stimuli within the 

(digital) cranium and repeating the task-driven optimization. Finally, the task-driven 

imaging framework was implemented on the robotic C-arm system described above to 

demonstrate task-driven source-detector trajectories computed and exercised on a real 

clinical system. 

6.3.2. Multi-Task Optimization 

The first experiment emulated the assessment of an intracranial aneurysm coil 

embolization. Postoperative MDCT or CBCT is commonly used to check for complications 

about the coil, including perforation of the aneurysm and associated hemorrhage. A digital 

anthropomorphic head phantom was created with a centrally located, coiled aneurysm 

(Figure 6.3a). The embolization coil was modeled as a rough ellipsoid with principal axes 

of 20 × 12 × 13 mm3 and attenuation coefficient  𝜇 = 0.8 mm-1 (corresponding to ~8% 

filling by volume of platinum wire using a 90 kV x-ray beam). Six 11 mm diameter spheres 

were placed around the coil representing ICH with contrast 0.002 mm-1 relative to 

background (similar to fresh blood in brain). Simulations used a monoenergetic forward 

model with Poisson noise added to approximate realistic levels of x-ray quantum noise. 

System geometry was the same as the test bench geometry described in Section 6.3.1 with 

uniform sampling in 𝜃 from 1° to 360° and uniform sampling in 𝜙 from −50° to 50° (in 1o 

increments). Bare-beam fluence was modeled with 1×105 photons per detector element, 

approximating an exposure of 85 mAs with a beam energy of 90 kV. 

The task function corresponding to the 11 mm spherical hemorrhage is shown in 

Figure 6.3e. A low-frequency task function was chosen for detecting the low-contrast, 

diffuse hemorrhage and a maxi-min, multi-location objective was solved with 30 locations 
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surrounding the embolization coil using the on-the-fly computation approach described in 

Chapter 4. The locations were uniformly distributed over an ellipsoid about the coil with 

principal axes of 36 × 24 × 24 mm3. The source–detector orbit was parameterized using 

nine periodic basis functions with 𝜙 constrained to ±50°. The CMA-ES algorithm was 

applied using 𝜆CMAES = 40 and five initializations corresponding to circular orbits with 

𝜙 = {−50°, −25°, 0°, 25°, 50°}. The solution with highest maxi-min detectability was 

chosen and compared with a standard circular orbit using the same number of projections 

and bare-beam fluence (exposure). Image reconstruction for both the task-driven orbit and 

reference circular orbit solved the PL objective using dynamically relaxed ordered subsets 

with the number of subsets decreasing every five iterations in the sequence {54, 24, 12, 6, 

4, 2, 1} for a total of 50 iterations to accelerate convergence. Quadratic regularization 

strength with 𝛽 = 1×105 was manually selected to balance the tradeoff between noise and 

resolution, and the 3D image was reconstructed with 480 × 480 × 500 voxels with 0.5 mm 

cubic voxels. 

6.3.3. Task-Driven Imaging in Real Data (CBCT Test Bench) 

An initial physical experiment used the CBCT test bench to further investigate the 

embolization scenario described in Section 6.3.2. In this case, a custom anthropomorphic 

phantom (The Phantom Laboratory, Greenwich, NY) with a human skull surrounded by 

tissue-equivalent plastic and a cranial vault filled with brain-equivalent gelatin 

(𝜇 = 0.0188 mm-1) was used. A silicone vessel (Vascular Simulations, Stony Brook, NY) 

representing an intracranial aneurysm in the internal carotid artery was placed in the 

interior of the cranium. Four 12.7 mm diameter acrylic spheres (𝜇 = 0.0195 mm-1) were 

attached to the external surface of the aneurysm to simulate ICH as illustrated in 
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Figure 6.3b. An initial CBCT scan was acquired to provide a preoperative image volume. 

The intracranial aneurysm was then instrumented with a stent and platinum embolization 

coils by an interventional radiologist under fluoroscopic guidance until the aneurysm was 

realistically filled. The phantom was then scanned according to the protocols described in 

Section 6.3.1 to compare the task-driven orbit with a standard circular trajectory. 

The optimal trajectory was solved using a multi-location, maxi-min objective for 

three locations posterior to the embolization coil with the task function shown in 

Figure 6.3f describing detection of the low-frequency, low-contrast hemorrhage (identical 

to the task function described in Section 6.3.2 and shown in Figure 6.3e). The optimal 

trajectory was computed using a parameterized orbit of 29 periodic basis functions to allow 

a higher degree of flexibility in the orbit and constrained within ±30° tilt to account for 

physical constraints of the test bench experimental setup. The on-the-fly computation 

approach and the same CMA-ES optimization parameters as in Section 6.3.2 were used. 

As described in Section 6.3.1, the 364 nearest vertices from the projection data acquired 

over the full range in 𝜃 and 𝜙 were selected for the task-driven orbit. Image reconstruction 

for both the task-driven orbit and reference circular orbit used the quadratic PL algorithm 

with the same parameters as in Section 6.3.2, except the regularization parameter 𝛽 was 

increased slightly to 7 x 105 to account for differences in fluence levels. 
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Figure 6.3. Summary of experiments testing task-driven imaging in neuroradiology. (a) 

Simulation of the postoperative assessment of an embolization coil using multi-location 

optimization to detect surrounding hemorrhage. (b) Visualization of hemorrhage near an 

embolization coil using a CBCT test bench. (c) Simulation of an AVM at various locations 

in the cranium to observe the effect of surrounding anatomy on the optimal orbit. (d) An 

AVM model created in an anthropomorphic head phantom to demonstrate the full 

workflow of task-driven imaging on a robotic C-arm. (e–h) The task functions, 𝐻task(𝒇; 𝑣), 
used in experiments (a–d), respectively. 

6.3.4. Effect of Surrounding Anatomy 

A similar simulation was performed to examine the effect of the location of the 

stimulus within the cranium on the optimal task-driven trajectory — in this case, 

embolization of an AVM using a highly-attenuating polymeric glue analogous to Onyx 

(Medtronic, Dublin Ireland) (Leyon et al 2014). Postoperative assessment of AVM 

embolization includes localizing untreated regions of the AVM nidus. This experiment 

used a digital anthropomorphic head phantom as illustrated in Figure 6.3c, locating a 

simulated AVM in either the skull base, the lateral cranium, or the crown of the skull. The 
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central core of the AVM after embolization was represented by a sphere of diameter 10 mm 

with 𝜇 = 1.0 mm-1 to represent a nidus of vessels filled with high-contrast glue. Six 5 mm 

diameter low-contrast spheres were placed around the central core with a contrast of 

0.005 mm-1 compared to the soft-tissue background to represent potential untreated sites. 

The simulation mimicked the robotic C-arm system geometry with bare-beam fluence set 

to 1×104 photons per detector element to match the exposure of the robotic C-arm system. 

A monoenergetic forward model with Poisson noise added to approximate a realistic level 

of x-ray quantum noise was used to generate 𝑁proj = 360 projection views over 360°. 

Six mid-frequency imaging tasks were defined at the location of each simulated, 

untreated site for multi-task optimization using the maxi-min objective (Figure 6.3g). In 

this experiment, mid-frequencies were emphasized to capture the task of distinguishing a 

small vessel adjacent to the AVM nidus. This experiment used the precomputation 

approach described in Chapter 4 to utilize the second proposed method. Although more 

accurate in calculating MTF(𝒇,𝛀; 𝑣) and NPS(𝒇,𝛀; 𝑣), the precomputation approach is 

memory intensive, thereby limiting the total number of imaging tasks. To make use of the 

second proposed parameterization of the source trajectory described in Chapter 4, b-spline 

basis functions were used with eight equally spaced knots, and the trajectories were 

constrained to tilt angles in the range 𝜙 = −30° to 30° and rotation angles 𝜃 = 1° to 360° 

to match the extent of the robotic C-arm system. As trajectories from b-spline basis 

functions have increased flexibility over periodic basis functions, the CMA-ES 

optimization algorithm was used to estimate 𝛀̂ using 𝜆CMAES = 200 with 6 restarts and 

random uniform initialization. 
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Quadratic PL reconstructions for the optimal trajectory and a circular trajectory 

(generated with the same bare-beam fluence and number of projections) were performed 

using 200 iterations with 10 subsets to stabilize convergence during reconstruction and 

regularization strength 𝛽 = 1×105, again to balance noise with resolution at the task 

location. Images were reconstructed with 512 × 512 × 512 voxels and 0.5 mm cubic voxel 

size. 

6.3.5. Task-Driven Imaging on a Robotic C-Arm 

The full task-driven imaging framework was tested on the robotic C-arm using an 

AVM model within an anthropomorphic head phantom (The Phantom Laboratory, 

Greenwich NY) similar to that in Section 6.3.3 and illustrated in Figure 6.3d. The brain-

like background was the same as in Section 6.3.3 (𝜇 = 0.0188 mm-1) and the AVM model 

was created by clustering 10 Teflon spheres (𝜇 = 0.03 mm-1) and six acrylic spheres 

(𝜇 = 0.0195 mm-1) ranging in diameter from 5–15 mm at the crown of the skull. A prior 

image was obtained on a CBCT test bench and registered to the robotic C-arm geometry. 

Six imaging tasks were defined at the edges between the Teflon and acrylic spheres, 

presenting a mid-frequency task function with contrast 0.0007 mm-1 as shown in 

Figure 6.3h (similar to the task described in Section 6.3.4). Orbit optimization was 

performed in the same manner as in Section 6.3.4 using the precomputation approach. 

The phantom was subsequently imaged on the robotic C-arm operated in step-and-

shoot mode to move through the optimal task-driven orbit (𝑁proj = 360 at a fixed technique 

of 102 kV and 0.18 mAs per projection). Quadratic PL reconstruction was again performed 

using 200 iterations with 10 subsets and 0.5 mm cubic voxels on a 700 × 700 × 700 voxel 
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grid, with 𝛽 lowered to 1×103.5 to increase resolution at the task location. For comparison 

with a standard circular orbit, a low-dose research scan protocol was used (𝑁proj = 496 

over a 200° circular orbit with the same technique as above). Of the 496 acquired 

projections, 360 approximately equally spaced projections were used for reconstruction for 

fair comparison to the task-driven orbit. The same PL parameters were applied for image 

reconstruction for both the task-driven and circular orbit. 

6.4. Results 

6.4.1. Multi-Task Optimization 

Results from the embolization coil imaging experiment are summarized in 

Figure 6.4. The optimization sought the maxi-min solution for detectability of hemorrhage 

over an ensemble of locations (Figure 6.4a) surrounding an embolization coil. Compared 

to a conventional circular orbit, the resulting task-driven orbit exhibits a tilt and low-

frequency excursions from a plane as shown in Figure 6.4b. The orbit is clipped at two 

positions due to the ±50° collision constraint. Figure 6.4c shows maps of fluence through 

six of the 30 stimulus locations for all possible source rotations / tilts. These maps illustrate 

the importance of data fidelity in selecting a particular orbit. Both the task-driven orbit 

(pink) and conventional circular orbit (green horizontal line) are shown superimposed on 

the fluence maps, showing that the fluence through each stimulus depends on location with 

respect to surrounding anatomy and the embolization coil. The task-driven orbit tends to 

vertices that avoid the strong attenuation of the embolization coil (evident as a “black hole” 

in the fluence maps through which few x-rays are transmitted) and appears to exercise an 

orbit involving fewer redundant view angles over the 360° orbit — i.e., if rays pass through 
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the coil on one side of the trajectory, a tilt is sought for the opposing view to avoid the coil. 

While it is not possible to completely avoid rays passing through the coil for all stimulus 

locations, redundancy in the orbit allows collection of asymmetric views to compensate 

low-fidelity data in the opposing view. 

 

Figure 6.4. Task-driven orbit design for imaging about an embolization coil. (a) Thirty 

locations (orange markers) in proximity to the embolization coil mark the locations at 

which detectability of hemorrhage was computed in iterative optimization. (b) The task-

driven (pink) and standard circular (green) orbits. (c) Orbits (𝜃, 𝜙) superimposed on maps 

showing the fluence passing through six of the 30 stimulus locations. 

CBCT images reconstructed from the circular and task-driven orbits are shown in 

Figure 6.5. Images for the circular orbit are degraded severely in proximity to the 

embolization coil due to decreased data fidelity (high attenuation) for measurements 

passing through the coil. Note that this degradation is entirely due to measurement statistics 

(noise) since the simulation in this study did not include polyenergetic effects. Strongly 

correlated noise (streaks) around the coil obscure many of the stimuli. By contrast, the task-

driven orbit improved visualization of the simulated hemorrhages, and while high-

frequency noise was elevated at other locations in the head (attributed to view sampling 

effects), the streaks and shading at the specified locations of interest were markedly 
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reduced. The multi-task design objective facilitates improved image quality at all locations 

around the embolization coil, effectively pushing image quality degradations away from 

the task locations. 

 

Figure 6.5. Task-driven imaging of simulated hemorrhage about an embolization coil. The 

circular orbit resulted in strong photon starvation artifacts / noise in proximity to the coil. 

The task-driven orbit mitigated such effects and improved conspicuity of simulated lesions 

about the coil. 

6.4.2. Task-Driven Imaging in Real Data (CBCT Test Bench) 

Figure 6.6 summarizes the test bench experiments involving an embolization coil 

in an anthropomorphic phantom. The top row of images (acquired before delivery of the 

coil) shows the locations of the simulated spherical hemorrhage. For this experiment, the 

task-driven orbit design focused on maximizing detectability at three locations posterior to 

the aneurysm. The shape of the designed orbit exhibits interesting features including an 

overall tilt to the orbit — selecting projections that avoid alignment of the highly 

attenuating skull base with the target ROI. Additionally, the task-driven orbit appears to 

seek non-redundant views with a slight wobble in the orbit. 
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For a scan comprising 𝑁proj = 364 projections over 360°, the air kerma was 

𝐷𝑤 ~ 21.1 mGy, recognizing that the dose for a task-driven orbit (with oblique views up to 

30° off the central axial plane) likely departs somewhat from the dose for a circular scan. 

To the extent that the projection views are equally distributed above and below the central 

axial plane, the difference in dose is believed to be small. 

Images from a standard circular orbit exhibit poor visualization in the ROI, and 

both the posterior hemorrhage and the legs of the stent used to hold the embolization coil 

in place are obscured by streaking and blooming effects due to low-fidelity measurements 

through the coil. By contrast, the task-driven trajectory shows good visualization of the 

posterior bleed as well as the legs of the stent. Residual contrast agent in the simulated 

vasculature is also evident (whereas the preoperative scan shows only the lumen of the 

simulated vessel). Since the task-driven optimization specified the posterior hemorrhage 

as the imaging task, it did not improve image quality anterior to the coil. Additionally, 

although the performance prediction and system model ignored polyenergetic effects, the 

models were sufficiently accurate to identify an orbit yielding measurable improvement in 

image quality. 

6.4.3. Effect of Surrounding Anatomy 

Figure 6.7 shows the fluence maps, task-driven trajectories, and reconstructed 

images of a simulated AVM — with the goal of optimizing detectability for six locations 

around the high-contrast embolization of an AVM nidus — in the skull base, the lateral 

cranial vault, or the interior crown of the skull. The task-driven approach solved the maxi-

min objective for each ROI shown in Figure 6.7a–c. Fluence maps are shown for stimuli 

that exhibited the greatest increase in detectability. Analogous to the embolization coil in 
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Section 6.4.1, the embolized AVM strongly influences the fluence maps in each ROI, but 

the fluence maps differ for each location due to the differences in surrounding anatomy — 

influencing the overall attenuation so as to drive the solution to a distinct optimal orbit for 

different locations in the head and demonstrating that knowledge of both the surrounding 

anatomy and the location of interest for the imaging task(s) are necessary for trajectory 

optimization. 

CBCT reconstructions at the stimulus exhibiting the greatest increase in 𝑑′ are 

shown in Figure 6.7d–f, comparing results for a circular orbit to task-driven orbits. The 

spherical stimulus is more conspicuous in the task-driven images due to a reduction and / 

or reorientation of streaking and blooming effects arising from the high-contrast AVM 

embolization. Detectability for tasks at the skull base improved on average by 20.2%, at 

the lateral cranium on average by 28.6%, and at the crown on average by 7.0%. The smaller 

increase in 𝑑′ at the crown is due to the fact that there is little room for improvement in a 

ROI for which rays traversing the stimulus is already low. 
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6.4.4. Task-Driven Imaging on a Robotic C-Arm 

The AVM model imaged on the robotic C-arm is shown in Figure 6.8. The task-

driven trajectory used a maxi-min objective over six task locations, as shown in 

Figure 6.8a, giving an increase in 𝑑′ at all locations compared to a circular orbit. The lowest 

increase in 𝑑′ was 7.0%, and the greatest increase was 13.0%, with an average increase of 

10.3%. As illustrated in Figure 6.8a, the task-driven orbit favors large, positive tilt angles, 

with an excursion at 𝜃 = 170° that provides higher fidelity (lower attenuation) lateral views. 

Continuity of the scan orbit is ensured by the underlying b-spline model, but there was no 

constraint that the C-arm pose should match at the start (𝜃 = 0°) and stop (𝜃 = 360°) 

locations, which explains the observed discontinuity at the endpoints of the orbit. As shown 

in Chapter 4, this increased flexibility can, in certain cases, be advantageous in orbit design. 

The images in Figure 6.8b show a slight improvement in visibility of the acrylic spheres 

for the task-driven images in the axial, sagittal, and coronal images. 

The air kerma was measured as described in Section 6.3.1 for a low-dose research 

protocol with a circular orbit and 𝑁proj = 360 projections over 200°, giving a value of 

𝐷𝑤 ~ 9.0 mGy, recognizing that the dose for a task-driven scan may differ from that of a 

circular scan due to oblique views and differences in attenuation by the table. 
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Figure 6.8. A simulated AVM imaged on the robotic C-arm using circular and task-driven 

trajectories. (a) Illustration of circular and task-driven orbits (green and pink, respectively). 

(b) CBCT reconstructions for each orbit, showing improved visualization of low-contrast 

spheres (highlighted by black dashed circles). The task-driven orbit exhibits reduced 

blurring of sphere edges, most noticeably in the axial and coronal planes. 

6.5. Discussion and Conclusions 

The work reported in this chapter builds on the theoretical framework detailed in 

Chapter 4 and the practical method for geometric calibration of non-circular orbits in 

Chapter 5 to investigate particular imaging scenarios in interventional neuroradiology — 

e.g., detection of hemorrhage in proximity to a coiled aneurysm and detection of untreated 

regions within an AVM nidus. The results demonstrate improvements in detectability index 

for task-driven orbits, with visible improvements in both simulated and real CBCT images. 

The optimized orbits generally sought the highest fidelity (lowest attenuation) 

views and tended toward asymmetric vertices to reduce data redundancy in a 360° orbit. In 

the task-driven orbit, vertices separated by 180° were oblique relative to one another so 

that a lower fidelity view in the first half of the orbit may be compensated in the second 
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half of the orbit. The task-driven orbits resulted in improved visualization of ICH due to 

reduced noise and improved sampling in the ROI and by distributing streak artifacts to 

interfere less with detection of the stimuli. The work also investigated the effect of stimulus 

location and surrounding anatomy on trajectory design for different sites within the 

cranium. As demonstrated in Section 6.4.3., the cranial anatomy local to the ROI can 

change the optimal orbit for the same task, showing the sensitivity of the optimization to 

both the anatomy and instrumentation or implants. 

Additionally, this work demonstrated operation of a clinical robotic C-arm for task-

driven imaging by moving it through an optimal, non-circular orbit designed to improve 

performance of imaging tasks. A complex, task-driven orbit was demonstrated in a realistic 

clinical scenario, encompassing calculation of the task-driven orbit from a prior CBCT 

image, transfer of the trajectory to the robotic C-arm, acquisition of a non-circular orbit, 

geometric calibration of the non-circular orbit using a self-calibration technique, and 

reconstructing the 3D image using MBIR. 

For this scenario, the effect of regularization in MBIR was apparent in the final 

images. Because the circular orbit involved lower fidelity projection data, the 

regularization was increased accordingly and resulted in increased blur of the sphere edges. 

The task-driven orbit, on the other hand, gathered higher-fidelity projection data and was 

less reliant on regularization to mitigate noise, yielding clearer delineation of the sphere 

edges. These results demonstrate the first successful implementation of task-driven 

imaging on a real clinical system for a semi-realistic anatomical context and imaging task. 

The experiments involved optimization over a small number of task functions 

limited to a small ROI in the cranium using the maxi-min objective function, which ensures 
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that imaging performance is not sacrificed in some locations in favor of others. There may 

very well be situations for which a different, multi-location objective would be a better 

choice. It may also be of interest to perform the optimization over larger ROIs by including 

task locations farther from the attenuating object to give more uniform image quality over 

a larger ROI. In theory, one could define locations throughout the entire cranial vault as 

locations of interest to generate an orbit that provides globally increased detectability. In 

addition, imaging tasks of various frequency content and contrast could be included in the 

optimization to allow uncertainty in the stimulus. 

It has been established that the detectability index can be related to real observer 

performance by way of area under the receiver operating characteristic curve through an 

error function (Tward et al 2007). Given the shape of an error function, the observer 

performance increases with 𝑑′ almost linearly when 𝑑′ is close to zero. As 𝑑′ increases, the 

corresponding increase in observer performance loses its linear dependence and the slope 

of the function decreases toward zero. The non-linear relationship between 𝑑′ and observer 

performance indicates that it is not always guaranteed that an increase in 𝑑′ will result in a 

visibly improved image. The relationship between 𝑑′ and observer performance is an 

important point to consider when evaluating task-driven images, and an adjusted task-

driven optimization function that takes this relationship into account may be of value for 

future work. 

Another important point of future work is the expansion of parameters contained 

within the optimization to further improve the orbit and overall imaging chain — for 

example, scan technique factors (kV and mAs) and reconstruction parameters 

(regularization constant 𝛽). Such a task-driven CBCT scanning process presents an 
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ambitious new paradigm for prospective optimization of image quality and / or reducing 

patient dose. For flexible imaging platforms such as a robotic C-arm, additional DoF could 

be incorporated in defining the source-detector trajectory beyond the two (𝜃, 𝜙) 

investigated in the results reported above — for example, translation of the source and / or 

detector for non-isocentric orbits with large FOV. 

In this work, constraints were imposed on the tilt angle to conservative collision 

limits and required a 360o total orbit in all cases. Changing or removing these constraints 

may be of interest to optimal short-scan trajectories and extension of task-driven imaging 

to tomosynthesis in which the optimal set of limited projection data is solved for difficult 

imaging scenarios. B-spline knot locations were also constrained to be equally spaced 

along the trajectory, but a fixed sampling interval may not necessarily be optimal. The 

sampling of b-spline knots represents another parameter that could be optimized, for 

example, by allowing a higher sampling density of knots for views carrying spatial 

frequency content consistent with the imaging task. 

In the experiments presented, the anatomical model was an exact representation of 

the object (i.e., the patient) and did not consider potential uncertainty in the anatomical 

model. In realistic clinical scenarios, there may be extraneous regions of high attenuation 

within the patient stemming from surgical tools, contrast agent, and / or embolization sites 

that were not accounted for in the planning or anatomical model of the patient. This 

limitation could be explored further by representing the patient model and parameters that 

define the imaging tasks by probability distributions, rather than fixed quantities. A robust 

estimate of the ensemble optimum could be chosen from the resulting distribution of orbits. 
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Recent work (Gang et al 2020) aims to eliminate uncertainty in the anatomical model by 

performing the optimization over all possible metal location. 

Another limitation of relying on an anatomical model is the image quality of 𝝁𝐩𝐫𝐢𝐨𝐫. 

It can be envisioned that — depending on clinical workflow — the source of 𝝁𝐩𝐫𝐢𝐨𝐫 could 

be a diagnostic quality MDCT acquired prior to a procedure or a CBCT acquired at the 

beginning of the procedure. The latter raises potential limitations in instances of strong 

truncation, which introduces error in the forward model in the optimization. T1- or T2-

weighted MRI is typically not a useful input model, but numerous methods for synthesizing 

a CT-like image (i.e., an image with intensities proportional to electron density) from MRI 

have emerged in the last decade (Chartsias et al 2017, Lee et al 2017, Roy et al 2017). 

The current work compared the image quality in task-driven and conventional 

circular orbits under conditions of matched bare-beam exposure. Dosimetry (e.g., 𝐷𝑤 

measurements) for task-driven orbits introduces some complexity associated with oblique 

projections and is difficult to prescribe for cases in which the orbit is not known a priori. 

Such considerations raise interesting future work in dosimetry for non-circular orbits, 

including measurement and Monte Carlo methods. 

Further testing of task-driven imaging methods would benefit from a more 

streamlined interface for executing non-circular orbits on the robotic C-arm. In the current 

work, non-circular orbits were realized using a step-and-shoot method by directing the 

robot to each vertex via an external workstation. Images were acquired using a 2D 

radiographic imaging protocol at each vertex, collected individually, and processed offline. 

This time-consuming workflow (approximately 1.5 hours for a single scan in the work 

presented above) is not suitable to clinical studies and would be greatly improved by an 
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interface allowing 3D imaging protocols with orbit and vertex definition consistent with 

smooth, continuous motion of the robot. 

Overall, task-driven orbits appeared to be of most benefit in difficult imaging 

scenarios in which highly attenuating objects in the FOV cause strong streaks and other 

metal artifacts that confound visualization of nearby, low-contrast objects. Such difficult 

imaging scenarios are common in IGI, in which CBCT images acquired during the 

procedure often include metal instrumentation, and ROIs tend to be in proximity to such 

instrumentation. Application of task-driven imaging in scenarios beyond neuroradiology 

may be of similar benefit — for example, orthopedic imaging, dental imaging, and 

musculoskeletal imaging, where metal implants are a common source of image artifacts 

and reduced image quality. 
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Chapter 7: Summary and Conclusions 

7.1. Key Findings of the Thesis 

7.1.1. 3D–2D Registration as a Basis for Rigid Motion Compensation and 

Geometric Calibration 

In Chapter 2 a fiducial-free method to mitigate motion artifacts was presented using 

3D–2D image registration that simultaneously compensates for residual errors in the 

intrinsic and extrinsic parameters of geometric calibration. The 3D–2D registration process 

registered each projection to a prior 3D image by maximizing the GO similarity objective 

using the CMA-ES optimizer. The resulting rigid transforms were applied to the system 

PMs, and a 3D image was reconstructed via MBIR. Phantom experiments were conducted 

using a robotic C-arm to image a head phantom undergoing 5–15 cm translations and 5–

15o rotations during image acquisition. To further test the algorithm, clinical images were 

acquired with a CBCT head scanner in which long scan times were susceptible to 

significant patient motion. For phantom studies, SSIM between motion-free and motion-

compensated images was > 0.995, with significant improvement (p < 0.001) compared to 

the SSIM of uncompensated images. Additionally, motion-compensated images exhibited 

a PSF with FWHM comparable to that of the motion-free reference image. Qualitative 

comparison of the uncompensated and motion-compensated clinical images demonstrated 

substantial visible improvement in image quality after motion compensation. These studies 

indicate that the method could provide a useful approach to motion artifact compensation 

under assumptions of local rigidity, as in the head and pelvis. 
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A similar 3D–2D registration method was used in Chapter 5 for geometric 

calibration of non-circular source–detector orbits. The method used the NGI similarity 

objective for speed and the CMA-ES optimizer for robustness against local minima and 

changes in image content. The resulting transformation provided a “self-calibration” of 

system geometry. The algorithm was tested in phantom studies using both a CBCT test-

bench and a robotic C-arm for circular and non-circular orbits. Self-calibration 

performance was evaluated in terms of the FWHM of the PSF in CBCT reconstructions, 

RPE of BBs placed on each phantom, and overall image quality and presence of artifacts 

in CBCT images. Similar to results in Chapter 2 for 3D–2D registration, self-calibration 

improved the FWHM for all cases — e.g., on the CBCT bench, FWHM = 0.86 mm for 

conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar 

improvements were measured in RPE — e.g., on the robotic C-arm, RPE = 0.73 mm for 

conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible 

improvement was evident in CBCT reconstructions using self-calibration, particularly 

about high-contrast, high-frequency objects (e.g., temporal bone air cells and a biopsy 

needle). The results indicated that self-calibration can improve even upon systems with 

presumably accurate geometric calibration and is applicable to situations where 

conventional calibration is not feasible, such as complex non-circular CBCT orbits and 

systems with irreproducible source–detector trajectory. The 3D–2D registration methods 

of Chapter 2 and Chapter 5 are highly parallelizable, and the combined compensation of 

patient motion and residual geometric calibration errors provides added benefit that could 

be valuable in routine clinical use. 
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7.1.2. Deformable Motion Compensation Using a 3D Autofocus Method 

In Chapter 3, an image-based motion compensation method was developed to address 

challenges related to deformable patient motion and thereby improve CBCT guidance in 

soft-tissue interventions (e.g., liver chemoembolization). Motion compensation was 

achieved by selecting a set of small ROIs in the uncompensated image to minimize a cost 

function consisting of an autofocus objective and spatiotemporal regularization penalties. 

Motion trajectories were estimated using CMA-ES and used to interpolate a 4D 

spatiotemporal MVF. The motion-compensated image was reconstructed using a modified 

FBP approach. Being purely image-based, the method does not require additional input 

besides the raw projection imaging data. 

Experimental studies investigated: (1) various autofocus objective functions, analyzed 

using a digital phantom with a range of motion magnitude; (2) spatiotemporal 

regularization, studied using a CT dataset from TCIA with deformable motion of variable 

magnitude; and (3) performance in complex anatomy, evaluated in cadavers undergoing 

simple and complex motion imaged on a CBCT-capable mobile C-arm system. Gradient 

entropy was found to be the best autofocus objective for soft-tissue CBCT, increasing 

SSIM by 42% to 92% over the range of motion magnitudes investigated. The optimal 

temporal regularization strength was found to vary widely (0.5–5 mm-2) over the range of 

motion magnitudes investigated, whereas optimal spatial regularization strength was 

relatively constant (0.1). In cadaver studies, deformable motion compensation was shown 

to improve local SSIM by ~17% for simple motion and ~21% for complex motion and 

provided strong visual improvement of motion artifacts (reduction of blurring and streaks 

and improved visibility of soft-tissue edges). The studies demonstrate the robustness of 
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deformable motion compensation to a range of motion magnitudes, frequencies, and other 

factors (e.g., truncation and scatter). The results also include initial application of the 

deformable motion compensation method to an ongoing clinical study, demonstrating its 

potential utility under conditions of realistic, complex, deformable motion. Remaining 

challenges to clinical translation are discussed below, including the need for robust 

initialization and faster computation time. 

7.1.3. Task-Driven Source–Detector Trajectories 

In Chapter 4, a mathematical framework was reported for the design of orbital 

trajectories that are optimal to a particular imaging task(s) in CBCT systems that have the 

capability for general source–detector positioning. The framework allows various 

parameterizations of the orbit as well as constraints based on imaging system capabilities. 

An MBIR method was applied to accommodate non-standard system geometries. We used 

analytical models of local noise and spatial resolution that include dependencies of the 

reconstruction algorithm on patient anatomy, x-ray technique, and system geometry. These 

image quality predictors served as inputs to task-based imaging performance in terms of 

the detectability index, 𝑑′, which was optimized with respect to the parameters of source–

detector orbit in CBCT data acquisition. We investigated the framework for task-driven 

source–detector trajectory design in several examples to examine the dependence of 

optimal trajectories on the imaging task(s), including location and spatial-frequency 

dependence. A variety of multi-task objectives were also investigated, and the advantages 

to imaging performance were quantified in simulation studies. 

In Chapter 6, the methodology as detailed in Chapter 4 was applied to scenarios 

emulating imaging tasks in neuro-IR. The approach was applied to simulated cases of 
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endovascular embolization of an aneurysm and AVM, tested with real data using a CBCT 

test bench, and implemented for the first time on a clinical interventional robotic C-arm. 

Task-driven trajectories were found to generally favor higher fidelity (i.e., less noisy) 

views, with an average increase in 𝑑′ ranging from 7.0% to 28.0%. Visually, increases in 

𝑑′ resulted in improved conspicuity of stimuli by reducing noise and altering noise 

correlation to a form distinct from the spatial frequencies associated with the imaging task. 

The improvements in detectability and the demonstration of the task-driven workflow 

using a real interventional imaging system show the potential of the task-driven imaging 

framework to improve imaging performance on motorized, multi-axis C-arms. 

7.2. Optimization Frameworks 

Throughout the thesis, the methods invoked principles of optimization to find the 

parameters that maximize or minimize an objective function. Optimization problems can 

effectively be broken down into three components: (1) the objective function, whose value 

is maximized or minimized over the course of the optimization; (2) a mathematical model 

of the input values (e.g., geometric transformation model, detector signal and noise model, 

etc.) included in the objective function; and (3) the optimization algorithm that finds the 

optimal parameters. Each component plays a role in finding the optimal solution and 

avoiding local minima in a complex search space. 

Table 7.1 summarizes these components of the optimization methods presented in 

Chapters 2–6. The optimizations for rigid motion compensation and self-calibration are 

quite similar, differing only in the choice of objective function (GO for rigid motion 

compensation vs. NGI for self-calibration). We found GO to be the more robust objective 
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under conditions of content mismatch between the 3D and 2D image data, while NGI was 

faster by avoiding a median operation. The method for deformable motion compensation 

involved the most complex objective function, with two regularization functions (temporal 

𝑅𝑡 and spatial 𝑅𝐱) added to the autofocus objective to encourage smooth motion in both 

time and space. Similarly (but in a context quite distinct from motion estimation), PL image 

reconstruction uses spatial regularization (𝑅) to encourage smoothness in the reconstructed 

image. The regularization terms in each of these objectives works to ensure that the 

resulting solution is physically realistic, to enforce some property believed to be true for 

the result, and to reduce the complexity of the search space. 

The mathematical model for 2D projection image formation in rigid motion 

compensation and self-calibration is simply the forward projection of a 3D object to 

generate a 2D projection using Beer’s Law. For task-driven imaging and PL reconstruction, 

the model is extended to include a Poisson distribution of individual photons reaching the 

detector. By contrast, the 3D image domain model underlying the deformable motion 

compensation method does not rely on the generation of DRRs, and the motion model was 

local 6 DoF rigid motion (a separate 6 DoF transform at each ROI in the image), with the 

FBP reconstruction modified to include “warped” backprojection. 
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As seen in Table 7.1, much of this work invoked the CMA-ES optimizer. As 

discussed in previous chapters, CMA-ES is attractive because it is derivative-free and is 

robust to local minima in the search space. The search space for non-convex optimization 

problems (such as those presented in this thesis) can be highly complex and becomes 

increasingly complex with an increasing number of parameters. The ability to avoid local 

minima is paramount, and the performance of CMA-ES can be improved by judicious 

selection of the parameters 𝜆CMAES and 𝜎CMAES. Increasing 𝜆CMAES increases the number 

of function evaluations at each iteration, thereby increasing the robustness of the algorithm 

to local minima (at the cost of runtime / computer burden). Increasing 𝜎CMAES expands the 

extent of the search space, which can also help the algorithm avoid local minima. In 

contrast, PL estimation used an optimization algorithm based on gradient descent, in which 

the gradient of the function is evaluated at each iteration of the optimization and used to 

direct the 3D image estimate in the “direction” (i.e., the voxel value) that maximizes the 

objective. There is a vast spectrum of optimization methods in the scientific literature, both 

deterministic (e.g., gradient-based) and stochastic (e.g., CMA-ES), that may be applicable 

to the methods described in this thesis, typically involving trade-offs of speed and 

robustness. Further investigation of alternative optimization algorithms may be of interest 

for future work. 
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7.3. Future Work and Integration with Clinical 

Workflow 

Preservation (or improvement) of workflow is essential to the success of technology 

integration in clinical use, and IGI is no exception. Innovation within such complex 

scenarios must thoughtfully consider routine workflow (and variations in workflow), the 

diversity and heterogeneity of systems already in use, and the perspectives of all 

stakeholders — including not only the interventionalist, but the entire care team and even 

the hospital / healthcare system surrounding the delivery of care (e.g., healthcare 

information technology integration, cost constraints, and reimbursement models). At a 

minimum, technology translation must consider how its introduction in clinical workflow 

will affect the time, cost, and safety associated with its clinical use. 

The rigid motion compensation and self-calibration methods of Chapters 2 and 5 

both use 3D–2D registration, taking advantage of a high-quality prior image that is often 

available in the context of IGI. In some clinical scenarios, the availability of a reliable, 

patient-specific prior image may be unrealistic (e.g., emergent intervention or diagnostic 

imaging), but in many IGI scenarios, such an image is available from preoperative planning 

and / or intraoperative imaging performed at the beginning of the case. The results showed 

that 3D–2D registration was robust in capturing both large-scale (> 10 mm) and small-

scale (< 1 mm) motion stemming from both the patient and the C-arm gantry. In particular, 

the results of Section 5.4 demonstrated that the self-calibration method was even able to 

improve upon a system’s geometric pre-calibration, indicating potential benefit to apply 
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the method to all intraoperative CBCT acquisitions (assuming that a high-quality prior 

image is available). 

Such a bold change to routine workflow requires that the computation time for 3D–

2D registration be considered, noting that conventional FBP with a geometric pre-

calibration operates in just a few seconds. With NGI as the objective function in self-

calibration, 3D–2D registration for a single projection was ~3 s for 6 DoF registration and 

~5 s for 9 DoF registrations. Using the GO objective increased runtime by a factor of ~3 

(due to the median operator in the current GO implementation). Since these registrations 

could in principle be fully parallelized (i.e., all projection data registered in parallel), 3D–

2D registration within a few seconds could be amenable to clinical translation. 

Given a high degree of parallelization, these runtimes may be consistent with 

clinical workflow requirements, but future work to support such translation is warranted. 

In the work presented in Chapters 2 and 5, each 3D–2D registration was performed 

sequentially to utilize the results of previous registrations to initialize subsequent 

registrations (which breaks parallelizability). An alternative approach could incorporate 

the conventional geometric pre-calibration (typically performed by a service engineer) to 

initialize each PM. Furthermore, post-processing of a fully parallelized self-calibration is 

certainly possible (e.g., smoothing or regularization); however, such processing should 

preserve real, high frequency jitter / vibration from the C-arm system and / or tremor from 

the patient while maintaining the ability to trap outliers (e.g., in the work reported above, 

detecting unrealistic change in magnification between views). Further parallelization 

techniques, namely, the sampling of candidate solutions during CMAE-ES iterations, could 

decrease the registration time further. All of these solutions likely carry increased cost 
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associated with computing hardware — e.g., the incorporation of multi-GPU capability in 

the image reconstruction workstation. 

Compared to 3D–2D registration for simultaneous compensation of motion and 

geometric error (which may be applicable to all CBCT images for which a suitable prior 

image exists), the deformable motion compensation method is more likely to be invoked 

on a case-by-case basis for CBCT images that exhibit highly deformable motion of the 

patient. To identify CBCT images that require deformable motion compensation, the 

radiologist could flag images manually, or a method to automatically detect residual 

artifacts can be envisioned. Deep learning techniques are well suited to such tasks in image 

classification using. For example, Sisniega et al (2020) developed a CNN capable of 

quantifying the spatially varying patient motion amplitude in a reconstructed CBCT image. 

Such a network could be used not only to identify images that need deformable motion 

compensation, but also to initialize parameters of the deformable motion compensation 

algorithm, as discussed in Section 3.5. 

If no prior image is available, the deformable motion compensation method could 

in principle be used in place of the 3D–2D registration (to correct rigid motion and 

geometrical calibration error). By virtue of the autofocus objective, the method relies only 

on the raw projection data from the intraoperative CBCT scan. If a single ROI is used (cf., 

multiple small ROIs placed throughout the volume) without spatial interpolation, the 

method simplifies to the rigid motion compensation problem. The reduction in 

optimization parameters for this simple case greatly reduces the dimensionality of the 

search space (and subsequently the runtime), making the method more amenable to clinical 

workflow. However, it should be noted that the loss of spatial regularization within the 
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optimization may make the optimizer more susceptible to local minima, producing 

solutions that exaggerate image artifacts with sharp gradients (e.g., the streaks from highly 

attenuating objects). 

Recently, hybrid rooms featuring both an MDCT scanner and a fixed-room C-arm 

system present the opportunity to exploit each modality to its strengths in image quality 

and workflow — e.g., diagnostic-quality MDCT before and / or after the case and CBCT 

and fluoroscopy throughout. An obvious disadvantage is the cost associated with such an 

installation. The ability to acquire MDCT images within the interventional suite permits a 

high level of diagnostic quality and imaging modes not commonly available in CBCT — 

e.g., dual-energy MDCT; however, the workflow associated with patient transfer between 

the interventional setup and the bore of the MDCT scanner must be carefully considered 

relative to the time of the procedure and safety of the patient. 

The integration of task-driven imaging into clinical workflow presents its own 

distinct considerations. The method invokes several key elements of prior information that 

need to be defined prior to acquiring a “task-driven” image. For example, the imaging task 

must be defined. Furthermore, the patient model (either a patient-specific prior image or a 

suitable 3D model) must be identified and augmented — if appropriate — to contain 

interventional devices (namely, highly attenuating metal objects) that tend to play a strong 

role in the orbit optimization. The patient model (image or atlas) must be registered to the 

patient — for example, by 3D–2D registration using two projection views. The C-arm orbit 

must be constrained so as not to collide with the patient, operating table, or other systems 

in the interventional setup, which may require additional levels of measurement, 

monitoring, and system integration than currently in use. Successful translation of task-
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driven imaging to routine workflow requires such measures to be incorporated in a practical 

manner such that the benefits to image quality, assurance of treatment delivery, reduction 

in comorbidity, and improvements in patient outcome are justified. 

To reduce the burden on the interventional radiologist in task-driven imaging 

workflow, certain aspects of the workflow fall naturally to the physician assistant and / or 

radiology technologist. Tasks that may be increasingly routine and suitable to such support 

staff include specification of prior images (or models), registration to the patient, and 

ensuring safety from collision. Even specification of the imaging task, which in this work 

was derived from spatial-frequency-dependent, hypothesis-testing task-functions, could be 

reduced to relatively simple formulation of: (1) location; (2) contrast (e.g., soft-tissue or 

metal); and (3) scale (e.g., a large diffuse bleed or fine discrimination between structures).  

The methods established in this thesis help to address some of the most pressing 

challenges in CBCT imaging — namely, reducing artifacts associated with complex patient 

motion and improving the detectability of fine and / or low-contrast structures. The work 

has answered the overall thesis statement — image quality in CBCT for IGI can be 

improved through patient motion compensation and task-based design of CBCT imaging 

protocols — and points to the ambitious endeavor still ahead to incorporate such advanced 

imaging methods into the clinical workflow and to demonstrate the benefits to the 

performance of IGI as well as the safety and clinical outcome of patients. 
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Abbreviations 

AEC Automatic exposure control 

AP Anterior-posterior 

AVM Arteriovenous malformation 

BB Ball bearing 

CBCT Cone-beam computed tomography 

CMA-ES Covariance matrix adaptation-evolution strategy 

CT Computed tomography 

CTDI Computed tomography dose index 

DICOM Digital Imaging and Communications in Medicine 

DoF Degrees of freedom 

DRR Digitally reconstructed radiograph 

FBP Filtered backprojection 

FDK Feldkamp-Davis-Kress 

FOV Field of view 

FPD Flat-panel detector 

FWHM Full-width at half-maximum 

GC Gradient correlation 

(N)GI (Normalized) Gradient information 

GO Gradient orientation 

GPU Graphics processing unit 

ICH Intracranial hemorrhage 

IGI Image-guided interventions 

IGRT Image-guided radiation therapy 

IR Interventional radiology 

IRB Institutional Review Board 

LLAT Left lateral 

MBIR Model-based iterative reconstruction 

MDCT Multi-detector computed tomography 

MR Magnetic resonance 

MVF Motion vector field 

PA Posterior-anterior 

PCA Principle component analysis 

PICCS Prior image constrained compressed sensing 

PL Penalized-likelihood 

PM Projection matrix 

PSF Point spread function 

PWLS Penalized weighted least-squares 

RLAT Right lateral 

RMSE Root-mean-square error 

ROI Region of interest 

RPE Reprojection error 

SAD Source-to-axis distance 

SDD Source-to-detector distance 

SI Superior-inferior 

SSIM Structural similarity 

TACE Transarterial chemoembolization 

TCIA The Cancer Imaging Archive 
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