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Chapter One

Introduction

1.1 Hepatocellular carcinoma and treatment

According to the 2015 estimates of the World Health Organization, cancer is respon-
sible of 15.5% of total deaths, while liver cancer is the second most common cause of
death among all cancers [100]. In 2012, liver cancer was the fifth most common cancer
in men and the ninth in women, and half of the cases and deaths were estimated to
occur in China [23]. Hepatocellular carcinoma (HCC) represents about 80% of liver
cancer cases [90]. The principal cause of HCC is chronic liver disease which arises
in developing countries from mostly Hepatitis B Virus or Hepatitis C Virus and, in
developed countries, from cirrhosis due to non-alcoholic fatty liver disease and alcohol
abuse [24, 84]. HCC unfortunately has a poor prognosis. Different staging systems
have been proposed to provide a clinical classification of HCC [21] and different treat-
ments are possible after the diagnosis of the disease stage, tumor size and spreading
of HCC. The Barcelona Cĺınic Liver Cancer (BCLC) treatment scheme is endorsed
by the European Association for the Study of the Liver and European Organisation
for Research and Treatment of Cancer (EASL-EORTC) and the American Associa-
tion for the Study of Liver Diseases (AASLD). Based on the results of several clinical
studies, this methodology enables the physician to choose the right treatment for the
patient (Fig. 1.1). Curative treatment is possible at early stages of the disease. Resec-
tion, liver transplantation, radio frequency ablation (RFA) and percutaneous ethanol
injection have resulted in a 5-year survival in more than 50% of the cases [24]. When
the disease is not curable, at intermediate stage, untreated patients present a median
survival of 16 months. Transcatheter arterial chemoembolization (TACE) extends the
survival of the patients to a median of up to 19-20 months [21]. It has also recently
been shown to be as effective as resection and RFA procedure with singe-nodule HCC
of 3cm or smaller in terms of 5-year overall survival [44, 99]. In 2008, the effectiveness
of treatment with chemotherapeutic agent sorafenib has been studied and a median
survival of 10.7 months for advanced stage HCC has been demonstrated [52].

In the context of this thesis, we will focus on improvements in image guidance for
the minimally invasive TACE procedure. Before describing the procedure in detail,
minimally invasive interventions, medical images and image guidance are introduced.
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Figure 1.1: BCLC staging system and treatment strategy (Figure from [21]).

1.2 Minimally invasive interventions

Minimally invasive interventions aim to limit harm during the procedure to surround-
ing anatomical structures of the region of interest. They are an alternative of open-
surgery for many applications. Access to organs and region of interest is performed via
small incisions, using thin instruments such as needles, catheters and guidewires. En-
doscopy, percutaneous procedures with catheterization, laparoscopy and arthroscopy
are examples of minimally invasive interventions. They are usually preferred over
conventional surgery because of the benefits for the patient and the society: less com-
plications and infections [28], shorter recovery time and ultimately lower healthcare
costs [20]. To plan the interventions and guide instruments through the patient’s
body with limited or no direct eyesight, different medical image modalities can be
used.

1.2.1 Medical images

Medical imaging modalities are visualizing anatomy and physiology from microscopic
scale to cellular scale and up to full body images. They are used by physicians
for disease diagnosis, prognosis, therapy planning, guidance and research. In this
manuscript, we focus only on the radiological imaging modalities that are commonly
used for the TACE procedure:
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• Magnetic Resonance Imaging (MRI) provides a non-invasive 3D image ac-
quisition technique that uses strong magnetic fields. Soft tissue contrast is
superior compared to the other imaging modalities. One disadvantage is that
patients with metal parts inside the body cannot or not reliably be examined.
Also, some patients may not be able to lie and stay immobile in a narrow con-
fined space with loud noise for a long time due to claustrophobia. An MR
Angiography (MRA) is an MRI where the blood vessels are visible using con-
trast agents usually injected into a vein in the arm or the hand [53] (Fig. 1.2).
It is also possible to enhance the vessel signal without contrast agent [32].

• Computed Tomography (CT) is a 3D image reconstructed from multiple
X-ray projection images. This imaging modality uses ionizing radiation. CT
images provide good contrast for bony structures. A CT Angiography (CTA)
or contrast enhanced CT is a CT with contrast agent injected intravenously for
increasing the visibility of the vasculature (Fig. 1.3). Cone Beam Computed
Tomography (CBCT) and 3D Rotational Angiography (3DRA) (Fig. 1.6 c) use
the same principle as in CT/CTA, but with a C-arm so that it can be used in
interventions (Fig. 1.4). If contrast agent is used to enhance blood vessels, it can
be locally administrated for the purpose of the intervention. For example in a
liver catheterization procedure, contrast is injected directly in the liver hepatic
artery via a catheter to enhance only liver vasculature. This usually results in a
high visibility of the blood vessels of interest. Dual Phase CBCT (DP-CBCT) is
an acquisition method using two C-arm rotation passes combined with contrast
agent. The forward pass highlights the vasculature and the backward pass shows
the accumulation of the contrast agent in the tumor.

• 2D X-ray imaging: 2D X-ray such as fluoroscopic images can be acquired with
a C-arm in intervention room with low radiation exposure. Bony structures and
radio-opaque structures inside the body such as specific catheters or guidewires
are visible in fluoroscopy. A large field-of-view is possible to acquire for example
an image of the complete abdomen. Owing to its projective nature, fluoroscopy
does not provide depth information (Fig. 1.5). An angiography is a series of
2D X-ray images acquired with contrast agent injection in order to enhance the
blood vessels (Fig. 1.5). The patient may hold his or her breath during the
acquisition to avoid motion artefacts. A digital subtraction angiography (DSA)
is an angiographic imaging method in which both a contrast and non-contrast
image are acquired. Background removal is achieved by subtracting the non-
contrast image in order to have ideally only the contrast enhanced vessels visible
(Fig. 1.5).

• Ultrasound images: They are non-invasive and acquired in 2D or 3D via an
ultrasound probe that can transmit and receive acoustic waves. The probe is
manipulated by the physician during the procedure (Fig. 1.6 a). The manipu-
lation is not straightforward and necessitates training. The acquisition is fast
for real-time use but the small field-of-view, the speckles and the difficulty to
see behind air and bony structures make ultrasound images quite challenging
to use.
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Figure 1.2: Abdominal MRA with the aorta visible. One 2D slice of the MRA is
shown at the bottom-right.

Figure 1.3: CTA image with a threshold on more radio-opaque tissue.

Figure 1.4: Angiographic C-arm system: Xper Allura, Philips Healthcare, Best,
The Netherlands.
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Figure 1.5: Fluoroscopy with a catheter, micro-catheter and guidewire (left), an-
giography (middle) and DSA (right).

1.2.2 Image guidance in intervention

Minimally invasive interventions are typically performed under image guidance, as
direct visualization of the area to be treated is not possible. In most cases, physicians
move their instruments inside the patient’s body enabled by intra-operative medical
imaging modality. X-ray and ultrasound modalities are suitable for image guided
procedures as both modalities can be used in a real-time setting. Image guided
interventions are common in several clinical areas such as cardiac, abdominal, neuro
or orthopedic interventions [18].

Image guidance can be improved with more sophisticated methods combining mul-
tiple images and modalities, and other measuring devices. For example, roadmapping
by visualizing 3D pre-operative images with 2D intra-operative images enables a bet-
ter visualization of complex structures like the vasculature. In neuro-navigation where
there is no cardiac or respiratory motion, the visualization with combination of 2D
and 3D image is particularly appropriate [80]. Optical and electro-magnetics position
trackers can facilitate navigation and automate image fusion providing more accu-
rate localization of the instruments or the regions of interest outside and inside the
body [26]. As an example, if an ultrasound probe is optically tracked, the ultrasound
image can be aligned continuously in the image space of other modalities like 3D
pre-operative images [51]. All these approaches to some extent turn traditional im-
age guidance into navigation. These approaches rely on automatic computing for the
tracking of the region of interest, fusion of the different images and devices, visualiza-
tion and robotization. Most of the automation is a combination of fusion/registration
[59, 67, 87, 95] and segmentation [72] methods which have been and are still exten-
sively studied in the medical imaging field.

1.3 Transcatheter arterial chemoembolization

TACE is a minimally invasive procedure performed to increase survival of patients
with an HCC at intermediate BCLC stage. It has been introduced after the popular-
ization of vascular catheterization procedures [31, 102]. In the liver, primary hepatic
tumors are mainly fed via the hepatic arteries [14]. The goal of the TACE proce-
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dure is to stop this feeding by performing an embolization and also try to kill the
tumors with chemotherapy. Embolization consists of blocking the blood supply to
the tumors with embolic particles [99]. In chemoembolization, the embolic particles
are coated with cytotoxic agents with the aim of killing the tumors cells [76]. Nowa-
days, in some cases, TACE is replaced by transarterial radioembolization which is
a similar procedure except that embolic particles are radio-active rather than being
loaded with a chemotherapeutic agent [82]. To perform the embolization, a catheter
and then a micro-catheter are introduced as close as possible to the tumor via the
vasculature (Fig. 1.6). The embolic particles are then released into the tumor feeding
vessels via the micro-catheter. There are two ways to reach the hepatic artery with
the catheter: via the femoral or the radial artery (Fig. 1.6 f). Radial catheterization
showed lower risk of bleeding complications and also a shorter recovery time for the
patient [41, 96]. In both cases, a puncture is performed with a needle in order to insert
a catheter sheath. Guidewires, catheters and micro-catheters will be then introduced
through the sheath to reach the hepatic artery and finally the tumor blood supply.

Here, we describe a typical TACE procedure using image guidance. To plan and
choose the right treatment for HCC, a pre-operative CTA or MRA is acquired some
weeks before the intervention (Fig. 1.2, 1.3). Tumors and vessels are enhanced with
a contrast agent. This 3D image is used by the physicians to plan the embolization
procedure. It is also used to localize the entrance of the hepatic artery with regard
to the vertebrae position which will be useful during catheterization.

At the beginning of the intervention, a puncture is performed in the femoral or
radial artery to insert a sheath, guided with an ultrasound probe to visualize the cross
section of the artery and the needle (Fig. 1.6 a).

The procedure is performed in an angiography room where X-ray images can be
acquired with an angiographic C-arm system (Fig. 1.4). Such a system can acquire 2D
and 3D reconstructed X-ray images either with or without contrast agent to enhance
blood vessels in the images.

The procedure is divided in five main steps:

• The catheter is guided using a thin and flexible guidewire into the aorta, then the
coeliac trunk and finally the hepatic artery. The coeliac trunk originates from
the aorta and divides into the splenic artery to the left side and the common
hepatic artery to the right side. This step is performed using 2D fluoroscopic
image guidance (Fig. 1.6 b). Sometimes the physician injects contrast agent
to visualize the aorta at the end of the catheter in order to localize the coeliac
trunk.

• Once the catheter is in the hepatic artery, a micro-catheter is inserted. The
physician performs a 2D DSA and/or a 3DRA with contrast agent injected
directly into the hepatic artery via the catheter. This enables good visibility of
the vasculature in the liver (Fig. 1.6 c and d). 3DRA images allow to resolve
overlapping vessels or foreshortening problems that can occur when interpreting
2D DSA images [50, 63]. The 2D or 3D enhanced vessel tree is used as a roadmap
to have a precise idea of where to embolize and so where to bring the micro-
catheter.
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Figure 1.6: Main steps during TACE procedure with femoral catheterization.
A puncture is performed in the femoral artery (a). The catheter is inserted into
the hepatic artery guided with 2D fluoroscopic images (b). A 3DRA (c) or a 2D
angiography (d) is acquired to visualize the vessel tree. Then, the micro-catheter is
moved to the tumor vessel feeder (e). Finally, emboli with chemotherapeutic agent
are injected (f). The alternative radial catheterization is depicted with the blue
dotted line (f).
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• With the roadmap in mind, the physician guides the micro-catheter to the
embolization point with a guidewire through the vasculature (Fig. 1.5). In order
to help the guidance of the micro-catheter, the physician may use contrast agent
to enhance the blood vessels (Fig. 1.6 e).

• When the micro-catheter is close to the tumor, embolic particles are injected
(Fig. 1.6 f). Contrast agent injection is used to check the embolization whether
forward flow is still present.

• Finally the micro-catheter is pulled off and an angiography is generally acquired
to check if all the feeding vessels are blocked as planned.

The first challenge for the physicians during the TACE procedure lies in the
correct selection of the vessels feeding the tumor. The selected vessels should be
as close as possible to the tumor to avoid compromising blood supply to healthy
tissue. The common way to select the vessels is to perform 2D DSA but due to
the lack of depth information, complex vasculatures appearing with multiple vessel
overlappings are difficult to understand. The recent use of 3DRA/CBCT provides a
better understanding and visibility of the vasculature because of the third dimension
[10, 50, 63]. It has been also shown that small tumors have been detected only with
CBCT [66] and DP-CBCT [103]. Finally, studies demonstrated that the use of tumor-
feeder detection software using CBCT image helped vessel detection in small HCC
embolization [65] and could reduce the number of total image acquisitions and the
overall procedure time while keeping a comparable treatment efficacy compared to a
procedure without software assistance [40] (Fig. 1.7). A navigated intervention would
benefit from integrated feeder information.

The second challenge is the navigation of the catheters and the guidewires inside
the patient’s body. As the navigation is guided with the help of 2D fluoroscopic
images, the longer the navigation is the more the patient and the physician are exposed
to radiation. This task is dependent on the vasculature complexity and the skills
of the physician. Some angiographic C-arm systems (such as Xper Allura, Philips
Healthcare, Best, The Netherlands) provide the possibility to continuously overlay the
vasculature onto the 2D fluoroscopic images where the vasculature has been extracted
from pre-operative 3D images or intra-operative 3DRA or CBCT (Fig. 1.7). The 2D
vasculature overlay is taking into account the C-arm position but is not updated with
regards to any deformation caused by patient, respiratory and catheter motion. Such
motion can be large in the liver, hampering the static roadmap to be aligned correctly
and, as a consequence, assistance to the physician is limited.

1.4 Purpose and content of this thesis

Purpose of the work in this thesis is to improve the image guidance in TACE proce-
dures. More specifically, we intend to develop and evaluate technology that permits
dynamic roadmapping based on a 3D model of the liver vasculature. In the context
of liver vasculature catheterization, studies have been done to register 2D DSA im-
ages acquired during the intervention with 3D pre-operative CTA or MRA in order



1.4 Purpose and content of this thesis 9

Figure 1.7: Tumor-feeder detection software EmboGuide from Philips (left) and
projected roadmap with Innova Vision from GE Healthcare (right).

to project a 3D static vessel roadmap [49, 60] on single-plane [30, 43] or bi-plane
[42] X-ray images. This 3D pre-operative aligned vessel roadmap or intra-operative
CBCT may be continuously aligned by correcting for the respiratory motion [5]. By
also tracking the position of the guidewire and catheter tip, the instruments can then
be visualized with respect to the 3D vasculature, providing improved visual feedback
to the interventional radiologist [13]. Also, preliminary studies have been performed
to provide a roadmap during the guidance of the catheter to reach the hepatic artery.
They propose manual or automatized registration of the 2D intra-operative fluoro-
scopic images with the 3D aorta extracted from pre-operative CTA image [11, 93].

Inspired by these approaches, this thesis will present methods that may bring
TACE from a purely standard image guided intervention to a navigated intervention
with dynamic 2D and 3D roadmapping and possibly integrating feeder information
into the navigation. The following chapters include methods that could give physicians
a continuously aligned 3D vasculature roadmap during the catheterization with a
tracking of the catheter inside the 3D blood vessel tree.

In the second chapter of this thesis, a feasibility study demonstrates that 3D
vessels extracted from intra-operative liver 3DRA can be aligned and projected onto
2D X-ray fluoroscopic images using only the 2D catheter shape and position. A rigid
3D/2D registration method between 3D vessels and 2D catheter is proposed followed
by an evaluation on clinical data.

The third chapter describes a fast probabilistic method that allows tracking the
catheter tip inside the 3D vasculature and obtaining an overlay of the 3D vessels onto
the 2D X-ray fluoroscopic images. A hidden Markov model is used to track over time
the catheter tip enabling a probability map of the tip position in the 3D vessels.

In the fourth chapter a new catheter segmentation method in 2D fluoroscopic
images is proposed. This method using convolutional neural networks (CNN) is fast
and does not require any interaction by the physician. Combined with the methods
proposed in the previous chapters, we obtain a continuous overlay of the 3D vessels
with a real-time and fully-automatic computation.
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The fifth chapter describes two approaches to automatically detect contrast inflow
in 2D coronary X-ray angiographic sequences. The first approach uses CNN to detect
frames with contrast and the second one proposes a vessel enhancement with layer
separation followed by a level of contrast feature fed in a recurrent neural network
(RNN). Automated contrast detection in X-ray frame is useful in order to know which
methods to apply on the current frame: vessel or catheter extraction and registration.

Finally, in the last chapter we summarize all the methods in the thesis and discuss
their benefits, drawbacks and future improvements for practical use.



Chapter Two

Continuous Roadmapping in Liver
TACE Procedures Using 2D-3D

Catheter-based Registration.

Abstract — Purpose Fusion of pre/peri-operative images and intra-operative im-
ages may add relevant information during image guided procedures. In abdominal
procedures, respiratory motion changes the position of organs, and thus accurate im-
age guidance requires a continuous update of the spatial alignment of the (pre/peri-
operative) information with the organ position during the intervention.
Methods In this paper, we propose a method to register in real-time peri-operative
3D Rotational Angiography images (3DRA) to intra-operative single plane 2D fluo-
roscopic images for improved guidance in TACE interventions. The method uses the
shape of 3D vessels extracted from the 3DRA and the 2D catheter shape extracted
from fluoroscopy. First, the appropriate 3D vessel is selected from the complete vas-
cular tree using a shape similarity metric. Subsequently, the catheter is registered
to this vessel, and the 3DRA is visualized based on the registration results. The
method is evaluated on simulated data and clinical data.
Results The first selected vessel, ranked with the shape similarity metric, is used
more than 39% in the final registration and the second more than 21%. The me-
dian of the closest corresponding points distance between 2D angiography vessels
and projected 3D vessels, is 4.7-5.4 mm when using the brute force optimizer and
5.2-6.6 mm when using the Powell optimizer.
Conclusions We present a catheter-based registration method to continuously fuse
a 3DRA roadmap arterial tree onto 2D fluoroscopic images with an efficient shape
similarity.

Based upon: P. Ambrosini, D. Ruijters, W.J. Niessen, A. Moelker and T. van Walsum: Continuous
Roadmapping in Liver TACE Procedures Using 2D-3D Catheter-based Registration. International
Journal of Computer Assisted Radiology and Surgery, vol. 10, pp. 1357-1370, 2015.
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Figure 2.1: TACE intervention overview (left) and fluoroscopy example (right).

2.1 Introduction

Transcatheter Arterial Chemo Embolization (TACE) is a minimally invasive pro-
cedure to treat liver cancer (mostly hepatocellular carcinoma). In this procedure,
a catheter is navigated towards a tumor via the femoral and hepatic artery, after
which chemotherapeutic agents are injected. Currently, the interventionalist guides
the catheter using single plane 2D X-ray (fluoroscopy), visualizing only the catheter
(Fig. 2.1). Frequently, contrast is injected to visualize the arteries. Computed tomog-
raphy angiography (CTA) or 3D Rotational Angiography (3DRA) are used pre/peri-
operatively to visualize the tumor and feeding arteries. The navigation of the catheter
using only 2D fluoroscopy is hampered by the inability to continuously visualize the
arterial tree.

Purpose of our work is to integrate information of the vasculature from pre/peri-
operative 3D images by fusing it with the intra-operative 2D X-ray images. Such an
approach enables a continuous up-to-date roadmap and thus may improve the guid-
ance during the procedure and consequently has the potential to reduce intervention
time, radiation dose and contrast agent use.

2D-3D registration for improving image guidance has been studied in cardiac,
cranial, abdominal and orthopedic procedures. An overview of 2D-3D registration
methods is presented by Markelj et al. [60] and Liao et al. [49]. Following [60],
2D-3D registration methods can be classified as extrinsic, intrinsic and calibration-
based. Extrinsic methods use markers to register and update the registration [69].
Usually objects visible on X-ray (e.g. small beads) are inserted close to the region-of-
interest before 3D image acquisition. Intrinsic methods rely on anatomical structures
such as bones or the vasculature and are generally intensity-, gradient-, or feature-
based or a combination of them [60]. In abdominal interventions, the vasculature
and catheters are mostly the only structures visible on 2D X-ray images that can be
used for registration. In cardiac [8, 9, 61, 77, 81], cranial [35, 64, 91, 92] and abdom-
inal [30, 42, 47] interventions, vessel-based registration have been used between pre-
or peri-operative 3D/4D CTA (Computed Tomography Angiography), MRA (Mag-
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netic Resonance Angiography) or CBCT (Cone Beam Computed Tomography) and
2D DSA (Digital Subtraction Angiography) or 2D fluoroscopies. The X-ray acqui-
sition can either be single plane or bi-plane. Rigid as well as non-rigid registration
approaches for aligning the vessels from 3D/4D pre- or peri-operative images with
those from DSA or fluoroscopy have been described. These approaches update the
3D vessels position with regard to the C-arm but do not enable a continuous roadmap
of the 3D vessels because continuous contrast agent injection during the intervention
would be harmful to the patient. Calibration-based methods can be used when the
3D peri-operative image and the 2D images are acquired with the same device. For
example, if the 3D position of the C-arm is known accurately, it allows alignment of
intra-operative 2D X-ray images with peri-operative 3D images. Atasoy et al. [5] and
Ruijters et al. [80] use C-arm information to update the registration between peri-
operative 3DRA (or CBCT) and 2D X-ray. This approach has been demonstrated to
work accurately in cranial procedures with no head movement. Utilization in abdom-
inal interventions, however, is hampered by the respiratory motion, which invalidates
the initial alignment. Atasoy et al. [5] proposed a semi-automatic method to follow
one moving region of interest selected by a physician during the intervention (a part
of a catheter) and to update the registration with this information. The transforma-
tion model contains in-plane translation to correct for shifts caused by respiratory
motion. In cardiac interventions, Ma et al. [58] used manual calibration-based meth-
ods to achieve an initial alignment and then used features such as diaphragm/heart
border, tracheal bifurcation or the catheter to correct for breathing motion. Another
method was proposed by Luan et al. [55] for oral cancer treatment. They track the
catheter tip with an electromagnetic sensor, reconstruct the catheter path and then
register it with a pre-operative image. Although tracking the 3D catheter tip tracking
is valuable, breathing motion may hamper the reconstruction of the path in e.g. the
abdomen. Unlike most of the other methods, our previous method [1] performs a
2D/3D catheter-based registration using a 3DRA and the complete catheter visible
in the 2D X-ray images. It does not require 2D angiographic images nor user inter-
action for the initial alignment. However, computation times were not interactive,
hampering interventional use.

The major contribution of our current work is to propose a method for generating
an automatic continuous roadmap during abdominal catheterization using 2D/3D
registration with single plane 2D X-ray images and peri-operative 3DRA. This paper
is an extension of our previous work: the metric for alignment has been improved, the
registration is faster, and the evaluation has been performed on a larger set of data,
containing synthetic images, clinical images and additional evaluation metrics.

2.2 Method

The method is based on the registration of a 3D vessel tree with a 2D catheter shape.
Therefore, in a pre-processing step, the arterial tree is extracted from the 3DRA
image and the catheter shape position is determined from the single plane fluoroscopic
images. The extraction of the vessel tree itself is relatively straightforward for high-
contrast 3DRA images. The segmentation of the catheter in the fluoroscopic images,
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catheter

3DRA

2D fluoroscopies

2D/3D catheter-based registration

2D catheter extraction

3D blood vessels extraction
1) Shape similarity

2) 2D/3D rigid registration

3D centerlines projection

Figure 2.2: Global overview: vessels/catheter extraction and 2D/3D registration.

albeit more challenging, has been subject of other studies [34, 68, 70, 71, 86, 101, 104].
These steps are not addressed in this paper.

Given the 3D vascular model and the 2D catheter centerline, the method con-
sists of two steps (Fig. 2.2). First a shape similarity metric is used to find the vessel
centerlines from the 3DRA that are most similar to the 2D catheter shape. Subse-
quently, a constrained 2D-3D registration is applied to find the corresponding rigid
transformation between the 2D catheter and the 2D projections of the best ranked
vessel centerlines. In the following, we first define our coordinate systems and trans-
formations, then we describe each registration steps.

2.2.1 Definitions

We define the following coordinate systems (CS) for our setup in the intervention
room (Fig. 2.3):

• CSw, denotes the world 3D CS, with the origin at the iso-center of the C-arm,
and oriented along the C-arm in its default position

• CSdet, the detector 3D CS (X-ray image plane)

• CSfluoro, is the 2D CS of the fluoroscopic image

• CS3DRA, 3D CS of the 3DRA

Accordingly, the following coordinate transformations are defined:

• Tdet←w, transformation from CSw to CSdet

• Tproj, cone-beam projection from CSdet to CSfluoro

• Tw←3DRA, transformation that aligns the 3DRA space with the patient, from
CS3DRA to CSw
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CSdet

Tw←3DRA

Tdet←w

Tproj CSfluoro

CSw

CS3DRA

Figure 2.3: Coordinate systems and transformations of the C-arm space.

Tdet←w and Tproj are known for each X-ray image because the geometry and ori-
entation of the C-arm are known. Tw←3DRA is unknown and is the result of our
registration.
With the projection function Fproj (in homogeneous coordinates):

Fproj(p3D, T ) = Tproj · Tdet←w · T · p3D , (2.1)

we have a 3D point in the 3DRA space, pCS3DRA
, which can be projected on the

fluoroscopic image space CSfluoro using the following equation:

pCSfluoro
= Fproj(pCS3DRA

, Tw←3DRA) .

The catheter centerline extracted from a 2D fluoroscopic image is defined as an
ordered set of nC points:

C2D = {c1, c2, . . . ci, . . . , cnC
} ,

where ci ∈ R2 are 2D points at the center of the catheter in CSfluoro and c1 denotes
the tip of the catheter.

The blood vessel tree centerline extracted from the 3DRA is represented as a
directed tree:

G3D = (P, E) ,

where P is the set of 3D points on the centerlines of the vessels in CS3DRA, E the set
of directed edges between points. The root of G3D is in the aorta and the branches
of the tree are in the liver.
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blood vessel tree

root (in the aorta)

vessel centerline V(p) leaf vessel centerline V(l)

leaf lpoint p

Figure 2.4: Terminology: blood vessel tree, vessel centerline and leaf vessel cen-
terline.

We define a vessel centerline V (p) as an ordered set of points in G3D, from any
point p ∈ P along the directed edges to the root (Fig. 2.4):

V (p) = {p, p1, p2, . . . pi, . . . , pnP } ,

where pi ∈ R3 in CS3DRA and pnP is the root of G3D.
Similarly, we define the 2D projection of the 3D vessel centerline V (p):

Vproj,T (p) = {Fproj(p, T ), Fproj(p1, T ), . . . Fproj(pi, T ), . . . , Fproj(pnP , T )} .

Additionally, we define Vproj,T (p, u) with u ∈ [0, Vl], a linearly interpolated version of
the projected centerline, with Vl the length of the projected vessel centerline V (p).

2.2.2 Shape-based vessel centerline selection

The registration is performed on a vessel centerline running from a leaf to the root
(Fig. 2.4). Before performing the registration, the vessels that are the most likely
to contain the catheter are selected. This selection is based on the shape similarity
metric between the catheter and the projected 3D vessel. The metric quantifies the
alignment of the tangent vectors of the catheter and the projected vessel. Therefore
it is not sensitive to the distance between centerlines. The underlying assumption
is that the orientation of the vasculature changes little between the 3DRA and the
fluoroscopy acquisition, which is valid for our application. The shape similarity for a
vessel from a point p ∈ P is defined as:

S(p) =

∫ Cl

0

−→
C 2D(u) ·

−→
V proj,I4(p, u)du , (2.2)

where Cl is the length of the 2D catheter, I4 the 4x4 identity matrix and
−→
C 2D(u) (resp.

−→
V proj,I4(p, u)) the tangent of C2D (resp. Vproj,I4(p)) at the position u. C2D(0) is the
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2D projection of the 3D 
vessel centerline

tip 
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c1

p

V (l)

leaf l

Figure 2.5: Discretized sum of dot products between tangents of catheter and the
vessel centerline V (p) with p ∈ V (l).

tip of the catheter and Vproj,I4(p, 0) is the possible location of the tip in the tree G3D.
S(p) ∈ [0, Cl] with Cl denoting the maximum similarity. As the catheter centerline is
represented as a set of points, the integral over S is approximated by summing the dot
products over all catheter positions, thereby interpolating the corresponding vessel
positions (Fig. 2.5).

In order to select the leaf vessel centerline for which the registration needs to be
performed, for each leaf l, the maximum similarity over all points in V(l) is determined:

Smax(l) = max
p∈V (l)

S(p) . (2.3)

Based on the values of Smax, we selected the k leafs with largest Smax for the
registration. When several leafs share the same common part with the cathether,
only one is kept.

2.2.3 Rigid 2D/3D registration with forward projection

To register the 2D catheter with the vessel centerline, we need to find the rigid trans-
form Tw←3DRA that yields the best match with the 2D catheter in CSfluoro. We
decompose the transformation as follows:

Tw←3DRA = Tw←det · Ttrans · Tdet←w · Trot ,

where Trot is a rotation matrix with three unknowns (Euler angles, α, β and γ), Ttrans

a translation matrix with three unknowns (x, y, z) with the translations aligned in
CSdet. A translation along the projection axis in CSdet will only have a very minor
effect in the projection. We therefore exclude z from the registration parameters,
leaving us with a five degrees of freedom transformation.
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Our registration metric is the sum of distances between points on the catheter
and closest points on the projected leaf vessel centerline. The catheter tip c1 thereto
is matched to the closest point of the projected vessel V (lsel), where lsel is a leaf
selected thanks to the shape similarity. The distance between the catheter tip and
the vessel centerline V (lsel), given a rigid transformation T, is given by:

D1(lsel, T ) = min
p∈V (lsel)

||c1 − Fproj(p, T )|| . (2.4)

Each next point of the catheter is similarly matched with a point of the projected
vessel. To ensure continuity of the vessel (and simultaneously reducing computation
time), the search range is limited to only a few points proximal to the point closest
to the previous catheter point. Thus, let pprev ∈ V (lsel) be the point matched with
ci−1, then the distance to the subsequent catheter point ci is defined as:

D(ci, l
sel, T, pprev) = min

p∈[pprev,...pprev+h]
||ci − Fproj(p, T )|| , (2.5)

where [pprev, . . . pprev+h] are the h+ 1 consecutive points in V (lsel), starting at pprev,
and h is determined such that all points in that range are within a distance dmax of
pprev.

Given these definitions, the final registration metric M of our registration is a
weighted sum of these distances (Fig. 2.6):

M(C2D, l
sel, T ) = D1(lsel, T ) +

∑
ci∈[c2,cnC ]

W (||ci, c1||) ·D(ci, l
sel, T, pprev) , (2.6)

where W (x) is a weight function ∈ [0, 1] and ||ci, c1|| is the length of the catheter
between c1 and ci. As the registration accuracy close to the tip is more important
than at the proximal part of the catheter, we use a weight to decrease the distance
values that are further from the tip. We use a Gaussian with an offset:

W (x) = λ+ (1− λ) · e−
x2

2σ2 , (2.7)

where σ is a parameter to control how fast the weight decrease (Fig. 2.7).

This metric M has two advantages: first, it is fast because we only look for the
closest point in a specific neighbourhood; second, by only matching points that are
locally connected the continuity of the vessel centerline is respected.

Lastly, the final transformation is the one with the smallest cumulative distance:

Tw←3DRA = argminTM(C2D, l
sel, T ) , (2.8)

where T represents the 5 degrees of freedom rigid transformation matrix.

Every selected leaf vessel centerline V (lsel) is registered and the pair (V (lbest),
Tw←3DRA) with the optimal similarity M is kept.



2.2 Method 19

tip

catheter
selected vessel centerline

D1(l
sel , T ) D(c2 , l

sel ,T , p prev)

p prev

d max

h

c1

V proj ,T (l
sel

)

Figure 2.6: Registration metric M(C2D, l
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Figure 2.7: Weight function W (x) to give more weight at the catheter tip with
λ = 0.2 and various σ.
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2.3 Experiments

We performed two series of experiments. In the first one, we used clinical data from
TACE interventions. As we do not have a ground truth available in this data, we
rather evaluate the registration on the alignment of the vessels distal to the catheter
tip using angiography and we investigate the effect of varying parameter settings. In
the second experiment, registration has been performed on the same clinical data,
but with the catheter position simulated. The simulation allows us to have a ground
truth for the catheter position. The error in the localization of the registered catheter
tip position was used for evaluation.

2.3.1 Data

We retrospectively acquired anonymized data of 19 TACE interventions (Table 2.1).
The 16 first sets were acquired in the Erasmus MC, University Medical Center, Rot-
terdam, the Netherlands, between 2012 and 2014 in two different intervention rooms
with angiographic C-arm systems (Xper Allura, Philips Healthcare, Best, the Nether-
lands). The last 3 sets were acquired in the Hôpitaux Universitaires Henri Mondor,
Créteil, Paris, France and the Ospedale di Circolo e Fondazione Macchi, Varese, Italy.
For each intervention, we have a set of images consisting of one 3DRA image where
the catheter was inside the hepatic artery, a set of fluoroscopic sequences with con-
trast agent and a set of Digital Subtraction Angiographies (DSA) (Fig. 2.8). In these
sequences, both the catheter and a part of the vasculature distal to the catheter tip
is visible (by using the contrast agent). For each sequence, we selected the image
with most of the vasculature visible and we manually annotated both the 2D catheter
centerline and the 2D vasculature centerlines. The 3D arterial tree from 3DRA is
segmented with a semi-automatic method based on thresholding and skeletonization
[83].

We divided our data in two different groups depending on the 3DRA acquisition:
complete and incomplete acquisition. Incomplete acquisition occurs when the pa-
tient’s liver is not aligned with the C-arm rotation iso-center. In that case, the aorta
and the hepatic artery are not visible in the 3DRA which hampers the registration.

2.3.2 Implementation

The method described was implemented in C++ and run on a computer with a 3.4Ghz
Intel Core i7. We set k, the number of selected leaf vessel centerline to register, to 5.

In order to minimize our metric, we evaluated two different optimizers: a brute
force and the Powell optimizer [73]. The brute force is exhaustive and is more likely
to find the global minimum, whereas Powell is faster but because of its local search
is more likely to converge to local minimum.

Our brute force optimizer has n = 7 iterations and for each iteration i, the
search space is centered at the minimum found in iteration i− 1 with an interval size
si = c ∗ si−1 whereby coefficient c was set to 0.5 (Fig. 2.9). Each dimension in the
search space interval is subdivided in d = 7 steps. We set the initial intervals s0 of
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Table 2.1: Number of clinical data.

Patients 3DRA
Number
of angios

Number
of DSAs

01 complete 4 2
02 complete 2 3
03 complete 0 2
04 complete 1 4
05 complete 3 1
06 complete 2 2
07 complete 5 1
08 complete 2 3
09 incomplete 4 3
10 incomplete 2 3
11 incomplete 3 2
12 complete 2 2
13 complete 1 4
14 complete 0 2
15 complete 3 2
16 complete 3 5
17 complete 1 2
18 complete 1 0
19 complete 0 2
Total - 39 45

Figure 2.8: Fluoroscopy with contrast agent (left) and DSA (right).
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local minima

1st iteration 2nd iteration 3rd iteration

Figure 2.9: Brute force optimizer in a 2D space with n = 3 iterations, reduction
coefficient c = 0.5, number of steps d = 5 and initial interval size x, y = ±2.

our brute force search to ±50 mm for x and y and ±7◦ for α, β and γ. These intervals
are sufficiently large to capture breathing motion.

For the Powell optimizer, we use a two-stage approach. We first optimize the in-
plane translation and subsequently use that translation to initialize the full 5 degrees
of freedom registration.

2.3.3 Clinical data and parameters optimization

In the first experiment, we investigated optimal parameter settings for the method,
and evaluated how well the resulting registration aligns the vasculature distal to the
catheter tip. To determine optimal parameter settings, and evaluate the effect of
changing parameters, we applied the method with a large set of different settings
(λ, σ and dmax) in a leave-one-out cross validation scheme (determine the optimal
parameter values over the set containing all patients except the one on which the
evaluation is done). We tested the following settings; λ: 0, 0.1, 0.2, 0.3; σ: 20, 40, 60,
80, 100; dmax: 10, 20, 30, 40, 50 mm. Because the 2D catheter centerline and 3D blood
vessel tree are discretized we also investigated the effect of using different samplings:
1.5, 3 and 6 mm between each point. Finally, computation time is recorded.

As we do not have a ground truth for the registration, we used the vasculature
visible on the angiographies as a reference. Thus, for validating, we compared how
well the projected 3DRA matches the arteries visible in the projection images. To
this end, we projected the 3DRA vasculature on the 2D image with the registered
Tw←3DRA and we computed the closest corresponding points distance between the
projected 3D vasculature and the 2D vasculature. The most relevant region for the
roadmapping is the area close to the catheter tip, we therefore only evaluated in a cir-
cular region (3 cm radius) around the catheter tip. Before computing the distance, we
manually labelled the vessels such that distances are computed between correspond-
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Figure 2.10: 2D vasculature from contrast agent (left), 2D projection of 3DRA
vasculature after manual registration (center) and manual paired vessels (right):
same labels have same color vessels.
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Figure 2.11: Closest corresponding points distance between paired vessels.

ing vessels (Fig. 2.10). To prevent bias in this assignment, the manual annotation was
done without registration, thus only using the initial projection of the 3DRA. To aid
in the annotation, the observer could manually register 3DRA and 2D vasculature by
changing translations and rotations of the 3DRA. Vessels that can not be manually
adequately linked were not used in the evaluation. Using the labelled corresponding
vessels, we computed the closest corresponding points distance for each pair of vessels
(excluding distances to endpoints). The distance was computed both from the 2D an-
gio vessel and from its registered projected 3D vessel pair (Fig. 2.11). Our evaluation
metric for one image is the average of distances over all pairs of vessels.

2.3.4 Clinical data with a simulated catheter

When evaluating the registration on patient data, no accurate ground truth registra-
tion is available. We therefore also evaluated our method on simulated data with a
known ground truth. To stay as close as possible to the reality, our simulation was
based on the clinical data (Table 2.1) where we used the 3D extracted vessel tree in the
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Table 2.2: Randomizations for the simulation experiments.

Slight Moderate Large
Translation x (in mm) [−30, 30] [−30, 30] [−30, 30]
Translation y (in mm) [−20, 20] [−40,−20] ∪ [20, 40] [−50,−40] ∪ [40, 50]
Translation z (in mm) [−30, 30] [−30, 30] [−30, 30]
Rotation α, β, γ (in ◦) [−6, 6] [−6, 6] [−6, 6]
Catheter smoothing σsimu (in mm) [1, 5] [5, 10] [10, 15]

projected 3D 
registered vessel

projected simulated 
catheter

l d

od

ed

Figure 2.12: Evaluation of the registered tip position with ed the Euclidean dis-
tance, ld the longitudinal distance and od the orthogonal distance.

3DRA registered space (using Tw←3DRA) as well as the fluoroscopic sequences with
their projection information. We choose the position of the 3D simulated catheter tip
in the 3D vessel tree such that it matches the catheter tip in the fluoroscopic image
after a registration of the 3D vessel tree to the fluoroscopic image. Next, we extract
a 3D simulated catheter centerline following the 3D vessel path from the tip to the
root and project it on the fluoroscopic image using the angles from the fluoroscopic
sequences acquired. Those ground truth projections are used to quantify the accuracy
of the registration results. To simulate a smooth catheter that may be stretching the
vessel, and that may be partially outside the vasculature, we smooth the 2D projection
centerline with a Gaussian kernel (with a standard deviation σsimu).

We applied random transformations Tw←3DRA to the 3DRA volume, divided over
three sets depending on the magnitude of the transformations and the Gaussian
smoothing parameter (Table 2.2).

In this experiment we used the algorithm parameters obtained in the previous
leave-one-out cross-validation. We quantified the Euclidean distance ed between the
known projected 3D tip and the registered projected 3D tip. We also computed the
longitudinal ld and orthogonal od distances from the point of view of the known tip
(Fig. 2.12).
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2.4 Results

2.4.1 Clinical data and parameters optimization

The results of the leave-one-out cross-validation with the two optimizers Powell and
brute force, 3 mm sampling and all images are presented in Table 2.3. The optimal
parameter settings are consistent over the leave-one-out experiments. Based on these
results, unless noted otherwise, we used 3 mm sampling and with Powell: λ = 0.2,
σ = 20, dmax = 40 mm and with brute force: λ = 0.1, σ = 80, dmax = 20 mm.

The average paired vessels distance results are summarized in Figure 2.13. Results
are grouped depending on the 3DRA acquisition. Compared to our previous method
[1], using the same sampling, the new method has a median that is smaller. Also
the brute force optimizer performs better than Powell and is more robust. With the
complete 3DRA set, medians are around 5 mm for brute force and 6 mm for Powell.
Varying the sampling density between 1.5 mm and 6 mm does not clearly affect the
accuracy.

In Table 2.4, we present the distribution of the best registered leaf vessel centerline
V (lbest) among the k ranked and selected leaf vessel centerlines. This Table shows
that the best registration result is generally obtained with the leaf vessel centerlines
that ranked best using the shape-based metric Smax. This demonstrates that the
metric can effectively be used to reduce the number of potential vessels to register.
The low percentage for the fifth ranked vessel also suggests that the choice of k = 5
is a good compromise between registration speed and the robustness of the method.
The first ranked leaf vessel centerline is also the one giving the best registration for
39-49% of the images.

Figure 2.14 shows the paired vessels distance after the registration as function
of the distance from the catheter tip. The median becomes less accurate after 3 cm
between 1 and 5 mm.

The sampling and the local distance dmax in the metric M are the parameters that
affect the computation time. We show in Figure 2.15 the relation between accuracy
and computation time. Brute force is slower than Powell optimization. Our previous
method [1] did the registrations with the samplings: 1.5, 3 and 6 mm in 95, 25 and
10 s, which is at least twice as slow as the brute force of our current approach. After
20 mm, dmax does not seem to change the accuracy with brute force. Powell is less
stable with both the sampling and dmax.

Figure 2.16 shows examples of correct and incorrect registrations. We note that
when there is a small part of the catheter visible on the image, the optimizers are
more likely to yield misregistrations because of the lack of information. A correct tip
position and distance metric M do not imply a perfect match of the vasculature due
to the deformation of the liver and the catheter.

We visually inspected all registrations from the complete 3DRA set with opti-
mal settings and labelled them as correct, visually close and incorrect for both the
registered tip and the registered vessels distal to the tip (Table 2.5). Visually close
implies that the registration is sufficient to know where the catheter is in the 3D
vasculature while incorrect is of no use for the intervention. For each incorrect case,
we also report the likely cause of failure (Table 2.6). The two main reasons of wrong
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Table 2.3: Optimal settings for Powell (left) and brute force (right) with 3 mm
sampling after a leave-one-out cross-validation.

Patients λ σ dmax
01,02,03,04,05,06,
08,09,10,11,12,13,
14,15,16,17,19

0.2 20 40

07 0.1 40 40
18 0 40 20

Patients λ σ dmax
02,03,04,05,06,07,
08,09,11,12,13,
14,15,16,17,18

0.1 80 20

01 0.2 80 10
10 0.1 80 30
19 0.1 40 20
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Figure 2.13: Average distance between paired vessels (in 3 cm radius from the
tip) for each image after registration (in mm). Comparisons between Powell, brute
force optimizer and our previous method Ambrosini et al. 2014 [1].

registrations are a too small part of the catheter visible in the 2D X-ray image and
large deformation of both the catheter and the vessels distal to it.

2.4.2 Clinical data with a simulated catheter

Figure 2.17 shows the distance between the real tip in the simulated catheter (without
smoothing) and the tip after registration. Figure 2.18 shows the results with catheter
smoothing. Without catheter smoothing, for the brute force optimizer, the median of
the Euclidean distance ed is below 1 mm whereas for Powell the distance is below 3
mm. With catheter smoothing, the registered tip is less accurate and less robust with
both Powell and brute force optimization. The longitudinal and orthogonal distance
are similar with slight, moderate or large transformation. Overall, the longitudinal
distance is slightly more robust than the orthogonal.

2.5 Discussion and conclusion

We proposed and evaluated a method that enables a continuous roadmap during
abdominal catheterization. The method registers a 3D vessel model obtained from
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Table 2.4: Distribution of the best registered leaf vessel centerline V (lbest) among
the k = 5 ranked and ordered selected leaf vessel centerlines; with the optimal
settings and the complete 3DRA set.

sampling (in mm) 1st leaf 2nd leaf 3rd leaf 4th leaf 5th leaf
Powell 1.5 40% 29% 10% 8% 13%
Powell 3 49% 24% 12% 9% 6%
Powell 6 45% 24% 10% 16% 5%
Brute force 1.5 46% 21% 9% 16% 8%
Brute force 3 39% 24% 8% 19% 10%
Brute force 6 39% 22% 12% 17% 10%
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Figure 2.14: Average distance between paired vessels for all images (in mm) with
optimal settings, 3 mm sampling and the complete 3DRA set. Paired vessels are
grouped following their distance from the catheter tip (from 0 to 100 mm).
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Figure 2.15: Average distance between paired vessels for all images in mm (left)
and average time in second (right) according to the neighbourhood distance dmax,
with optimal settings and the complete 3DRA set.
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Table 2.5: Visual registration results with optimal settings, 3 mm sampling and
the complete 3DRA set.

Powell Brute force
Selected registered vessel
Correct 84% 94%
Incorrect 16% 6%

Match angio/registered vessels
Visually correct 38% 35%
Visually close 30% 52%
Incorrect 32% 13 %

Registered tip
Visually correct 59% 73%
Visually close 20% 22%
Incorrect 21% 5%

Table 2.6: Registration error details among incorrect match with optimal settings,
3 mm sampling and the complete 3DRA set.

Powell Brute force
Small catheter part visible 40% 38%
Large vessels and catheter deformation 25% 25%
Catheter shape not sufficiently distinctive 5% 12%
Rotate too much to fit the best the catheter 25%
Powell stops in a local minimum 20%
Catheter only in the aorta (missing informations) 5%
Large part of the aorta is not visible in the 3DRA 5%
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Figure 2.16: Projection of the 3DRA blood vessel (in green) with the catheter (in
black) and the contrast agent (in purple). Initial position (left). Registered position
with Powell (middle). Registered position with brute force (right).
a The registration is correct. Here the catheter is long enough to give information.
b The catheter part is too short. Powell registered with a good distance metric but
the result is wrong. Brute force is correct.
c The catheter tip position is correct for both optimizers. The vessels and catheter
deformation prevent to have a perfect match.
d Here the distance metric and the tip is correct with both optimizers but brute
force rotates too much.
e As a long part of the aorta is missing in the 3DRA, Powell stops in a local minimum
while brute force is more exhaustive and reach the global minimum.
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Figure 2.17: Euclidean distance ed, longitudinal distance ld and orthogonal dis-
tance od between the real tip and the registered one (in mm) with no catheter
smoothing, 3 different simulations (Table 2.2), optimal settings and 3 mm sampling.
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Figure 2.18: Euclidean distance ed, longitudinal distance ld and orthogonal dis-
tance od between the real tip and the registered one (in mm) with catheter smooth-
ing, 3 different simulations (Table 2.2), optimal settings and 3 mm sampling.
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3DRA imaging using a catheter that is extracted from single-plane 2D X-ray images
with or without contrast agent. The method first selects the vessels using shape
similarity and then rigidly registers the selected vessels to the catheter.

With the complete 3DRA set and optimal settings, the median of average paired
vessels distances of the roadmap distal to the catheter tip and within a radius of 3
cm from the tip is 5.4 mm for the brute force optimizer and 5.2 mm for the Powell
optimizer. The first selected vessel during shape similarity is used more than 39% in
the final registration and the second more than 21%.

We investigated two optimizers for the registration approach: Brute force and
Powell. In our setup, with less than 200 ms computation time on average, the reg-
istration is real-time with the Powell optimizer and a 3 or 6 mm sample interval.
Though the brute force optimizer is slower, it could be improved with parallelization
and a dedicated implementation. The brute force optimizer tends to be more accurate
and robust than the Powell optimizer. Powell is more sensitive to the initial position
of the registration (end up in local minima) as well as the length and distinct shape
of the catheter.

The simulation experiments with catheter deformation demonstrate that the reg-
istration is robust for both optimizers with slight deformation. They also show that
larger deformation leads to less accurate registration. In the simulated data, the lon-
gitudinal distance from the tip shows how well the tip is registered along the catheter
direction. This distance is more significative than the orthogonal and is slightly more
robust.

An important source of error in our experiments was the lack of vessel information
in the 3DRA (especially missing the aorta and the hepatic artery), partly caused by
the retrospective nature of our study. Optimization of the 3DRA acquisition protocol
could remedy this. Another source of registration errors is the lack of information
in the 2D X-ray because only very short part of the catheter is visible. This shows
the limitation of the method working with no prior knowledge other than the current
image. This may be addressed, during the intervention, by slightly increasing the
field-of-view, moving the patient table, or by adding more a priori knowledge into
the registration such as previous image registration transformations. If we take into
account the previous registered transformations and the table motion (which in prin-
ciple could be obtained from the C-arm system, but is not available in our acquired
fluoroscopic images), the registration should have a better initialization and thus use
a smaller search space and both Powell and brute force optimizers will perform more
robustly while reducing computation time.

Most related 2D/3D registration methods register angiography with CTA or
3DRA. As the complete vasculature is visible on both 2D and 3D images and non-rigid
registration is performed, they reach submilimeter accuracies. Our method, dealing
only with the catheter visible on the 2D image, has lower accuracy. However, we are
interested in improving guidance and the fusion provides a continuous roadmap of
sufficient accuracy to the clinician to reliably estimate the catheter tip position in
the 3D vasculature. As far as we know, in abdominal studies, the presented method
can be compared only with the method proposed by Atasoy et al. [5]. They evaluate
their method with the overlap of the 3DRA vessels onto the catheter. In our case, the
overlap is our distance metric so a comparison will be biased towards our method.
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During abdominal catheterization, knowledge of the position of the tip in the 3D
vasculature is of crucial importance. Table 2.5 shows a small percentage of incorrect
registered tip positions. This implies that if we use the presented fusion method
as a roadmap, combining any of the optimizers, the resulting fused visualization
is sufficient to guide the interventionists in localizing the tip and identifying the
subsequent bifurcations, also in case of slight misalignment.

A robust automatic 2D catheter segmentation is required after initialization to
integrate our method into the interventional workflow. The accuracy of the segmen-
tation will influence the registration method. For example, Heibel et al. [34] obtain a
median error of real-time automatic catheter tracking less than 1.5 pixels for abdom-
inal fluoroscopies. Those results are sufficiently accurate for our registration.

Registration studies often lack ground truth for clinical data. In our case, this
also prevented us to evaluate the accuracy of the registration method directly. How-
ever both the simulation experiments and the validation with angiographic images
demonstrate the good performance of the method.

In our current setup, each registration is independent from previous registrations.
During continuous roadmapping, only slight motion should occur between two reg-
istrations. In the future, we intend to use previous registration results to further
improve the robustness (especially when the visible catheter part is too small to do
an accurate independent registration), and to limit the computation time by reducing
the space search. A source of registration errors was due to large vessels and catheter
deformation. A non-rigid registration to match the catheter deformation could also
improve the accuracy close to the catheter tip.

To conclude, we presented a catheter-based registration method to fuse contin-
uously 3DRA roadmap arterial tree onto 2D fluoroscopic images. We evaluated our
work with clinical and simulated data demonstrating an efficient shape similarity and
a median accuracy, evaluated on close by vessels, of 4.7-6.6 mm and below 4 mm on
simulated experiments.
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Chapter Three

A Hidden Markov Model for 3D
Catheter Tip Tracking with 2D

X-ray Catheterization Sequence and
3D Rotational Angiography.

Abstract — In minimal invasive image guided catheterization procedures, physi-
cians require information of the catheter position with respect to the patient’s vas-
culature. However, in fluoroscopic images, visualization of the vasculature requires
toxic contrast agent. Static vasculature roadmapping, which can reduce the usage
of iodine contrast, is hampered by the breathing motion in abdominal catheteri-
zation. In this paper, we propose a method to track the catheter tip inside the
patient’s 3D vessel tree using intra-operative single-plane 2D X-ray image sequences
and a peri-operative 3D rotational angiography (3DRA). The method is based on a
hidden Markov model (HMM) where states of the model are the possible positions
of the catheter tip inside the 3D vessel tree. The transitions from state to state
model the probabilities for the catheter tip to move from one position to another.
The HMM is updated following the observation scores, based on the registration
between the 2D catheter centerline extracted from the 2D X-ray image, and the
2D projection of 3D vessel tree centerline extracted from the 3DRA. The method
is extensively evaluated on simulated and clinical datasets acquired during liver ab-
dominal catheterization. The evaluations show a median 3D tip tracking error of 2.3
mm with optimal settings in simulated data. The registered vessels close to the tip
have a median distance error of 4.7 mm with angiographic data and optimal settings.
Such accuracy is sufficient to help the physicians with an up-to-date roadmapping.
The method tracks in real-time the catheter tip and enables roadmapping during
catheterization procedures.

Based upon: P. Ambrosini, I. Smal, D. Ruijters, W.J. Niessen, A. Moelker and T. van Walsum: A
Hidden Markov Model for 3D Catheter Tip Tracking with 2D X-ray Catheterization Sequence and
3D Rotational Angiography. IEEE Transactions on Medical Imaging, vol. 36(3), pp. 757-768, 2017.
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3.1 Introduction

Nowadays, minimally invasive procedures are common because of the associated ben-
efits for the patients, such as shorter recovery times. For example, catheterization
procedures are executed to non-invasively reach locations via the vasculature. During
catheterization, image guidance is commonly performed using intra-operative 2D X-
ray fluoroscopy. On this imaging modality, the catheter is visible but the vasculature
is not. Physicians need to know where the catheter (particularly the tip) is to nav-
igate to a specific target. To this end, 2D intra-operative images are conventionally
enhanced using contrast agent to visualize the vasculature, which permits physicians
to localize the catheter inside the vasculature. However, contrast agent cannot be
used continuously due to its toxicity. Also, the projected vasculature can sometimes
be difficult to interpret. To have a continuous roadmap, physicians use 2D over-
lays of Digital Subtraction Angiography (DSA) onto the X-ray images. 3D projection
overlays, e.g. from pre-operative CTA or MR images, have also been used [80]. Unfor-
tunately, such 2D and 3D roadmaps are generally static and the registration between
3D vasculature extracted from CTA/MRA and 2D images is not straightforward. In
e.g. abdominal catheterization, respiration induced motion and the catheter stiffness
lead to motion and deformation of the vasculature, invalidating the roadmap.

The purpose of our work is to continuously localize the catheter tip inside the
3D model of the patients vasculature during the catheterization procedures. The
paper focuses particularly on liver catheterization interventions such as Transcatheter
Arterial Chemoembolization (TACE). We propose a method to track the catheter
tip inside a patient-specific contrast-enhanced 3D abdominal vasculature, obtained
from peri-operative 3D Rotational Angiography (3DRA), using single-plane 2D X-
ray images with no contrast agent. The proposed tip tracking method enables 2D as
well as 3D roadmapping that can easily be integrated in the intervention and permits
continuous and contrast-free image guidance (Fig. 3.1). Such image guidance would
potentially reduce toxic contrast agent use and may decrease procedure time as well.
In liver catheterization, peri-interventional 3DRA (which is a form of Cone Beam
Computed Tomography, CBCT) is acquired at the beginning of the procedure when
the catheter is in the common hepatic artery. The contrast agent is injected directly
into the liver vessels to offer a better visibility of the vascular morphology. 3DRA
provides a better understanding of the vasculature compared to DSA because of its
3D nature. It also helps to position the C-arm to obtain an optimal view on the
vessels, taking foreshortening, overlap and bifurcations into account. 3DRA is more
and more acquired during TACE procedure because it increases the confidence of the
physician and it helps for the planning and the guidance [10].

Most current approaches in image guidance for catheterization procedures focus
on registering a 3D pre-operative angiographic image, such as CTA or MRA, with
intra-operative 2D images, such as single-plane/bi-plane X-ray images or DSA. Thor-
ough reviews of 3D/2D registration methods have been presented by Markelj et al. [60]
and Liao et al. [49]. Various methods have been proposed for cardiac [8, 9, 61, 77, 81],
cranial [35, 64, 91, 92] and abdominal [30, 42, 47] procedures. These methods use the
image intensity, gradient or features such as bones and more generally vessels, to spa-
tially align the 3D image to the 2D image. In cardiac and abdominal procedures, due
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3DRA 3D vessels extraction

3D tip tracking using hidden Markov model

initial tip position

......2D fluoroscopic 
sequence

catheter segmentation

3D centerlines projection

(a)

(b)

(c)

Figure 3.1: Tip tracking workflow:
(a) 3D vessel tree is extracted from 3DRA.
(b) 2D catheter is extracted for each frame of the X-ray sequence.
(c) The HMM is initialized with the initial tip position in the 3D vessel tree.
The HMM is then updated depending on the 3D/2D registration metric. The tip
position and the registered transformation are obtained which can be used as a
3D/2D roadmap to guide the physician. The tracking using HMM (red frame) is
the scope of this paper. The other steps are approached in the discussion.
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to respiratory motion, the registration has to be updated continuously. Methods that
utilize vessel information for alignment can not be used continuously, as the vessels
are not continuously visible because of the contrast agent toxicity. Ambrosini et al.
[2], Atasoy et al. [5] and Ma et al. [58] correct for breathing motion using other
features in the 2D X-ray image such as diaphragm/heart border, tracheal bifurca-
tion or the catheter. The use of such features gives reasonably accurate results but
the robustness depends on the complete visibility of the features. In abdominal X-ray
catheterization images, only the catheter is visible and the catheter-based registration
fails if the visible catheter part is too short [2]. Using the catheter-based registra-
tion combined with a hidden Markov model (HMM) [75], our feasibility study [3]
showed that 3D catheter tip tracking over the time was possible and could potentially
overcome the problem of short feature visibility such as short part of the catheter
visible on 2D X-ray images. This study was limited but showed encouraging results
for 3D/2D roadmapping in abdominal catheterization procedures.

This paper has two main contributions. First, we present a novel and robust
3D catheter tip tracking method, based on an HMM, and that extends our previous
preliminary work [3]. We propose a new transition probability between the states in
the HMM. Furthermore, a new cost function and different initialization is introduced
for the 3D/2D registration. Second, we perform extensive quantitative and qualitative
evaluations with both simulated and clinical data, using clinically relevant measures,
i.e. tip distance error and vessel distance error close to the tip. In summary, this
method presents the following advancements compared to the state of the art:

• The tip tracking as well as the roadmapping can be performed continuously
using fluoroscopic imaging without the need for contrast agent and with no
distinctive features except the catheter,

• 3D roadmapping is provided next to 2D roadmapping. This would add more
information for the physician with difficult cases,

• The nature of the tracking method provides temporal consistency of the tracking
results, and as such is robust to e.g. field-of-view changes.

3.2 Method

The purpose of our method is to track the catheter tip inside the 3D vessel tree ex-
tracted from the peri-operative 3DRA using information from 2D fluoroscopic imag-
ing. A probability distribution of the 3D catheter tip position is computed using
an HMM. The probability distribution update is based on the previous distribution
and the 3D/2D registration results of the 3D vessel tree and the 2D catheter cen-
terline extracted from the 2D intra-operative X-ray image. In this process, a 3D/2D
registration is performed for the most probable catheter tip locations.

In the following, we first describe the HMM that was used and then show how it
applies to our application with the catheter tip tracking.
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Figure 3.2: HMM with 3 states and its matrix A of state transition probabilities.

3.2.1 Hidden Markov model

A hidden Markov model is a system with a set of N states S = {s1, . . . sN} (Fig. 3.2).
The HMM state changes at each discrete time point t according to the probabilities
associated with the state transitions and the current measurement/observation Zt.
The transition probabilities between states are defined in a matrix A (dimension
N×N) where each element aij of A is the probability that the HMM moves from state
i to state j (aij ≥ 0 and

∑
j

aij = 1). To employ an HMM, we define an observation

likelihood (observation score) Ot(i) = P (Zt|si). It represents the likelihood that the
state si at time t produced the observation Zt.

Following Rabiner et al. [75], the Viterbi algorithm selects at time t the optimal
path over time (called Viterbi path) through the state space based on the maximum
δt(i) which is the best score along a single path that starts in any state at time 0 and
ends in state si at time t. The Viterbi algorithm takes into account the t previous
system states. Starting from an initial distribution of the probabilities over the states

Π = {π1, . . . πN} where
N∑
j=1

πj = 1, the algorithm initializes δ0(i) as follows:

δ0(i) = πi . (3.1)

Next, δt(i) can be computed using recursion [75]:

δt(i) = max
j

[δt−1(j) aji]Ot(i) . (3.2)

The next section explains the relation between HMM and tracking of a catheter tip
in 3D using fluoroscopic images.

3.2.2 Catheter tip tracking

3.2.2.1 Timepoint

The timeline is associated with the frames of the 2D X-ray image acquisition (around
7 Hz). Each discrete time point t of the HMM corresponds to a 2D X-ray image Zt.
The measurement/observation for the HMM is the 2D X-ray image.
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Figure 3.3: HMM with a vessel tree. In this example, the transitions between
possible tip locations exist only with direct neighbours and are equiprobable. The
Viterbi path goes to the optimum tip position knowing the images/observations
Z1. . .Z5 in the 5-images sequence.

3.2.2.2 States

The 3D catheter tip is tracked inside the 3D vessel tree centerline extracted from the
3DRA. The vessel tree is discretized as a set of 3D points P = {p1, . . . pN}. The
probability that the catheter tip is at position pi is the probability that the HMM
is in the state si. The function δt(i) is then the score that the tip is at the position
pi in the tree for the discrete time point t (Fig. 3.3). In our application, the liver
arteries move because of respiration. For our model, we define p0

i the position of the
3D point pi in the world coordinate system at time t = 0 (starting position at 3DRA
acquisition), and pti its position at time t.

3.2.2.3 Matrix A of state transition probabilities

The matrix A of state transition probabilities describes all the transition probabilities
aij for the catheter tip to move from one point pi to another point pj in the vessel
tree P (state si to sj), between two time points (i.e. between two subsequent 2D X-
ray images). As the interval of time is relatively short, the probabilities of transition
should be high in the vicinity of the point pi because the catheter (and so the tip)
is not expected to move very far away. Therefore, the transition probabilities are set
according to the distance along the vessel path between points pi and pj of the 3D
vessel tree. Two distributions are proposed to model the catheter tip motion: one,
a′ij , restrictive around the point pi and one, a′′ij , flexible in the close vicinity of pi.
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The first one models a catheter moving relatively slow with a Gaussian function [3]:

a′ij = e
−
D(pi,pj)

2

2σ2a (3.3)

where σa controls how fast and far the catheter tip can move, and where D(pi, pj)
models the distance (along the vasculature) between pi and pj . I.e. let {g1, . . . gn}
be the set of points representing the vessel centerline between the points pi = g1 and
pj = gn, then D(pi, pj) is defined as the sum of the distances between each neighboring
pair gk, and gk+1:

D(pi, pj) =

n−1∑
k=1

||gk, gk+1|| . (3.4)

The second distribution gives the same probability for moving to any point in the
vicinity of the point pi, where vicinity is defined by a maximum distance θ (in mm).
We have a′′ij = 1 when D(pi, pj) ≤ θ and a′′ij = 0 when D(pi, pj) > θ.
Because the matrix A defines probabilities,

∑
j

aij has to be equal to 1, thus we

normalize the coefficients a′ (resp. a′′) to obtain aij = a′ij · (
∑
j

a′ij)
−1 (resp. aij =

a′′ij · (
∑
j

a′′ij)
−1).

3.2.2.4 Observation scores

During the tracking, for each point pi, we need to compute the score δt(i) (Equation
3.2), showing how likely the observation is following the previous system states and
under the condition that the tip is at the position pi (the system in the state si) at
time t. Thus each observation score (likelihood) Ot(i) needs to provide information
on the current state, based on the X-ray image Zt. In our method, we evaluate
the observation score via 3D/2D registration. In other words, the better the 3D/2D
registration is (following our registration metric), the better the observation score
will be. Each observation score Ot(i) is based on the 3D/2D registration between the
catheter shape extracted from the 2D X-ray image Zt and the unique 3D catheter
path centerline Vi = {v1, . . . vnVi}, starting from the tip pi and going to the root of
the tree. The catheter shape is defined as a set of 2D points in the image coordinate
system Ct = {c1, . . . cnCt}. The observation score Ot(i) is a likelihood between 0 and
1 stating how the 3D/2D registration performed at time t given that the tip is at the
position pi in the vessel tree. It is defined as a Gaussian function:

Ot(i) = e
−M(Ct,Vi)

2

2σ2s (3.5)

where M is the metric of the 3D/2D registration and σs controls the scaling of the
registration metric.

The 3D/2D registration between the vessel path Vi and the catheter Ct determines
the transformation matrix τ that minimizes the metric M . M quantifies the alignment
of the 3D vessel with every point of the 2D catheter:

M(Ct, Vi) = min
τ

(∑
c∈Ct

Fcost(c, Vi, τ)

)
(3.6)
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where τ = Trotz Troty Trotx Ttransx is a 4 degrees of freedom rigid transformation matrix
(three rotations and one translation), and Fcost is a function that represents how close
is a 2D point of the catheter to the projected 3D vessels knowing the transformation τ .
The transformation τ only has 4 degrees of freedom because the projection of the 3D
tip pti at time t has to match the 2D catheter tip c1 and therefore the transformation
τ translates only along one axis, the line from c1 to the origin of the X-ray projection,
and rotates around it (Fig. 3.4).

In order to define the cost function Fcost, we first explain how the 3D vessel tree
is projected from the world coordinate system to the image coordinate system. We
compute (in the world coordinate system) the intersection of the line projecting c1
(i.e. the line from X-ray source to c1 on the X-ray image/detector plane) with a plane
that is parallel to the image plane, and that contains the 3D tip p0

i . This intersection
is represented by the point li which will be the starting point as a 3D catheter tip for
the registration search of τ . As any point on the line along the X-ray source projects
on c1, the only translation allowed to find pti is along this line. Furthermore, the
center of rotation of τ is the same point li, such that the rotations also guarantee that
pti projects on ci. Therefore, the projection transformation is parametrized as follows
(Fig. 3.4):

Fproj(v, τ) = Tproj Tdet←w Tw←li τ Tli←w T−−→p0i li
v (3.7)

where T−−→
p0i li

is the translation along the line p0
i to li in the world coordinate system

and Tli←w is the transformation from the world coordinate system to the coordinate
system centered around li. The transformation Tproj is the cone-beam projection and
Tdet←w the transformation matrix from the world to the C-arm detector (X-ray image
plane). Both transformations are known because of the C-arm geometry (given in the
DICOM file). Because the projection of the 3D tip pti is the 2D catheter tip c1, we
have Fproj(p

t
i, τ) = c1.

We propose two cost functions to measure how far a 2D catheter point is from a
projected 3D vessel. The first one is the minimal distance between each point of the
2D catheter Ct and any projected point of the 3D centerline Vi:

Fcost1(c, Vi, τ) = min
v∈Vi
||c− Fproj(v, τ)|| (3.8)

where Fproj(v, τ) is the projection of the 3D point v onto the 2D images. This cost
function ignores the vessel diameter when registering the centerline of the vessel path
Vi. As some vessels may have a large diameter (e.g. in the hepatic artery or the
aorta), we defined a second cost function that takes into account the vessel diameter
and reduces the cost of the alignment when the catheter is inside a vessel Vi. Using
the known radiuses Ri = {r1, . . . rnVi } associated with every point of the vessel Vi,
the second cost function based on sigmöıd is (Fig. 3.5):

Fcost2(c, Vi, τ) =
Fcost1(c, Vi, τ)

1 + eα1·(−Fcost1 (c,Vi,τ)+α2·r)
(3.9)

where α1 and α2 control the cost inside the vessel and r is the radius of the point
v ∈ Vi. v is the point which has the minimum distance with the catheter point c in
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Figure 3.4: Initial position of the 3D vessel tree (in green) with the 2D projected
catheter (in red) at time t (left figure). 3D points are transformed from the 3D world
coordinate system to the 3D X-ray detector plane coordinate system (Tdet←w) and
then projected to the 2D image plane (Tproj).
Registered position of the 3D vessel tree (knowing that the catheter tip is at the
position pi) after the computation of the optimal transformation τ (right figure).

the first cost function Fcost1(c, Vi, τ). We want Fcost2 to start to penalize when the
minimum distance reach the radius r. The variables α1 = 2 and α2 = 0.85 fit to
obtain this behaviour (Fig. 3.5).

3.2.2.5 Viterbi algorithm

For each image, the Viterbi path [75] is computed from the initial state position at the
first image to the current image. This results in the most likely 3D tip point pi for each
image, and also (as a 3D/2D registration has been performed during the observation
scores evaluation) the transformation τ that aligns the projected 3D vessel tree with
the 2D fluoroscopy.

Theoretically, at time t, the observation score Ot(i) for every state i should be
evaluated. For large vessel trees, that may contain hundreds of points, this would not
permit real-time use. Therefore, to reduce the computational effort, the observation
scores of only a relatively small number of NO states are evaluated and for all the
other states, the observation scores are set to 0. To this end, we first sort all the states
si following the score max

j
[δt−1(j) aji]. The NO states with the best scores will be

selected to have their observation scores Ot(i) evaluated. Thus, only the most likely
tip positions will be evaluated and the other possible tip positions will be discarded
(Fig. 3.6).
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Figure 3.6: Process example with NO = 2. At time t, p6 is the most likely position
for the catheter tip. τ6 is the result of the minimization for the 3D/2D registration
when evaluating Ot(6).
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3.3 Experiments

The method presented in the previous section was qualitatively and quantitatively
evaluated, considering the accuracy as well as the robustness. The evaluation was
carried out on both simulated data and clinical data. In the following, we describe
respectively the data acquisition and implementation, the simulation experiments and
the experiments using clinical data.

3.3.1 Data acquisition and implementation

We retrospectively acquired data of 28 Transcatheter Arterial Chemoembolization
(TACE) procedures. The data, which were anonymized prior to use in this study,
comes from three different hospitals (Erasmus MC, University Medical Center, Rot-
terdam, the Netherlands; the Hôpitaux Universitaires Henri Mondor, Créteil, Paris,
France; and the Ospedale di Circolo e Fondazione Macchi, Varese, Italy) using in-
tervention rooms with angiographic C-arm systems (Xper Allura, Philips Healthcare,
Best, the Netherlands). In total, we acquired 10 long fluoroscopic sequences (46-76
frames) from 10 procedures and 74 angiographic sequences (4-11 frames) from 19
procedures (one is in common with the long sequences set). A 3DRA image was
acquired at the beginning of each intervention when the catheter was in the common
hepatic artery. For each fluoroscopic image Zt in each sequence (i.e. all the frames),
the 2D catheter centerline Ct was manually segmented by annotating points on the
2D catheter and then fitting a continuous spline to these points. The 3D vessel tree
centerline P in the 3DRA was extracted with a semi-automatic method based on
thresholding and skeletonization [83]. Each point p ∈ P is associated with the radius
of the vessel at that position. The catheter Ct and the vessel tree P are discretized
with a sampling distance of γ mm between every consecutive point. The effect of the
sampling distances γ = {0.5, 1.5, 3, 6, 9} mm is evaluated in the experiments.

To minimize the metric M , we used the Powell optimizer [73] where the rota-
tion rotx, roty and rotz, and the translation along the projected line transx (from
the transformation τ) are the optimization parameters. As the 3D vessel tree will
translate and rotate around the projected line of the 2D catheter tip position, the
initial position of the 3D vessel tree is already close to the optimal position. Thus,
we can have a rather limited search space during the registration. The rotations have
been constrained between ±2◦ and the translation between ±2 mm. Larger rotations
around roty and rotz can lead to overlapping vessels and less reliable registrations.

When the HMM updates δt(i) are computed, values can become very small over
the time and as a result, computations may be numerically unstable. As Rabiner et
al. [75] suggest, updates can also be computed in log scale in order to get numerical
results more stable. The equation in log scale becomes:

δt(i) = max
j

[δt−1(j) + log(aji)] + log(Ot(i)) (3.10)

The experiments were run on an laptop Intel Core i7 (2 Ghz). The HMM tracking
method source code is available.1

1https://github.com/pambros/HMM-3D-Catheter-Tip-Tracking
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3.3.2 Patient vessel tree with a moving simulated catheter

We performed experiments on simulated data; the main purpose of these experiments
was to apply and evaluate the tracking algorithm in the context of data with ground
truth. With this simulation, we know the exact position of the 3D catheter and the
3D vessel tree, with respect to the C-arm system. We thus can project the simulated
catheter and obtain the position of the 2D simulated catheter. Then, similar to
the real data scenario, the algorithm tracks the 3D catheter tip position in the 3D
vasculature (using the 3D vessel tree centerline, the 2D catheter centerline at each
frame and the first 3D tip position to initialize the distribution of the probabilities
over the states: Π). Below, we first describe how the simulation data was generated,
and then we detail the experiments running these data.

3.3.2.1 Catheter simulation

To obtain realistic data, a 3D catheter is simulated using the clinical data i.e. 3D
vessel tree and fluoroscopic image projection. In the simulation, we included catheter
motion inside the vasculature and respiration induced motion. This was done as
follows: For each fluoroscopic sequence, the 3D vessel tree (extracted from the 3DRA)
was manually registered with a frame where the 2D catheter tip is at the most distal
position in the vasculature in order to get the longest catheter visible. The goal is
not to obtain an accurate registration but a simulation as close as the real clinical
case. Because of the manual registration, the catheter tip position in the 3D vessel
tree is obtained. A catheter is generally not at the vessel center, but rather positioned
at the boundaries of the vessels. So, from the tip position, an initial catheter shape
is determined by extracting a minimum cost path inside the vessel tree binary mask
from the catheter tip position to the root of the vessel tree; the resulting path is
the simulated catheter Cm. The catheters C0, C1, . . . , Cm−1 are constructed from
Cm. The catheter and thus the tip move from the hepatic artery, where the contrast
agent has been injected during the 3DRA acquisition, to the tip position of Cm. The
displacement has a fixed speed for each sequence, randomly chosen in a range from
1 to 10 mm/frame. C0 is the first catheter shape, running from the root until the
hepatic artery. C1, . . . , Cm−1 are similar parts of Cm, always starting at the root and
ending at a position in-between the hepatic artery and the tip position of Cm. These
positions are computed such that the catheter tip advances with a fixed speed. A
Gaussian smoothing with a random σ ∈ [1, 2] mm is applied on every constructed
catheter to add a slight deformation. Additionally, the catheter motion caused by
respiration is simulated by translating the catheter in the cranial-caudal direction.
The translation amplitude is defined as:

translation(i) = λ sin(
2π

β
i∆t) (3.11)

where λ = 10 mm is the peak amplitude, β = 4 s the respiration period, i the number
of the current image in the sequence and ∆t = 0.133 s the time between two images,
obtained from the clinical fluoroscopic image frequency.
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3.3.2.2 Experiments and parameters optimization

The catheter simulation is based on the 74 angiographic sequences. 6 sequences have
been discarded because the catheter was too short (less than 8 cm) to simulate a
tip motion. The sequences with catheter simulation are divided in one training set
with 20 sequences originating from 7 procedures and one test set with 48 sequences
originating from 12 different procedures. First, experiments have been done to choose
optimal parameters. We used the simulated catheters to evaluate the tracking accu-
racy. To this end, we computed the 3D distance between the ground truth catheter
tip and the tip after the registration for each frame of each simulated sequence. For
each experiment, the two cost functions (Fcost1 and Fcost2), and the two transition
distributions (a′ and a′′) were evaluated.

The parameters σa and θ from the transition matrix A, and σs from the ob-
servation score were optimized with the training set. The purpose is to evaluate
the tip tracking accuracy of the method as a function of σa, θ and σs and there-
fore we report the 3D tip distance over all the frames of sequences. The parameter
values that gave the shortest median distance were used for all the following experi-
ments. The evaluation has been done with the values: σa = {6, 9, 12, 15, 18, 20} mm,
θ = {6, 9, 12, 15, 18, 20} mm and σs = {0.25, 0.5, 1, 1.5, 2, 2.5} mm. For these experi-
ments, the sampling γ of the 2D catheter and the 3D vessel tree centerline is set to 3
mm and the number of observation scores to evaluate NO is set to 200.

The sampling γ and the number of observation scores to evaluate, NO, affect
computation time, and may also affect method accuracy. We investigated the effect
of using different samplings γ and different NO with the optimal values of θ, σs, the
cost function Fcost1 and the transition distributions a′′ (determined for each sampling
γ and NO = 200, like the previous experiment). The samplings γ = {0.5, 1.5, 3, 6, 9}
mm and NO = {10, 25, 50, 100, 200} have been evaluated. The 3D distance between
the real and registered tip is reported to find the optimal accuracy/computation time
tradeoff.

With the optimal parameters, the test set is evaluated and the 3D tip distance is
reported. Also, the robustness of the tracking was evaluated by determining whether
the catheter tip is tracked correctly until the end of the sequence; we consider a
tracking failed when the registration results of the last 5 images of the sequence yield
a 3D distance between the real catheter tip and the registered one greater than 3 mm.
The percentage of tracking failures is reported.

3.3.3 Clinical data

The optimal parameters computed with simulated catheters were used in the experi-
ments with clinical data. As clinical data is missing ground truth for tip tracking, we
conducted two different experiments:

1. One experiment with quantitative evaluation on sequences with contrast agent:
74 sequences (between 1 and 2 s length) where the catheter is not advanced
significantly and the contrast agent is visible. The main motion to be recovered
is the motion of the liver caused by respiration. The 2D enhanced vessels close
to the tip were compared with the 2D vessels projected from the 3D vessels tree.
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Figure 3.7: Closest corresponding points distance between paired vessels used for
the sequences with contrast agent evaluation.

2. One experiment with qualitative evaluation on motion sequences: 10 sequences
where the catheter is advanced (between 7 and 10 s length). The tracking was
visually checked.

For each sequence, in the first frame, the 3D tip is manually annotated in the 3D vessel
tree to initialize the method. Although annotating the exact position is difficult, the
annotation is sufficient for the initialization of the HMM. If the point pi is the manual
3D tip position annotation, then πi is set to 1 and all the other position probabilities
in the initial distribution Π are set to 0.

3.3.3.1 Experiments with sequences with contrast agent

Angiographies or DSA were acquired for the sequences with contrast agent. The
last X-ray images of the sequences show the vasculature in the vicinity of the tip
of the catheter. These vessels can be compared with the 2D projection of the 3D
registered vessel tree. We used the same evaluation as described in our previous
method [2]. The evaluation metric is the average distance of the closest points between
the 2D vessels and the 2D projection of their corresponding 3D vessels (Fig. 3.7). The
correspondence between the projections of the 3D vessels and the 2D vessels in the
angiographies is unknown. Therefore, we manually paired the vessels visible in the
X-ray angiography to the vessels projected from the 3D tree (Fig. 3.8). The distances
between the paired vessels close to the tip are then computed. The most relevant
region for the tip tracking is the area close to the catheter tip; we therefore only
evaluated in a circular region (3 cm radius) around the catheter tip. The 2D vessels
from the angiographies are manually segmented and the 3D vessel tree is projected
onto the image using the C-arm geometry. In order to help the visual pairing, the 2D
projection of the 3D vessel tree was manually aligned, this alignment was not used in
the tracking experiments.
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Figure 3.8: Annotation example for the sequences with contrast agent evalua-
tion: 2D segmented vasculature from contrast agent (left), 2D projection of 3DRA
vasculature after manual registration (center) and manual paired vessels used for
the evaluation (right). The paired vessels (between the 2D vasculature and the 2D
projection of 3DRA vasculature) are presented in the same color.

3.3.3.2 Experiments with motion sequences

The method is applied on every sequence and the tracking results are evaluated vi-
sually. For each second of each sequence, we report one of the three following obser-
vations: “Correct tracking”, “Incorrect tracking but clinically relevant”, “Incorrect
tracking and no clinical relevance”. Clinical relevancy means that the the 2D pro-
jected roadmapping of the vasculature still gives useful visual information.

During the procedure, the physician regularly moves the table and the C-arm
detector, and changes magnification or the field of view. Most of the time, when the
catheter is closer to the tumor, the field of view is centered at the tip of the catheter.
In those cases, only the distal part of the catheter is visible and the registration is
challenging. To evaluate the tracking method also in those cases, for each fluoroscopic
sequence, part of the proximal segmented catheter centerline was removed. At one
third (resp. two third) of the sequence, 33% (resp. 66%) of the segmented catheter is
removed. The visual evaluation of the tracking method on these sequences with field
of view simulation is reported.

3.4 Results

3.4.1 Patient vessel tree with a moving simulated catheter

Figure 3.9 shows the tracking results of the simulated training set with the two cost
functions (Fcost1 and Fcost2), the two transition distributions (a′ and a′′), and for
various σa, θ and σs. The median distance between the 3D tip and the 3D registered
tip is below 2.6 mm for more than half of the experiments (67%) with the cost function
Fcost1 . Results with the transition distribution a′′ have a median distance smaller than
those with the distribution a′ except for a few experiments (4%). For the following
experiments, we choose the optimal settings with the experiments giving the shortest
median distance. Table 3.1 summarizes the chosen parameters. The experiment could
have been done with σs smaller than 0.25 mm to check if the median distance would
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Figure 3.9: Median distance between the 3D tip and the 3D registered tip (in mm)
for each frame of the simulated sequence training set with different σa, θ and σs (in
mm). Experiments with the cost function Fcost1 and the transition distribution a′

(a), with Fcost2 and a′ (b), with Fcost1 and a′′ (c), with Fcost2 and a′′ (d).

Table 3.1: Optimal settings resulting from the simulated experiments. The bold
line is the optimal one.

Transition
distribution

σa θ
Registration
cost function

σs NO Sampling γ

a′ 9 mm N/A Fcost1 0.25 mm 25 3 mm
a′ 12 mm N/A Fcost2 0.25 mm 25 3 mm
a′′ N/A 9 mm Fcost1 0.25 mm 25 3 mm
a′′ N/A 18 mm Fcost2 0.25 mm 25 3 mm

decrease. However, the pixel size of the fluoroscopic sequences is on average 0.23 mm
and thus a smaller σs would be beyond the pixel resolution, and the accuracy of the
catheter centerline extraction. The cost function Fcost1 and the transition distribution
a′′ were chosen for the subsequent experiments. Though the median distance is similar
for both transition distribution a′ and a′′, a′′ is less sensitive to the parameter settings
σs and θ. Additionally, the implementation of Fcost1 and a′′ is also simpler and the
computation time is lower.

The optimal settings have also been computed for the samplings γ = {0.5, 1.5, 6, 9}
mm with NO = 200, cost function Fcost1 and transition distribution a′′. For all the
samplings γ, we obtain the optimal settings θ = 9 mm and σs = 0.25 mm. With these
settings, the impact of the centerlines sampling γ and the number of observation scores
NO is shown in Figure 3.10. The experiments with the sampling γ = 1.5 and 3 mm
obtain the smallest median distances (less than 2.5 mm) and standard deviations, with
a number of observation scores NO greater than 50, and greater than 25 for the 3 mm
sampling. The average registration time is less than 53 ms for all the experiments
with a sampling greater than 3 mm (Fig. 3.11). For all the following experiments, the
3 mm sampling and NO = 25 are chosen as a tradeoff between accuracy, robustness
and computation time (see Table 3.1).

Figure 3.12 shows the distance between registered tip and real tip during the
tracking with the test set and optimal settings. With the settings that result from
the previous experiments and the definition described in the “Experiments and pa-
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Figure 3.10: Distance between the 3D tip and the 3D registered tip (in mm) for
each frame of the simulated sequence training set with different samplings γ (in
mm), number of observation scores NO and optimal settings (θ = 9 mm, σs = 0.25
mm, Fcost1 and a′′). � indicates that there is no statistically significant difference
(p-value > 0.05 with a Wilcoxon signed-rank test) between this experiment and
the experiment with optimal settings (with γ = 3 mm sampling and NO = 25).
The boxes of the boxplot report first and third quartiles, and median values. The
whiskers report ± 1.5 times the inter-quartile range around the box.
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Figure 3.12: Distance between the 3D tip and the 3D registered tip (in mm)
for each frame of the simulated sequence test set with the optimal settings (see
Table 3.1). � indicates that there is no statistically significant difference (p-value >
0.05 with a Wilcoxon signed-rank test) between this experiment and the experiment
with optimal settings (cost function Fcost1 and transition distribution a′′). The boxes
of the boxplot report first and third quartiles, and median values. The whiskers
report ± 1.5 times the inter-quartile range around the box.

rameters optimization” section, the tip tracking failed to reach the last tip position
in less than 16.7% of the sequence test set.

3.4.2 Clinical data

Figure 3.13 shows the average distance between paired vessels (within 3 cm radius
from the tip) for all the sequences with contrast agent after the tracking and regis-
tration. The optimal settings are used and the two cost functions and two transition
distributions are evaluated. We also compare with our previous method [2]. The
transition distribution a′′ with the cost function Fcost2 gives the lowest median av-
erage distance (4.6 mm) but there is no statistically significant difference (p-value
> 0.05 with a Kruskal-Wallis test) between the different transition distributions and
cost functions. Our previous none-tracking method yielded a larger median average
distance and the distribution is wider as well. The average computation time of the
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previous method is 236 ms with Powell optimizer and 5.2 s with brute force. The four
combined tracking methods have an average computation time of 64 ms.

The tracking method with optimal settings (see Table 3.1) has been applied on
the original 10 motion sequences and on the 10 motion sequences with field of view
simulation (part of the catheter removed) (Fig. 3.14). Tracking results based on
visual observations are depicted in Figure 3.15. Two video clips showing the tracking
results are available as supplementary material.2 The 3D vasculature (in green) is
projected on the fluoroscopy and only the vessel branches after and in the vicinity of
the catheter tip are displayed. The tip tracking is on average visually correct on eight
motion sequences (Fig. 3.15). “Incorrect tracking but clinically relevant” means that
the tip tracking is incorrect but the 2D projected roadmapping of the vasculature still
gives useful visual information. For example, in the end of the sequences 9 and 10,
the tracked tip is shifted or enters the wrong vessel but the resulted registration can
still be used as a roadmap. In sequence 9, the tracked tip enters in a loop-shaped
vessel parallel to the correct path. In sequence 10, the 3DRA image has to be rotated
significantly (at least 10◦ around the cranial-caudal axis) from its initial position to
fit with the catheter position. The limited search space during the 3D/2D registration
prevents the optimizer to reach the correct fit and therefore the tracking tip is not very
smooth. Sequences 3 and 6 have the same problem but also have a catheter shape
which is considerably deformed compared to the vessel shape in the 3DRA image.
The conclusions for the tracking with the simulated field of view are the same, except
for sequence 8 at eight seconds, where the remaining simulated catheter part is short.
In this case, the lack of discriminative shape information in the remaining visible part
of the catheter prevents to have a correct 3D/2D registration. On the other hand, in
sequence 3 (compared to the tracking with unaltered motion sequences), after four
seconds, the simulated field of view is helping the tracking because the beginning of
the catheter is not visible and this part is actually difficult to align due to its large
deformation compared to the vessel extracted from the 3DRA. Here we note that the
HMM method mainly kept two different tracking paths more than 3 cm apart. The
tracking in the first four seconds is in the wrong path and as soon as the score is
getting higher in the correct path, the tracking switches immediately to this one.

3.5 Discussion and conclusion

We proposed a method to track the tip of catheter in the 3D vasculature (extracted
from 3DRA) that uses an HMM to model the catheter tip probabilities, and 2D
catheter sequences (manually segmented from 2D catheterization single-plane fluoro-
scopic images). In the HMM, every 3D position in the 3D blood vessel is associated
with the probability that the catheter tip is at that position; additionally we model
the transitions for the catheter to move from that 3D position to a different one.

2Two video clips are available as supplementary downloadable material on
https://sites.google.com/view/ambrosini



52 3 A Hidden Markov Model for 3D Catheter Tip Tracking

Ambro. 2015
Powell

Ambro. 2015
Brute force

a ′

Fcost1

a ′

Fcost2

a ′′

Fcost1

a ′′

Fcost2

0

5

10

15

20

25

30

in
 m

m

6.5
121.1

6.4
89.5

5.0
24.3

5.1
61.2

4.7
24.3

4.6
31.8

median
max

Figure 3.13: Average distance between paired vessels (within 3 cm radius from the
tip) for each sequence with contrast agent after registration (in mm). The optimal
settings were used (see Table 3.1). � indicates that there is no statistically significant
difference (p-value > 0.05 with a Kruskal-Wallis test) between this experiment and
the experiment with optimal settings (cost function Fcost1 and transition distribution
a′′). Kruskal-Wallis test has been used because we do not have paired samples
(number of paired vessels can differ following the tip position). The boxes of the
boxplot report first and third quartiles, and median values. The whiskers report ±
1.5 times the inter-quartile range around the box.
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a) b)

c) d)

Figure 3.14: Tip tracking with the catheter (in red) and the projection of the
vessel tree (in green). Before the tracking with 3DRA at its initial position (a),
breathing and table motion are the causes for the misalignment. After the tracking
(b). After the tracking with the simulated field-of-view (shorter catheter visible)
(c). Tracking in the 3D view (d), from a different angle than the projection, with
the colored score δt for every point (scale between red (score = 0) and green (best
score).
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Figure 3.15: Visually-based observations of the tip tracking over time for the 10
motion sequences: tracking of the unaltered sequences (left) and tracking of the
sequences with field of view simulation (right). For each second of the trackings, we
attribute one of the three following observations: “Correct tracking” (light gray),
“Incorrect tracking but clinically relevant” (dark gray) and “Incorrect tracking and
no clinical relevance” (black).

With the optimal settings, the simulated catheter results have a median 3D dis-
tance of 2.3 mm between the real-tip and the registered tip position. The results of
the experiments with simulated catheters show that a transition matrix with constant
probabilities (a′′) is less sensitive to parameter changes (we obtain a smaller median
distance with most of the parameters) than when using Gaussian distributed tran-
sition probabilities (a′). This may be explained by the fact that in case of constant
transition probabilities, the probabilities derived from the registration cost function
are more discriminative and thus will lead to select the best registration instead of
choosing a less well registered one because that one has a higher prior probability due
to the non-constant transition matrix. In the simulated catheter experiments, the er-
ror is larger with the cost functions Fcost2 (taking into account the radius) than with
Fcost1 . The cost function Fcost2 apparently does not constrain the catheter/vessels
alignment sufficiently, which may lead to an inaccurate tip position. The catheter
and vessel deformation simulation may also be insufficiently realistic to demonstrate
added-value of taking into account the vessel diameter during the registration.

The number of observation scores NO is directly related to the discretization γ of
the 3D vessel tree and the 2D catheter. Intuitively, if the sampling γ is denser, the
number of observation scores NO must be increased to maintain similar results. This
assumption is verified with the experiments. The accuracy and the robustness of the
tip tracking are optimal when the vessels and the catheter are sampled with γ = 3
mm (resp. 0.5 or 1.5 mm), and the number of observation scores to evaluate NO is
more than 25 (resp. 50 or 200). In our case, a sampling of γ = 3 mm and NO = 25
provide a reasonable tradeoff for real-time registration.

The experiments with clinical data with a catheter that is not advanced, and
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where contrast agent is introduced, yield a median average distance between paired
vessels of 4.7 mm using optimal settings. Here, both cost functions Fcost1 and Fcost2

have similar results. The deformations of vessels and catheter in clinical data are
much larger than our simulated data, therefore the registration cost function Fcost2

which takes the radius into account is probably more effective than with simulated
catheters.

The curvature of the vasculature and catheter is relevant in the tracking. A
unique catheter shape (with high curvature) originating from a unique shape of the
vasculature will facilitate the registration. In our previous method [2] we propose a
method based solely on the catheter shape. The tracking was generally successful in
cases with a unique catheter shape but our experiments also demonstrated that the
registration can fail when the shape is not sufficiently discriminant. The tip tracking
in our current method enables a more robust registration when the catheter has a
simple shape or is rather short.

The tracking and the associated 2D or 3D roadmap can be used for guidance to
navigate the catheter through vasculature, without additional contrast agent injec-
tions. According to our clinical partners, a median vessel distance error of 4.7 mm is
sufficient for them to localize the instrument in the vessel tree, and helps them guid-
ing the catheter to the correct location. In practice, for the physicians, consistency
in tip tracking is more important for guidance than the actual vessel position around
the tip. Also, the experiments with clinical data with the catheter being advanced,
demonstrated that the tracking is robust even when the tracking is lost for some time
or when only a short part of the catheter is visible. Although the lack of a reference
standard for these cases prevents us from quantifying the results, the tracking and
resulting roadmap provide visual information which may help physicians to maneuver
the catheter more efficiently, and possibly to use less contrast agent. Future clinical
studies need to be conducted to validate this assumption.

Most of the methods in the literature register a 3D pre-operative image with 2D
X-ray contrast enhanced images. Some of them obtain submillimeter accuracy. We
cannot directly compare our results with those methods because we use 2D fluoro-
scopic images with no contrast in which only the catheter is visible, making it a much
more challenging task. In order to compensate the breathing motion, Atasoy et al. [5]
updated the initial 3D vasculature position using also only a small part of the catheter
(extracted in a manually selected region of the X-ray image). They evaluated on one
clinical sequence by computing the overlap of the catheter with the vasculature, re-
sulting in 70% overlap. Our tracking method with the motion sequences obtains on
average 80.3% overlap. However, this evaluation metric does not give information
about the catheter tip and the vessels around the tip.

To apply this method in the angiography suite, the 2D segmentation of the
catheter has to be done automatically during each 2D X-ray frame. This task is
challenging but it has been already addressed in several studies, such as Heibel et
al. [34]; they demonstrated a catheter tracking accuracy of less than 1.5 pixels on
liver catheterization fluoroscopic sequences. Such accuracy should be sufficient for
application in clinical practice. Other methods propose to track the catheter in flu-
oroscopic images such as [86, 97, 98]. The 2D catheter detection as well as the 2D
tip detection are important because the registration is solely based on the catheter
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centerline. We did not evaluate the error resulting from a missing tip part. However,
given our approach, we expect that a missing tip part will result in an additional tip
position error (in 3D) of approximately the length of the missing part. On the other
hand, the roadmap should still be correct and could still help the physician to guide
the catheter. In addition, the catheter tip position in the 3D vessel tree needs to be
initialized once, after the 3DRA acquisition, by manually indicating the tip. This task
is simple and fast, and could also be automated because the catheter can be easily
identified in 3DRA.

Our method could be extended in several directions. A non-uniform sampling
of the catheter and the vessel tree centerline could be used to guide the optimizer
during the registration to align features such as high-curvature regions. The matrix
A of state transition probabilities could similarly be adapted, e.g. at region of high
curvature and also branching points. In the liver, as motion of the vessels is mainly
due to respiration, the motion transformation should be small between each frame
and a periodic respiratory motion is expected. It could be useful to include a motion
prior in the registration transformation model.

To conclude, we presented a 3D catheter tip tracking method using an HMM with
2D fluoroscopic sequence and 3DRA. Experiments on simulated data demonstrated
a median tip tracking distance error of up to 2.3 mm. On clinical data, the results
demonstrate a robust tracking in cases where the catheter is advanced. In case of no
advancement of the catheter, the registration yields a median distance error of less
than 4.7 mm on vessels close to the tip. These accuracies indicate that the method
could become a promising tool for improving image guidance in liver catheterization
procedures.
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Chapter Four

Fully Automatic and Real-Time
Catheter Segmentation in X-Ray

Fluoroscopy

Abstract — Augmenting X-ray imaging with 3D roadmap to improve guidance
is a common strategy. Such approaches benefit from automated analysis of the X-
ray images, such as the automatic detection and tracking of instruments. In this
paper, we propose a real-time method to segment the catheter and guidewire in 2D
X-ray fluoroscopic sequences. The method is based on deep convolutional neural
networks. The network takes as input the current image and the three previous
ones, and segments the catheter and guidewire in the current image. Subsequently,
a centerline model of the catheter is constructed from the segmented image. A
small set of annotated data combined with data augmentation is used to train the
network. We trained the method on images from 182 X-ray sequences from 23
different interventions. On a testing set with images of 55 X-ray sequences from 5
other interventions, a median centerline distance error of 0.2 mm and a median tip
distance error of 0.9 mm was obtained. The segmentation of the instruments in 2D
X-ray sequences is performed in a real-time fully-automatic manner.

Based upon: P. Ambrosini, D. Ruijters, W.J. Niessen, A. Moelker and T. van Walsum: Fully
Automatic and Real-Time Catheter Segmentation in X-Ray Fluoroscopy. The 20th International
Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Lecture
Notes in Computer Science, vol. 10434, pp. 577-585, 2017.
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4.1 Introduction

Minimally invasive procedures are generally preferred over open surgery interven-
tions, as these localized and accurate interventions lead to less trauma and shorter
recovery times than conventional procedures. Minimally invasive procedures require
real-time imaging to visualize the relevant anatomy and the instruments. Particularly,
in catheterization procedures, a catheter 1 is inserted into the body via the vascu-
lature and fluoroscopic imaging is used to continuously visualize the catheter. The
vasculature is only visible in X-ray images when contrast agent is injected, and con-
trast agent is used sparingly because of its toxic nature. Therefore, recent approaches
for virtual roadmapping that permit the visualization of a 3D vessel tree from pre-
operative images have been presented [4, 80]. Such methods benefit from automated
extraction of the instruments from fluoroscopic images. The purpose of this work was
therefore to develop and evaluate a method that segments fully automatically the
catheter in 2D single-plane X-ray fluoroscopic sequences in real-time.

Automatic catheter segmentation is not straightforward, as the catheter is a thin,
moving structure with low contrast in noisy images. Segmentation methods for elec-
trophysiology (EP) electrodes and EP catheter in 2D X-ray images have been reported
[12, 101]. EP electrodes are clearly visible, and their location is often used to obtain
a full segmentation of EP catheters. Segmentation of catheters without features such
as electrodes has been studied less frequently. Most methods enhance the instruments
with Hessian-based filters, which are followed by a spline fitting approach, starting
from the catheter shape of the previous frame [6, 15, 16, 34, 86, 98]. These methods
have two drawbacks: the first frame of the fluoroscopic sequence has to be manually
annotated and the curvature and length of the catheter should not change much be-
tween frames. [15, 34] propose semi-automatic methods to segment the first frame.
Recently, a fully automatic method using directional noise reduction and path ex-
traction, with segments and similarity from the previous frame cost function, has
been proposed [97]. The method was evaluated on the last frame of 7 sequences from
one canine study on which it performs well; it is, however, not a real-time method.
We summarize in Table 4.1 the methods proposed in the literature in order to show
results they obtained. Note that the results, the accuracy metrics and computation
times cannot be directly compared but they give an idea of the performances.

Our method utilizes deep convolutional neural networks (CNNs) for the segmen-
tation. CNNs have been demonstrated to be very effective in image classification
and image segmentation [54], also in case of medical images with a limited set of
annotations [62, 79]. Ronnerberger et al. [79] introduced an end-to-end biomedical
imaging segmentation network called U-net: a model with a fully convolutional part
(downsampling part) and a deconvolutional part (upsampling part) which outputs
after appropriate thresholding a binary segmented image. Extensive data augmenta-
tion enables the neural network to generalize well, even in case of small training sets.
Several improvements w.r.t. the network and the training process have been intro-
duced more recently. The downsampling (resp. upsampling) part has been shown to

1For clarity, in the remainder of the paper, the word “catheter” also refers to the micro-catheter
and guidewire instruments. Although they have quite different appearances, they are handled alto-
gether as one instrument in the proposed method.
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Table 4.1: Summary of the methods in the literature and the method of this paper.

References
Fully
Auto.

Time Accuracy Tip Accuracy

2003 Baert et al.[6] No 5 s mean 0.9 pxa mean < 2 mma

2007 Slabaugh et al.[86] No 175 ms - -
2009 Wang et al.[98] No 500 ms mean 2 px (0.4 mm) mean 5.4 px
2012 Heibel et al.[34] No 60 ms mean 0.8-3.9 px -
2016 Chang et al.[15] No - - -
2016 Chen et al.[16] No - mean 2.1 px (0.5 mm) -

2016 Wagner et al.[97] Yes > 1 min mean 0.5 mm -
This work Yes 125 ms median 0.2 mm median 0.9 mm

aThe failed segmentations are not included in the evaluation

be more effective with strided convolution (resp. transposed convolution) than with
max pooling [62, 88]. Strided convolution enables to learn how the features should be
downsampled/upsampled. Moreover, batch normalization [39] and residual learning
[33] have been proposed to improve training convergence.

2D X-ray fluoroscopic images are very noisy and are used in liver catheterization
procedures to guide catheter inside the liver vessel tree. The catheter used does not
have specific features, such as electrodes, nor specific shapes that may facilitate their
segmentation. The framerate is around 7Hz, so, during the catheter manoeuvre, its
shape and length may change considerably between two consecutive frames. Tracking
the catheter over time is therefore quite challenging. In this paper, we propose a
fully automatic segmentation method based on the U-net model combined with recent
strategies to improve the training of the network, such as batch normalization, residual
learning and a data augmentation scheme to increase the size of the training dataset.
The catheter centerline is then extracted using skeletonization and linking of the
extracted branches. Our work differs from previous approaches in that we introduce
a fully automatic approach that can be run in real-time.

4.2 Method

The catheter is segmented using the CNN and then the centerline is extracted from
the result of the CNN using skeletonization and subsequent linking of branches.

4.2.1 Data

A 2D X-ray image sequence is a set of s 2D images S = {I1, I2, . . . , Is}. Each image
Ii is associated with a binary image Bi where the catheter pixels have a value of 1
and the background pixels 0. We also associate the output from the neural network,
the image prediction Bpi , where each pixel is between 0 and 1, and a pixel closer to
1 is considered as a catheter pixel. Our neural network model is trained to predict a
mask Bpi , given an image Ii as input.
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Figure 4.1: Neural network model (top): Ii, Ii−1, . . . Ii−3 images are fed into the
model and segmented image Bp

i is predicted. The model is composed of n-conv block
at each layer. An n-conv block is n consecutive convolutions of input features (with
f filters, height h and witdh w) with a residual connection to the output [33, 62]
(bottom).

4.2.2 CNN Model

The model is an adapted version of the well-known U-net model [79]. The input of
the model is the current image Ii and previous frames Ii−1, . . . Ii−3. The output is the
image prediction Bpi . For the network topology, see Figure 4.1. To improve conver-
gence speed during training, we add batch normalization (BN) after every convolution
[39]. In order to also learn how to downsample/upsample the features we use strided
convolutions [62, 88]. To prevent overfitting we add dropout at the end of the two
last blocks in the downsampling part [89].

4.2.3 Training

The loss function is based on the Dice overlap metric [62] between the ground truth
mask Bi and the output image Bpi of the model, defined as:

LDice(Bi, B
p
i ) = −

2
∑
k

BikB
p
i k∑

k

(Bik) +
∑
k

(Bpi k)
(4.1)
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where Bik and Bpi k are respectively the pixels of the mask Bi and the output image
Bpi .

In order to have more data to train and to generalize well, large data augmentation
is used during the training. Data augmentation is done on the fly. For every image
in the set of training images, there is a 50% probability to augment the image. If
the image is augmented, we apply all of the following transformations to both the X-
ray image inputs and the corresponding binary image output: 50% probability on a
horizontal and vertical flip, a random rotation (around the image center) in a range of
±9 degrees, a random scale with a factor in a range of 0.9 to 1.1, a random horizontal
and vertical translation in a range of ±16% of the image size, a random intensity
shift with a factor in a range of ±0.07 (in normalized image between 0 and 1) and a
Gaussian noise with σ = 0.03.

4.2.4 Centerline extraction

The output of the neural network is first thresholded with a threshold α (between
0 and 1) and then skeletonized [106]. Next, the branches (ordered sets of pixels)
are determined based on connectivity. Connection points are created between close
branches. If the closest points between two branches are within a distanceDmax pixels,
we consider this to be a possible connection, and there can be only one connection
between two particular branches. Then, to link the branches, three steps are done
(Fig. 4.2). First, for each connection, we divide and merge branches in order to have
the longest branches. Second, loops are detected and merged following the direction
at the crossing point. We have a loop in a branch when two points, within a distance
Dmax pixels, have their distance along the branch of at least Bmin pixels. Before
the third step, the first and second steps are repeated a second time with a distance
D′max superior to Dmax. Finally, in the last step, the remaining connected branches
larger than Bmin pixels are considered as incomplete loops or straight loops due to
foreshortening. We process them similarly as the second step by closing the two
endpoints of their branch. When all the potential links have been processed, we
keep the longest connected set of branches and choose amongst the two endpoints
the farthest from the image border as the tip of the catheter centerline. Finally, the
centerline is smoothed by fitting a spline.

4.3 Experiments and results

2D single plane X-ray fluoroscopic sequences have been acquired during 28 liver
catheterization procedures in three different hospitals (Erasmus MC, Rotterdam, the
Netherlands; Hôpitaux Universitaires Henri Mondor, Créteil, Paris, France; and Os-
pedale di Circolo e Fondazione Macchi, Varese, Italy) with angiographic C-arm sys-
tems (Xper Allura, Philips Healthcare, Best, the Netherlands). Every image is nor-
malized on the range [0, 1], mapping the intensities between the 2nd and the 98th

percentile of the image histogram. In 182 sequences from 23 procedures, we manually
segmented the catheter in four consecutive images by annotating points and fitting
a spline. From the catheter spline we constructed the binary segmented image using
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Figure 4.2: The three steps for the branches linking. Branches are depicted with
different colors and connection points are in red. The red dash curve is the centerline
after spline smoothing. The first step links the longest branch parts, the second step
links and corrects the loops and the last step links the remaining branches longer
than Bmin, considered as an incomplete loop or a straight loop due to foreshortening.

a dilation operator with a 5 × 5 pixel kernel. These sequences were used as training
data for the parameter optimization. In 55 sequences from the other 5 procedures, we
also segmented four frames per sequence. These 55 sequences will be used as testing
data after the model optimization and training.

The loss function LDice of the model is optimized using stochastic gradient descent
with a learning rate of 0.01, a decay of 5.10−4 and a momentum of 0.99. Following
the training, we set the threshold α to 0.01, the maximum distance to connect two
branches during the first pass (resp. second pass) Dmax to 5 pixels (resp. D′max to 20
pixels) and the minimum loop length Bmin to 30 pixels. Using an Nvidia GTX 1080,
the average time to segment one image was 125 ms which is suitable for real-time
processing. Our method is publicly available 2.

We evaluate using the tip distance error (i.e. the distance between the annotated
catheter tip and the tip of the segmented catheter), and the average distance between
the manually segmented catheter and the automatically segmented catheter. Figure
4.3 shows the tip and catheter distances results. We compute the precision of the tip
between consecutive frames. The median, average, minimum and maximum of the
standard deviation per sequence of the tip distance error are respectively 0.7 mm, 4.9
mm, 0.1 mm and 55.7 mm. Five examples of segmentation are shown in Figure 4.4.
In frame c, the segmentation is going too far and follows part of the vertebrae. Frame
d misses the proximal part of the catheter and frame e is the only sequence with
significant false positives. It is less noisy because it has been acquired with higher
radiation dose. The neural network was not trained for such sequence.

4.4 Discussion and conclusion

We proposed a fully automatic method to segment catheter on 2D X-ray fluoroscopic
images using CNNs. The segmentation on testing data gives a median tip distance
error of 0.9 mm and a median centerline distance error of 0.2 mm where 85% of the

2Available at https://github.com/pambros/CNN-2D-X-Ray-Catheter-Detection
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Figure 4.3: Tip distance error, ground truth to segmented centerline distance error
and segmented centerline to ground truth distance error (in mm) on the test set: 4
frames per sequence on 55 sequences.

frames have less than 1 mm of centerline distance error. We note that the distance
errors are in mm at the X-ray detector scale. The real distance errors at the patient
scale are smaller.

Very few images have false positives after the CNN segmentation. Therefore, we
can use simple criteria to extract the catheter centerline from the CNN segmentation.
The results show that it works well and can handle self-intersections. The main
problem in the extracted catheters are sometimes large gaps in the segmentation due
to false negatives. As a consequence, occasionally the proximal part of the catheter
is missing. With a larger training set, the model is expected to generalize better.

Previous studies show a higher success rate, probably because they manually
initialize the tracking process. We, in contrast, do not employ a tracking approach.
Whereas it is clear that a stronger incorporation of the time dimension (beyond using
consecutive frames in the segmentation) may provide a more robust result, our current
results demonstrate that even without tracking good results can be obtained. A
major advantage of not utilizing tracking is that the method is not hampered by
previously incorrectly segmented frames, and thus automatically can recover from
previous failures.

The catheter and guidewire have different thickness and appear quite differently
on fluoroscopic images. Whereas we trained one network that segments both, it could
be interesting to use two different models and retrospectively combine their results to
obtain a more accurate segmentation. The current model is using the previous images
to segment the catheter but it could also be useful to use the previous segmentation
in the model. Both strategies are future work.

To conclude, we developed and evaluated a CNN-based-approach to fully auto-
matically segment catheters in live fluoroscopic images. With execution times within
125 ms, this method is promising for use in real-time catheter detection.
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a) b)

c) d)

e)

Figure 4.4: 5 segmented frames of the test set. The segmented centerline (dilated
for visual purpose) appears from red (tip) to rose. The ground truth (thicker)
appears in white. The windows show the original image and the output of the
neural network.



Chapter Five

Fast Prospective Detection of
Contrast Inflow in X-ray

Angiograms with Convolutional
Neural Network and Recurrent

Neural Network

Abstract — Automatic detection of contrast inflow in X-ray angiographic se-
quences can facilitate image guidance in computer-assisted cardiac interventions. In
this paper, we propose two different approaches for prospective contrast inflow de-
tection. The methods were developed and evaluated to detect contrast frames from
X-ray sequences. The first approach trains a convolutional neural network (CNN) to
distinguish whether a frame has contrast agent or not. The second method extracts
contrast features from images with enhanced vessel structures; the contrast frames
are then detected based on changes in the feature curve using long short-term mem-
ory (LSTM), a recurrent neural network architecture. Our experiments show that
both approaches achieve good performance on detection of the beginning contrast
frame from X-ray sequences and are more robust than a state-of-the-art method.
As the proposed methods work in prospective settings and run fast, they have the
potential of being used in clinical practice.

Based upon: H. Ma, P. Ambrosini and T. van Walsum: Fast Prospective Detection of Contrast
Inflow in X-ray Angiograms with Convolutional Neural Network and Recurrent Neural Network. The
20th International Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI), Lecture Notes in Computer Science, vol. 10434, pp. 453-461, 2017.
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5.1 Introduction

During percutaneous coronary interventions (PCI), X-ray angiography (XA) is com-
monly used by clinicians to identify the sites of plaque and navigate devices through
the arteries of patients with advanced coronary artery disease. As X-ray imaging
has poor soft tissue contrast, coronary arteries are normally visualized by injecting
radio-opaque contrast agent in the vessels.

Approaches for improving image guidance in such procedures have been reported,
for example fusion of coronary models from CTA [81]. Such methods can only be
applied if vessels are visible in the XA, thus automated application of such methods
requires detection of presence of contrast agent. Similarly, automated detection of
catheter and guidewires, which can also be used for virtual roadmapping [7], is gen-
erally only possible in non-contrast enhanced frames. Therefore, an automatic way
to detect contrast inflow online is relevant for further automating advanced image
guidance methods for coronary interventions, reducing interactions of clinicians with
computers during procedures.

Existing works for detection of contrast inflow in X-ray images fall into two
categories: enhancement-based and learning-based. Enhancement-based methods
[19, 46, 48, 105, 107] enhance contrasted structures, followed by a step to extract
features that indicate the change of contrast throughout the sequence. The contrast-
enhanced frames are then detected via analysis of the feature. Learning-based ap-
proaches [17, 37] train a classifier to detect contrast or non-contrast frames based on
handcrafted image features. Among these works, [17, 48, 105] need an entire sequence
to detect contrast inflow, and thus only work retrospectively. [46] does not rely on a
complete sequence, but retrospectively runs on a sliding segment of a few new X-ray
frames, thus there is a trade-off between the possible delay of the contrast inflow
detection and the overall processing efficiency. In addition, this method was designed
specifically for TAVI procedures on aorta: their contrast detection method involves
aligning a predefined aorta shape model to X-ray images and a step of TEE probe
detection, which is not relevant for coronary interventions. [107] uses a heuristic ap-
proach to detect the first contrast-enhanced frame from X-ray sequences of left atrium
(LA) used for electrophysiology (EP) ablation procedures. [37] developed a learning-
based framework on X-ray images of LA for EP procedures. The method used a
SVM classifer with the heuristic features introduced in [19] and [107]. Out of these
methods, [19] is the only one that may be directly used for coronary interventions
and work in prospective settings.

The purpose of our work is to develop and evaluate solutions for prospective
detection of contrast inflow in XA images that can fit into the clinical work-flow of
coronary interventions. Specifically, we aim at prospectively detecting if a frame has
contrast agent. To this end, two different approaches were developed. Due to the
exceptional performances that convolutional neural networks (CNN) have in image
classifications [45], and medical applications, such as tissue segmentation and surgical
tools detection [29], we propose a learning-based method using CNN to classify each
frame of an XA sequence into two classes: with or without contrast. Additionally,
we propose a hybrid of enhancement- and learning-based. It computes a temporal
contrast feature from vessel-enhanced sequences based on which contrasted frames
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are detected with long short-term memory (LSTM) [36], a recurrent neural network
(RNN) architecture. To the best of our knowledge, this is the first work that applies
deep learning for contrast inflow detection in X-ray images. To validate the detection,
the position of the beginning contrast frame (BCF) [17, 37] in a sequence (where
contrast starts being visible) was used in the experiment.

5.2 Methods

5.2.1 The CNN-based method

Let S = {I1, I2, . . . , In} denote a sequence of n frames in which Ic is the beginning
contrast frame. All frames I1, . . . , Ic−1 are associated with the label “without con-
trast”. The other frames Ic, . . . , In have the label “with contrast”.

In order to classify the fluoroscopic frames, we used a CNN to learn the differ-
ence between the contrast frame and non-contrast frame (Fig. 5.1, top). The input
of the CNN has 5 images: the current frame Ii to be classified, its 3 previous frames
Ii−1, Ii−2, Ii−3, and the first frame I1 (normally non-contrasted). There are 7 inter-
mediate layers directly after the input layer, each of which has a n-conv block with
n consecutive convolutions (Fig. 5.1, bottom). The last n-conv block is connected
with two fully-connected layers. The final output is a softmax layer with two nodes:
“with contrast” and “without contrast”. The model was trained with binary cross-
entropy as the loss function. In order for a faster convergence, batch normalization
was used after every convolution, residual connection at every layer and the strided
convolutions instead of pooling layers.

To detect the BCF of an XA sequence online using the trained model, frames
of the sequence were classified one by one in a chronological order. The first frame
labeled as “with contrast” in the sequence is considered as BCF.

5.2.2 The RNN-based method

The RNN-based method consists of two major steps: vessel enhancement and con-
trast frame detection. An overview of this method is illustrated in Fig. 5.2.

Vessel enhancement The vessel enhancement step is crucial for accurate approx-
imation of contrast changes in XA sequences. This step removes most non-vessel
background structures using a previously developed online layer separation technique
[57] followed by multi-scale Frangi-vesselness filtering [25].

The online layer separation method prospectively separated an XA sequence into
three layers: a breathing layer, a quasi-static background layer, and a vessel layer
in which vessels have better visibility. First, the breathing layer was separated via
morphological closing. After this layer was removed from the original image, online
robust PCA (OR-PCA) [22] was applied to separate the low-rank quasi-static layer
and sparse vessel layer through alternatively projecting the new data sample (frame)
to the underlying low-rank subspace basis and updating the basis using the new esti-
mation of the layers. After layer separation, the structures that may cause artefacts
in the next step, such as diaphragm, spine, were removed from the vessel layer.
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Figure 5.1: The neural networks (top) connects the 5 input images (the first, the
current and its 3 previous X-ray frames) to the 2 output nodes (“with contrast”
and “without contrast”). The model consists of several n-conv blocks. They are a
succession of CNNs with a skip connection between the input and the output of the
block (bottom). f×h×w is the dimension of the data (feature number times image
height times image width).

Following the layer separation, a multi-scale vesselness filter [25] was applied on
the separated vessel layer to further enhance the tubular structures. In the end, after
the vessel enhancement step, for each incoming frame, a new image was created where
vessel structures are enhanced.

Contrast frame detection Once the image with enhanced vessel structures is ob-
tained, the feature that indicates the level of contrast agent was extracted from the
image. In this work, we used the average pixel intensity of the complete vessel-
enhanced image as the contrast feature. This results in a 1D signal for a complete
sequence.

The last step is to detect contrast frames from the previously obtained 1D contrast
signal. In order to fully use the temporal relation between frames, each signal point is
classified as “contrast” or “non-contrast” with a recurrent neural network. The long
short-term memory (LSTM) network [36] was used due to its good performance on
modeling long-term temporal relations in time-series data.

Let xk denote the feature for the kth frame Ik. The single-direction LSTM takes
xk as the input. A hidden state hk in the LSTM network is recurrently updated
through nonlinear interactions between the input signal xk, the LSTM units and its
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Figure 5.2: The overview of the RNN-based method.

Figure 5.3: Each signal point is classified from a contrast frame or a non-contrast
frame with a LSTM network.

state of the last time point hk−1. The output label yk of xk is the outcome of a
nonlinear function of hk. This process is illustrated in Fig. 5.3.

5.3 Experiments

We retrospectively obtained anonymized data that was acquired during clinical rou-
tine with a Siemens AXIOM-Artis biplane system. The data were 120 XA sequences
from 26 patients who underwent a PCI procedure. The frame rate of all sequences is
15 frames per second. The length of sequence varies from 24 to 244 frames. The size
of images in our dataset are 512× 512, 600× 600, 776× 776 and 1024× 1024. In all
sequences, contrast inflow can be observed. In our experiments, 40 sequences from
20 patients were used as training data, the 80 sequences from the other six patients
were used for validation.

For the CNN-based method, all images were resized to 512× 512 before training.
The parameters of the CNN model were optimized using stochastic gradient descent
with a learning rate 0.0001, a decay of 0.0005 and a momentum of 0.99. The model
was trained with a batch size of 15 during 33,000 iterations. For each sequence,
the six frames before and after the BCF were chosen to ensure an even number of
contrast and non-contrast training images. The BCF was discarded to assist the CNN
to learn more differences between contrast and non-constrat frames. As the dataset
used to train the model is small, data augmentation was applied during the training
to virtually create more data: translation (+/- 100 pixels), rotation (+/- 5 degrees),
scaling (+/- factor 0.1), intensity shift (+/- 0.2), Gaussian noise (σg = 0.01) on the
normalized image between 0 and 1, and vertical flip were used to transform images.

For the RNN-based method, we manually tuned the parameters based on visual
check and quantitative evaluation on the training data; the same parameters were used
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for testing. The images were first down-scaled 2 or 4 times to 256×256 or 300×300 or
388× 388 depending on the original image size for speeding up the image processing.
The parameters for layer separation were set following the approach with the sliding
window option in [57] using the closed-form solution of OR-PCA. To improve the
convergence of OR-PCA, we used a mini-batch of 5 frames (before contrast agent was
injected) to get an initial estimate of the low-rank subspace basis. This was done
using the layer separation method in [56] with fast principal component pursuit [78].
The scale of Frangi vesselness filter was set ranging from 0.6 mm to 2.8 mm according
to the size of coronary arteries. The β and c parameter of the vesselness filter were 0.5
and 15. The dimension of LSTM units was set to 7 with a dropout probability being
0.2. The nonlinear activation function of the hidden layer is sigmoid function. The
LSTM network was trained using RMSprop optimizer with a learning rate being 0.005
during 100 epochs. At last, the BCF was detected as the first frame in a sequence
being classified as contrasted by LSTM.

In the experiments, we also compared our methods with the state-of-the-art ap-
proach of Condurache et al.[19]. For setting the parameters of the method, the first 3
feature values from non-contrast frames were modeled as a Gaussian N0(µ0, σ

2
0). The

threshold T for choosing contrast frames was set to µ0 + 3σ0.

The evaluation metric we used is the absolute difference between the frame index
of the ground truth BCF and the frame predicted by different methods.

The image processing steps in the RNN-based method and the method of Con-
durache et al. were implemented in MATLAB with a single CPU core (Intel Core
i7-4800MQ 2.70 GHz). LSTM and CNN were implemented in Keras with TensorFlow
as backend. LSTM was running on the CPU due to its small dimension. CNN was
trained and tested on an Nvidia GeForce GTX 1080 GPU.

5.4 Results and discussion

Fig. 5.4 shows an example to illustrate steps in the RNN-based method. The statistics
of the absolute errors made by the three methods are shown in Table 5.1. The results
of the mean and median errors show that the two proposed approaches have smaller
errors than the state-of-the-art method, especially, the RNN-based method is able
to achieve a median absolute error of 2 frames. The median of non-absolute errors
(prediction minus ground truth) indicates the prediction bias of each method. The
method of Condurache et al. makes late predictions, while the others have a minor
bias. The table also lists the number of sequences with a small prediction error (3
frames, being about 0.2 seconds) and a large error (>10 frames). The method of
Condurache et al. has mis-detection on 7 sequences (the first entry in the last two
columns in Table 5.1), which was also reported in [37]. While the two proposed
methods both have 55 sequences with a small error (6 3 frames) out of 80, the CNN-
based approach has the smallest numbers of sequences with a large error (> 10 frames)
among the three methods.

The median error of the RNN-based method is similar to the results reported in
[17]. While they achieved a mean error of less than one frame, their detection step
requires the knowledge of complete sequences, hence it will not work in a prospective
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Figure 5.4: An example to illustrate the RNN-based method. From left to right are
the original XA frame (left), the vessel layer after layer separation (middle left), the
vesselness image (middle right), the contrast signal for the whole sequence (right).
The color markers in the signal show the prediction of BCF with LSTM (red) and
the ground truth (green). Note that the artefact of diaphragm does not appear in
the vesselness image thanks to layer separation.

Methods Mean (std) Median (*) #(Error 6 3) #(Error > 10)
Condurache et al.[19] 6.2 (7.1) 5 (4) 29 / 73 10 / 73

CNN-based 3.9 (4.9) 2.5 (1) 55 / 80 5 / 80
RNN-based 3.6 (4.6) 2 (-0.5) 55 / 80 7 / 80

Table 5.1: The statistics of the absolute error for the 3 methods. The two columns
in the middle show the mean, standard deviation, median of the absolute errors and
the median of non-absolute errors (*) in frames. The last two columns show the
number of sequences on which the method made an absolute error no larger than 3
frames or larger than 10 frames.

scenario. The learning-based method in [37] can be used for prospective detection,
but some of the proposed features were heuristically designed for X-ray images of LA
for EP procedure, which have different image features from the XA of coronary inter-
ventions. Compared to these methods, our approaches were designed for prospective
settings and the CNN-based method is a general framework that could potentially be
applied in different clinical procedures.

The RNN-based learning with a handcrafted feature has slightly lower mean and
median error than the CNN-based method, although the latter has a more complex
and deeper architecture. This might contradict to what is commonly known about
the performance of deep learning. The possible reasons may be two-fold. First, the
size of training data was small, even with data augmentation and a reduced CNN
model, some over-fitting was observed. Second, the CNN treats frames independently
rather than modeling their temporal relations. Although CNNs perform excellent in
many classification tasks, detecting BCF requires a classifier that has good accuracy
for data on the border between two classes.

In terms of computation efficiency (test time), the method of Condurache et al.
needed 111 ms to 443 ms to process a frame. While the CNN-based method ran very
fast and used on average only 14 ms to process one frame. The RNN-based method
ran on average 64 ms/frame on images of the original size 512×512 or 1024×1024, and
140 ms/frame on images of the original size 776× 776. As the test time of the RNN-
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based method was based on a MATLAB implementation with a single CPU core, it
has large potential to run in real-time (<66 ms) with an optimized implementation
running on a modern GPU.

In conclusion, we have developed two novel approaches for prospective detection
of contrast inflow in XA sequences, a CNN-based and a RNN-based approach. The
proposed methods perform well in BCF detection tasks in XA sequences, and outper-
form a previous state-of-the-art method. Both methods work in prospective settings
and run fast, therefore have the potential to be integrated in advanced image guidance
systems for PCI.

Acknowledgement This work was supported by Technology Foundation STW, IMAGIC
project under the iMIT program (grant number 12703).



Chapter Six

Summary and General Discussion

6.1 Summary

In this thesis we proposed methods to improve image guidance during TACE proce-
dures. The goal was to provide better guidance to the physician which may lead to
shorter procedure times, improved selection of feeder vessels, less contrast use and less
radiation exposure for both the patient and physician. We proposed tools and investi-
gated the possibility to track and continuously align the catheter and guidewire inside
the liver vasculature. Such tracking offers improved image guidance to the physician
with dynamic 2D overlays and 3D roadmaps.

In the second chapter, in the context of liver catheterization, we presented a
method to register intra-operative single-plane 2D fluoroscopic images with peri-
operative 3DRA images. Catheter and guidewire centerline were manually segmented
from the 2D X-ray image and the 3D blood vessel tree centerline was extracted from
3DRA. The method is based on the alignment of the catheter with the vessel tree
and is divided in two parts. The first part uses a shape similarity metric to sort the
projected 3D vessel centerlines of the vessel tree according to their similarity with the
catheter shape. In the second part, the most similar vessel centerlines are registered
with the catheter centerline and the best registration with regards to its metric is
kept. The registration metric is based on the closest corresponding points distance
between the catheter and the projected vessel paths. To align the vessel paths with
the catheter, the 3D vessel tree is translated and rotated in order to minimize the
registration metric using two different optimizers: brute force and Powell. The eval-
uation on clinical data with 2D angiographic images showed a median of the closest
corresponding points distance between 2D angiography vessels and projected 3D ves-
sels of 5.4 mm when using the brute force optimizer and 5.2 mm when using the
Powell optimizer. Experiments on simulated data and visualization of results on real
data showed a small percentage of incorrectly registered tip positions. Despite these
few cases of vessel misalignment, the registered overlay was generally sufficient for
the physician to localize the tip and identify the subsequent bifurcations. The reg-
istration was failing when large deformations occurred and when there was a lack of
information such as imaging data in which only a small part of the catheter is visible
in the fluoroscopic images and in cases in which the aorta and hepatic artery are not
visible in the 3DRA.

To avoid misregistrations in these cases, the previous registrations and catheter
positions need to be taken into account as prior knowledge during the registration.
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In the third chapter, we used this idea and propose to continuously track the tip of
the catheter inside the 3D vessel tree and keep a probability map of the tip position
over time. To this end, we utilize a hidden Markov model (HMM) where states of
the model are the possible positions of the catheter tip inside the 3D vessel tree. The
transitions from state to state model the probabilities for the catheter tip to move from
one position to another. The HMM is updated following the observation scores, based
on the registration between the 2D catheter centerline extracted from the 2D X-ray
image, and the 2D projection of 3D vessel tree centerline extracted from the 3DRA. We
evaluated the method with the same protocol as in the previous chapter and obtained
a median of the closest corresponding points distance between 2D angiography vessels
and projected 3D vessels of 4.7mm. The distribution of distance errors is significantly
smaller compared to the previous method. Experiments on complete X-ray sequences
showed that the method is robust even when only a small part of the catheter is
visible in the image.

The methods in chapter two and three relied on manual extraction of catheter
and guidewire centerline in 2D X-ray images. In the fourth chapter, we proposed
a method to segment the catheter and guidewire in a fully-automatic and real-time
manner. The X-ray image to segment and the three previous ones of the sequence
are fed into a convolutional neural network (CNN) trained with manually segmented
catheter images. From the segmented catheter mask image output, the catheter
centerline is extracted using skeletonization with subsequently pixel connectivity and
branch linking. Evaluation on liver catheterization data demonstrated a median tip
distance error of 0.9 mm and a median centerline distance error of 0.2 mm. The
catheter segmentation was robust but may fail when parts of the guidewire hardly
have any contrast. In such cases, the tip part may be missing in some of the extracted
centerline. As the registration uses the complete shape of the centerline, a missing
segment does not hamper the dynamic roadmapping, but it may result in inaccurate
3D tracking of the tip.

Automatic contrast-agent detection in X-ray sequences enables to choose the ap-
propriate segmentation and registration method to use without requiring input from
the physician. If vessels are present in the fluoroscopic images, vessel-based registra-
tion may be used [30, 43] instead of our catheter-based registration described in the
previous chapters. The last chapter describes two approaches to automatically detect
contrast agent injection in X-ray sequences. The methods are based on supervised
learning and neural networks. The first method uses a CNN to classify frames as
contrasted or not contrasted. The input of the neural network contains the current
frame, the three previous frames and the first frame of the sequence which does not
have contrast. The second approach is composed of two steps. The first step separates
background, breathing and vessel layer using online robust PCA on the current and
previous frames of the X-ray sequence. The vessel layer is subsequently enhanced with
a multi-scale vesselness filter. In the second step, the vessel layer is converted in a 1D
signal corresponding to the average intensity of the image. This signal is recurrently
fed into a recurrent neural network (RNN) to learn and detect contrast frames. The
method was applied to detect the first frame with contrast on X-ray sequences derived
from percutaneous coronary interventions. In a prospective scenario, the two methods
showed similar results with a mean absolute error of 3.6-3.9 frames. These numbers
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are significantly better than the state of the art for prospective cases. The RNN
method showed slightly better results but the CNN method is much faster. Although
the experiment was not performed on abdominal data, coronary data is similar and
the proposed methods are general enough to be translated to other interventions such
as TACE.

6.2 Challenges towards use in clinical practice and
future studies

In chapter two to five, methods have been presented and evaluated for navigation
guidance. A next step would be to integrate these methods in a solution and evaluate
the robustness and usefulness of the tracking and roadmapping during complete TACE
procedures. This necessary step is beyond the scope of this thesis. However, we have
suggestions for potential future studies and how to solve practical issues. A challenge
that needs to be addressed is the fact that combining methods leads to combining
errors of each method. If a method is not robust, it will impact the following step of
the complete method so we have to insure that each step is sufficiently robust.

The clinical imaging data and instruments used in TACE procedures are very
heterogeneous between hospitals and physicians performing the intervention. For
example, our catheter and guidewire extraction method has been developed to de-
tect instruments fully radio-opaque. In some hospitals, during TACE procedure, the
guidewires that are used have only the tip radio-opaque. With these instruments, the
guidewire extraction is failing and only the visible catheter part is extracted. A prac-
tical solution would be to use only fully radio-opaque catheter and guidewire during
intervention. Another example of heterogeneity between procedures is related with
the 3DRA acquisition. Registration is based on the assumption that the visible part
of the catheter on the X-ray image is inside the vessel tree of the 3DRA. However,
sometimes the aorta and hepatic artery part are not in the 3DRA field of view, as
these are not always of clinical interest for a common TACE procedure. Medical imag-
ing and image guidance in particular may benefit from standardization and protocols
in interventions.

The two issues could be solved with changes to the intervention protocol. How-
ever other approaches dealing with these challenges could also be studied. 3DRA
images could be augmented to add the missing artery and aorta using registration
with 3D pre-operative CTA. This combination may add information on the tumor
position as well. Also, it would be beneficial to improve the catheter and guidewire
extraction method. Due to the noise of low radiation dose fluoroscopic images, parts
of the guidewire are sometime not visible even with radio-opaque material. Humans
have no problem to fill the gaps and segment the instrument because they are able
to keep track of the object and also easily predict the next position and shape of
the structure. The flexible structure of the catheter is intrinsically used as a prior
knowledge. Such knowledge may be incorporated in the segmentation method in or-
der to increase its robustness. Most of the catheter segmentation papers use a spline
model [6, 15, 16, 34, 38, 86, 98]. This may not work properly as a 2D projection
of a 3D thin instrument can have almost any arbitrary shapes. Integration of a 3D
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shape model, based on the extracted vasculature, may be an option in this case. A
different approach with merging of segments has been studied [94, 97] but it cannot
deal with a long none-visible part of the catheter in the image. Our fourth chapter
enables full-automatic and real-time computation using CNNs. However, unlike the
previously cited methods, no prior knowledge is used in this method. Combining
CNNs, catheter knowledge and temporal consistency would be one way to improve
the segmentation. Traditional model optimization problems always need fine-tuning
for most of the parameters. These may be learnt by a neural network. So, a 3D
spline model or a model that fits the projective nature of the 3D catheter shapes
could potentially be directly integrated into the neural network. Prior knowledge of
the catheter position inside the 3D vessel tree may reduce the optimization space.
As an example, a spline model could be incorporated in the neural network using a
spline matrix representation [15, 74]. Other paradigms not using images at all could
be investigated such as shape sensing [27, 85].

In order to improve the alignment metric between the 2D catheter and the 3D
vasculature for the registration and tracking method, a non-rigid approach could be
investigated. However, a more pragmatic idea could be explored. The C-arm detector
position does not always provide the optimal views of the patient anatomy to easily
perform the procedure. Following the complexity of the vasculature, the traditional
coronal and sagittal planes may not be the best views to remove ambiguity between
branching, vessels overlapping and foreshortening problems, and to optimally project
vessels for catheter navigation. These problems make the guidance difficult for the
physician but also for the registration method and the catheter extraction. Manually
choosing a better view with the C-arm is not easy due to the complexity of the 3D
vasculature. With the 3D vessel tree extracted from the 3DRA, an optimal C-arm
position could be automatically proposed using various criteria. In the vessel tree, we
should make sure that the vessel path between the hepatic artery and the tumors has
a distinct shape compared to its neighborhood paths in the imaging projection space.
It should also have the smallest amount of foreshortening. These different metrics
could provide a final score for every different primary and secondary angle of the
C-arm. Following the advancement of the catheter in the vasculature, the software
could propose another C-arm position. Such solution could help the physician and
the registration at the same time.

To conclude, we presented in this thesis, novel methods to improve image guidance
during TACE interventions. We demonstrated and evaluated catheter tracking and
roadmapping using non-contrasted 2D X-ray images and a 3D vessel tree extracted
from peri-operative images. These developed methods could help physicians to be
more accurate, efficient and confident, which could in turn lead to faster interventions
with less contrast agent use and less radiation exposure for both patients and the
physicians. Ultimately, this would lead to better patient outcome. To be integrated
in clinical routine, physicians should follow specific protocols in order to ensure that
the methods can be used in an optimal way.
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Samenvatting

Samenvatting

In dit proefschrift hebben we methoden voor verbetering van de beeldgeleiding bij
TACE procedures voorgesteld. Het doel was betere beeldgeleiding voor de arts te
bewerkstelligen, wat kan leiden tot kortere proceduretijden, betere selectie van de
vaten die de tumor voeden, gebruik van minder contrastmiddel en minder blootstelling
aan ioniserende straling voor de arts en de patiënt. We hebben de mogelijkheden
onderzocht om de katheter en voerdraad te volgen in de slagaders van de lever. Dit
soort technieken verbeteren de beeldgeleiding door gebruik te maken van dynamische
2D en 3D roadmaps.

In het tweede hoofdstuk hebben we een methode gepresenteerd om intra-operative
2D doorlichtingsbeelden (ook wel fluoroscopie genoemd) te registreren met 3D rotatie
angiografie (RA) beelden die tijdens de interventie verkregen zijn. De katheter en
de voerdraad werden handmatig gesegmenteerd in het 2D angiografie beeld en de
3D vaat boom werd uit de 3DRA beelden gehaald. De methode is gebaseerd op het
over elkaar leggen van de katheter en de vaatboom, en wordt gedaan in twee stap-
pen. In de eerste stap worden, op basis van vorm, delen van de (geprojecteerde)
3D vaatboom gesorteerd. In de tweede stap worden de delen van de vaatboom die
qua vorm het meest lijken op de katheter geregistreerd met de katheter, en de beste
registratie wordt gekozen. De maat voor de registratie is gebaseerde op de afstand
tussen dichtstbijzijnde corresponderende punten tussen de geprojecteerde vaatboom
en de katheter. Tijdens deze registratie wordt de 3D vaatboom zodanig verschoven en
gedraaid, dat de registratiemaat minimaal is. Hiervoor wordt geëxperimenteerd met
twee verschillende optimalisatie-methoden: brute force en Powell. De evaluatie met
klinische beelddata laat een mediane afstand zien (tussen de dichtstbijzijnde corre-
sponderende punten van de katheter en de geprojecteerde vaatboom) van 5.4 mm voor
de brute kracht optimalisatie, en 5.2 mm voor de Powell optimalisatie. Experimenten
met gesimuleerde gegevens en de visualisatie van de resultaten met echte beelddata
laten zien dat in een klein percentage van de gevallen de tip van de katheter niet juist
gepositioneerd is in het vat. Ondanks deze gevallen waar de registratie niet goed is,
was de overprojectie van de vaatboom in het algemeen voldoende om de arts te laten
weten waar de katheter zich in de vaatboom bevindt. De registratie ging vooral fout
in gevallen van grote vervorming van de vaatboom, of als er slechts een klein deel van
de katheter in beeld was, en ook als de aorta of leverslagader niet zichtbaar waren in
de 3DRA beelden.
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Misregistraties als hierboven beschreven zouden voorkomen kunnen worden als
eerdere registraties en katheter posities meegenomen worden als voorkennis in de
registratie. In het derde hoofdstuk stellen we, op basis van dit idee, voor om de tip van
de katheter continu te volgen in de 3D vaatboom, en een waarschijnlijkheidsverdeling
bij te houden die aangeeft waar de tip zich bevindt. Hiervoor gebruiken we een hidden
Markov model (HMM), waarbij de toestanden de mogelijke posities van de tip van
de katheter in de 3D vaatboom zijn. De overgangen tussen verschillende toestanden
modelleren dan de beweging van de tip van de katheter. Het HMM wordt telkens
aangepast op basis van waarnemingen, die in ons geval bestaan uit de registratie van
de 2D katheter vorm (gehaald uit het 2D doorlichtingsbeeld) en de 2D projectie van
de 3D vaat boom (gehaald uit de 3DRA beelden). We evalueerden de methode op
dezelfde manier als de methode beschreven in hoofdstuk 2, en verkregen een mediane
afstand van 4.7 mm. De spreiding van de fouten (afstanden) is significant kleiner
vergeleken met de methode uit hoofdstuk 2. Experimenten uitgevoerd met complete
doorlichtingsbeeldseries laten zien dat de methode robuust is, zelfs in het geval slechts
een klein deel van de katheter zichtbaar is.

De methoden uit hoofdstuk 2 en 3 gebruiken katheter en voerdraad posities die
handmatig aangegeven zijn in de 2D doorlichtingsbeelden. In het vierde hoofdstuk
beschrijven we een volledig automatische en real-time methode voor de segmentatie
van de katheter en de voerdraad. Het te segmenteren doorichtingsbeeld, en drie
eerdere beelden uit dezelfde serie, zijn de invoer voor een neuraal netwerk met con-
voluties (CNN) dat getraind is met handmatig gesegmenteerde voorbeelden. Uit het
segmentatieresultaat van de CNN wordt de middenlijn van de katheter gehaald via
een skelet-operatie, waarna vervolgens het resultaat wordt nabewerkt. Bij deze naw-
erking wordt bekeken welke pixels verbonden zijn, en worden losse delen verbonden
met elkaar. Evaluatie van de methode op beelden van lever katherisatie procedures
laten een mediane tip afstand zien van 0.9 mm, en een mediane afstand van de mid-
denlijn van 0.2 mm. De segmentatie was robuust, maar ging fout in gevallen wanneer
nauwelijks beeldcontrast was tussen de katheter en de omgeving. In zulke gevallen
ontbrak de tip soms. Omdat de registratie die hierop volgt de hele katheter vorm
gebruikt, heeft het ontbreken van de tip geen nadelige gevolgen voor de projectie van
de vaatboom, maar het kan leiden tot onnauwkeurigheid in het volgen van de 3D
positie van de tip in de vaatboom.

Automatische detectie van contrastmiddel in doorlichtingsbeelden maakt het mo-
gelijk automatisch te schakelen tussen verschillende segmentatie- en registratiemeth-
oden zonder tussenkomst van de arts. Als bijvoorbeeld de bloedvaten zichtbaar zijn
door de aanwezigheid van contrastmiddel, zou een bloedvaten-gebaseerde methode
[30, 43] gebruikt kunnen worden in plaats van de katheter-gebaseerde methode uit
de vorige hoofdstukken. Het laatste hoofdstuk beschrijft daarom twee methoden om
automatisch het injecteren van contrastmiddel te detecteren in doorlichtingsbeeld-
series. De methoden zijn gebaseerd op het leren met referentiewaarden, en neurale
netwerken. De eerste methode gebruikt een CNN om voor elk doorlichtingsbeeld
te bepalen of er contrast aanwezig is of niet. De invoer voor de CNN bevat het
huidige beeld, de drie vorige beelden en het eerste beeld (zonder contrastmiddel) van
de serie. De tweede methode bestaat uit twee stappen. In de eerste stap wordt het
beeld gesplitst in drie verschillende beelden: de achtergrond, structuren die bewegen
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met ademhaling, en de bloedvaten. Het vaatbeeld worden vervolgens gefilterd met
een vaatfilters van verschillende afmetingen. In de tweede stap wordt dit gefilterde
vaatbeeld omgezet in een eendimensionaal signaal wat correspondeert met de gemid-
delde intensiteit van het beeld. Dit signaal is de invoer voor een recurrent neuraal
netwerk (RNN) wat beelden met contrast detecteert. De methode is gebruikt om het
eerste beeld met contrastmiddel te selecteren uit een serie doorlichtingsbeelden van
interventies aan de kransslagaders. Bij prospectief gebruik laten de twee methode
vergelijkbare resultaten zien, met een gemiddelde absolute fout van 3.6 3.9 beelden.
Dit is significant beter dan de resultaten van bestaande methoden. De RNN methode
is iets beter dan de CNN methode, maar laatstgenoemde is veel sneller. Hoewel de
methode niet is geëvalueerd op beelden van de buik, verwachten we dat ze ook voor
TACE beelden zullen werken, omdat de methoden generiek zijn, en ook omdat de
doorlichtingsbeelden van de kransslagaders vergelijkbaar zijn met die van de buik.

Uitdagingen voor toepassing in de klinische praktijk
en toekomstige studies

In hoofdstuk twee tot en met vijf hebben we methoden gepresenteerd en geëvalueerd
voor beeldgeleiding. Een volgende stap zou zijn om dit werk te integreren in een com-
pleet systeem, en de robuustheid en bruikbaarheid van het volgen van de instrumenten
en de overprojectie van de 3D vaatboom tijdens TACE interventies te onderzoeken.
Deze noodzakelijke stap valt buiten dit proefschrift. We hebben wel suggesties voor
mogelijke toekomstige studies en ideeën hoe praktische problemen opgelost kunnen
worden. Een uitdaging die aangepakt moet worden is het feit dat een combinatie van
methoden leidt tot een combinatie van fouten in deze methoden. Als een onderdeel
niet robuust werkt, zal dat gevolgen hebben voor de volgende stappen. Dus elke
onderdeel moet zo robuust mogelijk werken.

De klinische beelddata en de instrumenten die gebruikt worden bij TACE pro-
cedures verschillen tussen ziekenhuizen en artsen die de TACE procedure uitvoeren.
Onze methode voor het vinden van de katheter en voerdraad in de doorlichtings-
beelden is ontwikkeld voor instrumenten die over de hele lengte duidelijk zichtbaar
zijn in de beelden. In sommige ziekenhuizen worden TACE procedures uitgevoerd
met voerdraden waarvan alleen de tip duidelijk zichtbaar is in de beelden. Met zulke
instrumenten zal onze detectie minder goed werken. Een pragmatische oplossing is
om alleen instrumenten die over de hele lengte zichtbaar zijn te gebruiken. Een an-
der voorbeeld van verschillen is de opname van het 3DRA beeld. De registratie is
gebaseerd op de aanname dat het zichtbare deel van de katheter in het doorlichtings-
beeld in de vaatboom in het 3DRA beeld zit. Bij sommige 3DRA beelden vallen de
aorta en de leverslagader buiten het beeld, omdat ze voor een normale TACE pro-
cedure niet van belang zijn. Beeldgeleide interventies zijn daarom in het bijzonder
gebaat bij standaardisatie en protocollering.

De bovenstaande twee verschillen zouden opgelost kunnen worden met aanpassing
van het protocol. Er zijn echter ook andere mogelijkheden die onderzocht kunnen wor-
den. Zo zouden de aorta en de leverslagader in een 3DRA mogelijk aangevuld kunnen
worden door een registratie met een 3D CTA (computed tomographic angiography).
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Deze combinatie zou ook relevante informatie over de tumor positie kunnen inbren-
gen. Verder zou het de katheter en voerdraad extractie methoden kunnen verbeteren.
Door de ruis in de lage dosis fluoroscopische beelden zijn delen van de voerdraad
soms niet zichtbaar, zelfs als ze gemaakt zijn van materiaal wat zichtbaar behoort te
zijn in deze Röntgenbeelden. Voor mensen is het geen probleem om de ontbrekende
delen in te vullen, en ze kunnen ook eenvoudig de positie en vorm van het instrument
voorspellen. De flexibele structuur van de katheter wordt dan gebruikt als voorken-
nis. Zulke kennis zou in de segmentatie methode gentegreerd kunnen worden om de
methode robuuster te maken. De meeste artikelen over segmentatie van katheters ge-
bruiken een mathematisch model van een gladde kromme om de katheter te modeleren
[6, 15, 16, 34, 38, 86, 98]. Dit zou voor ons geval niet goed kunnen werken, omdat de
2D projectie van een dun instrument in 3D bijna elke willekeurige vorm kan aannemen.
Het integreren van een 3D vormmodel, gebaseerd op de vaatboom die uit de beeld-
data gehaald is, zou een mogelijkheid zijn in dit geval. Een andere aanpak van het
combineren van segmenten is elders bestudeerd [94, 97], maar deze methode kan niet
overweg met een katheter met een lang niet-zichtbaar deel in het beeld. Ons vierde
hoofdstuk maakt volledig-automatische en real-time berekening met CNNs mogelijk.
In tegenstelling tot de eerder genoemde methoden wordt geen gebruikt gemaakt van
voorkennis. De combinatie van CNNs, kennis van de katheter en consistentie over de
tijd zou een manier zijn om de segmentatie te verbeteren. Traditionele model opti-
malisaties hebben altijd een fijne afstelling van de parameters nodig. Deze zouden
geleerd kunnen worden door een neuraal netwerk. Dus, een 3D gladde kromme model,
of een model dat past bij de projectie van de 3D katheter vormen zou mogelijk direct
in het neurale netwerk gëıntegreerd kunnen worden. Voorkennis van de positie van de
katheter in de 3D vaatboom kan de optimalisatie zoekruimte verkleinen. Een gladde
kromme model kan bijvoorbeeld in een neuraal netwerk gëıntegreerd worden door een
matrix representatie van de kromme [15, 74]. Aanpakken die geen beelden gebruiken,
maar rechtstreeks de vorm bepalen [27, 85], zouden ook onderzocht kunnen worden.

Om te zorgen dat de 2D projectie van de katheter en de 3D vaatboom beter
passen tijdens de registratie, zouden ook niet-rigide aanpakken onderzocht kunnen
worden. Een meer pragmatische aanpak zou ook onderzocht kunnen worden. De
doorlichtingsbeelden die gemaakt worden, worden niet altijd genomen onder een hoek
die optimaal is voor de procedure. Afhankelijk van de complexiteit van de vaatboom
zouden de traditionele afbeeldingen van de voorkant of zijkant niet altijd de am-
bigüıteit die ontstaat door splitsingen van vaten en overprojectie kunnen oplossen, en
dus niet de optimale beelden geven voor het navigeren van de katheter. Dit maakt de
beeldgeleiding lastig, zowel voor de arts als voor onze registratie- en segmentatiemeth-
ode. Handmatig een betere projectie-richting bepalen is niet eenvoudig, gegeven de
complexiteit van de 3D vaatboom. Met behulp van de 3D vaatboom uit de 3DRA
beelden zou een optimale (volgens bepaalde criteria) projectierichting automatisch
bepaald kunnen worden. Bijvoorbeeld een projectierichting zodanig dat het gepro-
jecteerde pad van de leverslagader naar de tumor een duidelijk andere vorm heeft
dan vaten in de buurt, en een projectierichting die zo veel mogelijk loodrecht op de
vaten is. Met deze criteria zou elke projectierichting een score kunnen krijgen. Tij-
dens de procedure zou op deze manier zelfs een aanpassing van de projectierichting
voorgesteld kunnen worden. Zon werkwijze zou zowel de arts als de automatische
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registratie kunnen helpen.
Tenslotte, in dit proefschrift hebben we nieuwe methoden voor verbeterde beeldgelei-

ding in TACE procedures gepresenteerd. We hebben het volgen van de katheter
en overprojectie gebruik makend van 2D doorlichtingsbeelden en een 3D vaatboom
laten zien, en geëvalueerd. Deze methoden zouden de artsen kunnen helpen om
nauwkeuriger, efficiënter en zelfverzekerder te zijn, wat kan leiden tot kortere in-
terventietijden, met gebruik van minder contrast middel en minder blootstelling aan
straling voor de patiënt en de arts. Uiteindelijk zou dit moeten leiden tot betere
resultaten voor de patiënt. Om deze methoden te integreren in de klinische prak-
tijk zouden artsen specifieke protocollen moeten volgen, zodanig dat de methoden
optimaal ingezet kunnen worden.
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Poincaré, Paris, France, July 8-12, 2013.

• 7th International Computer Vision Summer School (ICVSS): Computer Vision
and Machine Learning, University of Catania, Le Castella, Italia, July 14-20,
2013.

• A8 Frontend Vision and Multiscale Image Analysis, ASCI, TU Eindhoven, Eind-
hoven, The Netherlands, November 11-29, 2013.

• Anatomy session, Erasmus MC, Rotterdam, The Netherlands, November 25,
2013.



92 PhD Portfolio

• Roadshow Integrity in research (Wetenschappelijke integriteit), Erasmus MC,
Rotterdam, The Netherlands, February 6, 2014.

• A24 A Programmer’s Guide for Modern High-Performance Computing, ASCI,
TU Delft, Delft, The Netherlands, December 9-12, 2014.

• Biomedical English Writing in Communication, Erasmus MC, Rotterdam, The
Netherlands, February-April 2015.

International conferences (poster/oral presentation)

• The 5th International Conference on Information Processing in Computer-Assisted
Interventions (IPCAI), Fukuoka, Japan, June 28, 2014 (poster and oral presen-
tation).

• The 10th MICCAI Workshop on Augmented Environments for Computer-Assisted
Interventions (AE-CAI), Munich, Germany, October 9, 2015 (oral presentation).

• The 28th Conference of the International Society for Medical Innovation and
Technology (SMIT), Delft, The Netherlands, October 6, 2016 (oral presenta-
tion).

• The 20th International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI), Quebec city, Quebec, Canada, September 12,
2017 (poster)

Miscellaneous

• 7th International Computer Vision Summer School (ICVSS): Computer Vision
and Machine Learning, Le Castella, Italia, July 15, 2013 (poster).

• The 10th Medical Imaging Symposium for PhD students (MISP), Amsterdam,
The Netherlands, March 5, 2015 (oral presentation).

• Attendance at the Medical Imaging Symposium for PhD students (MISP), Lei-
den and Amsterdam, The Netherlands, 2014 and 2015.

• Attendance seminar on Where your PhD can take you; Career opportunities,
Erasmus MC, The Netherlands, June 4, 2015.

• 3x BIGR seminar presentations, 4x Medical Informatics Research Lunch pre-
sentations, >20x Image Guided Intervention meetings, 2012-2016

• Attendance: BIGR seminar, Radiology Research Lunch, Medical Informatics
Research Lunch, Image Guided Intervention Meetings, 2012-2016

• Attendance and presentation: literature meetings, 2012-2016



Publications

International Journals

• P. Ambrosini, I. Smal, D. Ruijters, W.J. Niessen, A. Moelker and T. van
Walsum: A Hidden Markov Model for 3D Catheter Tip Tracking with 2D X-ray
Catheterization Sequence and 3D Rotational Angiography. IEEE Transaction
on Medical Imaging, vol. 36(3), pp. 757-768, 2017.

• P. Ambrosini, D. Ruijters, W.J. Niessen, A. Moelker and T. van Walsum:
Continuous Roadmapping in Liver TACE Procedures Using 2D-3D Catheter-
based Registration. International Journal of Computer Assisted Radiology and
Surgery, vol. 10, pp. 1357-1370, 2015.

International Conference Proceedings

• P. Ambrosini, D. Ruijters, W.J. Niessen, A. Moelker and T. van Walsum:
Fully Automatic and Real-Time Catheter Segmentation in X-Ray Fluoroscopy.
The 20th International Conference on Medical Image Computing and Com-
puter Assisted Intervention (MICCAI), Lecture Notes in Computer Science,
vol. 10434, pp. 577-585, 2017.

• H. Ma, P. Ambrosini and T. van Walsum: Fast Prospective Detection of
Contrast Inflow in X-ray Angiograms with Convolutional Neural Network and
Recurrent Neural Network. The 20th International Conference on Medical Im-
age Computing and Computer Assisted Intervention (MICCAI), Lecture Notes
in Computer Science, vol. 10434, pp. 453-461, 2017.

• P. Ambrosini, I. Smal, D. Ruijters, W.J. Niessen, A. Moelker and T. van
Walsum: 3D Catheter Tip Tracking in 2D X-ray Image Sequences Using a
Hidden Markov Model and 3D Rotational Angiography. The 10th MICCAI
Workshop on Augmented Environments for Computer-Assisted Interventions
(AE-CAI), Lecture Notes in Computer Science, vol. 9365, pp. 38-49, 2015.

• P. Ambrosini, D. Ruijters, A. Moelker, W.J. Niessen and T. van Walsum:
2D/3D Catheter-based Registration for Improved Image Guidance in TACE of
Liver Tumors. The 5th International Conference on Information Processing in
Computer-Assisted Interventions (IPCAI), Lecture Notes in Computer Science,
vol. 8498, pp. 246-255, 2014.



94 Publications

Conference Abstracts

• P. Ambrosini, D. Ruijters, W.J. Niessen, A. Moelker and T. van Walsum:
Catheter Segmentation in X-ray Fluoroscopy using Convolutional Neural Net-
work. The 31th International Congress on Computer Assisted Radiology and
Surgery (CARS), Barcelona, Spain, June 22, 2017.

• P. Ambrosini, I. Smal, D. Ruijters, W.J. Niessen, A. Moelker and T. van
Walsum: 3D Catheter Tip Tracking in 2D X-ray Image Sequences Using 3D
Rotational Angiography. The 28th conference of the international Society for
Medical Innovation and Technology (iSMIT), Delft, The Netherlands, October
6, 2016.

• E. Vast, P. Ambrosini and T. van Walsum: Spatial calibration of 2d/3d ul-
trasound with the PLUS framework and electro-magnetic tracking. 5th Dutch
Conference on Bio-Medical Engineering, Egmond aan Zee, The Netherlands,
January 22, 2015.

Supervision

• Master thesis supervision of M.A. van der Cammen: 2D Fluoroscopy and 3D
Computed Tomography Registration for Minimally Invasive Liver Procedures.
TU Delft, 2016-2017.



Curriculum Vitae

Pierre Ambrosini received a Master in Computer Science from the University of Lyon
(France). He then worked three years in France as a video game developer and moved
to the Netherlands to work as a research engineer at the Biomedical Imaging Group
Rotterdam in Erasmus MC, University Medical Center Rotterdam (the Netherlands).
With his group, he prototyped a workstation that aims at improving image guidance
during medical interventions. The goal was to propose calibration methods in order to
combine different imaging modalities and instruments such as computed tomography
scan, magnetic resonance imaging, ultrasound imaging and optical/electromagnetic
trackers. Afterwards, he continued his research in the same group as a PhD candidate
on image guidance for Transcatheter Arterial ChemoEmbolization procedure (this
thesis). His research mainly revolved around real-time registration, tracking and
segmentation with X-ray images. From September 2017, he has been in a postdoctoral
position at the Imaging Physics department of Delft University of Technology (TU
Delft, the Netherlands) working on automatic detection of tumor growth patterns in
prostate histopathology images.




	Cover
	Colophon
	Introduction
	Hepatocellular carcinoma and treatment
	Minimally invasive interventions
	Transcatheter arterial chemoembolization
	Purpose and content of this thesis

	Continuous Roadmapping in Liver TACE Procedures Using 2D-3D Catheter-based Registration
	Introduction
	Method
	Experiments
	Results
	Discussion and conclusion

	A Hidden Markov Model for 3D Catheter Tip Tracking with 2D X-ray Catheterization Sequence and 3D Rotational Angiography
	Introduction
	Method
	Experiments
	Results
	Discussion and conclusion

	Fully Automatic and Real-Time Catheter Segmentation in X-Ray Fluoroscopy
	Introduction
	Method
	Experiments and results
	Discussion and conclusion

	Fast Prospective Detection of Contrast Inflow in X-ray Angiograms with Convolutional Neural Network and Recurrent Neural Network
	Introduction
	Methods
	Experiments
	Results and discussion

	Summary and General Discussion
	Summary
	Challenges towards use in clinical practice and future studies

	Bibliography
	Samenvatting
	PhD Portfolio
	Publications
	Curriculum Vitae

