54 research outputs found

    A Domain-Specific Conceptual Query System

    Get PDF
    This thesis presents the architecture and implementation of a query system resulted from a domain-specific conceptual data modeling and querying methodology. The query system is built for a high level conceptual query language that supports dynamically user-defined domain-specific functions and application-specific functions. It is DBMS-independent and can be translated to SQL and OQL through a normal form. Currently, it has been implemented in neuroscience domain and can be applied to any other domain

    Query processing in temporal object-oriented databases

    Get PDF
    This PhD thesis is concerned with historical data management in the context of objectoriented databases. An extensible approach has been explored to processing temporal object queries within a uniform query framework. By the uniform framework, we mean temporal queries can be processed within the existing object-oriented framework that is extended from relational framework, by extending the existing query processing techniques and strategies developed for OODBs and RDBs. The unified model of OODBs and RDBs in UmSQL/X has been adopted as a basis for this purpose. A temporal object data model is thereby defined by incorporating a time dimension into this unified model of OODBs and RDBs to form temporal relational-like cubes but with the addition of aggregation and inheritance hierarchies. A query algebra, that accesses objects through these associations of aggregation, inheritance and timereference, is then defined as a general query model /language. Due to the extensive features of our data model and reducibility of the algebra, a layered structure of query processor is presented that provides a uniforrn framework for processing temporal object queries. Within the uniform framework, query transformation is carried out based on a set of transformation rules identified that includes the known relational and object rules plus those pertaining to the time dimension. To evaluate a temporal query involving a path with timereference, a strategy of decomposition is proposed. That is, evaluation of an enhanced path, which is defined to extend a path with time-reference, is decomposed by initially dividing the path into two sub-paths: one containing the time-stamped class that can be optimized by making use of the ordering information of temporal data and another an ordinary sub-path (without time-stamped classes) which can be further decomposed and evaluated using different algorithms. The intermediate results of traversing the two sub-paths are then joined together to create the query output. Algorithms for processing the decomposed query components, i. e., time-related operation algorithms, four join algorithms (nested-loop forward join, sort-merge forward join, nested-loop reverse join and sort-merge reverse join) and their modifications, have been presented with cost analysis and implemented with stream processing techniques using C++. Simulation results are also provided. Both cost analysis and simulation show the effects of time on the query processing algorithms: the join time cost is linearly increased with the expansion in the number of time-epochs (time-dimension in the case of a regular TS). It is also shown that using heuristics that make use of time information can lead to a significant time cost saving. Query processing with incomplete temporal data has also been discussed

    Making object-oriented databases more knowledgeable (From ADAM to ABEL)

    Get PDF
    Tesis leida en la Universidad de Aberdeen. 178 p.The salient points of this thesis are as follows: • Object-Oriented Databases can help in solving the impedance mismatch problem by introducing methods. However, methods have sometimes been overused in the sense th at the code encapsulated refers not only to how the operation is implemented but also to other kinds of knowledge that are implicit in the code. The disadvantages of this approach for modelling integrity constraints, user-defined relationships and active behaviour are pointed out. • The ADAM Object-Oriented Database has been extended to allow the designer to specify integrity constraints declaratively. A constraint equation approach is implemented th at supports the inheritance of constraints. • A need for semantic-rich user-defined relationships has been identified. In this thesis, relationships are represented as objects. An approach to enhance the semantics of relationships in both its structural and behavioural aspects is presented. The most novel idea of the approach presented is the support of the inferred properties and the operational semantics of relationships. • Active Databases have recently become an im portant area of research. This thesis shows how to extend an Object-Oriented Database with active capabilities. The principal contribution lies in representing as ‘first-class’ objects not only the active rules but also the rule manager itself. Hence, besides handling active rules as any other object in the system, future requirements can be supported just by specialising the current rule manager. • Active rules have been proposed for several purposes. Several examples, are given of the direct use of rules. However, higher level tools can be provided of which rule

    Object reational data base management systems and applications in document retrieval

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/96902/1/MBA_JayaramanaF_1996Final.pd

    Advanced Database Concepts for Undergraduates: Experience with Teaching a Second Course.

    Get PDF
    Abstract This paper describes the development of a second database course for undergraduates, preparing students for the advanced database concepts they will experience in industry. Assuming an introductory course on relational database systems as a prerequisite, the topics addressed in the course include object-oriented data modeling, objectoriented database systems, object-relational database systems, Web access to databases, and professionalism and ethics. We present our experience with teaching the course, elaborating on the topics and assignments. We also present feedback from students and industry partners as well as our own assessment of future course refinements

    Developing techniques for enhancing comprehensibility of controlled medical terminologies

    Get PDF
    A controlled medical terminology (CMT) is a collection of concepts (or terms) that are used in the medical domain. Typically, a CMT also contains attributes of those concepts and/or relationships between those concepts. Electronic CMTs are extremely useful and important for communication between and integration of independent information systems in healthcare, because data in this area is highly fragmented. A single query in this area might involve several databases, e.g., a clinical database, a pharmacy database, a radiology database, and a lab test database. Unfortunately, the extensive sizes of CMTs, often containing tens of thousands of concepts and hundreds of thousands of relationships between pairs of those concepts, impose steep learning curves for new users of such CMTs. In this dissertation, we address the problem of helping a user to orient himself in an existing large CMT. In order to help a user comprehend a large, complex CMT, we need to provide abstract views of the CMT. However, at this time, no tools exist for providing a user with such abstract views. One reason for the lack of tools is the absence of a good theory on how to partition an overwhelming CMT into manageable pieces. In this dissertation, we try to overcome the described problem by using a threepronged approach. (1) We use the power of Object-Oriented Databases to design a schema extraction process for large, complex CMTs. The schema resulting from this process provides an excellent, compact representation of the CMT. (2) We develop a theory and a methodology for partitioning a large OODI3 schema, modeled as a graph, into small meaningful units. The methodology relies on the interaction between a human and a computer, making optimal use of the human\u27s semantic knowledge and the computer\u27s speed. Furthermore, the theory and methodology developed for the scbemalevel partitioning are also adapted to the object-level of a CMT. (3) We use purely structural similarities for partitioning CMTs, eliminating the need for a human expert in the partitioning methodology mentioned above. Two large medical terminologies are used as our test beds, the Medical Entities Dictionary (MED) and the Unified Medical Language System (UMLS), which itself contains a number of terminologies

    HOOD : a Higher-Order Object-Oriented Database model and its implementation

    Get PDF
    Bibliography: pages 133-140.There is no accepted standard for the object-oriented database paradigm at present, which has led to different definitions of features and conformance requirements. HOOD is a Higher-Order Object-Oriented Database system which defines a meta-data model for specifying the requirements of an Object-Oriented Database, which provides uniformity and extensibility. From this specification and by making use of a comprehensive structure system, an exemplar or implementation model is defined. Among the constructs provided by the model are types, instances, objects, values, methods, base types, generic types and metatypes. The mechanisms of instantiation and subtyping allow for relationships between these constructs. Extensibility is provided in the model for types, base types, structures and methods. Uniformity is achieved by defining all constructs as instances and through the use of messages for all operations. There is only one form of object construct which provides persistence and identities. The complex values and extensibility of the model allow it to adapt in order to model the real world instead of adapting the real world to fit the model. We have implemented a subset of the structures and values defined in the model, provided persistence and identities for object, and included the various constructs mentioned above. The method language allows for the specification of methods, the passing of messages, and the use of complex values. The compiler performs type checking and resolution and generates instructions for an abstract machine which manipulates the database

    Migrating relational databases into object-based and XML databases

    Get PDF
    Rapid changes in information technology, the emergence of object-based and WWW applications, and the interest of organisations in securing benefits from new technologies have made information systems re-engineering in general and database migration in particular an active research area. In order to improve the functionality and performance of existing systems, the re-engineering process requires identifying and understanding all of the components of such systems. An underlying database is one of the most important component of information systems. A considerable body of data is stored in relational databases (RDBs), yet they have limitations to support complex structures and user-defined data types provided by relatively recent databases such as object-based and XML databases. Instead of throwing away the large amount of data stored in RDBs, it is more appropriate to enrich and convert such data to be used by new systems. Most researchers into the migration of RDBs into object-based/XML databases have concentrated on schema translation, accessing and publishing RDB data using newer technology, while few have paid attention to the conversion of data, and the preservation of data semantics, e.g., inheritance and integrity constraints. In addition, existing work does not appear to provide a solution for more than one target database. Thus, research on the migration of RDBs is not fully developed. We propose a solution that offers automatic migration of an RDB as a source into the recent database technologies as targets based on available standards such as ODMG 3.0, SQL4 and XML Schema. A canonical data model (CDM) is proposed to bridge the semantic gap between an RDB and the target databases. The CDM preserves and enhances the metadata of existing RDBs to fit in with the essential characteristics of the target databases. The adoption of standards is essential for increased portability, flexibility and constraints preservation. This thesis contributes a solution for migrating RDBs into object-based and XML databases. The solution takes an existing RDB as input, enriches its metadata representation with the required explicit semantics, and constructs an enhanced relational schema representation (RSR). Based on the RSR, a CDM is generated which is enriched with the RDB's constraints and data semantics that may not have been explicitly expressed in the RDB metadata. The CDM so obtained facilitates both schema translation and data conversion. We design sets of rules for translating the CDM into each of the three target schemas, and provide algorithms for converting RDB data into the target formats based on the CDM. A prototype of the solution has been implemented, which generates the three target databases. Experimental study has been conducted to evaluate the prototype. The experimental results show that the target schemas resulting from the prototype and those generated by existing manual mapping techniques were comparable. We have also shown that the source and target databases were equivalent, and demonstrated that the solution, conceptually and practically, is feasible, efficient and correct
    • …
    corecore