
Query Processing
in Temporal Object-Oriented Databases

A thesis submitted to Middlesex University
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Lichun Wang

School of Computing Science
Middlesex University

July 1999

MX 9902237 0

Abstract

This PhD thesis is concerned with historical data management in the context of object-
oriented databases. An extensible approach has been explored to processing temporal
object queries within a uniform query framework. By the uniform framework, we mean
temporal queries can be processed within the existing object-oriented framework that is

extended from relational framework, by extending the existing query processing
techniques and strategies developed for OODBs and RDBs.

The unified model of OODBs and RDBs in UmSQL/X has been adopted as a basis for
this purpose. A temporal object data model is thereby defined by incorporating a time
dimension into this unified model of OODBs and RDBs to form temporal relational-like
cubes but with the addition of aggregation and inheritance hierarchies. A query algebra,
that accesses objects through these associations of aggregation, inheritance and time-
reference, is then defined as a general query model /language. Due to the extensive
features of our data model and reducibility of the algebra, a layered structure of query
processor is presented that provides a uniforrn framework for processing temporal object
queries. Within the uniform framework, query transformation is carried out based on a set of
transformation rules identified that includes the known relational and object rules plus those

pertaining to the time dimension. To evaluate a temporal query involving a path with time-

reference, a strategy of decomposition is proposed. That is, evaluation of an enhanced path,
which is defined to extend a path with time-reference, is decomposed by initially dividing the

path into two sub-paths: one containing the time-stamped class that can be optimized by

making use of the ordering information of temporal data and another an ordinary sub-path
(without time-stamped classes) which can be further decomposed and evaluated using
different algorithms. The intermediate results of traversing the two sub-paths are then joined

together to create the query output. Algorithms for processing the decomposed query
components, i. e., time-related operation algorithms, four join algorithms (nested-loop
forward join, sort-merge forward join, nested-loop reverse join and sort-merge reverse
join) and their modifications, have been presented with cost analysis and implemented

with stream processing techniques using C++. Simulation results are also provided.
Both cost analysis and simulation show the effects of time on the query processing
algorithms: the join time cost is linearly increased with the expansion in the number of
time-epochs (time-dimension in the case of a regular TS). It is also shown that using
heuristics that make use of time information can lead to a significant time cost saving.
Query processing with incomplete temporal data has also been discussed.

iii

Acknowledgement

I would like to acknowledge many people for their roles in making this thesis a reality

Firstly, I am indebted to my supervisor M. Wing and the director of studies C. Davis for

their consistent support and supervision. Secondly, I would like to thank N. Revell and
B. Eagelstone for their useful advice and suggestions on my PhD work. Thirdly, I would
like to thank F. M. Carrano for the useful discussions on C++ stream processing

techniques and 1/0 cost. Fourthly, I would like to acknowledge H. Thimbleby, A.

Blandford, K. Dudman and M. Jones for the useful discussions or carefully reading the

thesis. Many thanks are also due to L. Miraziz, J. Tsang, S. Albassan, J. Macdonald and

S. Griffin for their help and support.

Finally, I would like to thank my parents, husband and son for their patience and support

while I have been doing my PhD.

IV

Contents

Abstract

Acknowledgement

Contents iv

Introduction 1

1.1 Background 1

1.2 Research Project 4

1.2.1 Presentation of Problem 4

1.2.2 Objectives of the Project 5

1.3 Outline of Main Work 6

1.4 Summary of Related Work 11

1.5 Organisation of the Thesis 13

2 Relational, Object-Oriented and Temporal Databases 16

2.1 Introduction 16

2.2 Relational Databases 18

2.2.1 What Is a Relational Database? 18

2.2.2 The Relational Model of Data 18

2.2.3 Strengths and Weaknesses of Relational Databases 22

2.3 Object-Oriented Databases 23

2.3.1 What Is an Object-Oriented Database? 23

2.3.2 An Object-Oriented Data Model and Query Language 24

2.3.3 Why Object-Oriented Databases? 28

2.3.4 Approaches to Object-Oriented Databases 29

2.3.5 Strengths and Weaknesses of Object-Oriented Databases 30

2.4 Temporal Databases 31

2.4.1 Time Dimensions 32

2.4.2 Research on Temporal Databases 33

V

2.5 Summary 37

3 Query Processing in Databases 42

3.1 Introduction 42

3.2 Query Processing in Relational Databases 43

3.2.1 Optimization Objectives 43

3.2.2 General Processing Strategies 45

3.2.2.1 Query Presentation 45

3.2.2.2 Steps in Query Processing 47

3.2.2.3 General Processing Strategies 48

3.2.3 Optimization Techniques 49

3.2.3.1 Algebraic Optimization 50

(1) Query Transformation 50

(2) Query Improvement 54

3.2.3.2 Plan Optimization 54

(1) Query Evaluation 54

(2) Access Plans 62

3.2.3.3 Semantic Optimization 63

3.3 Query Processing in Object-Oriented Databases 64

3.3.1 Query Models 65

3.3.1.1 A Model of Queries for Object-Oriented Databases 65

3.3.1.2 A Query Algebra for Object-Oriented Databases 66

3.3.2 Query Processing Methodology 68

3.3.3 Optimization Techniques 70

3.3.3.1 Algebraic Optimization 70

3.3.3.2 Path Execution 72

3.3.3.3 Semantic Query Optimization 74

3.4 Processing Temporal Queries 75

3.5 Summary 77

4A Temporal Object Data Model 79

4.1 Introduction 79

vi

4.2 The Unified Data Model of RDB and OODB 80

4.3 A Temporal Object Data Model 85

4.3.1 Time Space and Temporal Set 86

4.3.2 Chronon, Interval, Span and Lifespan 86

4.3.3 Integrating the Temporal Object with the Unified Model

of RDB and OODB 89

4.4 More Application Examples 92

4.4.1 Case Study 1:

"The Wood Panel Deformation Measurement Database" 92

4.4.2 Case Study 2: "The Neurological Patient Care Database" 95

4.5 Features of the Temporal Object-Oriented Data Model 100

4.6 Summary 102

5 Query Algebra for the Temporal Object Data Model 104

5.1 Introduction 104

5.2 Predicates 106

5.3 Identity and Equality 109

5.4 Closure 110

5.5 Query Algebra 110

5.5.1 Temporal Unary Set Operations 110

5.5.2 Binary Set Operations 112

5.5.3 Special Operations 114

5.6 Query Examples 120

5.7 Properties of Algebra 122

5.8 Summary 124

6A Uniform Framework for Processing Temporal Object Queries 126

6.1 Introduction 126

6.2 Optiniizer Layering 128

6.3 Query Transfonnation 129

6.3.1 Relational Rules 130

vii

6.3.2 Temporal Transformation Rules 136

6.3.3 Inheritance Rules 140

6.3.4 Path Transformation Rules 141

6.4 A Decomposition Strategy for Processing Temporal Object Queries 144

6.5 Summary 147

7 Algorithms for Processing Decomposed Query Components 149

7.1 Introduction 149

7.2 Assumptions 151

7.3 Stream Processing Algorithms for Time-Related Operations 152

7.3.1 Stream Processing Algorithm for Time-slice 153

7.3.2 Stream Processing Aggregation Algorithms 155

7.4 Join Algorithms 156

7.4.1 Nested-Loop Forward Join (NLFJ) 157

7.4.2 Sort-Merge Forward Join (SMFJ) 158

7.4.3 Nested-Loop Reverse Join (NLRJ) 159

7.4.4 Sort-Merge Reverse Join (SMRJ) 160

7.4.5 Sorting 162

7.4.6 Summary 163

7.5 Modification of Join Algorithms 164

7.6 Simulation 166

7.6.1 Experimental Database:

"The International Weather Record Database" 167

7.6.2 Simulation Programs 167

7.6.3 Simulation Results and Discussion 171

7.7 Heuristics for Optimization 173

7.8 Summary 175

8 Query Processing with Incomplete Temporal Data 189

8.1 Introduction 189

8.2 Implications of Temporal Data 190

viii

8.3 Interpolation 193

8.4 Query Processing with Incomplete Temporal Data 202

8.5 Summary 204

9 Conclusions and Further Work 205

9.1 Major Contributions of the Work 205

9.2 Conclusions 207

9.3 Future Work 212

List of Figures 214

List of Tables 216

List of Author's Publications Relevant to the Thesis 217

References 219

APPENDIX Selected Published Papers 234

A. 1 Processing Temporal Queries in the Context of Object-Oriented Databases

A. 2 An Algebra for a Temporal Object Data Model

Chapter 1

Introduction

This introductory chapter outlines the research background, main work, related work

and organisation of thesis.

1.1 Background

We are living in a state of information explosion. Organisations have made extensive

use of the ability of database management systems to store and manipulate vast amounts

of data and knowledge.

There are three major types of databases available today: relational databases (RDBs),

object-oriented databases (OODBs) and recently emerged object-relational databases

(ORDBs).

Whilst the semantic limitations of RDBs are widely recognised, OODBs have emerged

to represent some of the most promising ways of meeting the demands of the advanced

database applications, such as computer-aided design (CAD), computer-aided

manufacturing (CAM), computer-integrated manufacturing (CIM), computer-aided

software engineering (CASE), document and multimedia preparation, office automation

and scientific computing.

However, most OODBs offer more restricted query capabilities than those found in

RDBs [Kim, 1993; 1994; 1995; Kim et al., 1997]. Typically, the query facilities do not

include nested subqueries, set queries (Union, Intersection, Difference), aggregation

functions and group by, and even joins of multiple classes, etc., which are fully

supported in RDBs [Kim, 1993; 1994; 1995; Kim et al., 1997]. Most OODB designers

have not invested a great deal of time in design and development of appropriate

Chapter 1 Introduction 2

techniques for optimizing object-oriented queries. In other words, OODBs allow the

users to create a flexible database schema and populate the database with many

instances, but they do not provide a powerful enough means of retrieving objects from

the databases.

In addition, query processing techniques have not fully addressed the features arising
from key challenges including interoperating OODBs with RDBs, management of

multimedia data, spatial data and temporal data, etc., [Kim, 1993; 1994; 1995; Kim et

al., 1997].

For example, temporal properties play an essential role in many real world applications.
Many advanced database applications require the support for time-varying data. Support

for time-varying data in most comi-nercial databases is almost at the level of user-
defined time. The vast majority of research on temporal databases is on relational and

pseudo-relational database models to incorporate time [Pissinou et al., 1993; 1994;

Clifford et al., 1993; Gadia, 1988; Griffiths and Theodoulidis, 1996; Snodgrass, 1995;

Stonebraker et al., 1990; Tansel et al., 1993; Tansel and Tin, 1998]. Compared to

temporal relational data models, little work has been reported on time in OODBs

[Pissinou et al., 1993; Snodgrass, 1995; Ozsu and Szafron, 1998]. Although most

OODB proposals include constructors for complex types like lists and arrays that allow

the time-stamped entity to be represented as a "blob", which is managed by the system,

but interpreted solely by the application program, no facilities for temporal queries are

provided [Seshadri et al., 1996]. Only a limited amount of work has been done on

temporal query processing and optimization [Leung and Muntz, 1993; Dayal and Wuu,

1992; Seshadri et al., 1996; Pissinou et al., 1994; Snodgrass, 1995; Zurek, 1998] and

they are almost all in the context of relational databases.

Query processing remains one of the most difficult problems to be addressed by

researchers and developers of OODBs [Ozsu and Blakeley, 1995; Kotz-Dittrich and

Dittrich, 1995; Straube and Ozsu, 1995; Yu and Meng, 19981, especially when time-

varying data are taken into account.

Chapter 1 Introduction

RDBs OODBs

dv.

IDisadv. 1

mple data model
[ell-developed algebra
ood query facilities
ood performance
)me support time-
trying data

ase of use
ominant on the market

,r modelling capability
limited applications

verful modelling capability
advanced DB applications

lo common data model
lo commonly agreed algebra
, imited query facilities
'oor performance
lo facilities for temporal
ueries

imature technology
mited impact on the market

Figure 1-1 Features in OODBs and RDBs.
Items listed in bold are concerned with the query processing related issues.

The features of both RDBs and OODBs, in terms of query processing, are listed in

Figure 1-1. Obviously OODBs and RDBs are complementary, i. e., the drawbacks of

OODBs can be compensated to some extent by the merits of RDBs. It is believed that

the basis of the next generation database technology will be the combination of relations

and objects [Kim, 1993; 1994; 1995; Kim et al., 1997; Date, 1994; Date, 1996; Date and

Darwen, 1998; Darwen and Date, 1995; Stonebraker, 1996; Eisenberg and Melton,

1999]. That is, RDBs will be extended to incorporate the concepts of encapsulation

(methods), arbitrary data types, nested objects, and inheritance; or alternatively OODBs

will be extended to incorporate an ANSI-SQL compatible non-procedural query

language and all the major database features found in today's RDBs (such as, automatic

query optimization, etc.). Beyond the unification of relational and object-oriented

database technologies, the database field has to address the aforementioned key

Chapter 1 Introduction

challenges such as management of temporal data, etc., to usher in a true revolution in

database technology.

Databases thereby emerged that support a dialect of SQL-3, include non-traditional

tools, and optimize for complex SQL-3 queries are called object-relational DBMSs

[Stonebraker, 1996; 1998]. They are relational in nature because they support SQL; they

are object-oriented in nature because they support complex data. In essence they are a

marriage of SQL from the relational world and modelling primitives from object world.

Examples of object-relational DBMS vendors are UniSQL, 19lustra, Omniscience,

Hewlee-Packard (with their Odapter for Oracle, also packaged for HP's own

Allbase/SQL as Open ODB) [Stonebraker, 1996; 1998], etc.

This thesis will in general not distinguish object-relational from object-oriented

databases unless they are explicitly stated, i. e., it accepts the current commonly used

classification: object-relational databases are still under the category of object-oriented

databases.

1.2 Research Project

The project "Query Processing in Temporal Object-Oriented Databases" is addressing

the difficult challenge of management of temporal data. More specifically, it is

concerned with historical data management in the context of object-oriented databases

and involves the study and development of novel methods for processing temporal

object queries. The project initially started in 1993, and it has gone through an intensive

research so far and resulted in 13 publications as shown in the list of author's

publication at the end of the thesis.

1.2.1 Presentation of Problem

Query optimization techniques are dependent upon the query model or language. The

query model, in turn, is based on the data (or object) model since the latter defines the

Chapter 1 Introduction

access primitives that are used by the query model. These primitives, at least partially,
determine the power of the query model

Almost all the object query processors proposed to date uses the optimization techniques
developed for RDBs [Ozsu and Blakeley, 1995; Bertino and Martino, 1993; Yu and
Meng, 1998]. But these OODBs introduce many new data model features to the
database, that cannot be handled by traditional query processing technology (i. e., the

query processing subsystems of RDBs). The difficulty is that there is no commonly

accepted object data model and there is thereby no universally agreed query algebra on

which to base development of the theory and architecture which would provide the basis

for optimization [Bertino and Martino, 1993; Ozsu and Blakeley, 1995]. If we have a

unified data model of OODBs and RDBs or an object data model that is extended from

relational data model, the techniques of query processing and optimization developed

for RDBs will be more smoothly and easily extended for OODBs.

The majority of temporal database research has focused on extensions to a relational
foundation in much the same way that object-oriented extensions to a relational model

have developed and are still evolving [Simon, 1995]. If the temporal databases are

typically extensions of conventional data models, then the temporal aspects should be

accessible through extensions to traditional query processing techniques.

The overall problem of temporal query processing in the context of OODBs, then, is

how to develop a proper temporal data model (preferably, one that is extended from a

unified model RDB and OODB) and algebra, and thereby to expand query optimization

and query evaluation techniques of (temporal) RDBs to address and to exploit the new

modelling and query extensions in temporal OODBs (TOODBs).

1.2.2 Objectives of the Project

The overall objective of the project is to address the above problem and to devise the

techniques or strategies to process and optimize temporal object queries. To fulfil this

objective, we have set up the following sub-objectives:

Chapter 1 Introduction

1) Investigate the current research status and available theory and techniques that could
be used for our purpose.

2) Define a temporal object data model that is preferably extended from the unified

model of relations and objects, and can represent a variety of real world time varying

entities, so that we can expand query processing techniques from (temporal) RDBs

to address and to exploit the new modelling and query extensions in TOODBs.

3) Develop a query algebra for the defined model. Ideally it should be 'closed' so that

relational techniques can be applied.

4) Devise techniques to process temporal object queries.

1.3 Outline of Main Work

Through this thesis, an extensible approach to process temporal queries in the context of

OODBs, has been exploited in such a way that temporal queries can be processed within

the existing object-oriented framework (that is extended from relational framework), by

smoothly extending the existing query processing techniques, making use of the query

processing techniques in (temporal) RDBs for TOODBs. There are three key elements

in the thesis work that fulfil the objectives set above.

(1) Derinition of a temporal object data model

The unified model of OODBs and RDBs from UniSQL/X [Kim, 1993; 1994; 1995;

D'Andrea and Janus, 1996; Kim et al., 1997], that is an object data model extended

from the relational data model, has been adopted as a starting point. A temporal object

data model is thereby defined by incorporating a time dimension into this unified model

of OODBs and RDBs, i. e., via defining a time sequence as a temporal object and

integrating it into the database schema defined by the unified model of RDB and

Chapter 1 Introduction

OODB. The database schema defined by the temporal object data model forms temporal

relational-like cubes but with aggregation and inheritance hierarchies.

Compared to other temporal relational object-oriented data models, the temporal object data

model defined here is a temporally grouped model and possesses following distinguishable

characteristics:

9 Both homogeneity and heterogeneity in the time dimension can be supported;

e The epoch (i. e., the time when the temporal object changes its value) represents a

transfonned time space and can then serve as a convement token for the analysis of the

query processing cost.

9 The temporal object-oriented database presented is a superset of object-oriented database

(i. e., retaining snapshot reducibility to an OODB) that in turn is a superset of relational
database.

The model provides a basis for the expansion of the techniques of query processing and

optimization in RDBs to address and exploit new modelling features in OODBs and

TOODBs.

(2) Development of an algebra for the temporal object data model

A query algebra, that provides an access to objects through these associations of

aggregation, inheritance and time-reference, is then defined as a general query

modelAanguage.

The algebra is closed in the sense that the output from one operation can become input

to another. The property of closure is important when the query processor uses and extends

the query processing and optimization techniques developed for RDBs to process temporal

object queries.

Chapter 1 Introduction

In addition, the algebra possesses the properties of reducibility and grouped

completeness. By reducibility, we mean that the temporal object algebra can be reduced

to the object algebra when time dimension is not taken into account and the object

algebra can be further reduced to the relational algebra when aggregation hierarchy and
inheritance hierarchy are not taken in to account. This allows query processing

techniques developed for RDBs to be used and extended to process temporal object

queries. By grouped completeness, we mean that it supports a rather strong notion of the

"history of an attribute". For example, one can talk about "employee's salary history" as a

single object, and ask to see it, or define constraints over it, etc.

The fundamental intent of the algebra is to allow the writing of expressions of a user's query

and to serve as a convenient basis for query processing and optimization. The properties of

closure, reducibility and grouped completeness pave an extensible approach to processing

temporal object queries within a uniform framework of object-oriented query processing.

(3) Techniques and strategies for query processing and optimization

Due to the extensible structure of our data model and the properties of reducibility and

closure of the defined algebra, query processing and optimization are exploited.

Especially, techniques and strategies to process temporal queries are presented. There

are four components:

1) Query transformation rules comprise:

relational rules;

temporal transformation rules;

inheritance rules; and

path transformation rules.

Relational rules are derived from well-known algebraic optimization techniques in

RDBs and play an essential role in query optimization. When the time-dimension is

Chapter I Introduction

taken into account, the temporal transformation rules play a role. Inheritance rules are
object specific. Path transformation rules are important in developing query processing
techniques and strategies for processing (temporal) object-oriented queries (e. g., as in

the decomposition strategy and join algorithms described below).

2) A decomposition strategy for processing temporal queries within the object-oriented

query framework;

Temporal object queries are represented by the enhanced path that is defined to refer to

the path with time-reference in this thesis. A decomposition strategy is devised for such

a query. Applying this strategy, an enhanced path is initially divided into two sub-paths:

one containing time-stamped class that can be optimized by making use of the ordering

information of temporal data, and the other, an ordinary sub-path (with no time-stamped

class) that can be further decomposed and evaluated using different algorithms. The

intermediate results of traversed two sub-paths are then joined together to create the

query output.

The advantages of decomposing the temporal query into sub-query components are that

well-known join algorithms can be used to optimize the decomposed query components,

and also provide a convenient means to observe and analyse the effects of the time on

query processing costs (as pointed by Kim [1995; 1997] and Snodgrass [1995], these

effects have not been reported so far but were deemed to be valuable).

3) Implementation of time-related operation algorithms and join algorithms with stream

processing techniques (along with cost analysis) for the decomposed query

components.

As temporal data often imply the ordering by time, the stream processing approach is a

strategy of choice to implement relevant algorithms. With the stream processing

techniques, the following algorithms have been implemented:

Chapter 1 Introduction 10

* Stream processing time-slice algorithms and stream processing aggregation

algorithms for the time-related operations;

Four basic join algorithms: nested-loop forward join, sort-merge forward join,

nested-loop reverse join and sort-merge reverse join, and their modifications

These algorithms are presented with the corresponding cost analysis and implemented

on a PC using Borland C++ Version 4. To illustrate the efficiency of the above

algorithms when the time is present, simulation based on the simulated International

Weather Recording Database is provided.

Both cost analysis and the simulation results show that the join time cost is linearly

increased with the expansion in the number of time-epochs (it is linearly increased with

the expansion of time in the case of regular TS).

4) Heuristics for optimization

To further reduce the time cost, the following heuristics have also been presented as

optimization strategies:

Transform the time-related predicate into the time-slice operation;

e Perform time-slice as early as possible.

The principle of these heuristics is to avoid looking at all of the data. It has been shown

in the thesis by both analysis and simulation that utilising the heuristics can lead to a

significant time cost saving.

The PhD project has involved the designing of databases for these systems:

* Wood Panel Deformation Measurement System,

0 Health-Care Information System, and

Chapter I Introduction 11

* Intemational Weather Record System.

These are taken as case studies to demonstrate the modelling capability of our model

and are also used to illustrate our approach.

This thesis also discusses the situation when a user's query requires the data that is not

explicitly recorded in the database. It is shown that the techniques of interpolation, or

assumption rules that make use of the implications of the temporal data can be used to

answer such a query. Again, the efficiency can be improved by making use of the

ordering information of the data and also heuristics to reduce the scope of sequence

scans.

1.4 Summary of Related work

Although research on temporal databases has been carried out for over fifteen years, there are

still some unmet challenges [Snodgrass, 1995; Kim, 1995; Kim et al, 19971. Support for

time in conventional relational databases systems is almost entirely at the level of user-

defined time (i. e., attribute values drawn from a temporal domain) [Snodgrass, 1995].

The user-defined time support in SQL2 is poorly designed [Snodgrass, 1995; Melton and

Simon, 1993]. Although the ISO SQU conuTfittee in July 1995 voted unanimously to

accept a new part: SQL/Temporal (also expected to incorporate object-oriented aspects),

with Period predefined data type being the first aspect of TSQL2 to become part of

SQU [Segev, Jensen and Snodgrass, 1995], no details have been revealed as for how it

will address the central issues of temporal support [Eisenberg and Melton, 1999]. None

of the other object-oriented database standards, including "The Object Database

Standard: ODMG 2.0" [Cattell et al., 1997], specifies the management of temporal data.

Research on temporal databases has mainly focused on defining temporal data models

by extending existing models [Pissinou et al., 1993,1994; Clifford et al., 1993; Gadia,

1988; Griffiths and Theodoulidis, 1996; Snodgrass, 1995; Stonebraker et al., 1990;

Tansel et al., 1993; Golralwalla et al., 1998; Bohlen et al., 1998; Tansel and Tin, 1998],

and there is no commonly accepted consensus temporal data model, nor well-accepted

Chapter 1 Introduction 12

temporal database algebra [Pissinou et al., 1993; Snodgrass, 1995]. Among the various

reports on defining a temporal relational data model and algebra, Clifford [1993] associated
lifespans at both attribute and tuple level as timestamps to define the historical relational data

model and algebra, Tansel [1993] adopted temporal sets for timestamps and a temporal atom
for a time-stamped object, and Gadia et al. [1993] provided a parametric data model, treating

the attribute value as a function of time. These features of the above work are reflected in our
data model and algebra. But because our temporal object data model is defined by

incorporating the time-dimension into the unified data model of RDB and OODB via
defining a time sequence as a temporal object and representing it into database schema, it is a

temporally grouped model, and the heterogeneity in time dimension and grouped

completeness of algebra can be supported. There is no temporal relational algebra that has

been shown to be grouped complete as stated in [Clifford et al., 1993; Pissinou et al.,

1994] whilst the temporally grouped model has been considered desirable [Segev,

Jensen and Snodgrass, 1995].

Over two dozen proposals have been made for an object algebra as mentioned in [Ozsu and

Blakeley, 1995]. No query algebra thus defined is based on any unified model of RDBs and

OODBs, although it has been claimed that an object algebra should extend relational algebra

consistently [Ozsu and Blakeley, 1995; Shaw and Zdonik, 19990; Yu and Osborn, 1991].

Few of these object algebras are closed, and none of them consider the temporal dimension

or supports temporal data management. Our temporal object algebra reflects some spirits

of object algebras [Shaw and Zdonik, 1990; Straube and Ozsu, 1990; Cluet and Delobel,

1994; AlhaJ and Arkun, 1993], but in addition to supporting access through aggregation and

inheritance associations, our algebra also accesses objects through the time dimension. These

are embodied in the nested predicates and (nested) temporal predicates, and are represented

by the enhanced path expressions. The properties of closure, reducibility and grouped

completeness thus allow an extensible approach to processing temporal object queries.

There is little work reported on temporal query processing and optimization [Leung and

Muntz, 1993; Dayal and Wuu, 1992; Seshadri et al., 1996; Pissinou et al., 1994;

Snodgrass, 1995; Zurek, 1998] and most of them are in the context of RDBs. As RDBs

always require the user to explicitly join two relations, temporal processing in the context

Chapter I Introduction 13

of RDBs has been focused on specific join algorithms, such as temporal join and
optimization [Gunadhi and Segev, 1990; Segev, 1993; Zurek, 1998], the strategies of stream
processing for temporal joins [Leung and Muntz, 1993], following the bottom up approach.
The strategies of stream processing in [Leung and Muntz, 1993] have been adopted in our
time-related operation and join algorithms. Seshadn et al. [19961 separated the optimizer
functionality between the database optimizer and temporal optimizer and provided a

paradigm for interaction between a relation and a sequence. Although they have provided a

comprehensive approach for sequence data processing, they have not incorporated sequence

processing in the relational query processing framework. The idea of separating optimizer
functionality has been reflected in our query optimizer. Dayal and Wuu [1992] proposed a

uniform approach to processing temporal queries in the context of functional object-oriented
data model, but their work did not take into account the query optimization and evaluation in

a query processing framework. Also their work is based on a functional model and language,

that would lead to a functional optimization that is quite different from the algebraic, cost-
based optimization techniques employed in relational as well as a number of object-oriented

systems [Ozsu, 1995].

Our work provides a comprehensive approach to processing temporal object queries,

from the data model, algebra to query processing techniques, which are required to

support time-varying data. We have shown that the temporal object queries can be

processed within the existing object framework through extending the existing query

processing and optimization techniques. The approach is in contrast to other work in the

field.

1.5 Organisation of the Thesis

Apart from Chapter 1 (Introduction) and Chapter 9 (Conclusions and Future Work), this

thesis can be divided into three parts as follows. Part I is an overview of background and

research status in this area and comprises Chapters 2 and 3. Part H constructs a

fundamental part (i. e., the data model and algebra) for query processing and comprises

Chapter 4 and 5. Part III comprises Chapter 6 to 8 where the techniques and algorithms

are proposed for processing temporal object queries.

Chapter 1 Introduction 14

Part I

Chapter 2 provides an overview of current status on relational databases, object-oriented
databases and temporal databases. It is made clear that the next generation of databases

trends to be a combination of relations and objects as strengths and weaknesses of

commercial relational and object databases are complementary. Support for time varying
data is required by many advanced database applications and temporal databases are still

at the stage of research. Chapter 3 gives a survey on query processing techniques in

databases. It summarised that relational databases have accumulated a lot of knowledge

and experiences on query processing, the problem of query processing in OODBs has

not yet been very widely researched and almost all object query processors use the

optimization techniques developed for RDBs. Processing temporal queries in the

context of relational databases only touched to the operator of join. Little work has been

reported on processing temporal queries in the context of OODBs.

Part II

Query processing techniques are dependent upon a data model and algebra/language.

Chapter 3 defines a temporal object data model that is extended from UniSQL/X with a

time dimension. An algebra for the data model is developed in Chapter 5. The model

with the extensible structure and the algebra with the properties of reducibility and

closure form a basis for query processing.

Part III

Chapter 6 presents a uniform framework for processing temporal object queries. Within

the framework, a set of algebraic transformation rules is specified for algebraic

optimization, and a decomposition strategy is proposed for processing the temporal

object queries. This addresses a central issue of path optimization in object-oriented

databases. Chapter 7 presents algorithms for processing the decomposed query

components. The algorithms are implemented with stream processing techniques that

Chapter I Introduction 15

make use of the ordering information for optimization. Both cost analysis and

simulation are also provided. Chapter 8 discusses an important aspect in processing

temporal object queries: when a user query has no data entry to the database.

In addition, an appendix includes two selected published papers.

Chapter 2

Relational, Object-Oriented

and Temporal Databases

This chapter offers an overview of relational databases and object-oriented databases,

and outlines existing research effort on temporal databases.

2.1 Introduction

A database system is essentially nothing more than a computerized record-keeping

system [Date, 1995]. The database itself can be regarded as a kind of electronic filing

cabinet; in other words, it is a repository for a collection of computerized data files. The

user of the system will be given facilities to perform a variety of operations on such

files, including the following, amongst others:

Adding new, empty files to the database;

Inserting new data into existing files;

Retrieving data from existing files;

Updating data in existing files;

Deleting data from existing files;

Removing existing files, empty or otherwise, from the database.

All database management systems (DBMSs) are distinguished from other programs by

their ability to manage persistent data and to access very large quantities of these data

efficiently and safely.

Chapter 2 Relational, Object-Oriented and Temporal Databases 17

Database systems can be based on a number of different data models. In general terms, a
data model is a mathematical formalism consisting of a notation for describing data and
data structures (information) and a set of valid operations which are used to manipulate
those data, or at least the tokens representing them. Currently, the most popular data

models are relational and object-oriented data models, resulting in two major types of
databases available today: relational databases (RDBs) and object-oriented databases

(OODBs). Whilst the semantic limitations of RDBs are widely recognised, OODBs are

emerging to represent some of the most promising ways of meeting the demands of

advanced database applications, such as computer-aided design (CAD), computer-aided

manufacturing (CAM), computer-integrated manufacturing (CIM), computer-aided

software engineering (CASE), document and multimedia preparation, office automation

and scientific computing [Bertino and Martino, 1993; Cattell, 1994; Kim et al., 19971.

These advanced database applications often require support for time-varying data. The

enterprise modelled by a database is rarely static. Often the dynamics of an enterprise

represent the most important aspect to be captured within a data model. Recent trends in

data modelling emphasise the representation of temporal aspects in database schema and

the support of corresponding data manipulation facilities directly by a database

management system [Tansel, 1993; Snodgrass, 1995; Kim, 1994; 1995; Kim, et al.,

1997].

Most research on temporal databases concerns relational and pseudo-relational database

models which incorporate time [Pissinou et al., 1993; 1994; Clifford et al., 1993; Gadia,

1988; Griffiths and Theodoulidis, 1996; Snodgrass, 1995; Stonebraker et al., 1990;

Tansel et al., 1993; Tansel and Tin, 1998]. There is, however, an increasing emphasis on

the role of time in OODBs [Pissinou et al., 1993; Snodgrass, 1995; Kim, 1994; 1995;

Kim, et al., 1997].

In this chapter, after briefly reviewing the basic concepts of relational databases and

object-oriented databases, existing research on temporal databases will be outlined. The

rest of the chapter is structured as follows. Section 2.2 looks at relational databases. An

Chapter 2 Relational, Object-Oriented and Temporal Databases 18

overview of object-oriented databases is given in Section 2.3. Existing research on

temporal databases is outlined in Section 2.4 and a summary of the chapter is given in

Section 2.5.

2.2 Relational Databases

2.2.1 What Is a Relational Database?

A relational database is based on the relational model of data. The relational model, in

turn, is an abstract theory of data that is based on certain aspects of mathematics

(principally set theory and predicate logic).

In Date [1995], a relational database is described as "a database that is perceived by its

users as a collection of relations or tables". All values in a relation are atomic or scalar

(there are no repeating groups). A relational database management system (relational

system for short) is a system that supports relational databases and operations on such

databases, including in particular the operators Select (also known as Restrict), Project,

and Join. These operators, and others like them, are all set-level, supporting user

requests, e. g., for data retrieval. The optimizer is the system component that chooses an

efficient way to implement user requests.

2.2.2 The Relational Model of Data

Codd's relational model of data was introduced in 1970 [Codd, 1970]. It was based on

the first-order predicate calculus (FOPQ and provided a theoretical basis for the

development of relational databases.

The relational model of data is motivated by several aims, including: the desire to use

formal methods in database design, enquiry and update; the desire to be able to prove

the correctness of programs based on non-procedural descriptions; and the urge to meet

Chapter 2 Relational, Object-Oriented and Temporal Databases 19

the demand that a theory should be as simple as possible while retaining its expressive

power.

The relational model is concerned with three aspects of data: data structure (or object),

data integrity, and data manipulation (or operators).

A relation, mathematically defined, is any subset of a Cartesian product of sets. Given a

list of sets & ... ' A,, their Cartesian product is the set of all bags (a bag is a list wherein

elements may be repeated as opposed to a set where repetition is not permitted) of n

elements of A where there can be only one element in the bag from each A. Such a bag is

called an ordered n-tuple, or just a tuple. The relation is sometimes said to be n-ary if

there are n attributes. Each A is called a domain when viewed as a set of elements from

which an attribute may take its values and an attribute when viewed as a label for that

set. These concepts are illustrated in Figure 2.1.

E#

Primary key

Name
Salary

(B I Name I Salary I Dept

Dept

Computer,
Ma, tDh,

Domains

tc. etc .

Foreign key

El John 18,000 Computer C
a
r

Relation E2 Steven 25,000 Math N: ý
d
i

Employee E3 Katie 21,000 Arts
Tuples n

a
E4 Mike 18,000 Dance i

t
E5 David 19,000 Physics Ix y

v

ttributes

Degree

Figure 2.1 An example relation: employee

Chapter 2 Relational, Object-Oriented and Temporal Databases 20

The next order of structure in database concerns the relationships (links) between

relations. These can be are relations themselves. Relation musts conform to certain
integrity constraints. Every entity must have specified at least one primary key set of
attributes that uniquely identifies each tuple at any given time. Furthermore, it must be
in the first normal form, i. e., the attribute values cannot be complex structures (repeating

groups, lists, and so on) but must be atomic data types (numbers, strings, and so on).
The links have two kinds of property: multiplicity and modality. The multiplicity
(sometimes called cardinality) of a link may be one-to-one or many-to-one and modality

may be necessary or possible. Integrity, multiplicity and modality constrains are usually

coded in the application and nearly always in some exogenous procedural language. A

foreign key is also defined: this is an attribute (or a set of attributes) which is the

primary key of some other relation. The integrity rules specify what happens to related

relations when a table is subjected to update or deletion operations.

The manipulation part of the model is the means (operators) by which queries and

update requests can be expressed. There are essentially two methods, known as the

relational calculus and the relational algebra. The relational calculus as introduced by

Codd [197 1; 1972] is a retrieval and update language based on a subset of the first-order

predicate calculus. The retrieval is done via a tuple-variable which may take values in

some given relation. An expression of tuple calculus is defined recursively as a formula

of predicate calculus formed from tuple variables, relational operators, logical operators

and quantifiers. Briefly, a tuple variable is a variable that ranges over some relation, i. e.,

a variable whose only permitted values are tuples of that relation. In other words, if

tuple variable T ranges over relation R, then, at any given time, T represents some tuple t

of R. For example, the query "Get employee numbers for employees in the computer

department", can be expressed in QUEL as follows:

RANGE OF E IS EMPLOYEE

RETRIEVE (E. E#) WHERE E. DEPT= "Computer"

Chapter 2 Relational, Object-Oriented and Temporal Databases 21

The alternative approach is to regard queries and updates as expressed by a sequence of
algebraic operations. The relational algebra as defined by Codd [1972] is based on five

primitive operations: select, project, product, union and difference. Select <on

predicate> yields those tuples that satisfy the predicate; it may be thought of as a
horizontal subset operation. The corresponding vertical subset operation is the project
that returns a relation consisting of all tuples that remain as (sub)tuples in a specified

relation after specified attributes have been eliminated. Product returns a relation

consisting of all possible tuples that are a combination of two tuples, one from each of
two specified relations. If two tables have the same attributes, their union may be

formed by appending them together and removing any duplicate in the primary key.

Difference returns a relation consisting of all tuples appearing in the first and not the

second of two specified relations. The derivative operations such as join, divide,

intersection, can be defined in terms of these primitive operations. The join of two

relations A and B over a relational operator (dyadic predicate) p is useful though not

primitive and can be obtained by building all tuples that are concatenation of a tuple

from A followed by one from B such that p holds for the attributes specified (Duplicates

are eliminated here). In actual implementation, a query optimizer will usually attempt to

select the optimal order of evaluation making use of the referential transparency of

algebra.

The algebra and calculus are isomorphically equivalent and thus represent alternatives to

one another. The principal distinction between them is as follows [Date, 1995]: whereas

the algebra provides a collection of explicit operations, that can be used to tell the

system how actually to build some desired relation from the given relations in the

databases, the calculus merely provides a notation for formulating the definition of that

desired relation in terms of those given relations. At least superficially, it might be said

that the calculus formulation is descriptive where the algebraic one is prescriptive: The

calculus simply describes what the problem is, the algebra prescribes a procedure for

solving that problem. Or very informally: the algebra is procedural (admittedly high-

level, but still procedural); the calculus is non-procedural. Because the algebra and the

calculus are precisely equivalent to one another, for every expression of the algebra,

Chapter 2 Relational, Object-Oriented and Temporal Databases 22

there is an equivalent expression in the calculus; likewise, for every expression of

calculus, there is an equivalent expression in the algebra, i. e., there is one-to-one

correspondence between the two. The different formalisms simply represent different

styles of expression: the calculus is arguably closer to natural language, the algebra is

perhaps more like a programming language.

Relational completeness can be regarded as a basic measure of selective or expressive

power for database languages in general. Since the algebra and the calculus are both

relationally complete, they both provide a basis for designing languages that provide this

power of expressiveness. A manipulation language is said to be relationally complete if

it is at least as powerful as the algebra (or calculus), i. e., if its expressions pen-nit the

definition of every relation that can be defined by means of expressions of algebra (or

calculus) [Date, 1995]. Several hybrid languages based partly on the calculus and the

algebra exist, The most notable being those based on EBM System R language, SQL

(Structured Query Language). SQL has now become the standard language for relational

databases.

2.2.3 Strengths and Weakness of Relational Databases

Relational databases have great strengths. The greatest strength of relational model is its

basis in a formal theory: first-order predicate logic. This is what makes it possible to

have a relationally complete, non-procedural enquiry language such as SQL or QUEL.

The logic ensures that certain things about this language can be proved mathematically.

Another notable and very real benefit is that they make changes to the data structure

relatively easy and they protect users from the complexity with the use of non-

procedural enquiry languages, which can be optimized automatically. Performance

problems have been gradually overcome. After initial resistance, relational databases

have now achieved such wide acceptance in industry that most systems planners no

longer consider hierarchical or network solutions.

Chapter 2 Relational, Object-Oriented and Temporal Databases 23

Weaknesses include the difficulty of dealing with recursive queries; problems related to

nulls; lack of support of abstract data types; severe shortcomings in the representation of
data and functional semantics; etc.

With regard to query processing, the strengths and weakness of relational databases

have been surnmarised in Figure 1.1, in the previous chapter.

2.3 Object-Oriented Databases

2.3.1 What Is an Object-Oriented Database?

An object-oriented database is a database which integrates object orientation with database

capabilities and has the potential to provide powerful repositories for advanced database

applications [Demuth et al., 1994; Khoshafian, 1993] so that

Object-oriented databases = database capabilities + object-orientation

Object orientation can be loosely defined as the software modelling and development

disciplines that make it easy to construct complex systems out of individual components

[Khoshafian, 1993]. The essential 00 characteristics of various applications of the term

tend to have a fuzzy boundary, but generally, what makes something 'object-oriented' are:

abstraction/encapsulation, class and inheritance, message-passing, and polymorphism

[Jeusfeld and Staudt, 1994]. Taking the basic characteristics of an object-onented

prograniming language, object orientation is defined as [Graham, 1993; Khoshafian,

1993]:

Object onentation = Abstract data typing/encapsulation

+ Inheritance

+ Object identity

Chapter 2 Relational, Object-Oriented and Temporal Databases 24

As in relational databases, users are provided with database facilities to perfonn a variety
of operations on the database. According to [Khoshafian, 1993], database capabilities are
defined as:

Database capabilities = persistence

concurrency

transactions

+ recovery

+ querying

" versioning

" integrity

" security

" perfon-nance

2.3.2 An Object-Oriented Data Model and Query Language

A database requires a proper data model that defines general rules for specification of the

structures of the data and operations allowed on the data. Unlike the relational data model,

there is no universally agreed object-oriented data model, nor is commonly accepted

algebra. Several industry consortia, notably the Object Data Management Group (ODMG)

and the Object Management Group (OMG), have proposed standards for the object-

oriented data model and language. The latest version is ODMG2.0 [Cattell, 19971.

Although these standards are not officially endorsed by ANSI or ISO, they give a good

idea of what a basic object-oriented data model and an OODB language would like.

Object Model

The ODMG Object Model is based on the OMG Common Object Model, which in turn is

based on a small number of basic concepts:

0 objects

Chapter 2 Relational, Object-Oriented and Temporal Databases 25

0 operations

types

* and subtyping

The OMG Object Model defines a core set of requirements. ODMG adds components
(e. g., relationships) to OMG Object Model to support object storage needs.

According to the ODMG Object Model, the key concepts and constructs of the object-

oriented data model can be informally (i. e., jargon and lengthy definitions are avoided)

represented as follows [Cattell, 1998, Cattell, 1996; Yu and Meng 1998].

An object can be simple (such as an integer, a real number, a character string, etc.) or

complex (such as boat, a person, a document, etc.). Complex objects are constructed from

simple objects using constructors such as tuple, set, bag (a multiset, or a set that permits
duplicate elements), list (in which the order of elements is significant), and array. Each

complex object in the database has a system-generated and system-wide unique object-

identifier (OID). Each object can be associated with its lifetime, and each object has a

structural aspect and a behavioural aspect. The structural aspect describes the organisation

of the object's data. It contains a set of attributes, and each attribute has a domain type that

specifies the kind of values the attribute takes. The behaviour aspect of an object describes

how its data can be acted upon, and is defined by a set of methods. Each method has a

signature, which specifies the name of the method, the arguments and their types, and the

result type of the method, and a body, which contains the implementation code of the

method. The values of an object can be accessed through the use of methods defined upon

the object. This is known as encapsulation.

Objects with the same characteristics (i. e., attributes, relationships and methods) are

grouped into a class and are defined collectively.

Relationships may exist between the objects of different classes. When the value of an

attribute of an object of a class is an object of another class, the OID is used to establish

Chapter 2 Relational, Object-Oriented and Temporal Databases 26

such a relationship between a pair of classes. OlDs allow the traversal of objects of one
class to objects of another class. Therefore a traversal path can be considered as a special
kind of attribute, known as complex attribute, whose domain types are class definitions

and whose values are OIDs. In addition to one-to-one, one-to-many and many-to-many
relationships, numerous semantic relationships, such as the part-of relationship, can be

represented by complex attributes. Through complex attributes, links are established to

connect objects of different classes. The hierarchy created by these links is known as the

composition or aggregation hierarchy.

The set of all instances (or objects) of a class is called the extent of the class. In some cases
individual instances of a type can be uniquely identified by the values they carry for some

attribute or a set of attributes. These identifying attributes are called keys.

Classes are organised into a class hierarchy. Saying a classC2 is a subclass of class C, or

equivalently, saying class C, is a superclass of classC2, has two meanings: (1) the set of

characteristics (i. e., attributes, including complex attributes, and methods) of class C, is a

subset of the set of characteristicsOf C2, and (2) the set of objects MC2is a subset of the

objects in C1. Semantically, a subclass is a specification of its superclass. As such, a

subclass must have (inherit) all the characteristics its superclass has. But a subclass may
have additional characteristics. Further, because of specification, each object in a subclass

must also be an object in its superclass. A subclass may override the definition of a

characteristic inherited from its superclass by redefining the characteristic. When the

method is applied to an object, the system decides which implementation to invoke based

on the type (e. g., subclass or superclass) of the object. The ability to apply a single method,

with different implementations, to objects of different types is called polymorphism. By

allowing polymorphism, the name of a method can be chosen based on its functionality

rather than on which objects it can operate. The existence of polymorphism dictates that

the binding between the signature and a body of a method referenced in a query can be

determined not at compile time but rather at run time. This is called late-binding.

Chapter 2 Relational, Object-Oriented and Temporal Databases 27

Every class has at least one superclass. A class may have multiple subclasses. A class can
also have multiple superclasses. If a class has multiple superclasses, then it will inherit

characteristics from multiple classes. This is called multiple inheritance. One problem
associated with multiple inheritance is the inheritance conflict, which arises when a
subclass inherits a characteristic with the same name but different definitions (e. g.,
different domain types for attribute names and different signatures for methods) or the

same name and the same definition but different semantics, from two or more
superclasses. The standard method for solving inheritance conflict is to inherit all

conflicting characteristics accompanied with proper renaming.

A general OODB schema can be best described as a class aggregation hierarchy since it is

typically contains both the class hierarchy and the aggregation hierarchy

OQL: Object Query Language

Most OODBs provide a declarative database query language. Although OODBs can often
be accessed through code written in an object-oriented language such as C++, the use of a

query language is considered very important for writing interactive ad hoc queries and for

simplifying the C++ code of application programs. Because of the success and popularity

of SQL relational language, most proposed object-oriented database languages have

adopted a syntax similar to that of SQL. OQL is an OODB query language proposed in

ODMG [Cattell, 1998].

OQL is an SQL-like declarative language that provides a rich environment for efficient

querying of database objects, including high-level primitives for object sets and structures.

OQL is closely based on the query portion of SQL-92 and provides a superset of the SQL-

92 SELECT syntax.

OQL also includes object extensions for object identity, complex objects, path

expressions, operation invocation and inheritance. OQL's queries can invoke operations in

ODMG language bindings, and OQL may be embedded in an ODMG language binding.

Chapter 2 Relational, Object-Oriented and Temporal Databases 28

OQL maintains object integrity by using an object's defined operations, rather its own
operators. OQL is a functional language where operators can be freely composed, as long

as the operands respect the type system. This is a consequence of the fact that the result of
any query has a type that belongs to the ODMG type model, and thus can be queried again.

The following is an example of an OQL query that appears in the published standard
ODMG2.0 [Cattell, 19971. It is similar to a SQL, but with object extensions:

Select c. address

From Persons p,

p. chichen c

where p. address. street="Main Street" and

count (p. chidren)>=2 and

c. address. city! =p. address. city

The "dot" notation is used in the query to traverse the data structure. The query inspects all

children of all "Person" to find people who live on Main Street with at least two children.

It returns only those addresses of children who do not live in the same city as their parents.

It navigates from the Person class using the children reference to another instance of the

Person class and then to the Address and City classes.

2.3.3 Why Object-Oriented Databases?

As object-oriented databases are extensions of two concepts: object orientation and

databases, the potential of object-oriented database lies in the tight integration of these two

technologies. Object orientation allows more direct representation and modelling of real

world problems. Through object-oriented constructs users can hide the details of

implementation of their modules, share objects referentially, and extend their systems by

specialising existing modules.

Chapter 2 Relational, Object-Oriented and Temporal Databases 29

There are three reasons, arising from the requirements of advanced database applications
such as CAD, CASE, CAM, document and multimedia preparation, office automation and
scientific computing, etc., why we might consider that object-oriented database is needed:
to facilitate a clean interface with an object-oriented progamming language; to tackle an

application that requires the flexibility of relational database but for which the

performance of the latter is inadequate; or to tackle totally new kinds of application where

message-passing metaphor seems particularly appropriate.

2.3.4 Approaches to Object-Oriented Databases

When looking at the recent developments in the database area, we can identify different

approaches to object-oriented databases:

Extended relational approach

This approach bases its extensions and changes on the existing relation model and its

implementation in various products and prototypes. The goal is to extend the relational

framework with additional concepts in an "evolutionary" manner. That is, by building on

available experience, new concepts and new functionality are added to the model and to

corresponding existing relational database systems. The products that try to comply with

SQL-3 fall into this category.

Object-oriented approach

Another approach takes object-oriented concepts as implemented in object-oriented

programming languages as the basis for their extensions. Incrementally, database features

and database functionality are added to provide the same capabilities as relational systems,

such as a (declarative) query language and transaction management. In some cases this has

resulted in user interfaces and implementations that differ considerably from those of

relational database systems. The products that try to comply with ODMG fall into this

category.

Chapter 2 Relational, Object-Oriented and Temporal Databases 30

Logic based approach

The third approach relies heavily on concepts and implementation techniques that have
developed for logic programming and deductive systems in general. The use of rules or
calculus-oriented languages and deductive-based techniques as an important technique for

evaluating complex requests reflects the logic-based approach. In many ways, this

approach complements and extends the relational approach as far as the model and the
language are concerned.

2.3.5 Strengths and Weaknesses of Object-Oriented Databases

OODBs have a number of advantages over RDBs. The main benefits, so far as

commercial systems are concerned, is the possibility of capturing application semantics,

thus better enabling reverse engineering and prototyping. A further important benefit is

that of extensibility. OODBs remove the 'Impedance mismatch' between application

and query languages. Compared with RDBs, they reduce the need to perform expensive
joins when objects are used in an application. This makes them potentially much more

efficient for applications involving complex objects. They add support for long

transactions and automatic version control. Some offer dynamic schema evolution and

support for multimedia and group work.

However, there are unsolved problems concerning non-procedural query languages,

query optimization and locking. Critics of the object-oriented approach frequently point

to the theoretical limits of optimization as a major drawback of the object-oriented

approach as compared with the relational approach [Unland et al., 1992].

There are still many problems with current-generation object-oriented databases.

Products are immature. There is no universally agreed formal model behind them, nor is

commonly accepted algebra. OODBs achieve many of the aims of semantic data

models, but are not yet as structurally rich. They also ornit many of the features of

knowledge management. There is a small, but growing number of commercial OODB

products. These have been mostly applied to applications where complex objects

Chapter 2 Relational, Object-Oriented and Temporal Databases 31

predominate, such as CASE tools, multimedia databases, geographic information

systems and CAD/CAM systems. Commercial applications are in their infancy

OODB is an immature but rapidly maturing technology of great significance to
information technology in general. Several industry consortia, notably OMG and
ODMG have been working on to propose standards for OODBs. OODBs are evolving
toward a new generation of systems combining semantic models, expert systems, object-
orientation and hypermedia technology. There are several ways to achieve benefits. One

of them is the combination of relations and objects [Kim, 1993; 1994; 1995; Kim et al.,
1997; Date, 1995; Date and Darwen, 1998; Stonebraker, 1996; 1998; Eisenberg and
Melton 1999].

The strengths and weaknesses of OODBs have also been included in Figure 1.1.

2.4 Temporal Databases

Time is an important aspect of all real-world phenomena. Events occur at specific points

of time; objects and the relationships among objects exist over time. The ability to

model this temporal dimension of the real world and to respond within time constrains

to changes in the real world as well as to application-dependent operations is essential to

many computer application, such as accounting, banking, econometrics, geographical

information systems, inventory control, law, medical records, multimedia, process

control, reservation systems, scientific dada analysis, etc.

Nearly every database product today requires users' intervention to handle the temporal

property. Temporal databases add the property of time to the underlying data. Temporal

database systems will move this property into the DBMS environment itself,

automatically storing multiple time-sensitive versions of data objects, and additionally,

providing facilities to retrieve data by time-oriented queries. Temporal databases are

basically research vehicles rather than truly commercial applications. This subsection

outlines the research effort on temporal databases.

Chapter 2 Relational, Object-Oriented and Temporal Databases 32

2.4.1 Time Dimensions

In the context of databases, two time dimensions are of general interest [Snodgrass and
Ahn, 1986; Snodgrass, 1995]: valid time and transaction time

The valid time of a fact is defined [Jensen, et al., 1994] as the time when the fact is true
in the modelled reality. A fact may have associated any number of instants and time
intervals, with single instants and intervals being important special cases. Valid times

are usually supplied by the user. Valid time can also be in the future, if it is expected

that some fact will be true at a specified time in the future [Snodgrass, 1995].

A database fact is stored in a database at some point of time, and after it is stored, it may
be retrieved. The transaction time of a database fact is defined [Tansel, 1993] as the

time when the fact is stored in the database. Transaction times are consistent with the

serialization order of the transactions. Trans action-time values cannot be after current

time. Also, because it is impossible to change the past, transaction times cannot be

changed. Transaction times can be implemented using transaction commit times.

These two dimensions are not homogeneous; transaction time has different semantics

from valid time. These two dimensions are orthogonal, though there are generally some

application-dependent correlations between two times. A data model supporting neither

dimension is termed snapshot, as it captures only a single snapshot in time of both the

database and enterprise that the database models [Jensen et al., 1993]. A data model

supporting valid time is termed, logically, a valid time model; one that supports

transaction time is termed a transaction -time model; and one that supports both valid

and transaction time is termed a bitemporal model. Temporal is a generic term implying

some kind of time support.

While valid time may be bounded or unbounded (it is at least bounded in the past),

transaction time is bounded on both ends. Specially, transaction time starts when the

database is created (before the creation time, nothing was stored) and does not extend

Chapter 2 Relational, Object-Oriented and Temporal Databases 33

past the present (no facts are known to have been stored in the future). Changes to the
database state are required to be stamped with the current transaction time. Hence,

transaction time and bitemporal relations are append only.

There is a third kind of time that might be included: user-defined time. This term refers
to the fact that the semantics of these values are known only to the user and are not
interpreted by the DBMS, in contrast to valid and transaction time, whose semantics are
supported by the DBMS.

A temporal database is a database supporting some aspect of time, not counting user-
defined time. There are two components to temporal data management: historical data

management and version management. The former refers to valid time dimension whilst
the latter refers to transaction time dimension.

2.4.2 Research on Temporal Databases

The research on temporal databases has been an active area for at least fifteen years.
There are six bibliographies on temporal databases: Tsotras and Kumar, Temporal

Database Bibliography Update, ACM SIGMOD Record, 25(l): 41-52, March 1996;

Kline, An Update of Temporal Database Bibliography, ACM SIGMOD Record, 22(4):

66-80, Dec. 1993; Soo, Bibliography on Temporal Databases ACM SIGMOD Record,

20(l): 14-23, March 1991; Stem and Snodgrass, A Bibliography on Temporal

Databases, IEEE Database Engineering, 7(4): 231-239, Dec., 1988; McKenzie,

Bibliography: Temporal Databases, ACM SIGMOD Record, 15(4): 40-52, Dec. 1986

and Bolour, Anderson, Dekeyser, and Wong, The Role of Time in Information

Processing: A Survey, ACM SIGMOD Record, 12(3): 27-50,1983. According to the

sixth bibliography [Tsotras and Kumar, 1996], the growth of temporal database papers

is superlinear, as shown in Figure 2.2, demonstrating that the area remains vibrant.

Chapter 2 Relational, Object-Oriented and Temporal Databases 34

1200

1000

800

600

400

200

Source: adapted from (Tsotras and Kumar, 1996)

Figure 2.2 Temporal database papers

Since the significant events of the first book on temporal databases [Tansel, 1993], the
ARPA/NSF-sponsored International Workshop on Infrastructure for Temporal

Databases that held in Arlington, Texas, in June 1993 (the report of that workshop was

published in ACM SIGMOD Record, 23(l), March 1994), and two consensus glossary

of temporal database concepts published [Jensen et al., 1994; Tansel, 1993], many ideas

and concepts have been made clear and a great progress has been made. Another

International Workshop on Temporal Databases was held in Zurich, Switzerland, Set

1995. A consensus extension to SQL-92, the Temporal Structured Query Language, or
TSQL2, was developed and published in the new book: The TSQL2 Temporal Query

Language, edited by R. Snodgrass [19951. The ISO SQU committee in July 1995 voted

unanimously to accept a new part: SQL/Temporal, also expected to incorporate object-

oriented aspects, with Period predefined data type being the first aspect of TSQL2 to

become part of SQU [Segev, Jensen and Snodgrass, 1995].

Temporal data model

Research on temporal databases has mainly focused on defining temporal data models

by extending existing models [Pissinou et al., 1993,1994; Clifford et al., 1993; Gadia,

1988; Griffiths and Theodoulidis, 1996; Snodgrass, 1995; Stonebraker et al., 1990;

Jan 88 Jan 90 Jan 92 Jan 94 Jan 96 Jan 98 Jan 99

Chapter 2 Relational, Object-Oriented and Temporal Databases 35

Tansel et al., 1993; Goralwalla, et al., 19981. Even so, there is no commonly accepted
consensus data model, nor is there well-accepted temporal database algebra [Pissinou et al.,
1993; Goralwalla, et al., 19981.

The majority of work on adding time to data models is based on the relational and object-
oriented data models (here some post-relational models are also described as object-
oriented data models). Table 2.1* lists most of the temporal relational data models that are
defined in the literature. Some models are defined only over valid time or transaction time;
others are defined over both. The last column gives a short identifier that denotes the model,
the table is sorted on this column. Table 2.2 classifies the extant temporal object-Oriented
data models. Models with "arbitrary" in the third and fourth colun-ins support time with user-
or system-provided classes; hence anything is possible. N/A denotes "not applicable".

With regard to the valid time, valid times can be represented with single chronon identifiers

(i. e., event timestamps), with intervals (i. e., as interval timestamps), or as valid-time

elements, which are finite sets of intervals. Valid time can be associated with entire tuples or

with individual attribute values. A third alternative, associating valid time with sets of tuples
(i. e., relations) has not been incorporated into any of the proposed data models, primarily
because it leads to high data redundancy.

There are two types of temporal data model: the temporal data models: temporally

ungrouped and temporally grouped. These models which employ tuple-time-stamping are

termed temporally ungrouped whereas those models that employ individual attribute time-

stamping are termed temporally grouped [Pissinou et al., 1994]. The temporally grouped

was considered as a desirable property [Segev, Jensen and Snodgrass, 1995].

Temporal query languages

A data model consists of a set of objects with some structure, a set of constraints on

those objects, and a set of operations, specifically temporal query languages, on those

* Table 2.1-2.4 are adapted from [Ozsoyoglu and Snodgrass, 1995].

Chapter 2 Relational, Object-Oriented and Temporal Databases 36

objects. Several dozen temporal query languages have been proposed. Table 2.3 lists the
major temporal relational query language proposals to date. The underlying data model
refers to Table 2.1. Most of temporal relational query languages have a formal
definition. Some of the calculus-based query languages have an associated algebra that
provides a means of evaluating queries. Table 2.4 lists the object-oriented query
languages that support time. Note many nested relational query languages and data

models, such as HQuel, HRDM HTQuel, TempSQL, etc., have features that might be

considered object-oriented. A few proposals provide algebras for their query languages.
It is rare for a temporal object-oriented query language to have a formal semantics.

The related topics of temporal reasoning (also termed inferencing or rule-based search)

are usually excluded from the scope of temporal databases. Temporal reasoning
typically uses artificial intelligence techniques to perform more sophisticated analyses of
temporal relationships and intervals, generally resulting in much lower query-proces sing

efficiency.

While the expressive power of ungrouped completeness was generally accepted as a
desirable property for TSQL as it avoids the creation of nulls, grouped completeness was

also considered to be a useful quality [Pissinou et al., 19941. Grouped completeness implies

the support of a rather strong notion of the "history of an attribute". For example, one can

talk about "Employee's salary history" as a single object, and ask to see it, or define

constraints over it, etc. In temporal RDBs, as stated in [Clifford et al., 1993; Pissinou et al.,

1994], there is no algebra that has been shown to be grouped complete.

Database design and optimization

In contrast to the flurry of activity in query language and data models, there is a dearth

of results in temporal database design and temporal query optimization, in part because

there is no commonly accepted consensus data model or query language upon which to

base research and development.

Chapter 2 Relational, Object-Oriented and Temporal Databases 37

There is a little work reported on temporal query processing and optimization [Leung
and Muntz, 1993; Dayal and Wuu, 1992; Seshadri et al., 1996; Pissinou et al., 1994;
Snodgrass, 1995; Zurek, 1998], whose work was almost in the context of RDBs. This

will be discussed in the next chapter.

2.5 Summary

Two major types of databases available today are relational databases and object-
oriented databases. Strengths and weaknesses of RDBs and OODBs are complementary,
i. e., the weaknesses of OODBs can be compensated to some extend by the merits of
RDBs. Therefore it is a commonly accepted that the next generation of database

technology will combine relations and objects.

Due to pressing requirements to include time within databases from the user

community, substantial effort is being made on temporal databases. Most temporal
databases are based on relational and object-oriented data models (and compared with
temporal relational models, little work has been done on adding time into object-

oriented data models).

Surprisingly, in spite of both this substantial activity and the pressing requirements from

the user community, there are no widely used commercial temporal database

management systems. A primary reason for the absence of technology transfer from

research to practice is the lack of a commonly accepted consensus data model or query

language. In contrast to the flurry of activity in query language and data models, there is

a dearth of results in temporal database design and temporal query optimization, in part

because, again, there is no commonly accepted data model or query language upon

which to base research and development.

Finally, we believe that developing a good temporal object-oriented database (probably

the combination of RDB and OODB that addresses the temporal aspect) needs a proper

temporal object data model.

Chapter 2 Relational, Object-Oriented and Temporal Databases 38

Table 2.1 Temporal relational data models
Data Model Name Citation Temporal

Dimension(s)

Identifier

Accounting Data Model Thompson, 1991 Both ADM

Snodgrass and Ahn, 1989 Both Ahn

Temporally Oriented Data Model Ariav, 1986 Both Axiav

Bassiouni and Llewellyn,
1992

Valid Bassiouni

Bhargava and Gadia, 1993 both Bhargava

Bitemporal. Conceptual Data Model Jensen et al., 1994 both BCDM

Time Relational Model Ben-Zvi, 1982 both Ben-Zvi

DATA Kimball, 1978 transaction DATA

DMIT Jensen et al. 1991 transaction DM/T

Homogeneous Relational Model Gadia, 1988 Valid Gadia-1

Heterogeneous Relational Model Gadia and Yeung, 1988 valid Gadia-2

Parametric Data Gadia and Nair, 1993 valid Gadia-3

Historical Data Model Clifford and Warren, 1983 valid HDM

Historical Relational Data Model Clifford, 1993 valid HRDM

Jones et al., 1979 valid Jones

Lomet and Salzberg, 1993 transaction Lomet

Temporal Relational Model Lorentzos and Johnson,
1988

valid Lorentzos

Lum et al. 1984 valid Lum

Mckenzie and Snodgrass,
1991

both McKenzie

Temporal Data Model Navathe and Ahmed, 1989 valid Navathe

Sadeghi, 1987 valid Sadeghi

Sarda, 1990 valid Sarda

Temporal Data Model Segev and Shoshani, 1987 valid Segev

Snodgrass, 1987 both Snodgrass

Tansel, 1993 valid Tansel

Tansel and Tin, 1998 valid Tansel and
Tin

TS-TDM Segve and Shoshani, 1993 valid TS-TDM

Time Oriented Databank Model Wiederhold et al., 1975 valid Wiederhold

Yau and Chat, 199 1. both Yau

Chapter 2 Relational, Object-Oriented and Temporal Databases 39

Table 2.2 Temporal object-oriented data models
Data Model Name Citation Temporal Transaction Identifier

Dimension(s) Timestamp

representation
Caruso and Sciore, Both chronon Caruso

1988

IRIS Beech and Mahbod, transaction chronon, identifier IRIS

1988

Kim et al., 1990 transaction version hierarchy Kim

MATISSE ADB, 1992 transaction chronon, identifier MATISSE

OODA-PLEX Wuu and Dayal, arbitrary arbitrary OODA-PLEX

1992

OSAM*/T Su and Chen, 1991 valid N/A OSAM*/T

0VM Kafer and transaction identifier 0VM

Schoning, 1992

Postgres Stonebraker et al., transaction interval Postgres

1990

Sciore, 1991 arbitrary arbitrary Sciore- I

Sciore, 1995 both chronon Sciore-2

TF-DM Chu et al., 1992 valid identifier TEDM

TIGUKAT Goralwalla and both identifier TIGUKAT

Ozsu, 1993

TMAD Kafer and valid N/A TMAD

Schoning, 1992

Temporal Object- Rose and Segev, both temporal element TOODM

Oriented Data 1991

Model

Temporal Object Wang et al., 1996 valid arbitrary TODM

Data Model

Chapter 2 Relational, Object-Oriented and Temporal Databases 40

Table 2.3 Temporal relational query languages
Name Citation Underlying Based on Formal Underlying

Data Model Semantics Algebra
HQL Sadeghi

' et al., Sadeghi DEAL partial Sadeghi, 1987
19987

HQuel Tansel, 1991 Tansel Quel yes Tansel, 1986
HSQL Sarda, 1990b Sarda SQL no Sarda, 1990a
HTQuel Cadia, 1988 Cadia- I Quel yes Cadia, 1988
Legol 2.0 Jones, et al., Jones relational no N/A

1979 algebra
TDM Segev and Segev SQL no

Schoshani,
1987

Temporal Lorentzos and Lorentzos relational yes N/A
Relational Johnson, 1988 algebra
Algebra
Temp SQL Yau and Chat, Yau SQL yes

1991
Time-By- Tansel, 1989 Tansel QBE yes Tansel, 1986
Example
TOSQL Ariav, 1986 Ariav SQL no
TQuel Snodgrass, _ Snodgrass Quel yes McKenzie and

1987 Snodgrass,
1991

TSQL Navathe and Navathe SQL no
Ahmed, 1989

TSQL2 Snodgrass, TSQL2 SQL-92 yes Soo, et al.,
1995 1994
Thompson, ADM relational yes N/A
1991 algebra
Bassiouni and Bassiouni Quel yes
Llewellyn,
1992
Ben-Zvi, 1982 Ben-Zvi SQL yes
Jensen et al., DM/T relational yes IM/T
1991 algebra
Jensen and Jensen et al.,
Mark, 1992 1993

Gadia, 1986 Gadia-2 Quel no
Clifford and HDM ILs yes
Warren, 1983
Clifford and HRDM relational yes N/A
Croker, 1987 algebra
Tansel and Tin, Tansel and Tin Relational TRA
1998 calculus: TRC

SQL/TP Toman 1998 Toman SQL/92 yes

McKenzie and McKenzie relational yes N/A
Snodgrass, algebra
1991

Chapter 2 Relational, Object-Oriented and Temporal Databases 41

Table 2.4 Temporal object-oriented query languages
Name Citation Underlying _ . Based on Implemented Underlying

___ -
Data Model algebra

MA-TISSF ADB, 1992 MA-TISSE SQL yes
OODA-PLEX Wuu and OODA-PLEX DA-PLEX Wuu and

Dayal, 1992b Dayal, 1992a

OSQL Beech and IRIS SQL yes
Mahbod, 1988

OQL Kafer and OVM SQL yes
Schoning,

1992a

OQL/T Su and Chen, OSAM*/T OSAM*/OQL TA-algebra

1991

Orion Kim et al., Kim SQL yes
1990

PIC-QUERY Gardenas, et TEDM PIC-QUERY yes

al., 1993

Post-quel Stonebraker, et Postgres QUEL yes

al., 1990

TMQL Kafer and TMAD SQL

Schoning,

1992b

TQL Ozsu et al., TIGUKAT SQL yes

1995

TOO-SQL Rose and TOODM SQL yes Rose and

Segev, 1993b Segev, 1993a

TOSQL Rose and TOODM SQL Rose and

Segve, 1991 Segev, 1993a

VISION Caruso and Caruso meta-functions yes

Sciore, 1988

GCH-OSQL Coiriic at al., GCH-OODM SQL

1998

Sciore, 1991 Sciore- I annotations

Sciore, 1995 Scior-2 EXTRA Carey et al.,

/EXCESS 1988

Chapter 3

Query Processing in Databases

This chapter reviews the basic query processing techniques and strategies used in

relational databases, looks at how the query processing is handled in object-oriented
-1 -- databases and points out the current status in processing temporal queries

3.1 Introduction

Query processing is the procedure of selecting the best plan or strategy to be used in

responding to a database request. The plan is then executed to generate a response. The

component of the DBMS responsible for generating this strategy is called a query

processor. In the database literature, query processing is also referred to as query

optimization, and the process here is better described as improvement as the

optimization done in practical systems does not necessarily find the best strategy. The

optimal strategy may be too difficult to evaluate and on average may not be dramatically

different from the one afforded through a heuristic strategy.

The greatest innovation of the relational model of data was declarative queries and

associated techniques for automated evaluation that were made possible. Optimization

problems have been the focus of a great deal of theoretical and applications research,

and much research is still being carried out in this field.

The same cannot be said for OODBs. The problem of optimization of object-oriented

queries has not yet been very widely researched. Almost all the object query processors

proposed to date use the optimization techniques developed for RDBs [Ozsu and

Chapter 3 Query Processing in Databases 43

Blakeley, 1995]. The techniques developed for RDBs can be adapted to developing

optimizers for OODBs. Most OODBs designers have adopted this approach. But these
OODBs introduce many new data model features to the database, that cannot be handled

by traditional query processing technology (i. e., the query processing subsystems of
RDBs). Thus query processing in OODBs remains a big challenge. In the context of this

thesis, it is significant that there is little work that has been reported on processing

temporal queries, especially in the context of OODBs.

This chapter will introduce query processing in RDBs, in more detail, in Section 3.2.

How query processing is handled in OODBs will be briefly discussed in Section 3-3.

Few reports on processing temporal queries that have been published will be outlined in

Section 3.4. Finally a summary will be given in Section 3.5. The discussion of this

chapter will be based on centralized database systems.

3.2 Query Processing in Relational Databases

A feature that relational systems have introduced to database management has been a

query system that includes a declarative language and system support to process queries

efficiently. In many relational database management systems, SQL query commands

entered by a user go through a process called query optimization before being executed.

This process is carried out by a part of the DBMS known as the query optirrLizer. The

query optimizer's job is to find the best strategy for actually carrying out the user's request.

3.2.1 Optimization Objectives

Economic necessity requires that optimization procedures either attempt to maximize

the output for a given number of resources or to minimize the resource usage for a given

output. Query optimization tries to minimize the response time for a given query

language and mix of query types in a given system environment.

The total cost to be minimized is the sum of the followings [Jarke and Koch, 1984]:

Chapter 3 Query Processing in Databases 44

Communication Cost: The cost of transmitting data from the site where they are stored
to the sites where computations are performed and results are presented. These costs are

composed of costs for the communication line, which are usually related to the time the

line is open, and the costs for the delay in processing caused by transmission. The latter,

which is more important for query optimization, is often assumed to be a linear function

of the volume of data transmitted.

Secondary Storage Access Cost: The cost of (or time for) loading data pages from

secondary storage into main memory. This is influenced by the volume of data to be

retrieved (mainly relating to the size of intermediate results), the clustering of data on

physical pages, the size of the available buffer space, and the speed of the devices used.

Storage Cost: The cost of occupying secondary storage and memory buffers over time.

Storage costs are relevant only if storage becomes a system bottleneck and if it varies

from query to query.

Computation Cost: The cost for (or time of) using the central processing unit (CPU).

The structure of query optimization algorithms is strongly influenced by trade-offs

amongst these cost components. In the long-range distributed DBMSs with relatively

slow communication lines, communication delays dominates the costs, whereas the

other factors are relevant only for local suboptimization [Jarke and Koch, 1984].

Telecommunication lines can be bottleneck resources in the distributed DBMSs [Bell

and Grimson, 1992]. In centralized systems, the costs are dominated by the time for

secondary storage accesses although the CPU costs may be quite high for complex

queries. In locally distributed DBMSs, all the factors have similar weights, which results

in very complex cost functions and optimization procedures.

With regard to the centralized databases, communication costs are not considered

because in such systems communication requirements are independent of the evaluation

Chapter 3 Query Processing in Databases 45

strategy. For the optimization of single queries, storage costs are usually also assumed to
be of secondary importance. They are considered only for the simultaneous optimization
of multiple queries. There remain the costs of secondary storage accesses (usually

measured by the number of page accesses) and CPU usage (often measured by the
number of comparisons to be performed)

A number of common ideas underlying most techniques developed to reduce these costs
[Jarke and Koch, 1984] attempt to (1) avoid duplication of effort, (2) use standardized
parts, (3) look ahead in order to avoid unnecessary operations, (4) choose the cheapest

way to execute elementary operations, and (5) sequence them in an optimal fashion.

3.2.2 General Processing Strategies

3.2.2.1 Query Representation

A query is a language expression that describes data to be retrieved from a database.

Queries posed by users, while suited to people, are not always in a form convenient for

internal system use. The query processor re-structures the user query, transforming it

from some query language supported by the DBMS into a standard internal form that it

can manipulate. Queries can be represented in a number of forms. In the context of

query optimization, an appropriate query representation form must fulfil the following

requirements: It should be powerful enough to express a large class of queries, and it

should provide a well-defined basis for query transformation. According to Jarke and

Koch [1984], there are four different query representation forms, each of which has been

used in a number of approaches to query optimization.

These forms are relational calculus, relational algebra, query graphs (object graph and

operator graph) and tableau.

Chapter 3 Query Processing in Databases 46

The relational calculus is a notation for defining the result of a query through the
description of its properties. As mentioned in Chapter 2, relational calculus Is founded

on a branch of mathematical logic called predicate calculus.

The relational algebra, as mentioned in Chapter 2, is a collection of operators on
relations. These operators fall into two classes, that is, traditional set operators, such as
Cartesian product (*), union (u), intersection (r-)), and difference (-), and special

relational algebra operators, such as select (cy), project (TC), join (><), and division (1.).
As described previously, for every expression of the algebra, there is an equivalent
expression in the calculus; likewise, for every expression of the calculus, there is an
equivalent expression in the algebra. There is a one-to-one correspondence between the
two.

Query graphs are used in query optimization for the representation of queries or query

evaluation strategies. Two classes of graphs can be distinguished: object graphs and

operator graphs.

Nodes in object graphs represent objects such as (relation) variables and constants.
Edges describe predicates that these objects are fulfilling. Object graphs contain the

properties of the query result and are therefore closely related to the relational calculus.

Operator graphs describe an operator-controlled data flow by representing operators as

nodes that are connected by edges indicating the direction of data movement. An

operator graph depicts how a sequence of operations can be performed. Operator graphs

have been used for representation of algebra expressions. Equivalence transforinations

such as the earlier application of the selection operation can be used to modify the

graph. The graph clearly shows what the effect of such a transformation would be. For

most simple queries, the graph resembles a tree. The graph can be used to discover

redundancies in query expressions.

Chapter 3 Query Processing in Databases 47

Tableaus are tabular notations for a subset of relational calculus queries, characterised
by containing only AND-connected terms and no universal quantifiers. Thus tableau

queries are a particular kind of conjunctive queries. Tableaus are specialised matrices,
the columns of which correspond to the attributes of the underlying database schema.
The first row of the matrix, the summary, serves the same purpose as the target list of a
relational calculus expression. The other rows describe the predicate. The symbols

appearing in a tableau are distinguished variables (corresponding to free variables),

nondistingui shed variables (corresponding to existentially quantified variables),

constants, blanks, and tags (indicating the range of relation).

The algebra and query graph will be used for our discussion in this thesis

3.2.2.2 Steps in Query Processing

Query processing approaches in the literature can be divided in two classes, which can
be described as bottom up and top down. Researchers have found that the overall query

optimization problem to be very complex. Theoretical work began with a bottom-up

approach, studying special cases, such as the optimal implementation of important

operations and evaluation strategies for certain simple subclasses of queries.

Subsequently researchers attempted to compose larger building blocks from these early

results. A top-down approach incorporates more knowledge about special case

optimization opportunities within the general procedures. At the same time, the general

algorithms themselves have been augmented by combinatorial cost-minimization

procedures for choosing amongst strategies.

The top-down approach follows the following steps:

Step 1 Find an internal query representation into which user queries can be easily be

mapped that leaves the system all necessary degrees of freedom to optimize the

evaluation.

Chapter 3 Query Processing in Databases 48

Step 2 Apply a logical transformation to the query representation that (1) standardises
the query, (2) simplifies the query to avoid duplication of effort, and (3)

improves the query to streamline the evaluation and to allow special case
procedures to be applied.

Step 3 Map the transformed query into alternative sequences of elementary operations
for which a good implementation and its associated cost are known. The result of
this step is a set of candidate "access plans".

Step 4 Compute the overall cost for each access plan, choose the cheapest one, and

execute it.

The first two steps of this procedure are to a large degree data independent and thus can

often be handled at compile time. The quality of steps 3 and 4, that is, the richness of

access plans generated and optimality of the choice algorithm, heavily depends upon
knowledge about the values in the database.

The consequences of data dependence are twofold. First, if the database is volatile, steps
3 and 4 can be done only at run time. This means that the possible gain in efficiency

must be traded off against the cost of the optimization itself. Second, a meta-database

(e. g., an augmented data dictionary) must maintain general information about the

database structure and statistical information about the database contents.

3.2.2.3 General Processing Strategies

Query processing strategies presented in Figure 3.1 [Desai, 1990] use general

techniques for query modification. These techniques include:

1) Expressing the query in an equivalent but more efficient form;

2) Substituting a query involving n-relations by a group of simpler queries (query

decomposition);

Chapter 3 Query Processing in Databases 49

3) Replacing a query involving views to one expressed on the base relations; and
4) Adding additional predicates to the query to enforce security.

In addition, query processing strategies take into account the characteristics of the data

and the expected sizes of both the intermediate and final results. Strategies are also
included to enhance the query response time or reduce the cost of evaluating the query.
It is unlikely that details of database statistics such as the precise sizes of relations,

number of distinct values in each attribute of every relation, etc., can always be

maintained. However, the query processing procedures estimate these values and use

them in preparing a strategy for optimizing the query evaluation. The estimation cannot

be exact and the optimization of costs may be computationally infeasible. Therefore, it

is usual to employ heuristic strategies.

Qtý Frocessing strategy

", -ý

I "ýý

Query Respotm drrr Diata dwacteristic
niAficaticti consideratims oonsiderations

Eqovalent Q)ffy
foan siftatuticti

Qjef Y Qwry owAew to Enface,
doomp)4ticn base relatims security

Size cf Presence of Size C(
reccrds access aids mtermAale

resLAts

Figure 3.1 Query processing strategies

3.2.3 Optimization Techniques

There are two basic kinds of optimization found in query processors: algebraic

manipulation and cost-estimation strategies [Ullman, 1989]. Algebraic simplification of

Chapter 3 Query Processing in Databases 50

queries is intended to improve the cost of answering the query independent of the actual
data or the physical structure of the data. This is also called algebraic optimization. The

general term "query transformation" or "query rewrite" falls into this category. This

kind of optimization takes place at Step 2 in query processing process.

The second class of optimization strategies considers the issues such as the existence of
indexes, to select from among alternatives the strategy that is best for the data and

structure at hand. Techniques involved here are called query evaluation techniques. This

sort of query optimization is also called execution plan generation or plan optimization.
This kind of optimization takes place at Steps 3 and 4 in the query processing process.

In addition, further significant gains in efficiency can be obtained by using higher-level

information, particularly information about the semantics of a database. The resulting

optimization is called semantic optimization.

3.2.3.1 Algebraic Optimization

(1) Query Transformation

Queries can be expressed in a number of different representational forms. Additionally,

a number of semantically equivalent expressions may exist for each query, even within a

given language. The transformation of a given expression into an equivalent one by

means of well-defined rules is useful in Step 2 of query processing. The goals of query

transformation are threefold:

1) the construction of a standardized starting point for query optimization

(standardization),

2) the elimination of redundancy (simplification), and

3) the construction of expressions that are improved with respect to evaluation

performance (improvement).

Chapter 3 Query Processing in Databases 51

Basic transformation laws

These concern transformation that can be made without the benefit of any information

on the relations and their schemes. They are based on the associative and commutative
laws of relational algebra. Assure that R, S, T.. are relations on relational schemes R, S,

T.. and C, CI, C2... are conditions. Also, 0 is an empty relation, that is, a relation with

cardinality of zero, defined on an appropriate relation scheme. The basic transfornation

laws are presented as follows [Desai, 1990]:

RuS=-SuR commutative law

RnS=-SnR commutative law

R> <R=-R

RuR=-R idempotent law

Rr)REHR idempotent law

R-R=-O

RuOE: R

Rr-)O=-O

R, ><O=-O

R-O=-R

0 -R-=O

R><S=-S><R commutative law

R *S=-S *R commutative law

R> <(S> JT)=-(R> <S) > <T associative law

R*(S*T)=-(R*S)*T associative law

Transformation (heuristic) rules

Based on the above basic query transformation laws, heuristics like those regarding the

general query processing strategies presented in the previous section can be applied to

Chapter 3 Query Processing in Databases 52

control the transformation of the queries into equivalent but more efficient ones. Some

example rules follow:

(a) Perform select before ajoin or Cartesian product. Select reduces the cardinality

of the relation and, as a result, reduces the subsequent processing time.

Consider (Tc(R><S). If the attributes involved in the condition C are in the scheme of R

and not in S, that is, attr(C) E=- R and attr(C)o S, then

(yc(R >. -I S) =- (yc(R) ><

If the attributes involved in the condition C are in the scheme of S but not in R, i. e.,

attr(C) cS and attr(C)iý R, then

(Tc(R >< S) =- R >< cyc(S)

If the attributes involved in the condition C are in the same scheme of R and S, i. e.,

attr(C)c R and attr(C)c S, then

(Yc(R ý>4 S) =-(yc(R) ><(yc(S)

If C=CIAC2 and the attributes involved in the condition C, are from R, i. e., attr(CI)E=- R,

and the attributes involved in the condition C2are from S, i. e., attr(C2)c S, then

(y c, (R) ý> "' (y C2

If C=CIAC2AC3 and the attributes involved in the condition C2 are only in R, i. e.,

attr(C2)E=-RAattr(C2)0 S, the attributes involved in the condition C3 are only in S, i. e.,

Chapter 3 Query Processing in Databases 53

attr(C3)E=- S Aattr(C3)0 R, and the attributes involved in the condition C, are in R and S,

then

(T c (R >< S) =- a c, (a c, (R) ý> "I (y C3
(S))

The above equivalencies also apply when the Cartesian product operation is substituted
for the join.

(b) Combine a number of unary operations. Consider the evaluation of Tcx((Ty(R)),

where X, Yc- R. Both the select and project operations can be done on the tuples

of R simultaneously, requiring a single pass over these tuples and singular access

to them. Similarly,

(T c, ((y c, (R)) =- (y c,, c, (R)

Ic x (Tc y (R)) =- n x, y (R)

If X c- Y, then Tc x (Tc y (R)) =- Tc x (R)

(c) Convert the Cartesian product with a certain subsequent select into a join.

Consider the evaluation of (Ty(R *S), where Y is, let us say, AOB and Ac R, Be S.

In this case, the Cartesian product can be replaced by a theta join as follows:

R>.. iS AOB

(d) Use associative and commutative rules forjoins and Cartesian products:

R>. <S-=S><R
(R >< S) >< T =- (T >< S) >< R =-...

R *S =- S *R

R*S*T= R *(S*T) = (R*S) *T-= (R*T) *S=

Chapter 3 Query Processing in Databases 54

The order of the join and product is very important as it can substantially affect the size

of the intermediate relations and, therefore, the total cost of generating the result

relation.

Query Improvement

A query can be improved in a number of ways before its evaluation is performed.

Improvements are basically concerned with minimizing, if not altogether removing,

redundancy from expressions and results. Elimination of redundancy is equivalent to

pruning the query operator tree. The rules represented in the previous section are used to

find equivalent expressions.

3.2.3.2 Plan Optimization

(1) Query Evaluation

Having found the best equivalent form of a query, the next step is to evaluate it. We

classify query evaluation approaches according to the number of relations involved in

the query evaluation. Thus we distinguish between the approach to be used when the

query expression involves one, two, or many relations. These are known as one-variable,

two-variable, and N-variable expressions, respectively. A number of different query

evaluation strategies have been proposed Here we look at some commonly

implemented techniques.

(a) One-variable expressions

A one-variable expression involves the selection of tuples from a single relation. Let us

consider the SQL query

Select ap ..., ak

from

Chapter 3 Query Processing in Databases 55

where p

The simplest approach would involve reading in each tuple of the relation and testing it
to ascertain if it satisfies the required predicates. This is illustrated below.

Sequential access

Use sequential access to read in every tuple of the relation. If the tuple satisfies the

qualification conditions, include the project of the tuple on the target list attributes in the

result relation. The algorithm is given below:

result: =Ofemptyl
for every r in R do

if satisfies (p, r)
then result: =result+<r. al a-k-ý'

where <r. al ... a-k> represents the tuple obtained by concatenating the projects of r onto

the attributes in the target list.

If the relation has n tuples that are blocked as b tuples/block, then for sequential access

to the tuples, the number of block access is [n1b]. In dealing with large relations, this is

an inefficient approach. For example, if relation R has 400000 tuples, and there are 400

tuples per block of secondary storage devices, reading in all tuples of R would involve

access to 400,000/400=1,000 block access.

Access aid

The number of tuples needing to be accessed could be reduced if the relation is sorted

with respect to one or more attributes. In such cases, if the predicates involve one or

more attributes on which the relation is sorted, then only some of tuples need be

accessed. Use of indexes can provide faster access to the required tuples.

Chapter 3 Query Processing in Databases 56

If the relation has an index, it may be used to improve evaluation performance when
access is required to a subset of tuples. Such indices could be on one attribute or they

may involve a combination of attributes.

(b) Two-variable expressions

A two-variable expression involves either two distinct tuples from the same relation or

two distinct relations. Here we concentrate on the latter case. One of the most common
(and expensive) binary operations is the join operation. In this section we consider how

the join, for instance R, ><S, can be evaluated. There are two basic methods for join:

nested-loop method and sort and merge method.

Nested-loop method

The nested loop method is a simple method in which every pair of tuples from the

participating relations are accessed and tested for the join condition. The algorithm in

the form of pseudo-code is sketched below.

for i: = I to IRI do (* outer loop *)

begin

get ith tuple of R

for j: =l to ISI do inner loop

perform join of the ith tuple of R with the jth tuple of S

end (* inner loop *)

end (* outer loop *)

The total number of secondary storage accesses required, assuming that each tuple

requires an access, is given as IRI+IRI*IS1. The first ten-n represents the access to

the tuple of the outer relation and for each such tuple, all the tuples of the inner relation

must be accessed. It is preferable to have the smaller relation in the outer loop. Even in

the case of small relations, the value IRI+IRI*ISI is quite large. The order of

algorithm is o(n

Chapter 3 Query Processing in Databases 57

We can substantially improve the performance of the nested loop method by considering
physical device characteristics. Data is accessed from secondary storage in chunks called
blocks or pages. So the first improvement to the algorithm would be to move away from

comparing a single tuple of the outer relation with a single tuple of inner, to comparing
all tuples in a block of the outer relation with those from a block of the inner one. This

strategy requires that there be space in the main memory for those blocks. The modified
algorithm for a blocked nested loop is given below.

for each B blocks of R do outer loop

Begin

read B blocks of R

for each block of S do (* inner loop

begin

read block of S

for each tuple in the B blocks of R do

for each tuple in the block oS do

ifjoin condition is satisfied

then

join the tuple of R with the tuple of S;

end (* inner loop

end (* outer loop *)

Suppose we use blocked (or paged) accesses with the blocking factors of relation R and

S represented by bfRand bfs, respectively. B blocks of memory are available to store the

blocks of relation R (the outer relation). Then the outer loop involves reading B blocks

of relation R (the outer relation). Then the outer loop involves reading B blocks at a

time. Each tuple in the block of the inner relation can be compared with tuples from

these B blocks of the outer relation. This results in the total number of secondary

memory accesses given by the following expression:

[IRI lbfR] + [(11B)*[IRI lbfR]l *[ISI lbf,].

Chapter 3 Query Processing in Databases 58

If one of the relations (let us say R, the smaller of the two) can be kept entirely in

memory, then the number of disk accessed required is [IRI lbfR] +[ISI lbfs].

Sort and merge method

Relations are assumed to be sorted in the sort and merge method. If they are not sorted,

a preprocessing step in the query evaluation sorts them. These sorted relations can be

scanned in ascending or descending order of the values of the join attributes. Tuples that

satisfy the join predicate are merged. The process can be terminated as indicated in the

algorithm below [Desai, 1990].

Algorithm Sort-Merge to Include a Many-to Many Relationship

Input: R, S, the two relations to be Joined on attributes A and B, respectively.

Output: T, the relation that is join of R and S (concatenation of attributes of R and S,

including the attributes A and B).

begin (sort-merge)

T: =empty

sort R by A values and S by B values in ascending order

read (R)

read (S)

while not (eqf(R) or eof(S) do main while loop

begin

while not(eof(R) oreof(S) or RT. A#ST-B) do (*find ajoin value*)

if RT. A<ST. B

then read (R)

else read (S)

if not (eqf(R) or eof(S))
then

begin (*join aR tuPle with one or more S tuples *)

n: =O

Chapter 3 Query Processing in Databases 59

Rcurrent. A: =RT. A

while ST. B=Rcurrent. A and not (eof(S)) do

begin

n: =n+l
U[nl: =ST

read(S)

end

while RT. A=R current. A and not (eof(R)) do

begin

for i: =l to n do

T: =T+RT 11 U[i]T

read(R)(*does another tuple of R join with the tuples whose

pointers are in array U?

end

end

end (*main while loop

end (*sort-merge*)

In the algorithm, we join the relation R with relation S and the join predicate is R. A=S. B.

We assume that the relations have been sorted in ascending order with respect to the

attributes A and B and that sufficient space for an appropriate number of buffers is

available. The tuples are placed in the buffers by the file manager and the algorithm

reads the tuples from these buffers. RT and ST are pointers that point to the

corresponding tuples in the buffers. We assume that once the last tuple in a buffer has

been read, the buffer is refilled. If the joining attributes are not the primary key of the

relations, a many-to-many relationship could exist via the joining attributes. We use an

array U where pointers to tuples of relation S that have the same attribute value as the

current tuple of R are sorted. These tuples join with the current tuple of relation R and

allow a single pass over the tuples of both the relations. A tuple whose pointer has been

stored in this array locks the tuple so that the buffer containing it is not released. An

attempt to read past the last tuple in the relation would raise the eof (end of file)

Chapter 3 Query Processing in Databases 60

condition. The algorithm could be easily modified to include cases where the join

involves more than one attribute.

The number of accesses for algorithm is given by:

[IRI /bfjR] +[ISI lbfsl + RCS +Scs

where Rcs and SCS are the costs of sorting the relations, assumed to be equal to the

number of accesses required during the sorting of the relations R and S, respectively.

The sort costs depend on memory availability and the number of runs produced in the

initial sort stage. For example, if we have enough memory to perform a max(NM)-way

merge [Desai, 1990], where the number of accesses required for the join is as follows:

Initial read: [IRI lbfR] +[ISI lbfs blocks

Writes of sorted runs: R lbfR] +[ISI lbfsl blocks

Read in merge phase: R lbfR]+[ISI lbfsl blocks

Writes of the join: [IT lbfT] blocks

Note that T is the result relation and bfTis the blocking factor for it. Similar calculations

can be done for other memory sizes.

If the relations are already sorted on the joining attributes, the merge-sort method is an

efficient method for evaluating aj oin.

join selectivity and use of indexes

Consider the join:

R. A=S. B

Join selectivity of a relation R in a natural join with a relation S denoted by PRS is the

ratio of distinct attribute values for the same attribute A participating in the join to the

total number of distinct values for the same attribute in R, that is, I R[A] I. Similarly,

PSR is the join selectivity of the relation S in a natural join with the relation R.

Chapter 3 Query Processing in Databases 61

Under the uniform distribution assumption, PRS* IRI tuples of R and PSR* ISI tuples of
S would be involved in a natural join of relation R with S. The use of join selectivity

statistics is an alternate and practical method of estimating the size of the join.

If the relation S has an index on the join attribute and if we assume uniform distribution,

then the number of accesses required is given by IRI+ PSR *IS1, where PSR is the join

selectivity. The method of performing the join is as follows. We read in the tuples of R

and for each attribute value of R. A we consult the index for S to determine if any tuples

from S are involved in the join. If so, these tuples of S are retrieved and joined with the

corresponding tuples of R. The tuples of S required to be retrieved would be PSR *ISI-

Should the records of relations R be blocked, the number of block accesses is given by
IRI lbfR. If the records of relation S are stored in blocks, the optimal number of block

accesses required to access k records of S (where k=PSR* ISI) that is randomly

distributed in a file of n records (n= ISI) and stored as m blocks (m= ISI lbfs) is given

by the following expression:

k n-nlm-i+l
y(k, m, n)=m* 1-fl

[

i=i n-i+l

However, if indexes exist on the joining attributes for both relations, the use of these

indexes provides a more efficient method of evaluating the join. In this case, we can

determine if a given value that exists in one of the relations is also present in the order.

If so, then the required tuples could be read and joined to produce the result tuples.

Only those tuples that involved in the join are required, and therefore only PRS *IRI

tuples of R and PSR* ISI tuples of S are retrieved. The total cost of the joln, however,

includes the cost of retrieving the indexes.

Chapter 3 Query Processing in Databases 62

Hash method and join indexes

The use of hash and join indexes to implement the join operation provides more

efficient join algorithms [Desai, 1990; Date, 1995].

(C) N-variable expressions

An n-variable expression involves more than two variables. The strategy used here is to

try to avoid accessing the same data more than once. One method of evaluating such

expressions is to simultaneously evaluate all terms of the query. Therefore, if a number

of terms in the query require unary operations on the data accesses, these could be done

in parallel. If the data accessed participate in binary operations, these binary operations

are partially evaluated.

General n-variable queries can be reduced for evaluation by either tuple substitution or

decomposition [Desai, 1990; Wong and Youssfi, 1976; Youssfi and Wong, 1979; Rowe

and Stonebraker, 1985].

The presence of access aids and the commonality of attributes can be used to advantage

in the evaluations of multiple variable queries.

(2) Access Plans

Once the method of evaluating various operations is determined, the steps involved in

combining the query components to deduce the final results have to be planned.

Generating an optimal access plan is a stepwise process done in conjunction with the

query transformation operation.

The techniques for the efficient evaluation of query components can be used as building

blocks of a general query evaluation algorithm. Generating an optimal access plan is

Chapter 3 Query Processing in Databases 63

then the combination of these blocks into an efficient evaluation procedure. The inputs

of such a procedure are a logically preprocessed query, the existing storage structures
and access paths, and a cost model. The output is an optimal (or at least heuristically
It good") access plan. The procedure consists of the following steps.

(a) Generate all reasonable logical access plans for evaluating the query. A logical

access plan describes a sequence of operations or of intermediate results leading
from existing relations to the final result of a query.

(b) Augment the logical access plans by details of the physical representation of data

(sort orders, existence of physical access paths, statistical information).

(c) Choose the cheapest access plan by applying a model of access and processing

costs.

3.2.3.3 Semantic Optimization

The conventional approach to query optimization, as mentioned above, is to use low-

level information such as statistics about various processing costs to access individual

tables in a relational database. Significant gains in efficiency can be achieved by using

such information.

Over a number of years researchers in the database area have indicated that additional

gains in efficiency can be obtained by using higher-level information, particularly

information about the semantics of a database. A transformation that is valid only

because a certain integrity constraint is in force is called a semantic transformation, and

resulting optimization is called semantic query optimization (SQO). SQO can be defined

[Date, 1995] as the process of transforming a specified query into another, qualitatively

different, query that is however guaranteed to produce the same result as the original

one, because the data are guaranteed to satisfy a certain integrity constraint.

Chapter 3 Query Processing in Databases 64

3.3 Query Processing in Object-Oriented Databases

One of the basic facilities of database management system is to be able to process
declarative user queries. As pointed out by Ozsu and Blakeley [1995], the first generation

of OODBs did not provide declarative query capabilities. However, the last decade has

seen significant research in defining a query model (including calculi, algebra and user
languages) and in techniques for processing and optimizing the queries. Many of the

current commercial products provide at least rudimentary query capabilities. The

techniques developed for processing object-oriented queries are essentially extended from

those of RDBs [Ozsu and Blakeley [1995].

There is no standard formulation of "the" query optimization problem among object-

oriented database researchers, because data models and query languages differ as well as

query execution engines, their facilities and execution costs. Query processing capabilities

in most current OODB products and advanced prototypes are limited in their expressivity

or the sophistication of their query optimization and processing techniques [Maier et al.,

1994]. In the current crop of systems, queries are generally limited to selecting a subset

from a set of existing objects with conditions that are given as a conjunction of path

comparisons. There is seldom post-processing of selected elements as part of the query,

nor is the combination of the elements from different collections generally supported.

Query optimization consists largely of detecting opportunities to apply indices. Often

methods are excluded from consideration during the query processing, or limited to those

procedures that can themselves be expressed as queries. Dynamic binding of operations to

methods is generally inefficient or lacking, thus limiting query processing abilities on

heterogeneous collections. Only few of them support querying against bulk types other

than sets. Even so, where queries can be posed against ordered collections, there is no

facility for constructing auxiliary access paths on such data structures.

Although the proposals and solutions made here draw from experience with the relational

model, they all heavily emphasise the object-oriented aspect.

Chapter 3 Query Processing in Databases 65

3.3.1 Query Models

3.3.1.1 A Model of Queries for Object-Oriented Databases

The work in [Banerjee et al., 1988; Kim et al., 1989; Kim 1989; Jenq et al., 19891, which
covers optimization for ORION, presented a rather comprehensive query model which is

consistent with object-oriented concepts embodied in the object-oriented data model. The

model takes into account the semantics of class hierarchy and nested objects, and as such
is inherently richer than the relational or nested relational model of queries. The model

restricts the target of a query to a single class or a class hierarchy rooted at that class. This

is an important restriction, since this excludes operations comparable to relational joins

and set operations. However, the model explicitly takes into consideration some of the
important consequences of object-oriented concepts. First, it allows the user to use the

directed graph model of the definition of the target class for specifying a query; predicates

may be applied to any attributes of any classes on the graph. This is similar to the nested-

relational extensions of relational selection operation. Second, a query may be directed

against a single class or a class hierarchy rooted at the class. This is important, since a

class hierarchy captures the IS-A relationship between a class and all its subclasses; and as

such instances of a class may be regarded as belonging to the class and all classes on the

superclass chain starting from the class. In fact, the domain of an attribute of a class is the

specified class and all direct and indirect subclasses of the class. The model proposed in

[Baneýee et al., 1988] and elaborated somewhat in [Kim et al., 1989] is based on the view

that a query model may be defined as a subscherna of the database schema; the database

schema is reduced to a query model by applying the selection and projections. It is the first

query model which made a serious efforts to capture the semantics of object-oriented

concepts. However, the model defined only limited types of queries concerning a single

class or a class hierarchy rooted at that class. Further the model contained some important

oversights, notably in its treatment of the projection operation, and the directionality of the

arcs in the class-aggregation hierarchy.

Chapter 3 Query Processing in Databases 66

Kim [1989], firstly, provided a considerably more rigorous treatment of the single-operand

query, and corrected the mistakes in the model given [Banerjee et al., 1988]. Secondly, he

significantly extended the model to provide a formal basis for a query which involves

more than one operand, namely, object-oriented equivalents of the relational join. The

query model was defined for a set of operations pertinent to relational database systems,

namely, selection, projection, join, and set operations. Although he uses relational

technology, the semantics of these operations are rather different from those used in

relational systems.

3.3.1.2 A Query Algebra for Object-Oriented Databases

A major issue in development of query algebra is the potential for optimization. Many

object algebras have been proposed for OODBs (e. g., AlhaJ and Arkun, 1993; Beeri and

Kornatzky, 1990; Blakeley et al., 1993; Peters et al., 1993; Shaw and Zdonik 1990;

Straube and Ozsu 1990; Vandenberg and Dewitt 199 1).

However, unlike the relational algebra, there is not a commonly accepted object algebra,

nor is it clear how an object algebra should be developed and what trade-offs should be

made between elegance, optin-fizability and expressiveness.

In many object-oriented database applications, the advantages of using a well-chosen

family of algebra operations as the basis of a query model may outweigh the restrictions

imposed on the expressive power of the model. This approach supports the ability to write

programs that work independently of physical structures. When arbitrary programs are

used as queries, end-users may need to know about the physical data structures used. They

must write code which depends on the particular structure selected, leaving no opportunity

for the physical structure to be tuned as database usage becomes clearer. In addition, using

algebraic operations provides more opportunities for query optimization. Queries can be

formulated in many equivalent forms and optinUzed by equivalence preserving

transformations. The algebraic approach can also provide an important property of a query

model- the closure property. This property guarantees that each operation on an object

Chapter 3 Query Processing in Databases 67

(objects) produces a new object which has exactly the same status as the original one
(ones), namely that all the operations of the object algebra are potentially applicable to the

new object. By having this property, the result of a query can be used as the input for other

queries or can be stored as user's view. Unfortunately, most existing query models for

OODBs don't preserve closure [Ozsu and Blakeley, 1995].

The object algebra of [Manola and Dayal, 1986; Orenstein et al., 1986; Dayal et al., 1985;

Dayal et al., 1985] called the PDM algebra, was developed for the PROBE database. The

PDM algebra is a modified relational algebra operating upon functions. In particular, an

entity type (such as PERSON) is treated as a unary function which, when evaluated,

returns a set of entities of that type. Formal arguments of PDM functions are labelled, and

can be declared to be in, out, or both so that functions can return multiple values. PDM

functions can be extensional (i. e., stored as relations) or intensional (i. e., computed from a

subroutine). The appearance of a function in an algebra expression means that the function

is to be executed with some actual arguments substituted for its formal arguments. An

algebra expression not only returns a function but also may produce assigned variables if

the functions appearing in that expression have out arguments. In such a way, multiple

results can be obtained from one expression and then serve as a context for the evaluation

of subsequent functions.

Osbom's object algebra [1988; 1989a; 1989b] was developed for a general object-oriented

data model. The algebra is defined on three generic classes: atomic, aggregate and set

objects. Relational algebra operations are extended. Also included are Naming, DeepCopy

and Apply operations. Apply serves an iterator on set objects. DeepCopy creates a

complete copy of an object without sharing any sub-objects with the old one.

Straube and Ozsu's object algebra [Straube and Ozsu, 1990; Straube, 1991; Ozsu, 1991]

was developed to provide a fon-nal basis for object-oriented query processing. To support

encapsulation, the algebra allows only one object equality, namely the identity test. An

object calculus is also provided. The translation from the algebra to the calculus is

complete, but the translation from the calculus to the algebra is only partial.

Chapter 3 Query Processing in Databases 68

Shaw and Zdonik's object algebra [Shaw and Zdonik, 1989; Zdonik, 1989; Shaw and
Zdonik, 1990; Shaw and Zdonik, 1989] supports i-equality (i>O), where i indicates how

"deep" the equality-test should go into two complex objects. DupEliminate and Coalesce

operations are included to manipulate object identities. Besides i-equality, another equality

called id-equality is introduced to compare, on two i-equal objects, the structures implied

by the identities associated with their attribute values. The algebra operation access objects

only through the external interface defined by their types. Results of queries are collections

of existing objects or collections of tuples built by the query. By including parameterized

types, the algebra can be statically type-checked while maintaining the ability to construct

dynamic relationships between existing objects.

3.3.2 Query Processing Methodology

A query processing methodology similar to relational DBMSs, but modified to handle the

difficulties rising from the new features typical of object-oriented models, can be seen in

OODBs. Straube and Oszu [Straube and Ozsu, 1990; Straube, 1991; Ozsu, 1991]

proposed such a methodology, which has been adapted and depicted in Figure 3.2.

Daclwati, & Sw&rdized Ng&a
Tyre C#44zod

Execuficn

query expressim expressim
ccmstell algehu

plan expressim expressim

Figure 3.2 Object query processing methodology

The steps in the methodology are as follows. Queries are expressed in a declarative

language that requires no user knowledge of object implementations, access paths, or

Chapter 3 Query Processing in Databases 69

processing statistics. The calculus expression is first reduced to a standardized form by

eliminating duplicate predicates, applying identifiers and rewriting. The standardized
expression is then converted to an equivalent object algebra expression. This form of the

query is a nested expression that can be viewed as a tree whose nodes are algebra

operators and those leaves represent extents of classes in the database. The algebra

expression is next checked for type consistency to insure that predicates and methods are

not applied to objects that do not support the requested function. This is not as simple as
type checking in general programming languages since intermediate results, which are set

of objects, may be composed of heterogeneous types. The next step in query processing is

the application of equivalence-preserving rewrite rules [Freytag, 1987] to the type

consistent algebra expression.

The separation of the algebraic optimization step from the execution plan generation step
follows the distinction that is made between "query rewrite" and "plan optimization"
[Haas et al., 1989]. Query rewrite is a high-level process in which general-purpose
heuristics drive the application of transformation rules. Plan optimization, on the other

hand, is a lower-level process that transforms a query into the most cost-effective access

plan, based on a specific cost model and knowledge of access paths and database statistics.

This methodology clearly separates the various concerns and provides extensibility to

query processor. However, it faces one serious problem: the combinatorial cost of

analysing the large number of plans that are generated. The algebraic optimization step

generates a family of equivalent query expressions based on the transformation rules

defined for algebra. The execution plan generation step creates a number of alternative

mappings from each of these expressions to the object manager interface calls. Therefore,

the number of alternatives that need to be considered may become quite high. One

alternative followed in Starburst [Haas et al., 1989] is to use heuristic rules to control

query rewrite so that a single query expression is generated as input to the plan

optimization step. Cost-based optimization approaches, on the other hand, merge these

two steps into one and consider the alternative execution algorithms as part of search

space.

Chapter 3 Query Processing in Databases 70

This methodology assumes the existence of a fully specified calculus-based language and
an object algebra. There are only a few calculi that have been defined for OODBs
[Abiteboul and Beeri, 1987; Peters et al., 1993; Straube and Ozsu, 1990] and a few object
logics with declarative query facilities [Kifer and Wu, 1989; Maier, 1986]. There are a
large number of declarative user languages (e. g., Blakeley [1991], Carey et al. [1988],

Kifer et al. [1992], Orenstein et al. [1992]), but these generally do not have a formal

calculus. Many algebras have been defined with a variety of operations (e. g., AlhaJ and
Arkun [1993], Beeri and Kornatzky [1990], Blakeley et al. [1993], Peters et al. [1993],

Shaw and Zdonik [1990], S traube and Ozsu [1990], and Vandenberg and Dewitt [199 1]).

As far as the author is aware, the methodology of Straube and Oszu has never been

implemented.

3.3.3 Optimization Techniques

Optimization techniques for object queries fall into two categories. The first is the cost-
based optimization of queries based on algebraic manipulations. Algebraic optimization

techniques have been extensively studied within the context of the relational model. The

work on relational DBMS has benefited greatly from the availability of a universally

accepted algebra definition. Despite over two dozen proposals, there is no universally

accepted object algebra, making it difficult to generalise research results.

The second is the optimization of path expressions that represent traversal paths

between objects and are unique to OODBs, distinguishing object-oriented from

relational query processing.

3.3.3.1 Algebraic Optimization

Algebraic optimization is well-understood for relational systems; there, an algebraic

expression is given for the semantics of (e. g. SQL) queries, algebraic equivalencies have

been specified, and heuristic rules have been discovered which are beneficial when

applying those equivalencies for the transformation of queries. However, the "objects" in

Chapter 3 Query Processing in Databases 71

question are very simply structured (i. e., they are sets of tuples). Thus, while the

equivalencies (and rules) carry over to new data models, they are by no means sufficient.
Namely, algebraic optimization has to take complex objects and type hierarchies into

account.

CoOMS [Demuth et al., 1994] is a structurally object-oriented database system. It

generalises algebraic optimization from the relational data model to a structurally object

oriented data model. Algebraic optimization takes idempotence, commutativity,

associativity, and distributivity properties of operation into account. Some optimization

rules (based on these properties) carry over from the relational algebra, while other rules

are related to the specific features of the data model of CoOMS; thus they specify
inheritance, subobject, and navigational rules. An algebra is especially useful to represent

queries for optimization and evaluation, as rules and equivalence known from the

relational algebra carry over.

Cluet and Deloleb [1992; 1994] proposed a formalism that unifies optimization based on

classes extensions (path) and algebraic query rewriting. The method introduces types in

algebraic expressions and reduces complex expressions representing selection, projection

or join criteria. Their approach "unifies" algebraic and type-based rewrite techniques,

permits factorization of common subexpressions, and supports heuristics to limit

rewriting. They exploit type information to decompose initial complex arguments of a

query into a set of simpler operators and rewrite path expressions ("pointer chasing") into

joins.

Lanzelotte and Valduriez [1991] presented a similar attempt to optimize path expression

within an algebraic framework using an operator called implicit join.

Blakeley et al. [19931 proposed an object-algebra operator called materialize (Mat), to

enable algebraic optimization of path expressions (e. g., e. dept. site, where e, dept, and site

are classes and constitute a class-aggregation hierarchy). The purpose of Mat is to

represent the computation of each interobject reference (i. e., path link) explicitly, allowing

Chapter 3 Query Processing in Databases 72

a query optimizer to express the materialization of multiple components as a group using a
single Mat operator or individually using a Mat operator per component. Therefore Mat
indicates to the optimizer where path expressions are used and where algebraic
transformations can be applied.

Unlike RDBs, the use of "select pushdown" or "predicate pushdown" is no longer

advantageous in all situations in OODBs. Strategies like "practical predicate placement"
[Hellerstein, 1994], "predicate move-around" [Levy et al., 1994], "caching predicate

method" [Hellerstein and Naughton, 1996], etc., have been proposed. These are often
discussed in relation to query execution. (Query processing in OODBs does not always

support the separation of algebraic optimization and plan generation).

3.3.3.2 Path Execution

RDBs benefit from the close correspondence between the relational algebra operations and

the access primitives of the storage system. Therefore, the generation of the execution plan
for a query expression basically concerns the choice and implementation of the most

efficient algorithms for executing individual algebra operators and their combinations. In

OODBs, the issue is more complicated due to the difference in the abstraction levels of
behaviourally defined objects and their storage. A query-execution engine requires three

basic classes of algorithms on collections of objects: (collection scan, indexed scan and

collection matching). Collection scan is a straightforward algorithm that sequentially

accesses all objects in a collection. Indexed scan allows efficient access to selected objects

in a collection through an index. It is possible to use an object's field or the values

returned by some method as a key to an index. Also, it is possible to define indexes on

values deeply nested in the structure of an object (i. e., path index). Set-matching

algorithms take multiple collections of objects as input and produce aggregate objects

related to some criteria. Join, set intersection and assembly are examples of algorithms in

this category.

Chapter 3 Query Processing in Databases 73

Path indexing

Indices are crucial in database systems to expedite the evaluation of queries that retrieve a
small subset of data from a large database. Many indexing techniques designed to
accelerate the computation of path expressions have been proposed.

Bertino et al. [Bertino, 1994; Bertino and Guglielmina, 1993; Bertino and Foscoli, 1995]
have discussed a number of indexing techniques specifically tailored for object-oriented
databases. They present indexing techniques supporting an efficient evaluation of implicit

joins among objects. However, of the several techniques developed, none is optimal for
both retrieval and update costs. Techniques providing lower retrieval costs, such as path
indices or access relations, have greater update costs compared to techniques, such as

multi-index. However, these have greater retrieval costs. These research also introduce an
indexing technique that provides integrated support for queries on both aggregation and
inheritance graphs. This indexing technique is currently being extended to deal with multi-

valued attributes.

Set-matching

OODBs significantly reduce the need for explicit joins. The select operation allows its

predicate to be applied on a contiguous sequence of attributes along a branch of the class-

aggregation hierarchy, where the path expression is used to represent this sort of predicate.

The attribute/domain link between a class R and the domain S of one of the attributes A of R

creates the join between the class R and S, in which the attribute A of the class R and

identifier OID, which is defined by the system and which can be considered as an attribute of

class S, are join attributes. This sort of query is generally called implicit join. Assume two

sets of objects R and S stand in a many-to-one relationship from R to S. R and S are stored as

separate disk files and the objects in R contain an OID to their related ob ects in S. Various j

algorithms have been proposed to execute such a join.

Chapter 3 Query Processing in Databases 74

Pointer-based join algorithms [Shekita and Carey, 1990] are used when objects in R are to be

retrieved first. R always plays the role of the inner set because the direction of the pointer is

from R to S. When the objects of S are retrieved first, the standard (relational) join algorithms

can be used. Shekita and Carey [1990] showed that when R is significantly larger than S,

standard hybrid-hash may outperform pointer-based hybrid-hash. Therefore, OODBs can
benefit by supporting both algorithms.

The assembly operator [Keller et al., 1991] is a generation of the pointer-based hash-join

algorithm.

Gardarin et al. [1996] and Tang et al. [1996] analysed the costs of path execution using

both the navigational operator and join, and suggested that both object navigation and set-

oriented join should co-exist as neither dominated the other. This confirms the results

previously stated, that converting implicit joins to explicit joins during the optimization

phase may yield better execution plans [Blakeley et al., 1993; Ozsu and Blakeley, 1995;

Ozkan et al., 1995].

Multiple path expressions

A query may involve multiple path expressions. Ozkan [19951 proposed a heuristic based

approach for optimizing such queries involving multiple path expressions.

3.3.3.3 Semantic Query Optimization

Semantic Query Optimization (SQO) uses the semantic knowledge about objects to

transform a query into more efficient expression. In the field of relational databases, much

research on SQO has been carried out. OODBs may support many different ways of query

processing. It seems likely that a SQO system can be inserted as a preprocessing system

for OODB query optimization systems. Class instances have attributes that are instances of

other complex classes, and different traversal mechanisms to find the target attribute

Chapter 3 Query Processing in Databases 75

values for a query are required. Taking into account this structural property of an OODB,

new heuristics which are different from those applied to relational databases are needed.

Sung and Park [1991] presented a new semantic query processing technique in an object-
oriented database system. The query technique takes advantage of semantic data integrity
constraints to generate more efficient access plans. Semantic information relating to the
target objects of a given query is utilized in a suitable way, either by eliminating the

unnecessary part of the query or by transforming the given query into a more efficient
form. Heuristics which guide the query processor into generating efficient access plans

using semantic knowledge underpin the SQO process.

Pang, Lu and Ool [1991] described their initial results in a study of query optimization in

an object-oriented database, where semantic query transformation is used to preprocess the

query and the semantically optimized query is then translated into a query evaluation plan

which comprises method invocations that can be evaluated directly by the system.

3.4 Processing Temporal Queries

Temporal query optimization is substantially more involved than conventional-query

optimization for several reasons [Ozsoyoglu and Snodgrass, 1995]. Temporal-query

optimization is more critical, and it is thus easier to justify substantial effort in this area,

compared with conventional optimization. The relations over which temporal queries are

defined may be larger, and often grow monotonically, implying that unoptin-iized queries

take longer and longer to execute. It is reasonable to expand effort in the optimization of

queries on such data and to allow greater execution time in the performance of the

optimization. The predicates used in temporal queries are more difficult to optimize

[Leung and Muntz, 1990; 1993]. In traditional database applications, queries generally

specify equality predicates (hence the prevalence of equijoins and natural joins); if an

inequality predicate is involved, it is rarely in combination with other such predicates. In

contrast, in temporal queries, joins with a conjunction of several inequiality predicates

appear more frequently. Optimization techniques in conventional databases focus on

Chapter 3 Query Processing in Databases 76

equality predicates and often implement inequality joins as Cartesian products, with their

associated inefficiency

On the other hand, there is greater opportunity for query optimization when time is present

[Leung and Muntz, 1993]. Time advances in one direction; the time domain is

continuously expanding, and the most recent time point is the largest value in the domain.

This implies that a natural clustering on sort order will manifest itself, which can be

exploited during optimization and evaluation. Query optimization can also consider time-

oriented integrity constraints. tstart: ý tend holds for every time-interval tuple t.

Unfortunately, there is little work reported on processing temporal queries, and the work

that has been published is often described in the context of relational databases.

As RDBs always require the user to explicitly join two relations, temporal processing in

the context of RDBs has focused on specific join algorithms, following the bottom up

approach. Gunadhi and Segev [1990] and Segev [1993] specified a temporal join and

proposed an approach for optimization. Leung and Muntz [1990; 19931 proposed the

strategies of stream processing for processing temporal joins (inequality join and semijoin).

These strategies ware later extended to parallel processing strategies in multiprocessor

database machines [1992]. Zurek [1998] presented a framework for parallel temporal joins.

Seshadri et al. [19961 proposed separating general database optimizing from temporal

optimizing and provided a paradigm for interaction between a relation and a time sequence

(here temporal data is represented by a time sequence). Although they have provided a

comprehensive approach for sequence data processing, they have not incorporated sequence

processing in the relational query processing framework.

Dayal and Wuu [1992] proposed a uniform approach to processing temporal queries III the

context of a functional object-oriented data model. But their work did not take account query

optimization and evaluation in a query processing framework. In addition, their work is

based on the functional model and language. This leads to functional optimization that is

Chapter 3 Query Processing in Databases 77

quite different from the algebraic, cost-based optimization techniques employed in relational,

as well as a number of object-oriented systems [Ozsu, 1995].

It is worth noting that most object-oriented database proposals include constructors for

complex types like lists and arrays that allow time-stamped entity to be represented as a
"blob", which is managed by the system, but interpreted solely by the application

program; no facilities for temporal queries are provided [Seshadri et al., 1996].

3.5 Summary

Query processing and optimization problems in relational databases have been the focus

of a great deal of theoretical and applied research. Much research is still being carried

out in the area of RDBs, and a large body of knowledge, gathered over a period of

almost two decades, on relational query processing and optimization techniques and

strategies has accumulated. The great success of query processing in RDBs is attributed

to the relational model of data that provides declarative queries and associated

techniques for automated evaluation.

The problem of optimization of object-oriented queries has not yet been very widely

researched. Critics of the object-oriented approach frequently point to the theoretical

limits of optimization as a major drawback of the object-oriented approach as compared

with the relational approach [Unland et al., 1992; Ozsu and Blakeley, 1995; Kim, 1993;

1994; 1995; Kim et al., 1997].

Almost all the object query processors proposed to date uses the optimization techniques

developed for RDBs, as pointed out by Ozsu and Blakeley [1995]. The lack of

universally accepted object data model and algebra makes it difficult to generalize

research results. In general, it is impossible to achieve the same degree of optimization as

in a relational language. It is important to develop extensible approaches to query

processing that allows experimentation with new ideas as they evolve.

Chapter 3 Query Processing in Databases 78

Although extensive activity in defining temporal data models by extending existing models,
little work has been done on temporal query processing and optimization. Even so, it is

mostly in the context of relational databases and follows a bottom-up approach: usually
focusing on a specific algorithm such as a join. Because adding time creates multiple tuple

versions for the same object, ignoring time will result rapid performance degradation

due to ever-growing overflow chains or accumulated facts. As pointed out by Kim

[1993; 1994; 1995; Kim et al., 1997] and Snodgrass [1995], empirical studies are

needed to compare storage and query evaluation strategies that support time-varying

data.

At the moment, considerable research is needed to deal with optimization and execution of

object-oriented queries when time is taken into account. Query processing in TOODBs

remains a big challenge.

Chapter 4

A Temporal Object-Oriented Data Model

This chapter defines a temporal object data model, which has been adaptedfrom the unified

model of RDB and OODB in UniSQLIX to which a time dimension has been added to form

temporal relational-like cubes. Aggregation and inheritance hierarchies are also retained.

The characteristic of the model will be analysed and a number of case studies are given to

illustrate the model.

4.1 Introduction

A data model is a prescription of a way of representing data, and a prescription for a way of

manipulating such a presentation. Defining a data model has always been the start point for

developing a database.

The vast majority of research on temporal database systems has focused on eve oping a

temporal data model by the incorporation of time elements into existing database models

[Tansel et al., 1993; Snodgrass, 1995; Ozsoyoglu et al., 1995; Stonebraker et al., 1990; John

and Patrick, 1992; Pissinou et al., 1993; Goralwalla et al., 1998]. Compared with temporal

relational models, little work has been reported on time in object-oriented databases

(OODBs), although there is a significant increase in the work on defining temporal object

database models recently. An OODB is a database system based on object-oriented data

model concepts. One approach in introducing time into an object data model is to extend the

semantics of a pre-existing snapshot model to incorporate time directly [Snodgrass, 1995].

* The model presented in this chapter has initially published in paper 6, and its modified version has been

properly described in paper 1. The case studies have been presented in papers 8,9,10,11, and 12. The

List of Author's Publications includes paper 1- 13.

Chapter 4A Temporal Object-Oriented Data Model 80

However, there is currently no commonly accepted object data model, and definitions of
temporal object-oriented data models vary.

The unified model of RDB and OODB from UniSQUX [Kim, 1993; 1994; 1995; Kim et al.,
1997; D'Andrea and Janus, 1996] is extended from relational data model and has an
potential in making use of relational database techniques to process object queries. In this

chapter, the author will adopt the unified model of RDB and OODB from UniSQLJX as a
snapshot object data model, and then incorporate within it a time dimension so that we can

make use of the research results of temporal extensions to RDBs for (temporal) OODBs.

The remainder of this chapter is organised as follows. Section 4.2 describes the unified data

model of RDB and OODB. Section 4.3 presents the temporal object-oriented data mode by

defining the temporal object and integrating it into the unified model of RDB and OODB.

Section 4.4 gives a number of application examples as case studies. Features of the data

model are outlined in Section 4.5 and a summary of the chapter is given in Section 4.6.

4.2 The Unified Model of 001313 and RDB

The unified data model of RDB and OODB from UniSQLJX [Kim, 1993; 1994; 1995;

D'Andrea and Janus, 1996] extends the relational data model in three important ways, each

reflecting a key object-oriented concept: (1) nested predicates; (2) inheritance; (3) methods.

The mechanism for such an extension follows the basic tenet of an object-oriented system or

programming language that the value of an object is also an object. We will use the example

database schema in Figure 4.1 to describe these extensions where each node is a relation

(synonymous with a class). A node is divided into three levels, the first of which contains the

name of the relation, the second the attributes and the third the methods or procedures

attached. Two nodes C and C'may be connected by either a thin arc, indicating that Cis the

domain of an attribute of A of C (or that C' is the class of the result of a method of Q--

resulting in the aggregation hierarchy; or a thick arc, indicating that C is the superclass of C'-

-resulting in the inheritance hierarchy. Arrows indicate the directions of connection.

Chapter 4A TemPoral Object-Oriented Data Model 81

A RDB consists of a set of relations (tables), and a relation in turn consists of rows (tuples)

and columns. A row/column entry in a relation may have a single value, and the value may
belong to a set of system-defined data types (e. g., integers, string, float, date, time, money,

etc.). The user may impose further restrictions known as integrity constraints, on these values
(e. g., the temperature of a city may be restricted to between -800C and 800C). The user may

then issue a nonprocedural query against a relation to retrieve only those tuples of the

relation, the values of whose columns satisfy user-specified conditions. Further, the user may

correlate two or more relations by issuing a query that joins the relations on the basis of

comparison of values in user-specified columns of relations.

The first extension of UniSQLJX allows the value of a column of a relation to be a tuple of

any arbitrary user-defined relation, rather than just an element of a system-defined data type.

This means that the user may specify an arbitrary user-defined relation as the domain of a

column of a relation. In Figure 4.1, the column Weather of WEATHER-RECORD (or the

WEATHER-RECORD TESTINFO

MaxTemporature FLOAT
Site CITY

Humidity FLOAT
Site# INTEGER WindStrength INTEGER

WindOrientation STRING
Weather TESTINFO Sunshine STRING

Rain STRING

Procedure WeatherType

CITY COUNTRY

Name STRING Name STRING
Country COUNTRY Capital CAPITAL
Longitude FLOAT Continent STRIN(
Latitude FLOAT
Entertainment SET-of-ENTERTAINMENT

L-> ENTERTAINMENT
CAPITAL Name STRING

Governor-address STRING
Avalability BLOB

Origin STRING

legend:

nested attribute

inheritance path

Figure 4.1 An example of OODB schema

Chapter 4A Temporal Object-Oriented Data Model 82

Country of CIM no longer needs to be restricted to a system-defined type e. g., string. It now
is a tuple of a user-defined relation TEST-INFO (or COUNTRY). Allowing a column of a
relation to hold another relation directly leads to a nested relation. That is, the value of a
row/column entry of a relation can now be a tuple of another relation, and the value can in
turn be a tuple of another relation, and so forth, recursively. This gives a database system the
potential to support advanced applications such like multimedia systems (which manage
image, audio, text data, and compound documents that comprise of such data), scientific data

processing systems (which manipulate vectors, matrices, etc.), engineering and design

systems (which deal with complex nested objects), and so forth. This is the basis for bridging

the large gulf in data types supported in today's programming languages and database

systems.

Second, allowing the users to attach procedures to a relation and to have the procedures

operate on the column values in each tuple achieves the combination of data with a program.
For example, in Figure 4.1, the procedure WeatherType summaries the weather infori-nation

and gives output of weather type. Procedures for reading and updating the value of each

column are implicitly available in each relation. A relation now encapsulates the state and
behaviour of its tuple: the state is the set of column values and the behaviour is the set of

procedures that operate on column values. The user may write any procedure and attach it to

a relation to operate on values of any tuple or tuples of relation. There is virtually an

unlimited application of procedures in this way.

Third, allowing the users to organise all relations in the database into hierarchy, such that

between a pair of relations P and C, P is made the parent of C, if C takes (inherits) all

columns and procedures defined in P (besides those defined in Q, and table C may have

more than one parent relations from which it may take columns and procedures, the

relational model integrates the object-oriented concept of inheritance. The child relation is

said to inherit columns and procedures from the parent relations (This is called multiple

inheritance) An IS-A (generation and specification) relationship holds between a child

relation and its parent relation. In Figure 4.1, the relation CAPITAL is defined as a child of

relation CITY. CAPITAL automatically inherits the five columns of CITY, i. e., Name,

Chapter 4A TemPoral Object-Oriented Data Model 83

Country, Longitude, Latitude, Entertainment, even if they are not specified in its definition.
The inheritance hierarchy offers two advantages over the conventional relational model of a
simple collection of largely unrelated relations: (1) it makes it possible for a user to create a
new relation as a child relation of one or more existing relations; the new relation inherits
(reuses) all columns and procedures defined in existing relations and their ancestor relations;
(2) it makes it possible for a system to enforce the IS-A relationship between a pair of

relations. RDBs require the users to manage and enforce this relationship.

UniSQLJX also makes one more extension to the relational model: allowing the row/column

entry of a relation to have a set of values (i. e., any number of values), rather than just a single

value; and further allowing the set of values to be of more than one arbitrary data type. For

example, the data type of column Entertainment of CITY is a set of ENTERTAINMENT, that
is, the value of the column may be a set of tuples of a user-defined relation
ENTERTAINMENT (e. g., carnival, horse racing, etc., each of which has a set of attributes).
This extension is not an object-oriented concept, but it is designed to address a fundamental

deficiency in the relational data model [Kim, 1994] that requires the column value to be

atomic and therefore limits its modelling capability. It provides an ability to represent the

many-to-many relationship between two collections along the aggregation hierarchy. The

restriction in RDBs that the row/column entry may hold only a single value forces the users

to create an extra relation and/or duplicate tuples in one relation if a column of a relation

should hold more than one value. For instance, to model the above example of CITY and

EA7ERTAINMENT in a RDB, where a city may have more than one entertainment activity,

either each tuple of the relation CITY needs to be duplicated for each value of the column

Entertainment, or an extra relation, say C17-Y-ENTERTAINMENT, need to be created. The

relation CITY and CITY-ENTERTAINMENT need to be joined to retrieve information about

cities and entertainment activities.

UniSQLJX thus extends the relational model in four important ways. Although each

extension individually may appear to be minor, the consequences of the extensions,

individually and collectively, with respect to ease of application data modelling and /or

subsequent increase in performance, can be significant. If we make an equivalence between

Chapter 4A Temporal Object-Oriented Data Model 84

the post-relational and object-oriented ternis, then "relation" equates to "class", Auple of
relation" equates to "instance of a class", "colun-m" equates to "attribute", "procedure"

equates to "method", "relation hierarchy" to "class hierarchy", "child relation" to "subclass",
44parent relation" to "superclass", and "nested relation" to "aggregation hierarchy". These

equivalencies can be expressed in Table 4.1. In this thesis, we use two sets of terms
interchangeably.

Table 4.1 Equivalencies between post-relational and object-oriented terins

Post-Relational Model Terms Object-Oriented Model Terms

Relation Class

Tuple of relation Instance of a class
Column Attribute

Procedure Method

Relation hierarchy Class hierarchy

Child relation Subclass

Parent relation Superclass

Nested relation Aggregation hierarchy

Compared to the ODMG Object Model described in Section 2.3.2, this model possesses

most key features of ODMG Object Model. It is an object-oriented data model! Because it is

also extended from relational data model and has thereby its counterparts in relational model,

it provides a potential in exploiting relational techniques for the management of objects.

This model is adopted as a snapshot model to incorporate time. Additionally, we preserve the

basic object concepts such as any real-world entity is modelled as an object, each complex

object is associated with a unique identifier, etc., so that heterogeneity in the time dimension

and the grouped completeness of algebra can be maintained (this will be discussed later in

the next chapter).

Chapter 4A Temporal Object-Oriented Data Model 85

4.3 A Temporal Object Data Model

The temporal data are the record of the evolutionary history of entities. The states of entities

may change in different ways, as shown in Figure 4.2. Representing temporal data in a
database initially uses the interval description. It is quite suitable for step-wise constant data.

Because continuous time-varying data can always be represented as discrete time-series in

computers, time-point representation is often chosen as it makes it easy to generalise the

various situations. We adopt the time-point representation and use temporal sets (temporal

elements) as timestamps so that a temporal object can be represented by a time sequence, and

the lifespan of an object can be associated at both attribute and tuple level for the unified

model.

ntity Value
Salary: step-wise constant

0t

Entity Value
Regular experimantal measurement: discrete

0"'"" --- _t

Value

Room temperature: continuous

Figure 4.2 Three basic types of temporal data

Chapter 4A Temporal Object-Oriented Data Model 86

4.3.1 Time Space and Temporal Set

A time space T =(.., to, tl,...) is a set of times, at most countably infinite, over which is

": ýT ',: ý
Tt defined the linear (total) order , where ti I means ti occurs before (earlier than) tj. For

the sake of simplicity, it can be assumed that T is isomorphic to the set of natural numbers
[.... n-1, n, n+I J. Any subset of T is called a temporal set. A temporal set can be

represented as a union of disjoint time intervals. The most basic property of temporal sets is

that they are closed under finite unions, intersections, and complementation. That is, if T,

and T2are temporal sets, then so are Tlu T2, TIr-) T2, TI-T2, and -, TI.

For example, let T, =I 1,2,5,8,231 and T2= 12,7,9,11,23,34 1. Then

Tlu T2=11,2,5,7,8,11,23,34)

TIn T? = 12,231

TI-T2=1 1,5,81

Absolute time indicates that a specific valid time at a given timestamp granulafity is

associated with a fact. For example, 3/4/1990 is an absolute time point. Such a time depends

neither on the valid time of another fact nor on the current time, now.

Relative time indicates that a valid time of a fact is related to either the valid time of another

fact or the current time, now. For example, seven days after his birth.

Both absolute time and relative time can be represented by a time space.

4.3.2 Chronon, Interval, Span and Lifespan

Derinitions

A chronon is the shortest duration of time supported by a temporal databases, i. e., a

nondecomposable unit of time.

Chapter 4A Temporal Object-Oriented Data Model 87

A thne interval is the time between two instants. For example, [1,51 is an interval -

A span is a directed duration of time. A duration is an amount of time with known length,

but no specific starting or ending instants. For example, the span of [1,5] is 5 if the time

chronon is 1. A span is either positive, denoting forward motion of time, or negative,
denoting backwards motion in time.

A thmestamp is a time value associated with some object, e. g., an attribute value or tuple.

The Hfespan of a database object is the time over which it is defined. If the object (attribute,

tuple, relation) has an associated timestamp, then the lifespan of that object is the value of the

timestainp.

The above definitions are taken from [Jensen et al., 1994; Tansel et al., 1993].

If an object o exists in a certain period of time, which is a subset of T (i. e., the temporal set),

this period is called the object's lifespan, denoted as L(o) for the object o. If the lifespan is

continuousý, it can be denoted as L(o)=[tt, * tnd], the duration of time is called a span:

span(o)= tend -tta, +]. In order to support for derived lifespans, it is allowed the usual set-

theoretic operations over lifespans. That is, if LI and L2 are lifespans, then so are LI u L2, LI

r-T2, L,
-L2, and--, Li.

A temporal object is defined as a time sequence (TS for short): ft, o(t)], t(-= L(o)cT, denoted

as <L(o), o(t)>, where o(t) represents object o's value at the time t. A temporal object

<L(o), o(t)> asserts that the object o(t) is valid for its lifespan L(o) and its value changes

with time. If a TS contains a value for each time point in the lifespan duration, it is called

a regular TS [7]: <L(o), o(t)> --.: [
... ; ti-1, Oi-1; ti, 0i; ti+J' Oi+I; ...

I=f.
- -, Oi-1,0i, 0 i+1' ---I=t

oi.], where oi represents object o's value at the time point ti. If a TS contains values for

t in principle, the lifespan L(o), a subset of T, is not necessarily required to be continuous, though it is required to
be in this thesis.

Chapter 4A Temporal Object-Oriented Data Model 88

only subset of time points within the lifespan, it is called an irregular TS: <L(o), o(t)>
"': t ... ; ti-1, Oi-1; ti, 0i; ti+j, Oi+I; ... I.

A discrete time event, where the value of the entity is recorded at every single time
point, as shown in Figure 4.2, can be represented by a regular TS. A discrete time event,
where the value of the entity is not recorded at every single time point, can be

represented by an irregular TS.

A step-wise constant, as shown in Figure 4.2, can be represented by an irregular TS

where the value oi at time ti, is assumed to retain for [ti, ti, I). We use the term epoch
from signal processing field to refer to the time at which the object changes its value,
e. g., ti. The interval during which the value oi persists is decided by the epoch ti and its

succeeded epoch ti, I, i. e., [ti, ti, I). If there are n elements in a TS, it is said that there are

n epochs. For example, suppose John has worked for a company from 1975 to 1998, his

salary was initially 1500 and has been changed to 1900 in 1978, change to 2300 in 1984,

2700 in 1991, and 2900 in 1996. If the time chronon is assumed as a year, the lifespan of
John's salary is [1975,1998], and

<[1975,1998], John's Salary>

= [1975,1500; 1978,1900; 1984,2300; 1991,2 700; 1996,2900]

where the first salary 1500 retains for [1975,1978) and the last salary 2900 retains for

[1996,1998]. The epoch number is 5. It can be seen, from the later discussion in

Chapter 6,7 and 8, that epoch represents a transformed time space and will serve as a

convenient indicator for cost analysis and query processing.

A continuous time event, as shown in Figure 4.2, depending on the recording of the data,

can be represented by either a regular TS or an irregular TS. When it is represented by a

regular TS, it is treated as a discrete time signal created by sampling the corresponding

continuous time signal. As long as the sampling frequency is greater than two times the

highest frequency of the signal, the continuous time signal can be recovered from the

Chapter 4A Temporal Object-Oriented Data Model 89

discreet time signal [Oppenhein and Schafer, 1975]. If it is represented by an irregular
TS, as it is time-varying the value between two recorded time points can be decided by

an interpolation function depending on the application, e. g., linear interpolation. This will
be further discussed in Chapter 8.

A constant object o, may be represented with no timestamp where its time-reference is
implied as L(o). It can also be represented with an explicit time-reference as a temporal

object: <L(o), ox

As a TS is a set, so a temporal object can be represented by its sub-objects. In practice the
lifespan may consist of disjoint, noncontiguous segments. As in [Ginsbury, 19931, we prefer
to use null rather than defining multiple segments in the lifespan. For instance, if we know

Mary's salary records dwing the time [1967,1982] and [1990,1998] as 11967,1400; 1977,

18901 and 11990,2000; 1996,2100). Although we do not know her salary between 1982

and 1990, we will have 11967,1400; 1977,1890; 1982, null; 1990,2000; 1996,21001

where null is persisted from 1982 till 1990 when the value 2000 exists.

4.3.3 Integrating the Temporal Object with the Unified Model of RDB and OODB

In the OODB represented by the unified model of RDB and OODB, every real world entity
is uniformly modelled as an object that is grouped into a class (relation) and interrelated to

other objects through associations. Now we take a class (relation) C (disregarding its

associations of aggregation and inheritance hierarchies), as shown in Table 4.2.

Table 4.2 Interaction of tuple lifespan and attribute lifespan

Relation A, A2
... An

tuple,

tuple2

...

tuple.

...

value,,,, n

Chapter 4A Temporal Object-Oriented Data Model 90

If the value,, is a temporal object with lifespan 1,,,, and the tuple,, is also a temporal object

with the lifespan denoted as L(t ..), we have

L(t,,)=1,1 Ulnt2 l-)
...

U ln7,
n

The lifespan of attribute A,, is

L(A,)-'ý--llxU 12,
n U

...
U lmn

The lifespan of relation C is

L(C)=L(AI)UL(A2)U ... UL(A n) =L(tj)UL(t2)U uL(t,,)

Thus a 2-dimensional relation (class) "table" becomes a 3-dimensional "cube", as shown in

Figure 4.3, if objects in the relation have unifomily the same lifespan.

Time

ites-, '

Values

Figure 4.3 A 3-dimensional class

Chapter 4A Temporal Object-Oriented Data Model 91

It is obvious that

li, j=L(ti)r')L(Aj)

This implies that there is no value for an attribute in a tuple for any moment in time outside

the intersection of the life spans of the tuple and the attribute. Obviously our temporal object

model can support a completely heterogeneous temporal dimension, but at the cost of

maintaining a distinct lifespan for each value. This is important because homogeneity is

sometimes difficult to maintain, although homogeneity is necessary as no time-slices of a

homogenous relation produce null values [Pissinou et al., 1994].

If the domain of attribute Ai of class C is another class C', then implicitly, L(Aj)=L(C'). If

class C' is the superclass of class C, then L(C')=L(C). If the class C' has more than one

subclasses, e. g., C, and C2, then L(C')=L(Cj)uL(C2). Moreover, if a database consists of n

classes (relations) C1, C2,
... '

C,, the lifespan of the database schema is L= L(Cl)uL(C2)u ... U

I-(Cn)-

It is possible to refer to the components of a temporal object. For a temporal object

o=<T, o>, o. u and o. T refer to its value and temporal set components, respectively. For the

above salary example, let o represent John's salary, o. 1) =1 1500,1900,2300,2700,2900)

and o. T=J 1975,1978,1984,1991,1996). Sometimes we omitu, i. e., om=o, (or o. ii(t)=o(t))

to refer to the value of the object o without causing a confusion, e. g., o =[1500,1900,2300,

2700,29001 refers to John's salary history. It is especially the case when talking about a

regular TS, we use o(t)=[,... Oi-I, Oi, 0i'l J.

Let A represent the name of an attribute that can take a temporal object for its values, then

Am and A. T represent the value set and temporal set components of the attribute A. Further,

the same notation may be applied to class (relation) C. If C is a temporal relation, then C. 'U

and CT represent the value set and temporal set components of the class C.

Chapter 4A Temporal Object-Oriented Data Model 92

Taking the database schema in Figure 4.1 as an example, its temporal database schema

can be represented as shown in Figure 4.4. Note that now the class/relation TESTINFO

becomes the temporal relation where daily weather changes are recorded for main cities.
For simplicity we suppose that the temporal set (time stamps) starts at time I and ends up
today (n), and time chronon is a day. Then the lifespan of relation TESTINFO can be

uniformly represented as L=11,... 'n), i. e., TESTINFO is a regular TS. Other relations are

constant relations whose lifespans are implied the same as L.

WEATHER-RECORD TESTINFO

Site CITY TopTemporature FLOAT
Humidity FLOAT

Site# INTEGER WindStrength INTEGER

Weather TESTINFO WindOrientation STRING
Sunshine STRING
Rain STRING

- Proc edure WeatherType

CITY COUNTRY

Name STRING Name STRING
Country COUNTRY Capital CAPITAL
Longitude FLOAT Continent STRING
Latitude FLOAT
Entertainnwnt SErof_ENTERTA94MENT -4 -

CAPITAL
ENTERTAINMENT

Name STRING legend:

n days

Governor-address STRING
Avalability BLOB nested attribute
Ofigin STRING

inhefitance path

Figure 4.4 Database schema of "Intemational Weather Record Database"

4.4 More Application Examples

To illustrate the applicability of the temporal object data model to real world problems,

this section provides two more examples as case studies.

4.4.1 Case Study 1: "The Wood Panel Deformation Measurement Database"

In this case study, the model defined in the previous section is applied to a real world

sequential image measurement system. It deals with the problems of data modelling and

Chapter 4A Temporal Object-Oriented Data Model 93

management of sequential image database that can not be handled by conventional
databases (e. g., RDB or OODB).

"The Wood Panel Deformation Measurement System" [Chen et al., 1994; Robson et al.,
1995; Clarke et al., 19951 brings together the results of recent research in art

observation, electro-optical image processing and advanced database management in

order to increase knowledge and understanding of deformation and cracking of wood

panel paintings (which lead to paint loss) caused by changes in ambient conditions. A

deformation analysis of movement occurring in wood panel was required by the

Hamilton Kerr Institute of the Fitzwilliam Museum, University of Cambridge, where 74

wood panels used for supporting fine art paintings were tested. An automated 3-D

measuring system using photogrammetric and machine vision techniques has been

developed at City University. The panels to be measured were divided according to

wood type: linden; oak; poplar; and Scots pine. Each type was supported by a number of

different reinforcement types to give 74 panel reinforcement combinations. An array of

retro-reflective targets were placed on each test panel. The number and disposition of

the targets on each test panel varied from 175 to 464 according to the pattern of

auxiliary supports. The total number of epochs (the number of sequential images of a

test panel) was 25 (i. e. 25 humidity levels at different time). The experiment was carried

out in a uniform way, i. e., for each panel, there were 25 tests for different humidity

levels at different times. Table 4.3 gives such an example. For each epoch, there were

about 400 images in total to be grabbed by 5 cameras at different positions, which

occupied about 170M storage. Therefore over 10,000 images were grabbed and

processed. The average number of targets on each test panel was 250, resulting in a total

of 2,500,000 targets to be processed.

Table 4.3 Sample experiment setting

day 0 10 20 21 31 1 41 42 52 62

rh% 30 30 30 70 70 70 30 30 30

epoch 0 1 2 3 4 5 6 7 8

Chapter 4A Temporal Object-Oriented Data Model 94

WOODPANEL

Panel# INTEGER
WoodType STRING
Reinforcement SUPPORT
TestDescription STRING
Recommendation STRING
PanelTest PANEI TEST

ISUPPORT

Form STRING
Material STRING

PANELTEST

Day INTEGER
Humidity FLOAT
TargetNumber INTEGER
2-D-Coordinates ARRAY(500,2)
Pixel-Image BLOB

Display
Processing
Analysis
Recognition

n epochs

TEST I TEST2
... TEST5 legend:

Cameral Camera2 Camera5 nested attribute

inheritance path

Figure 4.5 Database schema of "Wood Panel Defon-nation Measurement System"

This database application represents a typical scientific application, collecting results
from observation, experiments and simulation, and has features of large amount of data,

complex data types (data, text and image), and timestamps (sequential images). It also

involves a lot of data processing (e. g. image processing, pattern recognition, 2-D to 3-D

image construction, etc.).

Applying our temporal object data model to this case, we have generated a database

schema presented in Figure 4.5. WOODPANEL is a constant relation with a set of

attributes. The domain of column Reinforcement of WOODPANEL is another relation

SUPPORT. The domain of column Paneffest of WOODPANEL is another relation

PANELTEST. PANELTEST is a temporal relation with a set of attributes that are of different

data types. Note that absolute time (e. g., 12/3/1997) is not important, it is time relative to the

fact of the test that is of interest. The time chronon is a day. If each test is completed within 6

months, say, 180 days, the lifespan of PANALTEST is [0,180) whist the lifespan of other

constant relations implies the same as [0,180). PANELTEST is an irregular TS and there are

n epochs (e. g., n=25) in this relation. Data/image processing procedures are represented as

Chapter 4A Temporal Object-Oriented Data Model 95

methods to attach to the relation PANELTEST. TEST] to TEST5 are subsets of PANELTEST,

and inherit all three dimensional attributes and methods from PANELTEST <L, TEST] >

represents the sequential test information and images grabbed by Camera].

4.4.2 Case Study 2: "The Neurological Patient Care Database"

This case study concerns the data modelling and management in a health-care

information system. From this practical example we will see how the time granularity is

determined and different forms of tested data that may come from different sources are

represented in a temporal object database.

Physicians need to draw upon many different kinds of information in the course of their

work. Health informatics [Pickover, 1995; Silberschatz, 1996] is therefore emerging as a

field that concerns itself with the organisation and management of information in

support of patient care, education, research, and administration. It draws from

disciplines such as cognitive and educational psychology, decision theory, information

science, and computer science. The application of health informatics relies on the use of

computer and communication technology to translate theory into practice. The database

management support plays an essential role to make this become reality [Silberschatz,

1996], as a data model provides concepts and constructs for data modelling/processing

required by real-world organisations and a database management system incorporates a

data model and provides high-level facilities for storage, retrieve and maintenance of

data.

Much of the difficulty in managing health-care information systems comes from the

different sources of data that is involved, complex data structures, historical information

collection, data processing or dealing probabilities in clinic reasoning; but the

organisation of data is also a major problem [French et al., 1990]. Here we look at "The

Neurological Patient Care Database" example.

Chapter 4A Temporal Object-Oriented Data Model 96

8-16 CG
ecording omputer

Time series: [Fre ueýy-domain: opographic EEG

anxiety NLplpn

L

EAke ýi

-and-Wave-

Figure 4.6 Computer-aided EEG system

Electroencephalograph (EEG) [Carpenter, 1996] is a technique of recording the

electrical activity of the brain through the intact skull. Electrodes are applied to the scalp

and potential changes so recorded are amplified and presented for interpretation as an
inked tracing on moving paper. Machines in common use have eight, sixteen or more

channels so that the activity from many different areas of the head can be recorded

simultaneously. The technique is simple and harmless and may give valuable diagnostic

information, particularly in patients with suspected epilepsy, encephalitis, etc. But the

time-domain signals are difficult for doctors to read. With the aid of a computer, as

shown in Figure 4.6, the frequency-domain information such as the rhythms of (X, P, 8,

0, etc. which reveal the direct correlation with the state of a patient, is easily provided

through FFT transformation. The "topographic EEG" that is thereby created represents a

more recent development of quantitative EEG method. However, using this approach,

the most valuable information on "spike-and-wave" that is significant to the diagnosis of

epilepsy becomes less distinct. The reason is that the measured EEG signal with "spike-

and-wave" is a random process. Strictly speaking, there does not exist FFT for such a

signal. Therefore looking into the time-domain signal or searching for different data

processing methods is sometimes necessary. In addition, sole EEG index is not enough
for doctors to make the diagnosis of cerebral diseases such as clinic doctors can not
diagnose the structural damage on the brain like a cerebrovascular disease without
looking the patient's CT scan image. Therefore sharing information with other systems
is unavoidable. In short, clinical decision making, biomedical computing, reuse and

Chapter 4A Temporal Object-Oriented Data Model 97

sharing of medical information, support for further research and education all require for

data management support. Our temporal object data model provides a good approach to

data modelling and management for such a medical information system.

The database schema is designed for "The Neurological Patient Care Database" as

shown in a simplified form in Figure 4.7. The relation PATIENT in concern has a set of

attributes. Major EEG examination result is represented as a column of the relation.

Some other assistant examination result (e. g., CT) is represented as another column. The

domain of each of these two columns is another relation: EEG (or OTHERS). The

chronon of time can be determined as a day that suits for hospital daily routine. Suppose

the lifespan of EEG is L(EEG). (Instances of EEG do not need to be of the same

lifespan). There are n epochs in relation EEG, representing n examinations (Instances of

EEG do not need to be of the same times of examination). In each examination, there

recorded a time-domain signal (as an attribute value) where the short time sequence is

represented as 'blob'-like data, as the duration of the time sequence is much smaller

than the chronon of time that needs to be recorded. There are m epochs in relation

OTHERS with lifespan L(OTHERS). OTHERS may be recorded and stored at different

site. The lifespan of constant relations is implied as L(EEG)uL(OTHERS). EEG-

IMAGE and CT-IMAGE are subclasses of IMAGE, therefore they take all properties and

methods from IMAGE, alongside their own properties and methods.

The system represented by our data model has the following features:

(1) Integration of data, text, and images (that come from different sources) where some

metadata [French et al., 1990] such as description of test, etc. are uniformly

represented into attributes;

(2) Representation of collection of historical data where the time series of each EEG

record is represented as 'blob' in database schema instead of temporal data;

(3) Reuse of programs: the methods supporting image viewing, processing, etc., can be

reused by its any subclass images.

Chapter 4A Temporal Object-Oriented Data Model 98

PATIENT

Patient# INTEGER
Name STRING
Date-of-birth DATE
Symptom STRING
EEG EEG
Other-exas OTHERS
Diagnosis STRING
Treatment STRING

Dicision-making
Analysis

I

I OTHERS

Day DATE
CTscan CT-IMAGE
BloodPressure FLOAT

m-epochs

legend:

nested attribute
inheritance path

EEG

Day DATE
TestDescription STRING
Time-domain ARRAY(1000,16)
Frequency-domain ARRAY(256,16)
Topography EEG-IMAGE -

Processing
Analysis
Recognition

n-epochs

IMAGE

Pixel-image BLOB

Viewing
Processing

CT-IMAGE__ý
I

EEG-IMAGE X

Figure 4.7 Database schema of "The Neurological Patient Care Database"

Further data processing/analysis for research purpose is one of salient features of health-

care information systems. The temporal OODB architecture has a generic connection

with the clinic data processing/ analysis procedures (system). The connection is based

on Object Linking and Embedding (OLE) techniques [Microsoft, 1993], as shown in

Figure 4.8.

For example, Figure 4.9 shows different data processing algorithms that require time-

domain EEG signal from "The Neurological Patient Care Database". The data required

can be supplied by the database management system. The output of data processing and

Chapter 4A Temporal Object-Oriented Data Model 99

analysis procedures such as different topographic EEG, etc., can then be added to the

databases for future use.

Data
processing
/analysis
system

OLE
linking

E EH U croaGE FIo. aoe

Figure 4.8 OLE link between database and analysis system

Adaptive Filtering EEG
EEG: X(t)=; S(t)+N(t) Modelling

'Adaptive Filtering for P
Evoked EEG: ection of 401t: cognitive
Y, (t)=S'(t)+N(t) nction

Figure 4.9 Different data processing procedures

It can be seen that the temporal object-oriented database approach provides a data

modelling capability for data representation in the health-care information system and

direct database support for the corresponding data manipulation. Further data

processing/analysis, as well as other research procedures can be easily supported by the

database.

Chapter 4A Temporal Object-Oriented Data Model 100

In addition, because our data model is adapted from the unified data model RDBs and

OODBs, it provides a good basis for interoperating OODBs with RDBs and thereby

distributed heterogeneous databases. That is highly required by health-care information

systems for information sharing and interoperation between different databases at

different sits.

4.5 Features of the Temporal Object-Oriented Data Model

Although temporal databases have been an active area of research for over fifteen years,

there is no commonly accepted data model. It is advocated in [Segev et al., 1995] that a very

simple conceptual data model is adopted that captures the essential semantics of time varying

relations. Our work pursues this theme. The model presented in this chapter possesses the

following characteristics.

1) The model is grouped and supports both homogeneity and heterogeneity in the time

dimension

A temporal tuple is temporally homogenous if the lifespans of all attribute values within it

are identical. A temporal relation is said to be temporally homogeneous if its tuples are

temporally homogeneous. A temporal database is said to be temporally homogeneous if its

relations are temporally homogenous. Models that employ tuple timestarnping rather than

attribute-value timestarnping are necessarily temporally homogeneous as only temporally

homogeneous relations are possible. On the other hand, those models that employ attribute-

value timestamping rather than tuple timestamping can be temporally heterogeneous. The

motivation for homogeneity arises from the fact that no time-slices of a homogeneous

relation produce nulls. Support of homogeneity sometimes could create duplicate attribute

values and is therefore difficult to maintain. In such cases, heterogeneity in the time-

dimension is important.

Those models which employ tuple-time-stamping are termed temporally ungrouped whereas

those models that employ complex attribute values bearing the temporal dimension are

Chapter 4A Temporal Object-Oriented Data Model 101

termed temporally grouped [Pissinou et al., 1994]. The temporally grouped model is

commonly accepted to be desirable [Segev, Jensen and Snodgrass, 1995], as it will lead to

grouped completeness of algebra, that can support the rather strong notion of the "history of

attribute" (this will be discussed in the next chapter).

A number of reports defining a temporal relational data model, including Clifford [1993],

Tansel [1993; 1997], Gadia et al. [1993], Ginsburg [1993] and Kafer et al. [1990], etc.,

assume homogeneity in the time-dimension.

Most object-oriented databases and post-relational products include constructors for complex

types like lists and arrays that allow time-stamped entity to be represented as a "blob", both

homogeneity and heterogeneity in time-dimension can be supported. But the "blob" is

managed by the system, the interpretation is made solely by the application progam. A

temporal object data model with the heterogeneity in time dimension is also a grouped

model [Pissmou et al., 1994].

The data model defined in this dissertation is an object-oriented data model. Every real world

entity can be represented as an object. In the database schema, an object can represent either

a relation (class) tuple or an attribute value. The data model is also a temporal data model.

An object can be either time-varying or constant. Therefore our data model is temporally

grouped. Heterogeneity in the time dimension can be supported. Of course, homogeneity in

the time-dimension can be supported when it is necessary, but at the cost of maintaining a

uniform temporal set and lifespan, as it is special case of heterogeneity.

2) The model uses epochs that represent a transformed time-space

We borrowed the term epoch from the signal processing discipline to represent the time

when an entity changes its value. The ordered epoch numbers constitute a transformed time

space (as shown in Figure 4.10). From the query processing point of view, at each epoch, a

new value of the entity will be created, which of course requires space to store the new value.

Also, time is required to retrieve the value of the entity from the storage. Epochs, then, serve

Chapter 4A Temporal Object-Oriented Data Model 102

as a convenient token for the analysis of the query processing cost (this will be further

discussed in later chapters).

kntity Value

\

\

\

\

"

\

C

Entity'Value

Salary: Step-wise constant

t

Non-linear mapping

Figure 4.10 Illusion of mapping on time-spaces

3) The model possesses an extensible structure

The object-oriented data model presented in this chapter is adapted from the unified model

of OODB and RDB to which a time dimension has been added. The database schema is in

the form of relational-like cubes but with aggregation and inheritance hierarchies. So the

temporal object-oriented database is a superset of object-oriented database that in turn is a

superset of relational database. This provides a basis to extend the well proven query

processing techniques of RDBs and TDBs to process temporal object queries.

4.6 Summary

In this chapter, a temporal object data model has been presented, which has been adapted

from the unified model of OODB and RDB in UniSQLJX to which a time dimension has

Epoch as transformed time space tl

Chapter 4A Temporal Object-Oriented Data Model 103

been added to form temporal relational-like cubes and the aggregation and inheritance

hierarchies are also retained.

Compared to other temporal relational or object-oriented data models, the temporal object

data model defined here possesses following distinguishable characteristics:

0 It is a temporally grouped model and supports both homogeneity and heterogeneity in

the time dimension;

0 It uses epochs that represents a transformed time space and can serve as a convenient

token for the cost analysis of the query processing.

0 The temporal object-oriented database represents a hierarchical structure with three types

of associations: aggregation, inheritance and time-reference.

The temporal object-oriented data model determines access primitives and provides a basis

for query processing, which will be discussed from the next chapter.

Case studies were also provided to demonstrate the applicability of the model to real world

problems.

Chapter 5

An Algebra for the Temporal Object Data Model

This chapter develops an algebra for the temporal object data model described in the

previous chapter. As the temporal object data model is adaptedfrom the unified model of

RDB and OODB in UniSQLIX to form temporal relational-like cubes but with aggregation

and inheritance hierarchies, a query algebra that provides operations for data accessing

and manipulation through the associations of aggregation, inheritance and time-reference,

reflects the spirit of both temporal relational algebra and object algebra. Data query

examples from the Wood Panel Deformation Measurement Database illustrate algebraic

operations, and the properties of the algebra are outlined.

5.1 Introduction

From the algebra point of view, a temporal OODB defined by the data model presented in

the previous chapter can be viewed as a collection of temporal objects, grouped together in

classes (relations) and interrelated through associations of aggregation, generalisation and

time-reference. Each temporal relation can be viewed as a 3-dimensional cube. If the existing

structure of "inheritance" hierarchy and "aggregation" hierarchy between classes is not

considered, the structure of queries is essentially the same in both the RDB and OODB

paradigm. The only effect that the temporal dimension has is to transform some tables (or

even only some attributes) to cubes. There already are some reports on algebraic operations

in temporal relational databases [Tansel, 1993; Clifford, 1993; Gadia, 1988; Mckenzie and

. The work presented in this chapter has been published in the paper 6 listed in Author's Publications.

Chapter 5 An Algebra for the Temporal Object Data Model 105

Snodgrass, 1991; Tansel and Tin, 1998]. We therefore have a common base to expand
(temporal) relational algebra to temporal object algebra.

TM

seled
I

Value

AvjibLte

rr. - IUD,

dioe

Figure 5.1 Illustration of basic algebra. Time, Attribute and Value are three
dimensions of a relation. Select, Project and Time-slice are basic operations on
these three dimensions.

Basically, the standard relational algebra provides a unary operator for each of its two

dimensions: select for the value dimension and project for the attribute dimension, as shown
in Figure 5.1. Temporal relational algebra introduces the operation of time-slice that

operates on the time dimension. An object algebra allows the predicate of the select

operation on a contiguous sequence of attributes along a branch of the class-aggregation

hierarchy (which is usually expressed by a path--this concept will be discussed later in this

chapter). The algebra which we are goMg to define for the model will extend the (temporal)

relational and object algebra to address the features of the aggregation hierarchy and time

dimension. The algebra is defined against a set of objects (which could be regarded as

equivalent to class/relation). This concept is preserved so that it can readily take advantage of

Chapter 5 An Algebra for the Temporal Object Data Model 106

inheritance and enable applications to automatically reach any existing objects of interest,

without requiring explicit references to those objects [Yu and Osbom, 1991]ý.

The remainder of this chapter is organised as follows. Section 2 specifies and classifies the

predicates that appear in algebraic operation. Section 3 specifies the properties of identity and

equality. A definition of algebraic operations is given in Section 4. Query examples and a
brief evaluation are provided in Section 5. Properties of the algebra are presented in Section

6 and Section 7 gives a summary. Through out this chapter, examples are taken from the

Wood Panel Deformation Measurement Database presented in Chapter 4.

5.2 Predicates

Predicates play an essential role in query evaluation and processing in any database. There

are basically three types of predicate in our temporal object-oriented database: a simple

predicate, a nested predicate and a temporal predicate.

A simple predicate is of the form <attribute-name operator value>. The value may be an

instance of a primitive class (type) (e. g., string, integer, etc.) or an object identifier (011)) of

the instance of some class. The latter is important because it may be used for testing the

object equality, that is, equality of referenced objects. The operator may be a scalar

comparison operator (=, <, >, etc.) or a set comparison (E-=, c, c, set-equality, etc.). Examples

of simple predicates are: Panel#=3, Reinforcement=001 where 001 represents the OID of an

object in class SUPPORT.

A nested predicate is a predicate on a contiguous sequence of attributes along a branch of the

class-aggregation hierarchy of a class. Path-expressions [Bertino and Martino, 1993] are

defined to express a nested predicate.

' In the object-oriented methodology, the subclass will automatically take (inherit) all attributes and
methods defined to its super-class, apart from its own attributes. So there is generally no need to define
inheritance-like operators in a query algebra.

Chapter 5 An Algebra for the Temporal Object Data Model 107

Definition Path expression

Given an aggregation hierarchy H, a path P is defined as

CI. Al. A2 A, (n>])

where

C, is the class in H,,

A, is an attribute of class CI;

Ai is an attribute of a class Ci in H, such that Ci is the domain of the attribute Ai-I of

class Ci-1, (I <i! ýn).

Path expressions can be compared using the comparators =, #, ý!, !! ý, <, >, etc. Since path

expressions represent sets, these comparators may have to be qualified with the use of

some or all. Path-comparisons can be combined with Boolean connectives and, or, not.

Path expressions can also be compared using standard set-comparators contains,

containsEq, subset, subsetEq, etc. For example, WOODPANEL. Reinforcement. Fonn is a

path, and WOODPANEL. Reinforcement. Fonn = "lattice " is a nested predicate.

A temporal predicate is a predicate referring to a temporal set in the time dimension. There

are two types of temporal predicates: a simple temporal predicate and a nested temporal

predicate. A simple temporal predicate can be expressed as <temporal-set operator value>.

The operator could be <, :! ý =, >, ý!, and the combination of these, representing the semantics

of time such as before, until, while, after, since, during, etc. For example, '<' in t<4 retains

the semantic of before, representing To=[1,2,3] if t starts from 1. t=5 retains the semantic of

while time is 5, and 5! ýt:! ý10, represents an interval T=[5,10] that applies to during. A nested

temporal predicate can be expressed by integrating the path-expression into a simple

temporal predicate. If o is an attribute name or a path-expression or a predicate, we use the

function when denoted as m(o), to express the temporal domain of o (we wiH give a formal

definition later). For example, we use the following expression to refer to time point(s), at

Chapter 5 An Algebra for the Temporal Object Data Model 108

which the image's humidity level is, say, 30%rh: m(WOODPANEL. Image. Humidity

30%rh)=4 (say, to=4). In this case, the only time point at which it occurs is to=4.

The temporal predicate can also be embedded into a path expression and we may use an

enhanced path expression to refer to the value component of a temporal object along a
branch of the class-aggregation hierarchy whose formal definition is given below:

Definition Enhanced path expression

Given an aggregation hierarchy H, an enhanced path P is defined as a path expression

with the addition of an explicit time-reference:

CI. Al. A2 AnTM (n>])

where Tm denotes the path involving the time-reference, such as CIA, A, [tr= Tj

CIA, A, [to<t<tll, etc. Obviously, the enhanced path expresses the nested predicate

with an explicit time-reference. In other words, the enhanced path can express a

predicate that refers to both the aggregation-hierarchy and the time-dimension.

Therefore a path expression in a general OODB is a special case of the enhanced path

expression and the path comparisons that are generally used in OODBs can also be applied

to the enhanced path expression. Taking the above example, an enhanced path expression,

which refers to an image's humidity level=30 % rh is WOODPANEL. Image. Humidity(to=4)

= 30 % rh. Here the predicate specifies both Humidity value and time point value. More

generally, we use oITI to denote the restriction of o on the temporal set TI. The examples can

be given as:

WOODPANEL. Image. HumidityltO=4 = 30%rh, and

WOODPANEL. Image. Humidity lt=4,5,6 = f30 % rh, 40% rh, 50% rhj.

A method may be used for any part of a predicate, that is, as the attribute-name, the operator,

or the value. We could think q w(O) and o IT, as methods as well. ?f

Chapter 5 An Algebra for the Temporal Object Data Model 109

If P, and P2 are predicates, then so are PIvP2, PIAP2, and -, PI. These constitute complex
predicates.

5.3 Identity and Equality

Identity is a property of an object that distinguishes the object from all others. It is important

to distinguish between the following different types of equality.

1) Identity equality of objects: two objects o and o' are identity equal if they are the

same object (i. e., they have the same OID), denoted as "==". That is, o==o' if

OID(o)=OID(o')

2) Value equality of objects: two temporal objects are equal if the values and the

temporal sets of all their attributes are recursively equal, denoted by "=". That is, two

temporal objects o and o' are value equal if o. T(A d=o'. T(A i) and om(A i)--o'x(A i)
(or o. lj(A i)(t) = o'. u(Ai)(t) at every t). The term value equality is analogous to the

snapshot equivalent/weekly equivalent in temporal RDBs that states that two tuples

are snapshot equivalent or weekly equivalent if the snapshots of the tuples at all

times are identical.

Two identical objects are also equal whereas the reverse is not true. For example, the

humidity attribute of panel#I and panel#2 may take the same value set and temporal set,

therefore they are value identical. Of course they are not identical objects as they refer to

different objects and have different OID.

Shallow-equality: two objects are shallow-equal if their attributes share the same

value and the same references, and their corresponding temporal sets are equal

although they are not identical, denoted as

Identity is important for a number of reasons. Duplication in set membership is based on

object identity, i. e., a set will not contain two objects with the same identifier. In addition,

Chapter 5 An Algebra for the Temporal Object Data Model 110

there are many cases in the algebra in which implicit comparisons are made using identity
equality. There are also some cases when the comparison is made by value equality. Finally,

shallow equality is required for the join operation. The use of identity will be illustrated in
the following sections.

5.4 Closure

Before going to the definition of algebraic operations, let us recall the closure property
in relational algebra.

The relational closure property states that the output from each relational operation is

another relation [Date, 1996]. Because the output of any relation is the same kind of
objects as the input (they are all relations), so the output from one operation can become
input to another. It is possible to write nested expressions, i. e., expressions in which the

operands are themselves represented by expressions, instead of just by relation names.
Although the temporal object data model is more complex than the relational data

model, it is essentially a relation but with three additional associations: aggregation,

inheritance and time-reference. If we could reserve the closure property in defining basic

algebra, then it would be easy to represent a query referring to those associations. As we

shall see, the algebra presented in this thesis retains the closure property.

5.5 Query Algebra

5.5.1 Temporal Unary Set Operations

When the value of temporal object changes with time, even if the record of time-varying

values is physically fragmented, it represents the same object. Records of time-varying

objects may be amended due to availability of late measurement or better estimation for

null or unreliable data. Two special temporal unary set operations are of interest here:

Time-insert and Time-delete.

Chapter 5 An Algebra for the Temporal Object Data Model ill

Given two fragmented subsets of a temporal object set 0: O(TI) and O(T2), we define

O(TI) Time-insert O(T2)= (ol oc= 0] where L(O)=TuT2

O(TI) Time-delete O(T2) [o I oc= 0] where L(O)=TI-T2

where L represents the life-span of 0 after Time-insert or Time-delete. T, and T2 are

temporal sets (for example, intervals) where two fragmented sub sets exist. An

illustration of these operations is given in Figure 5.2.

Operated
sets

Time
domain
situations

Resulting
sets

t
III

tis tie I- t2s t2e

t
III

T, uT2

TI-T2

O(T1) O(T2)

TI=[tls, t1,1

n
T2=[t2s7t

el

t
II I

tls t2s tIe t2e

t

T, uT2

TI-T2

t
IIII

tis tle t2s t2e

T, uT2

TI-T2

O(TI) Time-insert O(T2)

Resulting
sets

O(TI) Time-delete O(T2)

Figure 5.2 Ifflustration of temporal unary set operations. The first row represents two

temporal sets. Below this row there are three cases of TuT2 and TI-T2, resulting in

three cases of Time-insert and Time-delete.

Chapter 5 An Algebra for the Temporal Object Data Model 112

For Time-insert, when the temporal sets of T, and T2are overlapped over the temporal set

T3, i. e., T3(--Tl and T3gT2, the value set at T3is decided by the following rules:

Suppose:

OV(ti)(=- O(T3

OVI(ti)E=- O(TI

OV2(ti)C O(T2),

and ti c T3,

then:

ov(ti)=(ovl(ti)+ ov2(ti))V2, if no null value exists;.
ov(ti)= ov, (ti), if ov2(ti) is null, -
OV(0=0V2(ti)ý if ovi(ti) is null.

5.5.2 Binary Set Operations

Traditional binary set operations are union, difference and intersection. In mathematics, a set

operation, for example, union, is the set of all elements belonging to either or both of the

original sets. A relation is a set, very loosely speaking, a set of tuples. It is therefore possible

to construct the union of two relations. The possible result could be a set consisting of all

tuples appearing in either or both of original relations. This result, although, is a set, it is not

a relation as relations can not contain a mixture of different kinds of tuples, they must be

tuple-homogeneous. However, we do want the result to be a relation as we want to reserve

the closure property. Therefore, the union in our algebra does not conform completely to the

generally accepted notation of mathematical union, rather, it is a special forin. of union, in

which the two input relations should be what we might loosely call "the same shape" or

46same type", i. e., both must have the same attributes and methods. If the two relations are the

same shape in this sense, then we can perform a union, and the result will also be a relation

of the same shape. In other words, the closure property will be preserved. The term type-

compatibility is often used to refer to "same shape" concept [Date, 19961. Here we define

this concept in terms of our temporal object oriented model.

Chapter 5 An Algebra for the Temporal Object Data Model 113

Definition Type-compatibility

Two relations are type-compatible if

1) they have the same set of attribute names and method names;

2) the corresponding attributes (i. e., attributes with the same name in the two relations)

are defined on the same domain.

Now we are ready to define set operators as below and illustration of set operations is given

in Figure 5.3.

Two type-compatible temporal object sets 01 and02

Operated sets

L2

01 02

Resulting sets
in

OlUO2 01-02 02-01 01(')02

Figure 5.3 Illustration of set operations

Chapter 5 An Algebra for the Temporal Object Data Model 114

If 01,02are type-compatible temporal object sets, then the sets operators Union, Intersection

and Difference, are identical to Codd! s corresponding relational operators [Codd, 1971; 1972]:

Union 03=OluO2=(o lo
EO, vo eO2j where L(03)=L(OduL(02)

Difference 03=01-02=(o lo
cOl A--o eO2) where L(03)=L(Od-L(02)

Intmecdon 03=OjnO2=fo1oeOjAoeO2) where L(03) =L(OdnL(O)

As in relational algebra, the duplication in the resulting set is eliminated following the

temporal unary set operation rules.

5.5.3 Special Operations

Select up 0 selects the elements "o " of set 0 such as the predicate P(o, t) holds.

OPO =
1010 E=- 0A P(O, t))

Selected oýjects
IIS

III

!! t'
_________ Ii

' ii I'

\ ///\ .

(a) (b)

Figure 5.4 Mustration of operator select

Select is a hybrid operation, reducing a class (relation) in both the value and the temporal

dimension as shown in Figure 5.4. If the predicate does not refer to time, it then merely

Chapter 5 An Algebra for the Temporal Object Data Model 115

reduces the class along the value dimension as shown in Figure 5.4 (b). Note that although

the predicate P(6, t) may involve the association of aggregation hierarchy, the query target

class is only at 0. For example, for upWOODPAAEL, the predicate P may involve

aggregation class RANALYEST or SUPPORT, but the target of query is WOODPAAEL, i. e.,

the query output only gives the objects of this class and the values of attribute Reinforcement

or Panelfest are OlDs instead of objects of relation PANMEST or SUPPORT

Map g. -Ol -> 02. For the type of objects in 01 (i. e., oE=- 01), g retums an object of type of 02

(i. e., g(o)E=-
02).

g- 01 --> 02 = (g(O) 10 E=- 01)

Map provides a capability of mapping between different types. For example, the column

PanelTest of the relation WOODPAAEL only gives the value of OID of objects in the relation

PAAELTEST, if we want to return the objects of PANALTEST, Map g. -PanelTesf

PAAEUEST will do the work.

Project ; r<A,,..., 4, >O extends Map by allowing the application of many functions to an

- 1-. object, thus supporting the creation and maintenance of selected relationships between

- 1-. objects.

Selected objects

Figure 5.5 Illustration of operator project

Chapter 5 An Algebra for the Temporal Object Data Model 116

7r Al".., At >0= ý< Ai: gi(o)�... Ai: gi(o) > lo cz

where 0 is of type set [T], the Ai 's are unique attribute names, and each gi takes a single
input of type T and returns an object of type T. g,... gi are similar to g in map . If gi = 1, it

returns OID of the domain ob ect of Ai unless Ai is atomic. We retain gi =1 (unless it is j

specified not) so that we keep our project operator on a set of objects (relation) like the

relational project. Therefore the project operator, when applied to class (relation) 0, removes
from 0 all but a specified set of attributes. As such it reduces a relation along the attribute
dimension. For example, Projecor<panelTest> WOODPAAEL will return OlDs of objects of

the relation PAAEUEST Project 7r<Humidyty>PAAEL7EST will return a sequence of

hun-fidity values with timestamps.

7"Ime-slice ýL, 1(0) defines the relation (set of objects) containing those objects derived by

restricting each object in the operand relation to those times specified by L,

4, (0) =
ýJVt

E: -: (Li r-) L(o))[o(t) e 0])

Selected objects

1ý1

Figure 5.6 Illustration of operator time-slice

Obviously the lifespan of ýL, (Q) is Lr-L(Q). So the time-slice reduces the relation solely

along the temporal dimension. If L, equals to a time point t,, i. e., T, =t,, then ýJO)

Chapter 5 An Algebra for the Temporal Object Data Model 117

represents the event o(td happened at t,. For example, ýL]
=[20,21] (Humidity) will return a set of

attribute values of humidity, for each object there are two values: one at time 20, another at
time 2 1.

Offset KO, 1) (-Lslffls77 a snapshot relation at tj by the number of positions specified by the

offset.

, V(O(ti), 1) = 0(ti + 1)

For example, OffSet ALI
=[20,21](Humidity),

20) will return a set of attribute values of humidity,

for each object there are two values: one at time 40 (=20+20), another at time 41(=21+20).

-1+1
t,

Figure 5.7 Elustration of operator offset

nenw(O) defines an operator that maps a relation (set of objects) 0 to its temporal set:

ZU(O) =:

The result of when is a time value; it can serve as a parameter or a predicate to those

operators, Eke time-slice, etc. An example has been given in Section 5.2, and Figure 5.8

Mustrates the operation effect.

Chapter 5 An Algebra for the Temporal Object Data Model 118

Figure 5.8 Illustration of operator when

Operated
relations

01 (Ai) 02 (A2)

Join:

Resulting
relation

03 (A,, AD

Figure 5.9 Elustration of operatorjoin

JOin 01
ý> "I P<A ol, Ao2 >

02 is an explicit join operator used to create relationships between

objects from two collections in the databases. Unlike relational joins, in which the domains

of the join attributes must be identical, we require the join attribute to only be compatible

[Kim, 1989]. Two attributes Ai and Aj are compatible, if the value domain and the temporal

domain of Ai are identical to those of Aj (or a superclass or subclass of the domain of Aj).

tstart tend

Chapter 5 An Algebra for the Temporal Object Data Model 119

Shaflow-equality could express this compatibility. Although join attributes are compatible,
they have different OIUDs. So the join we defined is essentially a 0-join as in relational
algebra.

01 J>'IP<A ol, Ao2 > 02=[<A, l: ol, Ao2: 02>
1

01 Eý- 01 A 02 Ei 02AP(O1,02)J

Unned(ýtKQ)- Suppose a relation (class) 01 has the scheme <&..., An > -",: <01(1),
-,

ol(n)> and the schema of ol(k) (i. e., <mAk>) be <Ak- I)
.... Ak-M>, T! ýk<-n, then UnnestT is

defined as

02 ýtKOI

-": 102102(0ý01(i)for I<i:! ýk-]A 02(i)=: Ol(i+])for k<-i-<n-I

A 02(i)=Ak(i-n+])for n! ýi! <an+m-1j

NestT(uyO). Let the relation (class) 01 have the scheme <&..., A, > =<oj(I), ... ' ol(n)>,

y=[ij, i2,
...,

Q is a subset of [1,2, ..., nj, and x=(I, 2, ..., n-yj. NestT has the scheme of <BJ,

...,
Bn-k+J > =<02(l), --., 02(n-k+])>, where o2(j)=oj(r) for Pýjý<ý: In-k, rex, and02(n-k+]) has

the scheme relation: <Bn-k+].],
---, Bn-k+]. k>. Similar to the unnest operator, the nested

component is placed at the last column of uyO. So NestT is defined as

02=1)y 01==1021 02(j)=ol(r)for Pýj-<n-k, rE=- x

A o2(n-k+])=[z
130 (OC= 01 A o(r)=ol(r)for rE: xA z(j)=o(ij)for P, ý' : J:! ýk)j j

The effects of unnesiTand nestý' are illustrated in Figure 5.10. They provide different ways

(nest or unnest) to represent a temporal relation. Taking an extreme example, the Humidity

value is a temporal object, if it is represented in a nest format, it is one element object; if it

takes unnested format, it is n (n=l (Humidity)) elements object. UnnestTand nestTare not

really necessary in temporal object-oriented database systems, as OODB can always

represent a 'blob' object. The reservation of these two operators is just for the completeness

of algebraic definitions as most temporal relational algebra retains these (e. g., [Clifford et al.,

19931).

Chapter 5 An Algebra for the Temporal Object Data Model 120

UnnestT

Nest'r

Figure 5.10 Elustration of operators unnestT and nestT

Besides the above database operators, we can easily define some aggregate operators.

Suppose Agg-func is one of functions Avg, Min, Max, and Sum, then Agg-juncTI(O) returns

the function value over the specified period T,. Null records in tuples are ignored if there is at

least one non-null record otherwise the output is a null record.

5.6 Query Examples

In this section the applicability of our algebra to more complex data queries is illustrated

through following query examples.

Quely I "Find all the wood panels whose type is 'pine' and was reinforced in form of 'lattice'

by 'oak, glued' ". This query did not involve any temporal aspect. We can treat it like a

constant object query while its lifespan implies the same as the lifespan of temporal objects.

We express this query in the following algebra:

0 wl=(y p, WOODPANEL

to I oc WOODPANEL A WOODPANEL. WoodType=' ine' p

AWOODPANEL. Reinforcement. Fonn ='lattice'

Chapter 5 An Algebra for the Temporal Object Data Model 121

AWOODPANEL. Reinforcement. Material='oak, glued)

For the attributes of Reinforcement and PanelTest, this query only gives the OlDs instead of

all the SUPPORT objects and PANELTEST objects (with sequential images).

QueKy 2 "Decide when the humidity level of above selected wood panel is 30% rh". The

algebra is as

Ot =m(oe 0 wll\o. PanelTest. <Humidity., u> =30 % rh)

Quely 3 "Select the wood panel's PANELTEST whose wood type is'pine'and reinforced in

form of 'lattice' by 'oak, glued', while its humidity level is 30 % rh and grabbed by Camera

1 ". We have the following algebra:

0 W2=7u<WOODPANEL. PanelTest> ((T P, WOODPANEL)

= 71< WOODPANEL. PanelTest> Owl

0
W3 =Map: 0 W2->to

I
oc TESD]

0W4 =a p2(0w3)=(oloE2TESTI A o. <Humidity. u>=30%rhj

Or:
0

W4 = cy p2
(0

w3)=fo
1

oe- TESTIA te 0,1

QueKy 4 "Find the humidity level values of above selected TEST] which appeared during

time Ot". This query involves the temporal reasoning. We apply the following algebra

operators to support this reasoning.

0
W5=TC <TESTI. Humidity> (0 w3)

0
W6 = (yp3 (0

w5)=fo
1 oEHumidity A te 0, j

Chapter 5 An Algebra for the Temporal Object Data Model 122

Or:
0

"": TC <TESTI. Humidity>(O W4) W6'

Query 5 "Get the average humidity level of above selected panel". The corresponding

algebraic expression is :

Agg-juncT, 0 W6=AvgT, =Q,
0 w6

5.7 Properties of Algebra

The algebra defined possesses the following properties:

(1) Closure

The closure property states that output from one operation can become input to another
[Date, 1995]. Our algebra imposes operators on relations (sets of objects) (except when M(o),

we already treat it as a method). The output is also a relation. In this sense our algebra is

closed.

Compared with other object algebra definitions, such as Shaw and Zdonik [1990], Straube

and Ozsu [1990], Cluet and Delobel [1994], and AlhaJ and Arkun [19931, the project

operator integrates map operator, the output is a class hierarchy rooted at target class and is

therefore not a relation (class) any more. The retention of the closure property in our algebra

is through the reservation of gi =I in project operator so that the output of project is also a

relation. The closure property is important when a temporal object query processor is to

exploit the query processing and optimization techniques that are developed and extended

from RDBs techniques.

Note that over two dozen proposals have been made for an object algebra [Ozsu and

Blakeley, 1995], no algebra so far defined is based on any unified model of RDBs and

OODBs, although it has been claimed that an object algebra should extend relational algebra

Chapter 5 An Algebra for the Temporal Object Data Model 123

consistently [Yu and Osborn, 199 1; Shaw and Zdonik, 1990]. Furthen-nore, none of these

object algebras consider the temporal dimension. Our temporal object algebra reflects the

spirit of object algebra [Shaw and Zdonik, 1990; Straube and Ozsu, 1990; Cluet and Delobel,

1994; AlhaJ and Arkun, 19931, but in addition to supporting access through aggregation and

inheritance associations, it also accesses objects through the time dimension. These access

mechanisms are embodied in the enhanced nested predicates and (nested) temporal

predicates.

(2) Reducibility

The algebra defined possesses the property of reducibility. By the reducibility, we mean

that, when the time dimension is not taken into account the temporal object algebra will

be reduced to the object algebra and when the object-oriented features of aggregation

and inheritance are not taken into consideration, the algebra will be reduced to the

relational algebra.

The reducibility of algebra provides good foundation to build up a temporal object

query optimizer that is extended from object optirMzer and relation optiryuizer, and to

extend the existing query processing strategy and techniques to process temporal object

queries, which will be discussed in more detail in the later chapters.

(3) Grouped completeness

As mentioned in previous chapters, temporal data models are classified into two categories:

temporally ungrouped and temporally grouped. Models which employ tuple-time-stamping

are termed temporally ungrouped whereas models that employ complex attribute values

bearing the temporal dimension are termed temporally grouped [Pissinou et al., 1994].

While the expressive power of ungrouped completeness was generally accepted as a

desirable property for TSQL, there were considerable concerns on grouped complete

[Pissinou et al., 1994]. By grouped completeness, we mean that the model supports the

rather strong notion of the "history of an attribute". For example, one can talk about "Panel

#1's humidity history" as a single object, and ask to see it, or define constraints over it, etc. In

Chapter 5 An Algebra for the Temporal Object Data Model 124

temporal RDBs, as stated in [Clifford et al., 1993; Pissinou et al., 1994], there is no algebra

that has been shown to be grouped complete. In our temporal object data model, every object
is associated with an OID. If every OID is maintained in a database (in some data models,

primitive entities such as integers, or characters, are represented by values and have no OID

associated with; our temporal object is represented by a time sequence, which is not a

primitive data), then our algebra will be grouped complete.

5.8 Summary

In this chapter, we have defined an algebra, i. e., a collection of operations, for our temporal

object data model. The adaptation of the unified model of RDB and OODB by the addition

of a time dimension to form the relational-like cubes that allow aggregation and inheritance

associations, provides a basis to develop the temporal object algebra that extends a

(temporal) relational and object algebra. The temporal object algebra defined retains the

closure property of relational algebra. It also possesses the property of reducibility.

Furthermore, the grouped completeness of the algebra can also be maintained.

The basic algebraic operators are summarised in Table 5.1.

The fundamental intent of the algebra is to allow the writing of expression representing user's

queries. In general, algebraic expressions serve as a high-level and symbolic representation

of user's intent. Because they are high-level and symbolic, they can be manipulated

according to a variety of high-level, symbolic transformation rules. The algebra can then

serve as a convenient basis for query processing and optimization. This will be discussed in

the next chapters.

Chapter 5 An Algebra for the Temporal Object Data Model 125

Table 5.1 Summary of algebraic operators
Operations Definition Notes

O(TI)Time-insert O(T2) O3=f0 1 0C= 0) O(Tl)c: O, O(T 2)g 0

where L(03)=T1ýJ1`2

O(f I)Time-delete O(T2) 03=(O 1 OE= 01 OUDE-0, O(T 2)9: 0

where L(03)=Tl -T2

Difference 01-02 03--01--02=(O 1 C`Eý 01 A-, OE 02) Oi is a collection.

where L(O3)=L(O1)-L(O2) L(Oi) is the life-span of Oi.

Union 01ý_ý 03--Olk-)02=10 I 0E=_ O1v0E 02)

where L(03)=L(01)uL(O2)

Intersection O1r)O2 03=01(-ý02=(C` 1 0E=_ 01 AOc 021

where L(O3)=L(O1)r-)L(O2)

Select up 0 OP 0--10 10E0
AP(Ot)) cip 0 selects the elements "o" of set 0 such as

the predicate P(o, t) holds.

Map g0l-402 9: O1->O2=fg(0) 1 OE 01) For the type of objects in 01 (i. e., oE=- 01), g

returns an object of type of 02 i. e., g(o)E=- 02).

Project TE<Al,..., Ai>O 7E<Al,..., Ai> 0 If gi=1 it returns the OID of the domain object

=(<Al: gl (o),..., Ai: gi(o)> I oc 0) of Ai unless Ai is atorrýic. We retain gi= I so that

the project on a set of objects (relation) likes the

relational project.

join 01>-, 1p<A. i, Ao2> 02=(<Ao1: o1, Ao2: o2> Essentially a 0-join as in relational algebra.
01 >. I p< Aoi, Ao2 > 02

1o1(=-01Ao2e02AP(o1,02))

Time-slice §Tl(O) §Tl(O)=Jo I Vtc (Tlr-)L(o)) [o(t)E 01) The fife-span of §Tl (0) is Tl rLýo). Time-slice

purely reduces the relation along the temporal

dimension. If Tl equals to a time point tl, i. e.,

Tl=tl, then §-rl(O) represents an event o(tl)

happened at tl.

Offset ý (0,1) (041), I)= O(t1+l) "Shifts" a snapshot relation at tj by the number

of positions specified by the offset 1.

When M(O) M(O)=L(O) Maps a set of objects 0 to its temporal set.

Aggregation Agg-func TI(O), where

Agg-func Tl(O) func--(Avg, Min, Max, Sum, etc.) Returns the function value over TI.

Chapter 6

A Uniform Framework
a for Processing Temporal Object Queries*

This chapter presents a uniform framework for processing temporal queries. Within the

uniform framework a set of transformation rules are specifledfor the algebraic optimization.
Based on these transformation rules, a decomposition strategy is proposed for evaluating

the queries that involve a path with time-reference.

6.1 Introduction

Our temporal data model, as shown in Figure 6.1, extends the unified model of RDB

and OODB by adding a time-dimension, whilst the unified model itself refines the

relational model by incorporating three important object-oriented features: nested

relation, inheritance and encapsulation. The algebra of the model possesses the property of

reducibility. That is, when the time-dimension is not taken into account, the algebra is

reduced to the ob ect algebra and when object-oriented features are not taken into j

consideration, it is reduced to the relational algebra. Further, the algebra is closed, so that the

output of one operation can be the input of another. These features provide us with a basis

for using existing relational and object-oriented query processing techniques to process

temporal object queries. In this chapter we explore an extensible approach to processing

temporal queries that exploits the widely adopted existing object query processing

techniques and the well established relational query processing techniques. In particular,

we will identify a set of query transformation rules for algebraic optimization within this

uniform query processing framework. With a view to addressing the central issue of

path optimization in object query processing when time is present, a decomposition

* The work in this chapter has been presented in the paper 3 and 4 listed in Author's Publications.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 127

strategy is proposed to process the temporal query involves a path with time-reference,

based on the identified transformation rules. The detail of processing the decomposed

query components will be discussed in the next chapter.

The rest of chapter is organised as follows. The layered structure of query optimizer is

presented in Section 6.2. Query transformation is discussed in Section 6.3. A

decomposition strategy for query evaluation is described in Section 6.4 and Section 6.5

provides a summary of the chapter.

RDB

10 0DB:
F niSQL

(a) (b)

(C)

Figure 6.1 Data model extensibility:
(a) UniSQL is extended from RDB model;
(b) Most TDBs are in the context of RDB;
(c) Adding a time-dimension into UniSQL forms a TOODB model

Chapter 6A Uniform Framework for Processing Temporal Object Queries 128

6.2 Optimizer Layering

Our optimizer can be seen to be a layered structure as shown in Figure 6.2, where the

temporal optimizer is built on the top of an object optimizer that in turn, is founded on a

relational optimizer. When the time dimension does not exist, the object optimizer plays

the key role. As the object optimizer is extended from the relational optimizer, when the

object-oriented features are removed from the data model, the relational optimizer

comes into play. The separation of query processor functionality in this way makes it

easy to exploit existing query processing techniques at the appropriate layer during both

algebraic and non-algebraic optimization stages as can be seen from the discussion

hereafter. In summary, temporal queries can be processed and optimized within the

existing object-oriented query processing framework through a smooth extension of

existing query processing techniques.

I*

Tenpaal cptimizer
Oject Tfinizer
Relational cpfiniizer

Figure 6.2 Optimizer layering:

separation of query processing functionality

Chapter 6A Uniform Framework for Processing Temporal Object Queries 129

6.3 Query Transformations

Query optimization concerns the problem of selecting an efficient query plan for a query
from the set of all its possible query plans. The size of the search space of equivalent
query plans for a snapshot queryt is determined in part by the algebraic equivalence

available in the snapshot algebra as each query has a number of equivalent expressions,

which make up the search space. These expressions are equivalent in terms of the results
they generate but may be quite different in terms of their costs. The query optimizer

modifies the query expressions, by means of algebraic transformation rules, in an

attempt to obtain one that generates the same result with the lowest possible cost.
Therefore the algebraic manipulation for query optimization is the transformation of one

query into an equivalent query that might be more efficient to evaluate.

The algebraic manipulation for query optimization in a temporal object-oriented
database follows the same principle as above, but the time dimension needs to be taken

into consideration where applicable. In principle, as the temporal object is represented

as a time sequence that can be thought of as the equivalence of a 'blob' object, the

transformation rules in the snapshot object algebraic optimization can be carried over.

Also, as our temporal algebra is consistently extended from relational algebra, the

relational algebraic transformation rules can also apply. But, the algebraic optimization

has to take object-oriented features and the time dimension into account, that results in a

set of query transformation rules that are not only relation rules. In this section, we

specify the following transformation rules that can be applied during optimization to

generate equivalent query expression. Taking into account the object-oriented features,

and the time dimension, these rules are characterised as relational rules, temporal rules,

inheritance rules and path transformation rules, and are discussed below.

t In this thesis, a data model that does not concern the time dimension is referred as a snapshot data model
and its corresponding database is referred as a snapshot database. A query to such a snapshot database is
called a snapshot query. Similarly the algebra for a snapshot data model is called a snapshot algebra.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 130

6.3.1 Relational Rules

The following rules are called relational rules as they are derived from well-known

algebraic optimization techniques in RDBs [Desai, 1990; Ullman, 1989; Jarke and

Koch, 1984] and can be applied to the situations where the object-oriented features and

time dimension are not taken into consideration. These rules are based on basic

algebraic laws of idempotence, commutativity, associativity and distributivity [Desal,

1990], which have been previously presented in Chapter 3. These basic laws can be

incorporated in the basic rules discussed below, which can be applied during algebraic

optimization to generate equivalent query expressions. The effects of the transformation

rules are either to avoid redundant creation and manipulation of intermediate results, or

to reduce the size of the intermediate result relations.

In the following, we suppose PI, ..., Pi ... are predicates, A, & ..., Ai ... are sets of

attributes, and C1, ..., Ci ... are classes /tables.

(1) Combine a cascade of selects.

Cy P1
(Cy

P2
(Cl P2

(Cy
PI

(Cd) P2A PI(CI) (1)

Rule (1) means that if the predicates P, and P2 are only involved in the attributes of C1,

they can be evaluated at the same time.

Example 6.1 Consider the database schema in Figure 4.5, for the query "Get the details

of WOODPANEL with Panel# =40 where the WoodType is 4pine' ", the algebra can be

expressed as:

CF Panel#=40
((T

WoodType=pine' (WOODPANEL))

which is equivalent to:

Chapter 6A Uniform Framework for Processing Temporal Object Queries 131

(y Panel#=40 A WoodType=pine' (WOODPANEL)

The latter expression can be evaluated by testing for the predicate

Panel#=40AWoodType='Pine'

against each tuple of relation WOODPANEL.

(2) Combine a union of selects.

Cy PI
(CI)

P2
(CI)

Plv P2(CI)

clua P, (C]) -= C,

(2-])

(2-2)

Obviously, the right side expressions of equation (2-1) and (2-2) have simplified the left

side expressions.

(3) Combine a cascade of project into a single project.

TC Ai
(TC Aj

Cl)-= IC AiC where Ai gAýj

Example 6.2 Consider the query against the database schema in Figure 4.5:

7C Panel#
OC

Panel#, WoodType (WOODPANEL))

This query can be simplified as

TC Panel# (WOODPANEL)

avoiding a redundant project.

(3)

(4) Commute select and project.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 132

Cy P OC A (C))- (4-1) = TC A (CYP (Q)

and
TC A (GP (0)

- CF P (TC A (0) (4-2)

This rule provides an equivalent expression. Depending on the applicable situation,

either the project or the select can be performed first. However, if P involved attributes

Ai cý A, then when commuting project with select we have to use the following

equivalence:

RA (C7P (0) --': TC A Cy P
(TC

AuAi
(0) (4-3)

Or the select has to be performed first.

(5) Use associative and commutative laws for joins and Cartesian products.

R><S=-S>. <R (5)

R >. ýi S >. < T -= R >< (S >-i T) -= (R >-I S) >. < T -= (T >. < S) >. < R

R *S =- S *R

R *S *T =- R *(S *T) =- (R *S) *T= (R*T) *S =

The order of the join and product is very important as it can substantially affect the size

of the intennediate relations and, therefore, the total cost of generating the result

re ation.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 133

(6) Perform select before ajoin or Cartesian product.

Consider (yc(R><S). If the attributes involved in the predicates P are in the scheme of

C, and not in C2, that is, attr(P) c C, and attr(P)o C2, then

(YP (Cl > "ý C2) (YP(Cd C2 (6-])

If the attributes involved in the predicate P are in the scheme of C, but not in C2, i. e.,

attr(P) E=- C2 and attr(P)o Cl, then

GP (Cl > "; ý C2) Cl > ": ý C7P W2) (6-2)

If the attributes involved in the predicate P are in the same scheme of C, and C2, i. e.,

attr(P)c C, and attr(P)c C2, then

CYP (C
I

C2)
-=(YP

(C
1) 16-'* `ý CFP (C2) (6-3)

If P=P 1\P2 and the attributes involved in the predicate P, are from C1, i. e., attr(PI)E

C1, and the attributes involved in the predicate P2 are from C2, i. e., attr(P2)EE C2, then

(TP (C
I

C2)
--: (YPI (C

1) 10* "* GP2 (C2) (6-4)

lf P=p]Ap2AP3 and the attributes involved in the predicateP2 are only in C1, i. e.,

attr(P2) E=- C, Aattr(P2) 0 C2, the attributes involved in the predicateP3 are only in C2,

* Note that when we talk about relational rules, it is assumed that the object-oriented and temporal features
are not taken into account. Otherwise these rules may not apply. For example, if the predicate P involves a
path, then it may take longer time to evaluate select than join. In this case, rule (6) may not apply.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 134

i. e., attr(P3) (=- C2 Aattr(p) 0 CI, and the attributes involved in the predicate P, are in

C, and C21 then

CYP (Cl C2)
- ýCYPI (CYP2(Cd

Ir"' ̀ ý CFP3 (c2)) (6-4)

The above equivalencies also apply when the Cartesian product operation is substituted
for the join.

It is possible to combine projects with a binary operation that precedes or follows it.
Only the attributes values specified in the project need to be retained. The remaining

ones can be eliminated as we evaluate the binary operation.

Perform a modified project before a join.

Note that when a project operation is preceded by a join, it is possible to push the

project down before the join, but the project requires new attributes. This necessitates

performing the original project after join. However, unless the cardinalities of

intermediate relations are reduced, which would reduce the cost of the join operation

and the subsequent size of the joined relation, the usefulness of pushing a project before

ajoin is questionable.

A(7CAI(CdIý--: ýTCA2(C2)) 7C A (C I C2) --7r (7)

where A, = Clr-)(AuC2) and A2= C2n(AuC,), and Cl, C2 represent the set of attributes

in these relation schemes. When A =- CuC2-Clr)C2, there is no improvement because

A, =- C, and A2- = C2-

(8) Commuting project with a Cartesian product.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 135

Consider the expression 'KA (CI *C2). This expression can be replaced by the following

equivalent one under these conditions: A, is the set of attributes in A that is in the

scheme of Cl, and A2is the set of attributes in A that is in the scheme of C2.

IU A
(C] *C2) : --- TU AI

(CI) *7U
A2(c2)

Commuting project with a union.

(8)

Consider the expression TcA(C1uC2). It can be substituted by the equivalent one given

below provided the relations C, and C2 are compatible. In other words, they are defined

on similar relation schemes. Dissimilarities in the names of attributes could be handled

by appropriate renaming.

TCA(CIUC2) = TC A
(Cd U7C A

W2)

(10) Commute select with a union.

(9)

Again, the relations C, and C2must be compatible and any difference in names of the

attributes could be handled by appropriate renaming.

CYP(Cl U C2) -"ý ý5P(Cd UCYP(C2)

(11) Commute select with a difference.

(10)

As in rules (9) and (10) above, relations C, and C2must be compatible and renaming

would resolve any differences in the names of the attributes.

(TP(Cl-c2) - (YP(CI) -(YP(C2)
(11)

Chapter 6A Uniform Framework for Processing Temporal Object Queries 136

We could replace the relations C1, C2, etc. in each of the above rules by a relational

expression. Note that the difference operation is not commutative.

Finally the query processor can use the knowledge of the relation schemes and
functional dependencies to find additional equivalent forms for a query expression. The
following example illustrates this.

Example 6.3 Given CI(Aj, A2, A3) andC2(A3, A4, A5, ...), where Ai is a set of attributes,

the query TcA,
=,,,

(C, >< C2) can be replaced by (TcA,
=,,

Cl)>< C2and the query (T A3 A4(C2)

> <(TA4 A5(C2) is equivalent to(TA3
A4 A5((79)'

6.3.2 Temporal Transformation Rules

When the time-dimension is taken into consideration, the following transformation rules

play roles that are called temporal transformation rules§.

(12) Perform time-slice before select.

time-slicep (cy p,
(CI)) =- (T p,

(time-sliceTI Cl) (12)

As is the case for most relational databases, we assume that the data of a relation/class

are stored tuple by tuple instead of column by column. For a temporal relation/class, the

effect of time on a temporal object is to generate multiple versions of the same tuple

fields. For a temporal object in a temporal relation/class, multiple versions of the same

tuple fields can be assumed to be stored together in a disk space (physical blocks),

unless it is stated that it has been partitioned (that is usually only considered during

query evaluation stage). The exact cost of time-slice depends on the implementation,

but, at least we can assume that only data ranged over T, are retrieved for time-sliceTI.

ý Although the actual physical data structure is not usually considered during algebraic manipulation, we
will generally assume that the data of a relation/class are stored tuple by tuple instead of column by

Chapter 6A Uniform Framework for Processing Temporal Object Queries 137

Therefore, doing time-slice first will avoid reading out all data during execution stage

and therefore saves the corresponding cost. It is especially the case when a temporal

object occupies more than one page or block in disk, so only the pages/blocks that

contain the requested data are retrieved from the disk (not the whole temporal object).
This is one of the features that distinguishes temporal and object-oriented query

processing from traditional relational query processing: i. e., the query transformation

can not always take place at a logical level; the costs related to physical data storage
have to be taken into consideration sometimes. That is why query processing in

temporal or object-oriented databases can not completely separate query transformation

from query evaluation [Leung and Muntz, 1993; Blakeley et al., 1993; Seshadri et al.,
1996; Cluet and Delobel, 1992; Ozkan et al., 1995], and some even merge these two

into one, as mentioned in [Ozsu and Blayeley, 1995].

Unless the predicate P is involved in the range outside TI, the time-slice can always be

perfonned before select.

Example 6.4 Consider the database schema in Figure 4.4, list TESTINFO in July

whose maximum top temperature during July is higher than 350 C. This query can be

expressed as:

time-sliceT, ((T p, (TESTINFO)) =-= (7 Pl=(TopTemperature>=35) (time-sliceT,
=july

TESTINFO)

If the database keeps a one-year record, doing the right side of above equation only

needs to retrieve a one-month record for each instance of TESTINFO from the disk. The

instance of TESTINFO is listed, if the predicate is satisfied. Note that the predicate in

the example also specifies the range of time that can be incorporated into the range of

time-slice. There is obviously no need to retrieve a one-year record to check if the

predicate is satisfied.

column, the former being the case for most relational databases. For a temporal relation/class, the effect of
time on a temporal object is to generate multiple versions of the same tuple fields.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 138

(13) Perform time-slice before project.

time-sliceT] OU Ai (C 1)):
-: TC Ai (time-sliceT] CI) (13)

Like Rule (12), doing time-slice first reduces query cost as a smaller range of each

temporal object (time sequence) is accessed.

(14) Perform offset before project.

! -- TC Ai (offset, offset, OC
Ai

(C])- (14)

Depending on the organisation of storage, if executing offset first will avoid the need to

examine all data or reduce the duplicate operations, it is performed before project.

Example 6.5 Consider Example 6.4. If the listed TESTINFO in that example is

TESTINFO-1, then the query "list TESTINFO-l's TopTemperature in October that is

three months later than July" can be expressed as:

offset, (R
Ai (TESTINFO-l)=-= 7C Ai=TopTemperature (offset, TESTINFO_l)

However, doing project first does not answer the query, so when the October's record is

retrieved, it has to do project again to answer the query. Therefore it is better to perform

offset before project.

Commute agg-func and project.

TC Ai (agg-funCTI C,) =- agg-funcT,
OC Ai (Cl)) (15)

If executing agg-funCTI could greatly reduce the need to examine all data (i. e., T, is

much smaller than the lifespan of CI) or the degree0f OC
Ai

(CI)) is close to that of C1,

agg-funcT, should be performed before project; if T, covers almost the range of lifespan

Chapter 6A Uniform Framework for Processing Temporal Object Queries 139

of C1, perforining project first will reduce the unnecessary calculation on the results of

agg-funcT,.

Rules (12)-(15) can be incorporated into Rules (l)-(1 1) whenever applicable. It is also a

good heuristic to push select, project and time-slice as far down the query graph as

possible, especially to perform the time-slice as early as possible.

It has been identified that some transformations are incorrect [Seshadri et al., 1994]:

A select can not be pushed through an aggregate (i. e., agg-funcT,) operator or

offset operator.

Example 6.6 Consider Example 6.4. If the listed TESTINFO in that example is

TESTINFO-1, the query "select TESTINFO-l whose average top temperature in July is

greater than 300" can be expressed as:

(7 p, (TESTINFO-1) =-- G Pl=(agg-agv (T] =July)(TopTemperature)=30) (TESTINFO-1)

For this query, the select can not be performed before agg-agv ti=j. iy, Instead, agg-agv is

performed first and the result of this operation then participates in the predicate

evaluation for the select.

Example 6.7 The query "select TESTINFO-1 whose top temperature on the first of July

is the same as that on the last day of July" can be expressed as:

p, (TESTINFO-1) ---= G PI =(TopTemperature(l) =offset (31)(TopTemperature(l)) (TESTINFO-1)

For this query, offset has to be performed before select.

0 An agg-funcT, operator can not be pushed through an offset operator and vice

versa.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 140

Example 6.8 Consider

agg-aV9 TI=August (offset 1=one month
(TESTINFO-1)

Obviously, both offset and agg-func have specified the range of time, and agg-avgT,

returns a value of the function, not a temporal object. Therefore offset and agg-func

cannot be commuted.

6.3.3 Inheritance Rules

One particularly important difference between defining transformation rules for

relational systems and for object-oriented systems, is that relational query expressions

are defined on flat relations whereas object queries are defined on classes that have

inheritance relationships amongst them. The transformation rules that take into account

such inheritance relationships are called inheritance rules.

Suppose C2 is subclass of C1, i. e., an is-a relationship between C2 and C, holds. C2 is

more specific in the sense that it has more attributes than C, has. Apart from the

attributes inherited from CI, it has its own attributes. Taking account this relationship,

the following rules apply:

TCAI (CIUC2)= 7CA I
Cl

where C2 is subclass of C, and A, E=- C,

TC AI
(CFP(C])UCYP (CA TC A]

(CFP(Cl))

(16)

where C2 is subclass of C, and A, c C, and attr(P) E-= C, (17)

Rules (16)-(17) can be used to simplify the expression.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 141

Example 6.9 Consider the database schema in Figure 4.4. For the query "find the

names of cities and capitals whose first letter is 'A' ", we have the following equivalent

expressions. Obviously, the expression on the right of the equation eliminates an

unnecessary operation.

Name
(0

Name= 'A *'(CITY)UCYName='A*' (CAPITAL)) -
= TU Name

(CFP(CITY))

6.3.4 Path Transformation Rules

Object-oriented databases significantly reduce the need for ajoin. Responding to user queries

frequently involves the execution of selects rather than joins. The select operation allows its

predicate to apply to a contiguous sequence of attributes along a branch of the class-

aggregation hierarchy. The path expression is used to represent this sort of predicate. In the

definition of our algebra, we have extended the select operator by allowing its predicate to

apply to a contiguous sequence of attributes along both the aggregation hierarchy and time-

dimension, and the enhanced path expression has been defined for this purpose. These have

been fully discussed in Chapter 5. As in most object-oriented databases [Demuth et al.,

1994], the select is the most powerful operator in temporal object-oriented databases.

The class-aggregation hierarchy holds an attribute/domain link between a neighboured pair

of classes. The attribute/domain link between this pair of classes, e. g., Ci-I and Ci, is

effectively the join of these classes, in which the attribute A i-I of the class Ci and identifier

OID, which is defined by the system and can be considered as an attribute of class G_I, are

join attributes [Bertino and Martino, 1993]. Therefore, an object query with a path

expression involving N classes CI, C2, ..., Q, is equivalent to a relational query, which

requires joining N relations corresponding to N classes. That is why the select operator is

often called an implicitjoin. According to the definition of our algebra, when the predicate

of the select operator involves a path expression (denoted as CI. AI. A2 A, TM op value),

it is equivalent to a series of joins, i. e.,

Chapter 6A Uniform Framework for Processing Temporal Object Queries 142

a
Ci. Ai. A2 AnTM op -0

(CI) = TC A(Ci)
(Cl >< p

TC A2
(C2) ><p... >. < p

(Y An opu
(Cn))

HereTm indicates that the path is an enhanced path involving a time dimension. We use ><'
to represent the join that is more restricted than the join defined in our algebra in that the
join attributes are the attribute Ai-I of the class Ci-I and identifier OID of Ci, which is defined

by the system and can be considered as an attribute of class Ci, if we join Ci-I and Ci. The

project (i. e., n) in the right side of equation specifies the query target.

If there is a complex predicate involving a single path such as

P= CI. AlOP VI A C). Al. A2 op v2 ... A O. Al. A2
... An 'Mop

vn

=PI AP2 A Pn

then we have a general form

CY
P(CI. Aj. A2

....
AnM)

(Cl) = 71 A(Cl)(CTA
cl ><p n A2ýP2(Cý) ><p ... ý>j CY A

(Cn))

where Pi is optional in that it can be omitted if it does not exist, although P, which involves

both time and value dimensions of the last class in the class-aggregation hierarchy, must be

specified. The first project specifies the query target.

The purpose of defining path transfon-nation rules is to provide alternative expressions that

might be easier to evaluate during the plan generation step.

The way that a path is visited necessitates a path traversal operator, which allows alternative

ways to execute the path. Whenever applicable, different methods of visiting the path such as

forward traversal, reverse traversal and mixed traversal may apply.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 143

Queries may involve a single path or multiple paths. If we ignore the methods of visiting

classes above, there can be classified two types of path traversal operators: the linear path

traversal operator is for a single path execution whereas the star path traversal operator is for

multiple path execution [Tang et al., 19961. For simplicity in our discussion, only the single

path is considered here".

Definition Linearpath traversal operator

The linear path traversal operator is a navigational operator that executes the implicit join

through a path, denoted as Navi-op[CIA2 A, Tm 1. It is equivalent to a set of joins as in

equation

Navi-op[Ci. Ai, A2 A, ']=(y
pi

Cl >., I p 71 A2
CY

P2
(C2) ><p

...
>. <p G

Pn
(Cn) (20)

According to the query equivalencies (associative law) of the previous subsection, the above

linear path traversal operator can be fim1her rewritten into the following form:

Navi-op[Ci. Ai. A2
....

A, '] =Navi_op[Ci. Al
.....

A, - il >ý<p (y Pn (G)

=Navi-op[Ci. Ai. A2 A, - 1] > . 11
Cn

Cn-i. A=OID(Cn)APn

Thus

G (CI) TE (Navi- op[C,. A Aýl ý> -1 C.) (22)
P(Cj-Ai. A2 AnTM) A(Ci) C,, j. A=OID(Cn)APn

Rules (18)-(22) implies that a select operator with path expressions (i. e., an implicit join) can

be evaluated using different algorithms, such as, translating the query into a sequence of

joins, naive pointer chasing, or subdividing the query into sub-paths that can be evaluated

separately using different strategies or algorithms. This is desirable as it has previously been

** For the situation of multiple paths without a common path, the solution provided here can be applied
directly. For the situation of multiple paths with a common path, the common path will be identified first

to avoid repeatedly visiting the same classes.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 144

shown that converting implicit joins to explicit joins during the optimization phase may yield
better execution plans [Blakeley et al., 1993; Ozsu and Blakeley, 1995; Ozkan at al., 1995]

and that object navigation and set-oriented join should co-exist [Gardarin et al., 1996; Tang

et al., 1996].

6.4 A Decomposition Strategy for Processing Temporal
Object Queries

Path optimization is a central issue in object query processing that distinguishes object-

oriented from relational query processing. When time is present, the enhanced path is used to

express the query involving the path with time-reference. Processing such a query is more
involved than that for a pure object query. In this section, we investigate a strategy to

process such a temporal object query, i. e., a strategy to traverse the enhanced path

expression, within the object-onented query processing framework.

For the sake of simplicity, we suppose the time-reference occurs only at the end of the path
(even if it does not, then additional accesses to the second storage are required. But this

would not significantly add the complexity to the query optirnization). Thus predicate P,

involves both time and value dimensions.

Based on the path transformation rule (22), a path can be divided into a series of sub-

paths and different strategies or algorithms can be used to evaluate the individual sub-

paths. In order to handle the query involving the time-reference and make use of the

ordering information of temporal data for optimization, the evaluation of the enhanced

path can thus be initially decomposed into two parts: one involves a temporal sub-path

(i. e., with time-reference) and another involves an ordinary sub-path (without time-

reference) which can be further decomposed into sub-paths.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 145

D
------ - --------- - --- I)

Figure 6.3 A single path

project

B
Join

z

AC
Navi-op

Q-1

Figure 6.4 An operator graph of the select with a single path
Block A is an ordinary sub-path (without time-stamped classes);
Block B is a temporal sub-path (with time stamped class).

Figure 6.4 gives such an operator graph (OG) of the select operator in equation (23) that

involves a single path as shown in Figure 6.3. An OG is a labelled n-ary tree where the

leaf nodes represent collections of objects, the non-leaf nodes represent operators (e. g.,

navigational operator, join, project, etc.), and the edges represent temporary collections

that can be represented by supporting tables. A support table [Gardarin et al., 1996] can

be regarded as a collection of tuples of qualified object identifiers and attributes. Two

support tables can be joined together if there exists a common supported collection

between them. The execution of an OG follows bottom-up order. The navigational

operator may have more than two children, and starts from the objects in the left most

collection and navigates to the right most collection. Given an OG rooted at node N, the

cost of evaluating a single path can be expressed as [Gardarin et al., 1996; Tang et al.,

1996]:

Chapter 6A Uniform Framework for Processing Temporal Object Queries 146

Cost(OG) = Cost(N) + Cost(Childi)

The decomposition strategy for processing temporal queries can be further illustrated in
Figure 6.5. A complex user query with path expressions that involves time-reference is first

translated into a set of single path expressions. A single path is then divided into two sub-
paths: a sub-path involving time-stamped class that can be optimized by making use of the

ordering infori-nation of data and an ordinary sub-path (without time-stamped class) that can
be further decomposed and traversed using different algorithms. The intermediate results of
traversed two sub-paths are then joined together to create the output query.

related
query I JA collection
path ýýof single

Join " Project

Figure 6.5 Decomposition strategy for processing temporal object queries

For instance, when responding to a user query is represented by the select operator with

the predicate in the form of CI. AI. A2 A, TM op value, the execution of the operator can

take the form of the operator graph shown in Figure 6.4, i. e., first, splitting the single

path into two: P 1: C1. C2 C,
_1 and P2: C,; second, using the navigational operator (or

other algorithms) to traverse PI, and applying time-related operations or evaluating the

temporal predicates while evaluating P2 (the intermediate result of each traversing

creates a support table or a derived class); third, joining two derived classes; finally,

projecting the join outputs to C, to create the output query.

Chapter 6A Uniform Framework for Processing Temporal Object Queries 147

It will be shown in the following chapters that the decomposition strategy provides a
convenient means to exploit the existing query evaluation algorithms to process
temporal object queries and to analyse the effects of time on query processing
algorithms. It provides an opportunity for optimization that makes use of the ordering
information of temporal data.

6.5 Summary

Query processing techniques are dependant upon the data model and query algebra/language.
In this chapter, a uniform query processing framework has been presented for processing
temporal object queries based on our data model and query algebra defined in Chapters 4 and
5. Within the uniform framework, the query processor can be constructed as a layered

structure and its functionality can be separated between the temporal optimizer, object

optimizer and relational optimzer. Thereby an extensible approach can be explored, i. e., the

query processing techniques and strategies of RDBs and OODBs, as well as sequence

processing can be applied or extended at an appropriate layer of the optimizer.

Algebraic optimization for query transformation is carried out within the framework. Taking

into account the object-oriented features and time-reference, various sets of query

transformation rules are specified for algebraic optimization. These are relational rules,

temporal transformation rules, inheritance rules and path transformation rules. Effects of

these transformation rules are either to avoid redundant operations, or to reduce the size of

intermediate results, or to provide an alternative that might be easier to execute. As the range

of time would affect the efficiency of reading the data from the secondary storage, time-

slice, offset should be performed as early as possible. The query transformation rules are

applied to generate an equivalent expression but with the lowest possible cost.

In order to address the central issue of path otimization in object-oriented query processing

when time is present, a strategy of decomposition is proposed for processing temporal

queries that involve the enhanced paths, based on the path transformation rules. An enhanced

path (defined as an extended path with time-references), can be initially divided into two

Chapter 6A Uniform Framework for Processing Temporal Object Queries 148

sub-paths: one involving time-stamped classes and the other an ordinary sub-path (with no

time-stamped class) which can itself be further decomposed. The intermediate results
following traversal of the two sub-paths are then joined together to create the query output.
Execution of the decomposed sub-query components can be optimized by making use of

well-known relational join algorithms, sequence processing and stream processing

techniques which will be discussed in detail in the next chapter.

It has been shown that temporal queries can be processed within an existing object query

processing framework that in turn is extended from a relational query processing
framework, through the smooth extension of existing techniques. The extensible structure

of the temporal data model and the properties of reducibility and closure in our query algebra

provide a basis for this extensible approach. Separation of functionality between the

temporal optiMIzer, the ob ect optimizer and relational optirMzer requires less modification j

to the lower level optirnizer. Existing query processing techniques in both relational and

object-oriented databases as well as sequence processing can be easily applied and extended.

Chapter 7

Algorithms for Processing

Decomposed Query Components*

The last chapter proposed a decomposition strategy to process a temporal object query

involving a path with time-reference. This chapter presents algorithms for processing

the decomposed query components. These include the time-related operation algorithms

and basic join algorithms. These algorithms are implemented with stream processing

techniques and described with cost analysis. Simulation results are also provided.

7.1 Introduction

Path optimization is a central issue in object-oriented databases. When time is present, an

enhanced path is defined to express a query involving a path with time-references. In order to

exploit existing query processing techniques and to make use of the ordering inforination of

time varying data, a decomposition strategy has been proposed for processing such a

temporal object query involving the enhanced path in Chapter 6. This chapter considers the

corresponding query evaluation with the provision of appropriate algorithms.

Block B in Figure 6.4 in Chapter 6 consists of temporal predicate evaluation (as well as

time-series processing) and ajoin, and is re-presented in Figure 7.1. When optimizing such a

query, the object optimizer processes the outer query block, and the temporal optimizer

operates on the nested query block. Each optimizer is responsible for its own query block.

The temporal data provides more opportunities for optimization as discussed in [Pissinou et

al., 1994; Seshedri et al., 1996]. The temporal optimizer is responsible for time-related

. The work in this chapter has been presented in the paper 1,2 and 5 listed in Author's Publications.

Chapter 7 Algorithms for Processing Decomposed Query Components 150

operation and optimization. Let C represent the supporting tables or the intermediate results
of block A of Figure 6.4 (that is a derived ordinary relation), and D represent the
intermediate results of block D of Figure 7.1 (that is a derived temporal relation), as shown
in Figure 7.2. The object optimizerjoins C and D together.

I
D in

B

........................

C:
upport table
f block A

Figure 7.1 Further expression of temporal sub-path

kin

Figure 7.2 Join between C and D

This chapter provides algorithms for both the outer and nested blocks. The algorithms are

implemented with stream processing techniques and described with cost analysis in terms of

major operations such as block accesses, plus, move, comparison, etc., (among these, block

access will dorninate others). The actual cost in seconds will be used in simulation.

The remainder of chapter is organised as follows. Section 7.2 describes storage structures for

query processing. Section 7.3 presents the algorithms for time-related operations. Join

Chapter 7 Algoriffims for Processing Decomposed Query Components 151

algorithms are described in Section 7.4 and modifications of these are included in Section

7.5. Section 7.6 provides algorithm simulation results. Heuristics that makes use of time
infori-nation for optimization will be outlined in Section 7.7 and Section 7.8 offers a

summary.

7.2 Assumptions

Relation D

Object di

Object d,

Object dw

n records
n

"1 Ii
II

I II

Figure 7.3 Data structure for a relation:
A temporal relation consists of nd temporal objects;

A temporal object comprises n records representing n versions of same tuple field.

I st object (L(di), di) Last object (L(did), drid)

jth record of ith block
k records per block

Figure 7.4 A file partitioned into blocks:
n records (history versions) of a temporal object

are stored together on a set of blocks

1

B, B2 B3 Bi Last block of a file

Chapter 7 Algorithms for Processing Decomposed Query Components 152

A temporal relation D (it could be Cý in Figure 7.1 or D in Figure 7.2, depending on the

situation) is stored in a file on disk. The data structure of D is as shown in Figure 7.3, where
D is populated with temporal objects. A temporal object d is viewed as a linked list,

comprising a number of records representing a number of versions of the same tuple field in

a time ascending or descending order. For simplicity, the life-span is uniformly represented

as L(d)=[I, n,], i. e., L(d)=L(D) where I is the start time point and nr is the end time point of

the relation. The timestamps (temporal set) for all objects are the same and the number of

epochs (the number of records/versions) in the temporal object d is IdI=n. If n =nr then d

represents a regular TS. A temporal object can be supposed to be clustered (storing history

versions together on a set of blocks), as shown in Figure 7.4.

We make further assumptions. Collections C and D are stored as separate files on disk.

There is a many-to-one relationship from C to D. The number of objects in C (or D) is

represented as I CI=n, (or IDI=nd). n, (or nd) objects are blocked as b, (or bd) objects/block.

Further, n records of a temporal object d of D are blocked as bn records/block. Obviously, bn

=n* bd. Letfan(C, D) represent the average number of objects of D that are referenced by an

object of C through attribute Ac. No relation is sorted or clustered. The OID is represented by

a physical address of the object. Selectivity of the predicate P0 on the temporal collection D

is treated as the same as that on an ordinary relation, denoted as sel (the complexity of

selectivity of temporal relations is ignored).

7.3 Stream Processing Algorithms for Time-related

Operations

Predicate evaluation in Figure 7.1 involves the time-related operations and value evaluation.

Temporal operations such as time-slice, offset, agg-func can be treated as methods and their

outputs can then participate in the value evaluation. The temporal optimizer must be sure to

4 plan' the evocation of function and to make use of the ordering information for optimization

[Pissinou et al., 19941.

Chapter 7 Algoriffims for Processing Decomposed Query Components 153

We employ the stream processing techniques [Leung and Muntz, 1993; Carrano, 1995].

Stream processing is a paradigm that has been widely studied and used in languages such as

C++, Lisp, etc. Abstractly, a stream is defined as an ordered sequence of data objects. As

temporal data often implies ordering by time, stream processing approach is a strategy of

choice [Leung and Muntz, 1993], so that tuples in a data stream can be efficiently accessed

one at a time and in the order of successive time-stamp values, using the data stream pointer.

7.3.1 Stream Processing Algorithm for Time-slice

Time-slice §Tl(O) presented in Chapter 5, perforrns the operation: for every object d in A

select its records ds whose positions fall in Tl=[nb nj, TIcL(D)=[I, nJ supposing that

there are n records in an object of relation D. To minimise the number of accesses to data,

only records satisfying the above condition are retrieved. Employing the C++ stream

processing technique to implement this operation can fulfil this task. The file stream in

C++ allows a user to treat a file as a stream of input or output. Given a data object, its

size can be decided by using the C++ function sizeof(). When the exact position (i. e.,

the exact address), from which the data object is stored, is determined by C++ function

seekg, the data object can retrieved and the file pointer moves to the next data object.

Given a temporal object d, to retrieve its records ds from time n, and n,,,, we need to find

out its exact Positions corresponding to n, and n,, in the file. We can obtain these by

either sequential or binary search within the scope of the object d to decide the epoch

number n, that is corresponding to time point n,, and the epoch number n,,,,, that is

corresponding to time point n,,,. This can be shown in the following pseudo code of C++:

search (nb nnb nnb nnm);

/* sequential or binary search to find out the epoch number nnl corresponding to time nb

and the epoch number nnm corresponding to time nm */

for (int i=O, - i<nd, - i++) Mor each object di+I, i+]E=- [1, nd], do the following

t
fileD. seekg(i*sizeof(d)+ (nnj -1) *sizeof(ds));

/*seek the address of the first ds, whose time point is n,, that is in T,. */

Chapter 7 Algorithms for Processing Decomposed Query Components 154

fbr(intj=OJ<=nnm -nnl; j++)

tfiIeD. read((char*)&Struc Bu
-

f[j], sizeof (ds));

Buft <Struc-Buf[j]; J

/*sequentially read (nnm -nnl+l) records ds of the object d i+J from the file,

keep them in Stntc-Buf[fl, and output results to Buf that could be a screen, a printer, a buffer,

etc.

I

fi1e2. write((char*)&Bqf, sizeof (Buj)); Pif we want to write the output results to a file */

Although C++ provides stream access that allows access one record/object at a time, the

system actually performs 1/0 at the block level and perhaps hides this fact from the program

[Carrano, 1995]. We follow the assumption [Carrano, 1995] that when the system provides

an access for one record/object, it assesses the entire block that contains the record/object. If

the next record/object is already in the stream accessed, it does not need to access the block

again. Therefore we still can measure 110 access by blocks or pages. For the above

algorithm, the number of block accesses is estimated as:

nd*(nnm -nnl +I)Ibn ý5nd*(nm-nj+l)1b,

plus searching block access cost:

:! ý nlb,, in the case of sequential search [Carrano, 1995];

or :! ý 2*(1092n) in the case of binary search [Carrano, 1995].

As with other database executive algorithm analysis [Shekita and Carey, 1990], the output

cost is ignored here because it does not make a contribution to the algorithm efficiency. (This

will be assumed in the algorithms analysis hereafter too.)

Chapter 7 Algorithms for Processing Decomposed Query Components 155

7.3.2 Stream Processing Aggregation Algorithms

The operator agg-junc T, used to perform the aggregation (such as avg, sum, max, etc.) can
be implemented with stream processing techniques as shown in following pseudo-code of
C++:

search(nb nm nnb nnm);
/* sequential or binary search to find out the epoch number nnl corresponding to time nb
and the epoch number nnm corresponding to time nm */

for (int i=O,, i<nd, - i+ +) /* for each object di+I, i+IC- [1, nd], do the following

t

fileD. seekg(i *sizeof(d) +(nnl - 1) *sizeof(ds)

/* seek the address of the first ds, whose time point is n,, that is in T,

for (intj=O, - j< = nnm-nnl; j+ +)fileD. read((char*)&Struc-Buf[jJ, sizeof (ds));

Psequentially read (nnm -nnl+l) records ds of the object di+1 from the file

and keep them in Struc-Buf[j] */

agg-fiunc(Struc-Buf. itemi, func, value);
/*perform an aggregation ftinctionfunc for a specified attribute (i. e., itern11)
Buft <value; /* output results to Buf that could be a screen, a printer, a buffer, etc.
I

void agg-, func(item, char*func, float value);

int m= nnm-nnl+ 1;

switch (func)

I

case sum:
for (value=O; int i=O, - km; i+ +)

for (int i2=0, -i2<=M(item(i+]))-M(item(i)); i2++) value+=item[i];

/* insert data for missed time points and add them to the value, where G5(item(i)) is our

algebraic operator when that maps item(i) to its time point. For simplicity here we assume that

missed data is of stepwise constant. */

break

Chapter 7 Algoriffm-Ls for Processing Decomposed Query Components 156

case avg:

for (value=O, - int i=O, - i<m; i+ +)

for (int i2=0, - i2<=M(item(i+]))-M(item(i)); i2++) value+=item[i];

value=valuelm;

break;

case max:

for (value=-10ý'; int i=O, - i<m; i++)

if (item[ij>value)

value=item[i];

break

I

fiIe2. write((char*)&Bqf, sizeof (Buj)); /*if we want to write the output results to a file */

In addition to the number of block accesses as in the time-slice algorithm, the following

major operations are needed for Agg-func, if we ignore the time for assignment and when:

nm-nl+l plus for sum;

n,, -nl+l plus and I division for avg;

nm-nl+l comparisons for max;

7.4 Join Algorithms

This section discusses the algorithms to join C and D together. The advantage to represent

them as explicit joins is that we can use well-established join algorithm strategies to perform

optimization. Here a temporal object stands as a "blob" object that can be treated as an

ordinary object in a snapshot OODBs. There are two types of joins to join C and D together:

forward join and reverse join. According to the access methods of traversing the path, i. e.,

Chapter 7 Algorithms for Processing Decomposed Query Components 157

nested-loop method and sort-merge method, there are four basic join algorithms: nested-
loop forward join, sort-merge forward join, nested-loop reverse join and sort-merge

reverse join [Bertino and Martino, 1993]. The following presents these algorithms that are
implemented employing stream processing techniques.

7.4.1 Nested-Loop Forward join (NLFJ)

NLFJ, sometimes called the pointer-based nested-loop algorithm [Shekita and Carey, 1990],

is the algorithm that uses naive pointer traversal to compute the join. An instance c of C is

retrieved and the value of Ac is determined. Given this identifier, the address of the object d

of D is detern-iined. The object d of D is retrieved and the predicate is evaluated. If true, c and

d are joined. This process is repeated until all instances of D are visited. NLFJ can be

expressed using the following pseudo-code C++:

for (int i=0; knc; i++) P for each object c, do the following */

(fiIeCread((char*)&BufC, sizeof(c)); Pread the object c of C*1

fileRseekg(c. Ac);

/* according to the value of the attribute Ac, i. e., the OID of d, locate the address of d of DV

fiIeD. read((char*)&BqfD, sizeof (d)); P read the object d of DV

if (predicate) Buft <(join c and d);

/*if the predicate satisfied, join c and d, and then output results to Buf that could be a screen, a

printer, a buffer, etc.

I

fi1e2. write((char*)&Buf, sizeof (Bqt)); 1*if we want to write the output results to a file. */

For the above algorithm, the number of block access is estimated as

read C: nlb,;

read D: fan(CD) * n, 1bd+ = fan(CD) * n, *n/b, +.

There are

Chapter 7 Algorithms for Processing Decomposed Query Compments 158

fan(C, D) * n, comparisons for predicate evaluation;

sel *fan(C, D) * n, moves (for join).

One of the problems with the pointer-based nested-loop algorithm is that it makes no attempt

to optiMIze disk reads [Shekita and Carey, 1990]. As a result, a particular disk block in D can

end up being read more than once. For example, suppose that two objects c, and c2 reference

the same object d in D. Depending on how C is organised, cl and c2may not be physically

clustered together in C. If that is the case, then between the time when cl is joined to d and

the time when c? is joined to d, the block containing d may be paged out of memory by

buffer replacement algorithm. In that event, that block would have to be read twice, once to

join c, with d and a second time to join c2with d.

7.4.2 Sort-Merge Forward join (SMFJ)

SNMJ, sometimes called the pointer-based sort-merge algorithm [Shekita and Carey, 1990],

avoids the aforementioned problem by first sorting all of the objects in C by the value of Ac

(i. e., the OID of d in D). The effect of sorting C in this manner is to group all of the objects

in C that reference the same page in D. Doing so guarantees that each page in D will be read

only once. The algorithm is executed as follows. All the objects of C are read into memory

and sorted as in the standard sort-merge algorithm, except that here the output runs are sorted

by OID values rather than by the join attribute. According the value of Ac, the address (i. e.,

the OID) of an object d of D is determined so that the object d is retrieved, the predicate is

evaluated and if true, c and d are joined. Repeat this process till all addresses are visited. The

pseudo-code of C++ is

fileC read((char*)&BufC, sizeofi(C)); /* read the whole collection CV

sort C according to Ac;

for (int i=O, - i<nc; i++) Mor each object c of C, do the following

t

fileD. seekg(c. Ac);

/*according to the value of the attribute Ac of c, i. e., the OID of d, locate the address of d of D*1

fiJeD. read((char*)&BqJD, sizeof (d)); /* read the object d of DV

Chapter 7 Algoriffirns for Processing Decomposed Query Components 159

if (predicate) Buft <(join c and d);

/*If the predicate is satisfied, join c and d, and then output results to Buf that could be a screen, a
printer, a buffer, etc.
I

fi1e2. write((char*)&Bqf, sizeof (Bup); /*if we want to write the output results to a file */

For the above algorithm, the number of block access is estimated as

read C: nlb,;

read D: fan(C, D) * n, lbd= fan(C, D) * n, *nl(b,).

There are:

fan(C, D) * n, comparisons for predicate evaluation;

sel*fan(C, D) * n, moves (forjoin);

sorting cost: sorting(nj

When the time-dimension n is big enough such that a temporal object occupies more than

one block, SMFJ will not obviously be better than NLFJ (but at the price of sorting C, and a

bigger memory to hold the whole C).

7.4.3 Nested-Loop Reverse join (NLRJ)

This strategy is similar to NLFJ, except that D is the first class visited. An object d of D is

read into memory and predicate is evaluated. If the predicate is verified, then a search on the

instance c of C is executed to deten-nine which instance has object d as the value of the

attribute Ac. c and d are then joined. This process is repeated until all instances of D are

visited. The pseudo-code for the algorithm is:

for (inti=O, - i<nd, - i++)1* for each object di+1, i+lc=[1, nd], do the following*/

ffileD. read((char*)&BuJD, sizeof (d)); /* read an object di+l of D */

Chapter 7 Algoriffims for Processing Decomposed Query Components 160

if (predicate) /* if the predicate is satisfied */

for (intj=O; j<nc; j+ +) /* for each object cj+I, i+ Ic [1, nc], do the following

ffileC read((char*) &BufC, sizeof (c)); /* read an object cj+ I of C

if ((fi1eD. teI1gO-sizeof(d))==c. Ac)

Buft <join c and d); J

/* verify if the address (the OID) of di+1 is equal to the value of cj+I. Ac, if so, join cj+1 and
di+ 1, and output results to Buf that could be a screen, a printer, a buffer, etc.
I

fiIe2. write((char*)&Buf, sizeof (Buf)); Pif we want to write the output results to a file. */

The number of block access is estimated as

read C: sel *nd *n, /b,;

read D: ndlbd= nd *nlbn.

There are:

nd comparisons operations for predicate evaluation;

sel *nd*n, comparisons for value evaluation;

sel* nd*(fan(CD)*nlnd)=sel*fan(CD) * n, moves (forjoin).

Clearly objects in C have to be read many times, resulting in high 1/0 cost. If there are

reverse references from the instances of D to the instances of C, the instances of C do not

needed to be examined. Instead, the objects are accessed directly by the following these

references.

7.4.4 Sort-Merge Reverse join (SMRJ)

In SNIRJ, all the instances of D are accessed, the predicate is evaluated and a list of OlDs of

instances qualifying the predicate is generated. C is read into memory and sorted according

Chapter 7 Algorithms for Processing Decomposed Query Components 161

to Ac. The instances of C are then selected to deten-nine which instances have the identifier

as the value of attribute Ac. If so, c and d are joined. The pseudo-code for the algorithm is:

for (intj=O; int i=O; i<nd i++) /* for each object d of D, do the following

[fileD. read((char*)&d, sizeof(d)); /* read an object d of D

if (predicate) tD'[j]=d; jd[jJ=fileD. tellgo-sizeof(d); j+ +J

I

/* if the predicate is satisfied, keep the object d in D'[J, and its address (the OID) in jd[

This is equivalent to perform select first, the resulting relation is D'[J, its cardinality isj.

fileC. read((char*)&BttfC, sizeof (Q); /* read the relation C

sort C according to Ac;

j2=0;

for (int i=O; i<j-1; i++) /* for each object di in D'[], ir= [0, j-1), do the following

for (int i2=j2; i2<nc; i2++)

/* for each object ci2 in C, i2E=- [j2, nc), do the following

(wherej2 starts from 0 and increases by I after a join is made)

f if (C[i2l. Ac= =jd[il) [Buf<<(join C[i2J and D'[i]); j2=i2+ 1; J;

/* if the value of ci2. Ac is equal to the address (the OID) of di, join ci2 and di,

and output results to Buf that could be a screen ,a printer, etc.

else if (C[i2J. Ac>jd[iJ) break;

/* if the value Of ci2. Ac is greater than the address (the OID) of di, stop looping of i2-

I

fi1e2. write((char*)&Bqf, sizeof (Buf)); /* if we want to write the output results to a file.

*1

The number of block access can be estimated as

read C: n, 1b,;

read D: nd lbd= nd *nl(bn).

There are:

Chapter 7 Algorithms for Processing Decomposed Query Components 162

ndcomparisons for predicate evaluation;

sel*nd*(fan(C, D)*n, lnd+l) comparisons for value evaluation;

sel*fan(C, D)*nc moves (forjoin); and

sorting cost: sorting(nc).

7.4.5 Sorting

If SelectSort algorithm [Carrano, 1995] is used to sort items in relation C in the ascending

order by the attribute A it is O(nc 2) in terrns of major operations.

The pseudo code of C++ that applies SelectSort algorithm [Carrano, 1995] to sort the

relation C in the ascending order by attribute Ac can be represented in the following:

void Soq(unction(C, n, Ac)

/* sort the items in relation C of size nc in the ascending order by the attribute Ac V

foifint Last= nc -1; Last>=]; --Last)
fint L=IndexOfLargest(CAc, Last+]); /* select largest item in CAc[O. Iastj V

Swap (C[L), C[Last]; /*swap largest item C[L] with C[Lastj V

] Pend for */

The function calls other two functions:

int IndexOfLargest (const dataType Ac, int Size) /*find the largest item in the column Ac V

tint IndexSoFar=O, - /*index of largest item found so far */

for (int CurrentIndex= 1; CurrentIndex<Size; ++ CurrentIndex)

[if (Ac[CurrentIndex] > =Ac[IndexSoFarj) IndexSoFar= CurrentIndex,

] /*end for */

return IndexSoFar; P index of largest item

j /* end IndexOfLargest */

void Swap (dataType & X, dataType &Y) /*ftmction for swapping X and Y */

I

Chapter 7 Algorithms for Processing Decomposed Query Components 163

dataType Temp=X;

X= Y;

Y=Temp;

I Pend Swap

One important divide-and-conquer sorting algonthm, MergeSort [Carrano, 1995], has an

elegant recursive formulation and is highly efficient. MergeSort is a recursive sorting

algorithm that always gives the same performance, regardless of the initial order of the

collection items. The order of MergeSort algorithm is 0(n, log n,).

7.4.6 Summary

Table 7.1 Summary of join algorithm costs

Algorithm Number of block access Other operations

NLFJ read C: n1b,; fan(CD) * nc comparisons;

read D: fan(C, D) * nc lbd+ sel*fan(CD) * n, moves.

=fan(C, D) * nc *n/bn+

SMFJ read C: nlbc; fan(CD) * nc comparisons;

read D: fan(C, D) * nc lbd sel*fan(CD) * nc moves;

=fan(C, D) * nc *nl(bn) sorting cost: sorting(nj

NLRJ read C: sel *nd *nc Ibc; nd + sel *nd *nc comparisons;

read D: ndlbd= nd *nlbn- sel* nd*(fan(CD)*nlnd)

=sel*fan(C, D) * n, moves.

SMRJ read C: nc Ibc; Nd-Fsel*nd*(fan(CD)*nlnd+l)

read D: ndlbd= nd *nl(bn)- comparisons;

sel*fan(C, D)*nc moves;

sorting cost: sorting(nj

Chapter 7 Algorithms for Processing Decomposed Query Components 164

Table 7.1 gives a summary of join algorithm costs in tenns of major operations. As the time

required for block accesses typically dominates other factors [Carrano, 1995], it can be

concluded that the order of above four basic join algorithms are 0 O(n), in terms of block

access. That means the join time cost linearly increases with the expansion in the number of
time epochs (or time dimension, in the case of a regular TS).

The advantage of sort-merge method over the nested-loop method is that the storage pages
containing class instances of the class are never accessed more than once, resulting in

considerable saving in terms of response time. The disadvantage is that the algorithms are
restricted by available memory. If the memory is relatively small or the number of the objects
in a relation is too big, all objects of the class cannot be read into the memory. The

algorithms need to be modified in order to be more practical. This will be discussed in the
following section.

The disadvantage of reverse join algorithms is that as there is no direct link from D

collection to C, a value-based join must be used to check the OID membership

condition, i. e., it performs value-based comparisons of OlDs, which is generally
inefficient in CPU usage terms [Gardarin et al., 1996]. This algorithm is efficient when

the predicate in the last collection is selective [Ozsu and Blakeley, 1995; Tang et al.,
1996].

We did not discuss hybrid-hash join here, as when the epoch number n is big enough such

that a temporal object occupies more than one block, implementation of the algorithms with

strearn processing techniques will not provide an obvious advantage over NLFJ.

7.5 Modification of Join Algorithms

As mentioned in previous section, sort-merge algonthms require a relatively large memory.

If the memory is relatively small, all instances of the class can not be read into the memory

and the algorithms are not useful. In this case, the algorithms need to be modified. This

section presents a solution to amend this problem.

Chapter 7 Algorifi-ims for Processing Decomposed Query Components 165

Sorting the collection C in the external storage

When the file of C is far too large to fit into internal memory all at once, it presents

some restriction on sort-merge join algorithms because the sorting algorithms presented

earlier in previous section assume that all the data to be sorted are available at one time

in internal memory. To solve this problem, alternative is to sort C using the techniques

of sorting data in an external file [Carrano, 1995]. Using this technique, SMFJ will be

modified as below:

sort C according to Ac;

/* sort the collection C by using an external MergeSort or SelectSort.

for (int i=O, - i<nCY- i++)

IfileC read((char%BqfC, sizeofi(c)); Pread one instance c of collection C

fileD. seekg(c. Ac); /* seek the address of d by OID of (d) (i. e., the value of Ac)

fi1eD. read((char*)&BqfD, sizeof (d));

if (predicate) Buf< <join c and d); Poutput results

I

file2. write((char*)&Bqf, sizeof (Buf)); Pwrite output to a file */

It is essentially an NLFJ, except C is sorted before the execution. Therefore the join cost

is that of NLFJ plus the cost of sorting using external sorting techniques that require at

least additional nc Ibc block access to read C.

For SMRJ, in addition to sorting C using external techniques, there is no need to read all

objects of D before C is read because the addresses of instances imply the ascending

order of OlDs. This means that the memory that SMRJ requires to hold the derived D

whose objects have satisfied the predicate is not necessary. The modified SMRJ is as

follows:

Chapter 7 Algorithms for Processing Decomposed Query Components 166

sort C according to Ac;

/* sort the collection C by using an external MergeSort or SelectSort*/

j2=0, -

for (int i=O, - i<nd, - i+ +)

ffi1eD. read((char*)&d, sizeof (d)); /* read an object d of D

if (predicate)

I

for (intj=j2; j<nc; j+ +)

t

fileC seekgo *sizeof (c)

fileC read((char*) &c, sizeof (c)); /* read an object c of C

if ((c. Ac == fileD. tellgo-sizeofi(d)))

/* verify if the address of d is equal to the value of c. Ac

tBuft < Uoin c and d); j2 + +J

else if (c. Ac>(fi1eD. te1IgO-sizeofi(d))) break;

IR

fi1e2. wfite((char*)&Buf, sizeof (Buj)); Poutput results */

Compared with SMRJ, the modified SNW exchange the cost soning(nc) to the external file

sorting cost that requires at least additional n, lb, block access to read C. As a trade-off, it

saves the memory to hold the whole C and the derived D.

7.6 Simulation

This section provides simulation results to evaluate the join algorithms presented in the

previous chapter.

Chapter 7 Algorifluns for Processing Decomposed Query Components 167

7.6.1 Experimental Database: "The International Weather Record Database"

The experimental database is taken from the database example presented in Chapter 4:

"The International Weather Record Database" as shown in Figure 7.5. Daily weather

changes are recorded for major cities world-wide. The time chronon is a day. For

simplicity, suppose that time starts from I and ends at today (n). The life-span can

uniformly be L(TESTINFO)=[J, nJ. The number of records in a temporal object of

relation TESTINFO is n, representing a regular TS. The relation CITY, analogous to a

supporting table that is described in Chapter 6, is relatively small: the cardinality of

CITY is nc= 100, as our intention is to show the relationship of the join response time

with respect to n, i. e., the number of epochs (records) in a temporal object of relation

TESTINFO. In this example, ITESTINFOI, i. e., nd, is also 100. That means fan(CITY,

TESTINFO) is 1.

CITY

City# INTEGER
City_Name STRING
Weather TESTINFO

TESTINFO

TopTemperature FLOAT
LowTemperature FLOAT
Hun-ýdity FLOAT
WeatherType STRING

Figure 7.5 Extracted from simplified Intemational Weather Record Database

7.6.2 Simulation Programs

Simulation environment

The simulation environment is Borland C++ Version 4 on a PC.

Chapter 7 Algoriduns for Processing Decomposed Query Components 168

Simulation programs

The simulation consists of a set of programs:

& The head file that defines the data structures;

0 The data generating program that creates two collections CHY and TESTINFO and

stores them in separate files on disk;

Sort program that use SelectSort[Carrano, 1995] to sort items in a relation in the

ascending order by an attribute .

Unsorting program that unsorts, the collection CITY and saves the results. The OlDs

of TESTINFO, that are the values of attribute weather of CITY, are the physical

addresses of TESTINFO instances. As the addresses are generated in an ascending

order whilst our algorithms suppose both join collections are unsorted, so we need to

unsort them by sorting the CITY by different attribute such as City-Name.

0 NLFJ program that implements the nested-loop forward join algorithm;

0 SUFJ program that implements the sort-merge forward join algorithm;

0 NLRJ program that implements the nested-loop reverse join algorithm;

SNW program that implements the sort-merge reverse join algorithm;

The modified SMFJ program that implements the modified algorithm for the sort-

merge forward join;

0 The modified SMRJ program that implements the modified algorithm for the sort-

merge forward join.

The definition of classes is as follows:

struct testinfo
I

int top-temperature;

Chapter 7 Algoritluns for Processing Decomposed Query Components 169

int low-temperature;

float humidity;

char weather t e[101; Yp

const int max int
_

fo=n;

typedef testinfo groupinfo[ma)ý_jnfo];

struct city

I

int number;

char name[] 0];

groupinfo gi;

1;

struct city2

I

int number;

char name[] 01;

long g;
1;

Chapter 7 Algoriffirns for Processing Decomposed Query Compments 170

m 'P * gin

Nc=100; Nd=100; n=: O; I

n+Vn,
, vrr-=Io

MY and TIESTINFO and save
in separate files on disk

Unsoft C-TIY I

................................. I .. N

ný>ý-200?

y

End

Figure 7.6 Execution of simulation programs of basic join algorithms

Chapter 7 Algoriffims for Processing Decomposed Query Components 171

Here groupinfo extends testinfo with n elements to represent a temporal class, and city2 is a

copy of city but the third attribute is used to keep the address of testinfo, (i. e., the OID of

testinfo). Once the database schema is defined, the database needs to be populated with a
large number of objects by the data generating program. Query processing algorithms such as
NLFJ, etc. provide the means to retrieve the data on request. The execution of the basic join

algorithm programs is as shown in Figure 7.6. Simulations of these algorithms applying
different time-slice intervals as well as the modified SWJ and the modified SMRJ are also

provided.

7.6.3 Simulation Results and Discussion

The four basic join algorithms and modified sort-merge algorithms have been implemented

on PC using Borland C++ Version 4 where SelectSort algorithm is employed.

Figure 7.7,7.8,7.9 and 7.10 present the perforinance of four join algorithms, where the

vertical axis represents join time costs in second and the horizontal axis represents the

number of epochs in the TS, i. e., n. Different join algorithms are denoted with different

types of lines as shown in the figures. Selectivity is set at 10%, 33%, 50% and 100%

respectively. Obviously the join cost increases linearly with n. Performance of NLRJ is

worst, because it reads the relation CHY many times. Sort-merge join algorithms are

generally good when the relations are relatively small and n is small. But they are limited by

the memory of the computer and the algorithms are terminated when n is greater than 100,

because the algorithms can not work in the given hardware environment when ný! 100. There

is not too much difference between NLFJ and sort-merge join algorithms, which is because

the experimental example possesses a one-to-one relationship.

Figure 7.117.12,7.13 and 7.14 show the performance of join algorithms with respect to

selectivity sel. It can be seen that the join time cost increases when the selectivity increases.

Chapter 7 Algoriffuns for Processing Decomposed Query Compments 172

Figure 7.15,7.16,7.17 and 7.18 provide a comparison of the performance of NLFJ, the

modified SMFJ, NLRJ and the modified SMRJ when n is expanded to 5000.

All the above simulation results conform to the cost analysis presented in previous sections.
That is, the join time cost is linearly increased with the expansion of the time-epochs (the

time-dimension, in the case of a regular TS).

Figure 7.19 and 7.20 /Figure 7.21 and 7.22 /Figure 7.23 and 7.24 /Figure 7.25 and 7.26

provide a comparison of the performance of NLFJ /SNIFJ /NLRJ /SMRJ with and without

time-slice intervals. The performance of join algorithms without time-slice is analogous to

that of OODBs which allow users to represent temporal data as a 'blob' object but with no

support for time varying query whilst the performance of join algorithms with time-slice is

analogous to that of OODBs which support for time-varying data and utilise the heuristics

for optimization such as that presented in previous section. The span of time-slice T, =[nb

n, J is denoted as Tn = (nn -n, + 1). When Tn <<n, there is a significant saving. The bigger

the value of (n-T,,,), the greater the cost saving. When Tn is close to n and n is close to bn,

there is no significant cost saving.

Discussion

It is generally recognised [e. g., in Ozsoyoglu and Snodgrass, 1995, Leung and Muntz, 19931

that optimization of temporal queries is substantially more involved than that for

conventional queries on the one hand, and there is a greater opportunity for query

optimization when time is present on the other hand. As is shown in our simulation, the rapid

perfonnance degradation is due to ever-growing overflow chains, and if the query is

unoptimized, it takes longer and longer to execute. This justifies trying harder to optimize the

queries and spending more execution time to perform the optimization.

Most object-oriented database proposals include constructors for complex types like lists and

arrays that allow time-stamped entity to be represented as a "blob", which is managed by

the system, but interpreted solely by the application program; no facilities for temporal

Chapter 7 Algoriffims for Processing Decomposed Query Components 173

queries are provided [Seshadri et al., 1996]. It has been pointed out by Kim et al. [19971

and Kim [1995; 1994; 1993] that one necessary topic of research in historical data

management is to quantitatively establish the performance (and even productivity)
differences between using a database system that directly supports temporal attributes
and using a conventional database system that does not support either the set-valued
attributes or temporal attributes. If it can be convincingly established that the benefits of
a database system that supports temporal attributes are substantial, database vendors will
strongly motivated to augment their systems with historical data management.

The simulation results as well as cost analysis imply that solely treating a temporal object

as a 'blob' object that is managed by the system, but interpreted by user is not a strategy for

temporal support in OODBs. It also suggests that for OODBs that support for time-varying
data, when the number of epochs is big enough, i. e., n>>bn, there is certainly a need to

provide facilities that support temporal queries.

7.7 Heuristics for Optimization

The last section shows the effects of time on query processing algorithms. As pointed out by

Leung and Muntz [1993] and Ozsoyoglu and Snodgrass [1995], that because adding time

creates multiple tuple versions of the same object, reorganisation does not help to shorten

overflow chains, the objective of work in temporal query evaluation, then is to avoid looking

at all of the data [Leung and Muntz, 1993; Seshadri et al., 1996]. Good heuristics that take

advantage of data ordering and restrict the scope of a sequence can attain this objective.

Here we simply outline the following heuristics that make use of the ordering information of

data and can be exploited for optimization. These ideas have been introduced in earlier in

chapters.

1) Transform the time-related predicate into time-slice.

Chapter 7 Algoridum for Processing Decomposed Query Components 174

For example, select the city whose top temperature at to is higher than 300 C. If the life-

span of TESTINFO is [1,10000], i. e., n=10000, and the record/block is b, = 100,

retrieving an object needs 100 block accesses. Retrieving the record at to, that specifies

the range of access, only needs I block access. That is, given po =

CITY. Weather. TopTemperaturel,, O ý300, the algebra for the query is

p
Cypo (cI7-y=TC<City#,

O"ame, Weather>
(CITY >14 TESTINFO)

CITY. Weather= OID of TESTINFO and PO

It is equivalent to

(YPO(CITY)=

ll<City#, Cit)ýYame, Weather>(CI7-y

P

CITY. Weather= OID of TESTINFO and PO
ýT,

=, O(TESTINFO))

The block access of TESTINFO for the first expression is nd*nlbn==10000*nlbn =100 nd

whilst the block access for the second expression is nd. The second expression is

obviously much more economic. i. e., the block access to TESTINFO using the first

expression costs 100 times more than that in the second expression..

2) Perform time-slice as early as possible.

The use of this heuristic is to avoid looking at all data. For example, for the following

expression:

7C<TopTemperature> (ýTl=[nlnm](TESTINFO))=4T]=[nl,
nml

(IC<TopTemperature> (TESTINFO))

The block access of TESTINFO for the left expression is nd*(n,, -nl)lbn whilst the block

access for the right expression is nd*nlb,,. As long as n>>(nn-nd, a considerable saving

will be attained from the left hand expression (e. g., n= 10000 whereas (nn-nd =10,

Chapter 7 Algoriffims for Processing Decomposed Query Compments 175

choosing the left hand expression will be 1000 times cheaper than the right hand

expression.

3) Combine sequences of unary operations

A cascade of unary operations such as time-slice, offset, select and project can be

combined by applying them in a group as we scan each object. Similarly, we can combine

these unary operations with a prior binary operation such as join, if we apply the unary

operations to the result of the binary operations as we construct it.

4) Making use of temporal constraints

7.8 Summary

In this chapter, we have presented a set of algorithms for processing the decomposed query

components which have resulted from employing the decomposition strategy presented in

the previous chapter. These algorithms can be employed to process a temporal object query

that involves an enhanced path (a path with an explicit time-reference). The algorithms

include time-related operations and four basic join algorithms, which are described with cost

analyses and implemented using stream processing techniques. The order of all four join

algorithms is 0(n). Of them, NLRJ has the worst performance because it tends to perform an

excessive number of disk accesses. Sort-merge algorithms (i. e., SNMJ, SNIRJ) are generally

good, but limited by their heavy demands on memory. When all instances of class C cannot

be read into the memory, the modified join algorithms, i. e., the modified SNWJ and the

modified SNW, can be used.

Simulation results that evaluate the four basic join algorithms (NLFJ, SMFJ, NLRJ and

SMRJ) and the modified algorithms (the modified SMFJ and the modified SMRJ) are

also provided. The simulated results conform with the cost analysis presented. That is,

the join time costs of four basic join algorithms are linearly increased with the expansion

in the number of the time-epochs (or the time-dimension, in the case of a regular TS). As

Chapter 7 Algorithms for Processing Decomposed Query Components 176

predicated the performance of NLRJ is worst, as it reads through the relation CITY many

times. The simulation shows that as expected, sort-merge join algorithms are generally good

when the relations are relatively small and n is small, but they are limited by memory

capability. The modified sort-merge algorithms amend this limitation.

Simulation results that compare join algorithms of NLFJ, SMFJ, NLRJ and SMRJ both

without time-slice, and with different time-slice intervals justify investigation into

temporal processing and optimization. Utilising heuristics that make use of the ordering

information of time varying data could lead to considerable cost savings.

It has been demonstrated that the decomposition strategy provides a convenient way of

evaluating the performance of algorithms that take account of the time-dimension, and

provides an opportunity for optimization that makes use of the ordering information of

temporal data. It is also shown that the number of epochs is a significant token and plays an

important role in the cost analysis.

Chapter 7 Algoiithms for Processing Decomposed Query Components 177

t (Sec.)

6 NLFJ

SMFJ

5 NLRJ

SMRJ
4

3

2

I

0 20 40 60 80 100 120 140 160 180 200 220 n

Figure 7.7 Join time cost with respect to n (sel=10%)

t (Sec.)

6 NLFJ

SMFJ

5 NLRJ

SMRJ
4

3

2

0 20 40 60 80 100 120 140 160 180 200 220

Figure 7.8 Join time cost with respect to n (sel=33%)

Chapter 7 Algofithms for Processing Decomposed Query Components 178

Chapter 7 Algorithms for Processing Decomposed Query Components 179

t C.)

5
NLFJ
Swi

4 NLRJ

SMRJ

3

2

0
20 40 60 80 100 Sel(%)

Figure 7.11 Join time cost with respect to sel% (n--40)

t ec.)

NLFJ
5

Swi

4
NLRJ

SMRJ

3

2

0> 20 40 60 80 100 sel(%)

Figure 7.12 Join time cost with respect to sel% (n--80)

Chapter 7 Algorithms for Processing Decomposed Query Components 180

(Sec.)

5

4

3

t (S C.)
A.

6 NLRJ
NLFJ

5

4

3

2

I

0 20 40 60 80 100 sele/o)

Figure 7.14 Join time cost with respect to sel% (n-- 180)

20 40 60 80 100 Sel(%)

Figure 7.13 Join time cost with respect to sel% (n= 100)

Chapter 7 Algorithms for Processing Decomposed Query Components 181

(Sec

Figure 7.15 Join time cost with respect to n (sel= 10%)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Chapter 7 Algorithms for Processing Decomposed Query Components 182

(Sec.)

Figure 7.16 Join time cost with respect to n (sel=33%)

5001000 15002000250030003500400045oo5OOO5500

Chapter 7 Algorithms for Processing Decomposed Query Components 183

t ec.)

- NLFJ

80- SWJ -modified
- NLRJ

70- SNW -modified

60- z

50

40-

30 -

20-

10 -

0 500 1000 1500 2000 2500 3000 3500 4000 45oo 5000 5500 n

Figure 7.17 Join tirne cost with respect to n (sel=50%)

Chapter 7 Algoiithms for Processing Decomposed Query Components 184

t(cc.)

NLFJ

80 - SNVJ -modified
NLRJ

70- SMRJ -modified

60

50

40-

30

20-

10

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 n

Figure 7.18 Join time cost with respect to n (sel= 100%)

Chapter 7 Algorithms for Processing Decomposed Query Components 185

t (Sec.)

6 NLFJ without time-slice
Tm 80

5 Tm 40

Tm =10
4

--------- Tm =1

13

2

0 20 40 60 80 100 120 140 160 180 200 220

Figure 7.19 NLFJ time cost with respect to n (sel=10%)

(Sec.)

6

5

4

3

NLFJ without time-slice
Tm = 80

Tm ý 40

Tm = 10

--------- Tm= I

--- ----- ---------------
220 20 40 60 80 100 120 140 160 180 200

Figure 7.20 NLFJ time cost with respect to n (sel=33%)

Chapter 7 Algorithms for Processing Decomposed Query Components 186

t ec.)
SMFJ without time-slice - Expected SMFJ without tiMe-slice

6 Tm=80

Tm=40

5 Tm= 10

4ý
-------- Tm= I

3

2

-------- -----------------------------

0
20 40 60 80 100 120 140 160 180 200 220

Figure 7.21 SMFJ time cost with respect to n (sel=10%)

t ec.)

6
SWJ without time-slice-Expected SWJ without time-slice

Tm =80

5 Tm = 40

Tm = 10
4

------- Tm =I

0LL, L- ,j

20 40 60 80 100 120 140 160 180 200 22o

Figure 7.22 SMFJ time cost with respect to n (sel=33%)

Chapter 7 Algorithms for Processing Decomposed Query Components 187

t (Sec.)
NLRJ without time-slice

6 Tm 80

Tm 40

5 Tm 10

-------- Tm 1
4

13

2

0 20 40 60 80 100 120 140 160 180 200 220

Figure 7.23 NLRJ time cost with respect to n (sel= 10%)

t (Sec.)

NLRJ without time-slice
6

Tm =80

5 Tm=40

Tm = 10
4-

------- Tm= I

3-

2-

1 ii

0ýIII I- ---I..

20 40 60 80 100 120 140 160 180 200 220

Figure 3.24 NLRJ time cost with respect to n (sel=33%)

Chapter 7 Algorithms for Processing Decomposed Query Components 188

t ec.)

6
SNW without time-slice Expected SNIRJ without time-slice

Tm =80

5 Tm=40
Tm = 10

4- ------- Tm= I

-- -- - -- - -- - -- -

10 ,' 2ý ' 40 60 80 100 120 140 160 180 200 220

Figure 7.26 SMRJ time cost with respect to n (sel=33%)

Chapter 8

Query Processing

with Incomplete Temporal Data

Previous chapters have presented an extensible approach to processing temporal object

queries within the uniform query processing framework. In particular, a decomposition

strategy is employed to process a query involving a path when time is present and

algorithms have been presented to process the decomposed query components. This chapter

will discuss the situation where user's queries require data that have not been explicitly

recorded in the database. Temporal data allows substantial information to be exploitedfor

query processing in such a situation.

8.1 Introduction

Our definition of the temporal data model describes a TOODB that is populated with

temporal objects that are grouped into classes/relations and interrelated through associations

of aggregation, generalisation and time-reference. A temporal object is represented as a time

sequence, which can be either regular or irregular.

Time advances in one direction: the time domain is continuously expanding, and the most

recent time point is the largest value in the domain. This implies that there is a lot of

information associated with temporal data, which can be exploited during query processing.

It has been shown from the previous chapter that exploiting the natural clustering or sort

order will be beneficial to query optimization, and evaluations that use stream processing

techniques and heuristics will reduce the scope of sequence scan.

Chapter 8 Query Processing with Incomplete Temporal Data 190

Unlike query processing in a snapshot database where the user query always asks for data

that have been recorded in the database, in temporal databases, a user query may require the

value of an event at a specific time for which the database has no entry (no record) at that

time point. In such a case, drawing implications from existing temporal data would help to

answer user quenes.

This chapter will first look at implications of temporal data and then discuss how to exploit

these implications in query processing with incomplete temporal data. The rest of the chapter
is organised as follows. Implications of temporal data will be briefly described in Section

8.2. Exploiting these implications to respond to a query requiring data that have not been

explicitly recorded in the database is discussed under the title of interpolation in Section 8.3.

Section 8.4 outlines a method for query processing in such a situation. Finally, Section 8.5

offers a summary.

8.2 Implications of Temporal Data

Time advances in one direction. This implies temporal completeness, temporal succession,

temporal density, and temporal constraint [Roddick and Patrick, 1992], which can be

exploited during query processing.

Temporal completeness

Temporal completeness can be compared with Robinson's definition of data completeness

[1979]:

A thing playing a role of some relevance in the object system must be represented by a single

thing playing a corresponding role in the model. That is, a thing in the model must have the

same characteristics with respect to the model as the thing in the object system has with

respect to that system.

The same applies to the temporal dimension. If an event of relevance occurs in the object

system and the time at which it occurs is of interest, then it must be possible to model the

Chapter 8 Query Processing with Incomplete Temporal Data 191

time of occurrence, and the temporal context pertaining to that event must be preserved
regardless of future events. For example, if the absolute time of occurrence of an event is

required then recording of absolute time should be supported.

According to Robinson:

Any thing in the model must be the sole representation of something playing an appropriate

role in the object system. A corollary to this is that if there is something we do not want to

say about the object system we should not say anything in the model. We should not have an

elaborate way of saying something that is unimportant or absent in the object system.

Robinson's comments have a corollary within temporal data capture with the degree of
description of temporal events.

Temporal succession

If a relevant sequence of events occurs in a modelled envirom-nent then the model should be

nil ., Ie to record faithfully the sequence of the events.

The difference between this feature and that of temporal completeness is that completeness

permits the model to fully describe the events in their temporal context, whereas temporal

succession facilitates the accurate recording of the sequence of events or changes in the

object system.

Temporal density

If the facts in a database model are, in some way, time-stamped, then what is the value of an

attribute at a time where there is no specific entry? To be more specific, if a variable has a

value at time tj, then at time t2where tj # t2, even if there is no information recorded for the

variable at t2, an assumption (or the application of one of a set of rules) should be possible to

estimate the attribute's value. Obviously a useful modelling technique will have to allow for

such assumption routines to cater for these cases, or at least state the assumption rules being

used. These assumption rules generally fall into three categories:

Chapter 8 Query Processing with Incomplete Temporal Data 192

0 Step-wise constant

A fact true (or a variable with a value) at time tj should be assumed to be true (or have
the same value) at time t2where tj < t2, unless it is explicitly recorded different at a time
tj where tj < t3< t2.

0 Discrete events

A fact true (or a variable with a value) at time t, should be assumed to be false (or have

the value zero or null according to the context) at time t2where tj # t2, unless it is

explicitly recorded otherwise.

9 Continuous change

It should be possible for a variable with a value v, at time tj to be approximated at time t2

even if its value v, at time t, is not explicitly recorded.

For the time sequence that represents continuous change event in time, interpolation

algorithms or temporal modelling techniques may be required to estimate the such

values that will be discussed in the next section.

Handling of error terms and incomplete data

The handling of fuzzy data has been dealt with extensively in the literature in relation to

static, non-temporal databases, however, handling of error terms in temporal databases

requires special consideration. Where there is a measure of uncertainty about the accuracy of

a piece of temporal data it may become difficult to provide accurate response to database

queries. These uncertainties can be categorised as follows:

* Granularity errors-- the difference between time points is too coarse;

9 Recording inaccuracies--the time data is erroneous or inaccurate;

* Relational uncertainties--the relationship between events and intervals is incompletely

known.

Chapter 8 Query Processing with Incomplete Temporal Data 193

As the time sequence is continuous in the time dimension, stochastic estimation approaches

can be applied for curve fitting or smoothing, which can be exploited in interpolation

algorithms.

Temporal constraints

The ability of a model to enforce data to adhere to integrity constrains is fundamental to the

functionality of any database system, and has been covered well in the literature in relation to

snapshot databases. Many constraints have a time element associated with them which is

frequently ignored, even by those designing temporal modelling systems. Examples of

temporal constraints are [Roddick and Patrick, 1992]:

* An event (or the beginning or end of a temporal set) that is constrained to fall at or within

a given set of absolute time intervals.

9 An event may be considered to occur within a given set of absolute time intervals

relative to another event.

An event may be considered to occur within a given set of relative constraints with

respect to another event.

Temporal constraints can be exploited for interpolation and semantic optimization.

8.3 Interpolation

As discussed in the last section, temporal data implies substantial information that can be

exploited for query processing and optimization. In this section, we will focus on how to

make use of this infon-nation to respond to a user's query requiring data that is not explicitly

recorded by introducing some techniques of interpolation.

Chapter 8 Query Processing with Incomplete Temporal Data 194

Recall that a temporal object is represented as a time sequence (TS) in Chapter 4. For a

continuous change event, it can be represented by either a regular TS or an irregular TS

depending on the recording of the data. When it is represented by a regular TS, there is a

corresponding value for every time point. However, if the granularity is too coarse, there

would be a need for interpolation in order to answer a user's query that does not correspond

to an explicit record. When it is represented by an irregular TS, interpolation algorithms or

temporal modelling techniques may be required to decide the immediate value of an object

between the values at various times recorded. (Note that for discrete and step-wise constants,

the aforementioned assumptions would allow us to decide a value at a time point that has not

been recorded. Even for discrete events, stochastic approaches can also be applied to

estimate the missing data).

Therefore, interpolation is often required in processing temporal queries, because:

" granularity is too coarse in the case of both irregular and regular TS;

" missing values (null) in the case of both irregular and regular TS; and

" unequal spacing in the case of irregular TS.

The implications of temporal completeness, temporal succession and temporal density

assure the use of interpolating.

The algorithms of interpolation themselves are outside of the scope of query processing.

But employing interpolation is useful within a temporal database when a user's query

requires data not explicitly recorded. To clarify the use of interpolation, this section

briefly introduces some interpolation techniques, especially in situations where the data

are not linear. Problems directly related to query processing would then be made clear.

Given values of an unknown function of time corresponding to certain values of time t,

to answer the question "What is the function" is always impossible with a limited

amount of data. Determining the behaviour of a functionf(t), as evidenced by the sample

of data pairs ft, f(t)] by approximation is the task of interpolation (or extrapolation)

[Gerald and Wheatley, 19941. The approach to be used is to fit a polynomial curve to the

points. This approach is appropriate to many applications.

Chapter 8 Query Processing with Incomplete Temporal Data 195

The strategy discussed here used in approximating unknown values of a function is

straightforward. We will find a polynomial that fits a selected set of points (ti, f(ti)) and

assume that the polynomial and function behave nearly the same over the interval in

question. Values of the polynomial then should be reasonable estimates of the values of
the unknown function. When the polynomial is of the first degree, this leads to linear

interpolation. If the polynomial is of degree higher than the first, it can approximate a
function that is non-linear.

However, there are problems with interpolating polynomials when the data are not
"smooth" (i. e., that there are local irregularities). In such cases, a polynomial of high

degree would be required to follow the irregularities, but it can be found that such

polynomials, while fitting irregularities, deviate widely at other regions where the

function is smooth. One solution is to fit subregions of data with different polynomials,

but this method too is problematic in that the joins of the different polynomials are not

continuous in their slope. To remedy this problem, special types of polynomials, called

splines, are useful [Gerald and Wheatley, 1994].

The study of splines leads to some other special forms of polynomials (Bezier curves

and B-spline curves) that do not interpolate (they do not pass exactly through all of the

points) but they are useful for sketching smooth curves.

We do not always want to find a polynomial that fits exactly to the data. Often the

values we wish to fit are not exact, or they may come from a set of experimental

measurements that are subject to error. Fitting exactly a polynomial in this instance

would also fit the errors in the data and this is undesirable.

A technique called least squares is normally used in such cases [Gerald and Wheatley,

1994]. Based on statistical theory, this method finds a polynomial (or some other kind of

approximating function) that is more likely to approximate the true values.

Chapter 8 Query Processing with Incomplete Temporal Data 196

To illustrate the idea of interpolation, the following gives two examples of popular

methods for interpolation from [Gerald and Wheatley, 1994], i. e., Lagrangian

polynomials and least squares approximation.

1) Lagrangian polynomials

Assume that the given data are exact and represent values of unknown function. If we

want to find a polynomial that passes through the same points as our unknown function,

we need to set up a system of equations involving the coefficients of the polynomial.

For example, suppose we want to fit a cubic to these data:

f(2
3.2 22.0

2.7 17.8

1.0 14.2

4.8 38.3

5.6 51.7

First, we need to select four points to determine the polynomial (The maximum degree

of the polynomials is always one less than the number of points). Suppose we choose

the first four points. If the cubic is a? +W +ct +d, we can write four equations

involving the unknown coefficients a, b, c and d:

when t--3.2: a(3.2) 3 +b(3.2)2 +c(3.2) +d

if t=2.7: a(2.7)3 +b(2.7)2 +c(2.7) +d

if t=LO: a(1 o)3 +b(1 o)2 +C(I. 0) +d

if t=4.8: a(4.8) 3 +b(4.8)2 +c(4.8) +d

The set of equations gives:

a=-0.5275; b=6.4952; c=-16.1177; d=24.3499

Chapter 8 Query Processing with Incomplete Temporal Data 197

and the polynomial is

f(t)=-0.5275 ? +6.4952 ý
-16.1177 t +24.3499 (8-1)

We can then estimate the values of the function at some value of t, say t=3.0, by

substituting 3.0 for t in the polynomial. At t=3.0 the estimated value is 20.21.

This procedure is awkward and this technique leads to an ill-conditioned system of

equations [Gerald and Wheatley, 1994].

The Lagrangian polynomial is perhaps the simplest way to obtain a polynomial for

interpolation with unevenly spaced data (i. e., irregular TS). Data where t-values are not

equally spaced often occurs as the result of experimental observations or where historic

data are examined.

Suppose we have a table of data with four pairs of t- and f(t)-values, with tj indexed by

variable t:

T NO

TO fo

T, f,

T2 f2

T3 f3

Through these four pairs we can pass a cubic. The Lagrangian form for this is

P3(t) =
(t - tl)(t t2)(t - t3)

fo+
(t

- tO)(t t2)(t - t3)
fl

(tO
- tl)(tO t2)(tO - t3) (ti

- tO)(tl t2)(tl - t3)

(8-2)
tf - f-Wf t'Vt - f, ý (t - tn)(t - ti)(t - t,)) kt-tv)kt tljk& &J. 1 f2+k. - f3

(t2 - tO)(t2 - tl)(t2 - t3) (t3
- tO)(t3 - tl)(t3 - t2)

Chapter 8 Query Processing with Incomplete Temporal Data 198

We can write the algorithm for interpolation with a Lagrangian polynomial of degree m
in pseudo-code of C++:

To interpolate for f(t), given t and a set of m+1 data pairs, (ti, fi), 1=0,1,... m. It is not
assumed the uniform spacing between the t values, nor does it is needed that values
arranged in a particular order. The t-values must all be distinct, however.

sum=O; //set sum=0
for (int i=O; i=m; i++);

real P= 1;

for (intj=O; j=m; j+ +);

if (j; &i) P=P*(t-t(j))1(t(i)-t(j));

Hend of j

SUM=SUM+P*f(i);
] Hend of i

Hsurn is the interpolated valuef(t).

The trouble with the standard Lagrangian polynomial technique is that we do not know

which degree of polynomial to use. If the degree is to low, the interpolating polynomial

does not give good estimates of f(t). If the degree it too high, undesirable oscillations in

polynomial values can occur. Nevill's method can overcome this difficulty [Gerald and

Wheatley, 1994]. It essentially computes the interpolated value with polynomials of

successively higher degree, stopping when the successive values are close together. The

successive approximations are actually computed by linear interpolation from the

intermediate values.

There are two disadvantages in using the Lagrangian polynomial method for

interpolation. First, it involves more arithmetic operations than does the divided-

difference method [Gerald and Wheatley, 1994]. Second, and more important, if we

want to add or subtract a point from the set used to construct the polynomial, we

essentially have to start over the computations. Both the Lagrangian polynomial and

Nevill's method also must repeat all of the calculations if we must interpolate at a new

Chapter 8 Query Processing with Incomplete Temporal Data 199

t-value. The divided-difference methods avoid all of this computation [Gerald and
Wheatley, 19941. The problem of interpolating from tabulated data is considerably

simplified if the values of the function are given at evenly spaced intervals of the

independent variable. It is necessary to arrange the data with t-values in ascending order.

2) Least-squares approximation

When the values we wish to fit are not exact, or they may come from a set of

experimental measurements that are subject to error, a technique called least squares is

normally used in such cases. Based on statistical theory, this method finds a polynomial

that is more likely to approximate the true values.

We use m as the degree of the polynomial and N as the number of data pairs. Obviously

if N=m+ 1, the polynomial passes exactly through each point and the methods in

previous sub-section apply. Here, we consider the situation N>m+ 1.

We assume the functional relationship

y=ao+al t+ a2 ý +... +a,, t' (8-3)

with errors defined by

ei=Yi-yi=Yi- ao-al ti- a2 ti 2_...
-a,, ti' (8-4)

where Yj represents the observed or experimental value corresponding to ti, i= 1,2,..., N.

We minimise the sum of squares
NN

S= lei'= Y, (Yi-ao-aiti' -a2t,
2

a. ti'
)2 (8-5)

i=l i=l

At the minimum, all the partial derivatives vanish, giving m+I equations:
as N2

=0= Y, 2(Yi-ao-aiti' -a2ti amti
aao

Chapter 8 Query Processing with Incomplete Temporal Data 200

as N2

=0=j2(Y-ao-aiti' -a2ti amtin) 00, (8-6) am i=l

as N2

=0 2(Yi - ao - aiti' - a2 a. ti")(-tim aam

Dividing each by -2 and rearranging the m+I normal equations to be solved

simultaneously:

aoN + aiy, ti + a2l ti 2
+... + am I tim = Y, Yi

aol ti + aiy, t, 2+
a2y, t, 3

+... +a. ti m+' =I tiYi

aol ti
2+

ail ti
3+

a2l ti 4
+... +am I ti m+2 t, 2y, (8-7)

t, m+2 t, 2m Y, t, my
i aoy, tim + ail ti'+' + a2'y, + am

-d
i

where the summations run from I to N.

Putting these equations in matrix form shows an interesting pattern in the coefficient

matnx:

N ti
Y tim Yi

Yý
ti

I
ti 2

...
Iti M+l

a=
itiyi

(8-8)
...

Y, tim
I ti M+l

...
Y, ti 2m Y, timyi-

where a=[ao, a,, a2, ..., a .. 1. The matrix of above equation is called the normal matrix for

the least-squares problem. There is another matrix that corresponds to this, called the

design matrix. It is of the form:

ti t2 N

...
tim t2m Nm

Chapter 8 Query Processing with Incomplete Temporal Data 201

It is easy to show that AAT is just the coefficient matrix of equation (8-8). We can
rewrite the above equation in matrix form as:

AA Ta
=Ba = AY

where B= AA T
and Y=[YI, Y2,..., YN].

(8-9)

There are various methods to solve equation (8-9). The following method avoids ill-

conditioning [Gerald and Wheatley, 1994].

The matrix B=AA T is symmetric and positive semidefinite [Gerald and Wheatley, 1994].

In linear algebra, it is shown that B can be diagonalized by an orthogonal matrix P:

PBP T=pAATpT =D

where the diagonal elements of D are the eigenvalues of B. Note that orthogonality
implies that PP T =I, the identity matrix.

Since B is positive semidefinite, all of its eigenvalues are nonnegative. This means that

we can define a matrix R as

V-D, or R2=

The diagonal elements of R are called the singular value of A. The equation and its

solution can be rewritten as:

AATa=PTDPa=PR(PR) T a=AY
T

a=PD-1 P AY

(8-10)

(8-11)

This eliminates having to multiply out AA T and by extending this approach, leads to an

important methods for solving the equation (8-8) called singular-value decomposition

[Gerald and Wheatley, 1994].

Chapter 8 Query Processing with Incomplete Temporal Data 202

8.4 Query Processing with Incomplete Temporal Data

From the discussion in last section, it is clear that the main problem concerned with query

optimization, when interpolation is used, is to efficiently retrieve N epochs of data required
for interpolation, in order to produce an efficient interpolation algorithm

Any smooth function can, under very general conditions, be represented locally by a

polynomial, to any desired degree of accuracy [Kendall and Ord, 1990]. The implications of

temporal completeness, temporal succession, temporal density and temporal constraints

imply that a continuous time event is, at least locally, a smooth function. It can then be

required that the N epochs (N records) of data are close or around the estimated time point t.

Suppose that the temporal object has n records (i. e., the total number of epochs is n) that are

naturally clustered together in time ascending or descending order. We can summaries the

method for query processing that corresponds to returning an object value at time t below:

1) According to the application, deterraine the degree m of the polynornIal to be applied.

For example, for a temporal time event, which changes dramatically, we can choose a

higher degree. Otherwise we choose a lower degree.

2) Deterrr. Line the method for interpolation. In case of the stochastic method, for example,

the least-squares approximation, N is determined, otherwise N=m+ I

3) Retrieve N records of the temporal object from the database.

a) N=n

Retrieve the whole historical records (n records) of the object from the database.

b) N<n

Perform a binary search or sequential search (as discussed in Chapter 7) to determine the

epoch number i whose time value is tj and its successive epoch number i+ I whose time

value is ti,,, and there exists ti<t<ti,,.

Chapter 8 Query Processing with Incomplete Temporal Data 203

If i <N12 < n/2, retrieve the first N records of the object from the database.

If i> n-N12, retrieve the last N records of the object from the database.

If N12<i < n-N12, retrieve N12 records before and including i and N12 records after and
including i+ 1, i. e., retrieve N records of the object whose time epoch numbered as:

i-N12, ..., i, i+1,..., i+N12

Note that for simplicity, we retrieve N12 data before the estimated time t and N/2 data

after the estimated time t. In some (extremely) uneven time space situations, unevenly

retrieval of data can be applied.

4) Execute the chosen interpolation algorithm.

5) Retum the object value at time t.

For some discrete time events with data missing at some time points, we can apply the above

method to estimate the value at those time points. If missing data is not the case, we can

simply return null for an unrecorded time point.

For the step-wise constant situation, perform a binary search or sequential search to

determine the epoch number 1 whose time value is tj and its successive epoch number

i+I whose time value is ti,,, where ti<t<ti+,. Return the object value at point i.

Note that if a user query requires data whose time point is outside the object's lifespan,

i. e., at a future time point, we have the problem of predication. Predication is required

by many temporal database applications such as sales forecasting, weather forecasting,

etc. The purpose of maintaining such a temporal database is not only to record the

history of time-varying events, but also to predicate the trend or future change of the

events. Predication algorithms are often based on a regular TS. In the case of irregular

Chapter 8 Query Processing with Incomplete Temporal Data 204

TS, the interpolation is applied first to construct a regular TS. Once a TS is modelled by

some function, the predication can then be easily carried out based on that function. The

subject of predication is outside of the scope of query processing.

8.5 Summary

This chapter has been dealing with query processing with incomplete temporal data. When a

user query requests the data that is not explicitly recorded in the database, the techniques

of interpolation or assumption rules that make use of the implication of the time would

correspond to the user's query. The implications of temporal completeness, temporal

succession, temporal density and temporal constraints assure the interpolation approach

and assumption rules. Again, making use of the ordering information of the data and

utilising the heuristics that reduces the scope of scanning a sequence would improve the

efficiency of the algorithms.

Chapter 9

Conclusions and Future Work

This chapter concludes the thesis. The main contributions of the work are highlighted

and conclusions have been drawn. Query processing in temporal object-oriented
databases is a broad subject posing a major challenge, and this leads to a need to

specify the limitations of the work carried out and to proposefurther work.

9.1 Major Contributions of the Work

This thesis mainly consists of three parts. Part I (Chapters 2 and 3) was an overview of
background and research status in this area. Part 1[[(Chapter 4 and 5) constructed a
fundamental part for query processing, i. e., the temporal data model and its algebra. The

techniques and algorithms for processing temporal object queries were presented in Part

III (Chapter 6 to 8). The main work done in the thesis has been expounded through out

these chapters and has been summarised in Chapter 1. Here we highlight the major

contributions of the work as follows.

The major contributions of this work are concerned with employing an extensible

approach to processing temporal object queries within a uniform query processing

framework. Firstly, a temporal object data model has been defined, in which a temporal

object represented by a time sequence can model various time varying entities in the real

world. The model possesses the extensive features of object orientation, and the

temporal aspects. Secondly, an algebra with the properties of closure and reducibility

Chapter 9 Conclusions and Future Work 206

has been developed to provide access to objects that are interrelated through

associations of aggregation, inheritance and time-reference. Thirdly, this thesis presents
a layered structure for optimizer design. The importance of this structure is that it
separates the functionality between the temporal optimizer, the object optimzer and
relation optimizer and allows the exploitation or extension of the existing query

processing techniques at different layers. Fourthly, a set of query transformation rules

are specified for the algebraic manipulation. Fifthly, the enhanced path has been defined

to refer to a path with a time reference and a decomposition strategy is proposed for

processing temporal object queries involving such an enhanced path. Sixthly, query

processing algorithms are implemented using stream processing techniques that makes

use of ordering information of time varying data. Seventhly, this thesis presents valuable

cost analysis and simulation results: the join time cost is linearly increased with the

expansion in the number of time-epochs (it is linearly increased with the expansion of

time in the case of a regular TS). The term epoch taken from the signal processing field

has been served as an important token for cost analysis. It is shown that utilising
heuristics would result in a considerable cost saving. Finally, it has been shown that the

implications of temporal data can be exploited to respond to the user query requiring the

data that are not explicitly stored in the database.

It has been demonstrated that an object query processor can enhance its query

processing capability by utilising relational query processing techniques, and that

temporal object queries can be processed within the existing object query processing

framework, through smoothly extending existing techniques. Techniques that take

advantage of the semantic richness of temporal data, including stream processing

techniques, natural clustering or sort order, heuristics for reducing the scope of sequence

scanning, interpolation, etc., are beneficial to query processing and optimization.

Note that the project initially started in 1993. During the time we were writing up

publications from our research results (papers 1-5 listed in author's publications),

ODMG2.0 [Cattell, 19971 was released. ODMG Object Model introduced the concepts

of lifetime of an object and structure of timestamp, though there is no construct has been

specified for defining temporal object. OQL uses the relational standard SQL as a basis

Chapter 9 Conclusions and Future Work 207

but supports more powerful capabilities, i. e., it includes object extensions for object
identity, complex objects, path expressions, etc. The temporal object data model defined

in this thesis, via incorporating time elements into the unified model of RDB and OODB

from UniSQLJX, possesses the main key object features defined in ODMG Object

Model. The temporal object that is represented as a time sequence, complies with the
ODMG Object Model concepts: the values of an object's properties can change over

time; even though it changes over time it has the same OID. The algebra presented in

the thesis defines operations that support OQL defined primitives such as implicit join,

explicit join, path traversal, etc. Therefore, the idea of the extensible approach proposed
in this thesis to processing temporal object queries, and its techniques and strategies,

though they are based on the unified model of RDB and OODB from UniSQL, can be

applied to both object-oriented databases (based on ODMG) and object-relational

databases (based on SQL-3).

9.2 Conclusions

Here we draw the following conclusions or lessons learnt from the work, which further

make clear why our contributions are significant.

1) The temporal object data model defines access primitives and provides a

starting point for query processing

The temporal object data model is defined by incorporating a time dimension into the

unified model of OODBs and RDBs from UniSQL/X [Kim, 1993; 1994; 1995;

D'Andrea and Janus, 1996], which is extended from the relational data model.

* The model presents an extensible structure, i. e., it forms temporal relational-like

cubes but with aggregation and inheritance hierarchies so that the temporal object-

oriented database defined by the model is a superset of object-oriented database (i. e.,

retaining snapshot reducibility to an OODB) that in turn is a superset of relational

database.

Chapter 9 Conclusions and Future Work 208

A temporal object is represented by a time sequence that can model various practical
time varying entities. Both homogeneity and heterogeneity in the time dimension can be

supported.

9 The epoch, which refers to the time when temporal object changes its value, represents a
transformed time space and can then serve as a convenient token for the analysis of the

query processing cost.

The model with these features defines the access primitives that at least partially determine

the power of algebra. It provides a start point towards query processing.

2) A query algebra with the properties of reducibility and closure allows extending

and using of existing query processing techniques for processing temporal

object queries

A query algebra, that provides access to objects through aggregation, inheritance and

time-reference, is then defined as a general query model /language. This algebra has the

following desirable properties.

e The algebra is closed in the sense that the output from one operation can become

input to another. This ensures that the use of relational techniques is possible.

* The algebra possesses the property of reducibility. By reducibility, we mean that the

temporal object algebra can be reduced to the object algebra when the time

dimension is not taken into account and the object algebra can be further reduced to

the relational algebra when the aggregation hierarchy and inheritance hierarchy are

not taken into account. This enhances the abilities to utilise and extend the existing

query processing techniques for temporal queries.

* The algebra can be grouped complete so that it supports a rather strong notion of the

"history of an attribute". This satisfies the needs required by many temporal database

applications.

Chapter 9 Conclusions and Future Work 209

The algebra provides a basis for query processing and optim- ization. The features of the
algebra allow the extended approach to be exploited.

3) Separation of the functionality between temporal optimizer, object optimizer
and relational optimizer ensures existing techniques can be used or extended

Due to the extensible structure of our data model and reducibility of the algebra, the query
optimizer can be designed as a layered structure. That is, the temporal optimizer is built on
the top of the object optimizer that is on the top of the relational optimizer. This

separates the functionality between different optimizers, and the existing query
processing techniques can be exploited or extended (when necessary) at different levels.

The layered structure of the query optimizer lays out a uniform framework for processing
temporal object queries.

4) Algebraic manipulation can be performed by specifying a set of transformation

rules that expands relational rules by taking into account of object-oriented
features and time dimension

We have identified a set of query transformation rules that comprise:

" relational rules;

" temporal transformation rules;

" inheritance rules; and

" path transformation rules.

The relational rules derived from well-known algebraic optimization techniques in

RDBs play an essential role in query optimization. When the time-dimension is taken

into account, the temporal transformation rules come into effect. Inheritance rules are

object specific and simplify queries. The path transformation rules in OODBs have been

extended to address the features of the time dimension, that conceive query processing

techniques and strategies for processing temporal object-oriented queries (e. g., the

decomposition strategy and join algorithms see below).

Chapter 9 Conclusions and Future Work 210

5) A decomposition strategy provides a convenient means for temporal object

query processing and cost analysis, and an opportunity for optimization

A temporal object query can be represented by an enhanced path (defined as an

extended path with time-reference). A decomposition strategy is devised for such a

query.

The decomposition strategy for processing temporal queries can be formerly stated as
follows. A complex user query with path expressions that involves a time-reference is first

translated into a set of single path expressions. A single path is then divided into two sub-

paths: a sub-path involving time-stamped class that can be optimized by making use of the

ordering information of data and an ordinary sub-path (without a time-stamped class) that

can be further decomposed and traversed using different algorithms. The intermediate results

of traversed two sub-paths are then joined together to create the output query.

The advantages of decomposing the temporal query into sub-query components are that

it provides a convenient means for evaluating query processing algorithms and analysing

the effects of the time on query processing costs. It also provides an opportunity for

optimization, e. g., well-known join algorithms can be used to optimize the query.

6) Stream processing technique is a good choice of implementing temporal query

processing algorithms

As temporal data often ordered by time, the stream processing approach is a strategy of

choice to implement relevant algorithms.

With the stream processing techniques, the following algorithms have been

implemented:

* Stream processing time-slice algorithms and stream processing aggregation

algorithms for the time-related operations;

Chapter 9 Conclusions and Future Work 211

Four basic join algorithms (i. e., nested-loop forward join, sort-merge forward join,

nested-loop reverse join and sort-merge reverse join) and their modifications.

These algorithms are presented with the corresponding cost analysis and implemented

on a PC using Borland C++ Version 4.

7) The join time cost is linearly increased with the expansion in the number of
time-epochs (it is linearly increased with the expansion of time in the case of a

regular TS)

Adding time creates multiple versions for the same object that in turn affects query

efficiency. Both cost analysis and simulation results presented in this thesis reveal the

effects of time on query processing algorithms, i. e., the join time cost is linearly

increased with the expansion in the number of time-epochs (it is linearly increased with

the expansion of time dimension in the case of regular TS).

This justifies the effort involved in trying harder to optimize queries and performance

comparison between join algorithms with and without time-related operation support.

8) Utilising heuristics, that take advantage of data ordering and restrict the scope

of search space, will result in a considerable cost saving

There is a great opportunity to exploit temporal semantics in query optimization. To

further reduce the time cost, the following heuristics that take advantage of data

ordering and restrict the scope of search space have been presented as optimization

strategies:

* Transform the time-related predicate into time-slice operations;

* Perform time-slice as early as possible;

* Transform temporal constraints into time-slice operations.

Chapter 9 Conclusions and Future Work 212

The principle of these heuristics is to look only at the data that is relevant to the query.
It has been shown in the thesis by both analysis and simulation that utilising the
heuristics could lead to a significant time cost saving.

9) Implications of temporal data can be used to derive data that is not explicitly

stored in the database.

When a user query requiring the data that is not explicitly recorded in the database, the

techniques of interpolation or assumption rules that exploit the implication of temporal

data would help to answer the user's query. The implications of temporal completeness,

temporal succession and temporal density assure the use of interpolation and assumption

rules. Again, making use of the ordering information of the data and utilising the

heuristics that reduces the scope of scanning a sequence can improve the efficiency of

interpolation algorithms.

10) Solely treating a temporal object as a 'blob' object that is managed by the system,

but interpreted by the user is not a strategy for temporal support in OODBs

Because of the rapid perforinance degradation due to ever-growing overflow chains, for

OODBs that support for time-varying data, when the number of epochs is large, i. e., n>>bn,

there is certainly a need to provide facilities for temporal queries.

9.3 Future Work

Query processing in temporal object-oriented databases is a broad subject and poses

many difficult challenges. The work done in this thesis is still limited. We would

envisage the future work that might include:

1) Extending the join algorithms to operate on the classes with many-to-many

relationships

Like many path executing algorithms used OODBs, the join algorithms presented in the

thesis operate under the assumption that the two join classes have a many-to-one

Chapter 9 Conclusions and Future Work 213

relationship. Future work could be to extend the join algorithms to operate on classes
with many-to-many relationships.

2) Multiple path optimization

For simplification, we have discussed the query processing with a single path. When

queries involve multiple paths, the techniques proposed in the thesis can be extended
and applied to such cases. But, further study on cost analysis is needed to demonstrate

the performance of global optimization in this case.

3) Making use of temporal information for further optimization

Time implies a lot of information that can be used for optimization. This has been

demonstrated in this thesis in some extent. Building on work in this thesis, utilising
temporal constraints for semantic optimization would be a good topic of further

research. Detailed temporal predicate optimization would also be worth investigating.

4) Dealing with generalisation and specification

This thesis has focused on the central issue of object query processing, i. e., path

optimization. As is the case for most OODBs, it is assumed that once a class is specified

as a subclass of a class, it will automatically have the attributes defined by its superclass.
Support for generalisation and specification is quite system-implementation dependent

(most RDBs and post-relational databases require users to manage and enforce this

relationship). If it is supported by the system, query processing algorithms like what

have been presented in this thesis will be affected, and it should be taken into

consideration.

214

List of Figures

Figure 1.1 Features in OODBs and RDBs 3

Figure 2.1 An example relation: employee 19

Figure 2.2 Temporal database papers 34

Figure 3.1 Query processing strategies 49

Figure 3.2 Object query processing methodology 68

Figure 4.1 An example of OODB schema 81

Figure 4.2 Three basic type of temporal data 85

Figure 4.3 A 3-dimensional class 90

Figure 4.4 Database schema of "International Weather Record Database" 92

Figure 4.5 Database schema of "Wood Panel Deformation Measurement System" 94

Figure 4.6 Computer-aided EEG system 96

Figure 4.7 Database schema of " The Neurological Patient Care Database" 98

Figure 4.8 OLE link between database and analysis system 99

Figure 4.9 Different data processing procedures 99

Figure 4.10 Illustration of mapping on time-spaces 102

Figure 5.1 Illustration of basic algebra 105

Figure 5.2 Illustration of temporal unary set operations ill

Figure 5.3 Illustration of set operations 113

Figure 5.4 Illustration of operator select 114

Figure 5.5 Illustration of operatorproject 115

Figure 5.6 Illustration of operator time-slice 116

Figure 5.7 Illustration of operator offset 117

Figure 5.8 Illustration of operator when 118

Figure 5.9 Illustration of operatorjoin 118

Figure 5.10 Illustration of operators unnestTand nesiT 120

Figure 6.1 Data model extensibility 127

Figure 6.2 Optimizer layering 128

Figure 6.3 A sample path 145

215

Figure 6.4 An operator graph 145
Figure 6.5 Decomposition strategy for processing temporal object queries 146
Figure 7.1 Further decomposition of temporal sub-path 150
Figure 7.2 Join between block A and Block B 150
Figure 7.3 Data structure for a temporal relation 151
Figure 7.4 A file partitioned into blocks 151
Figure 7.5 Extracted from a simplified weather record database 167

Figure 7.6 Execution of simulation programs 170

Figure 7.7 Join time cost with respect to n (sel= 10%) (N<200) 177

Figure 7.8 Join time cost with respect to n (sel=33%) (N<200) 177

Figure 7.9 Join time cost with respect to n (sel=50%) (N<200) 178

Figure 7.10 Join time cost with respect to n (sel=100%) (N<200) 178

Figure 7.11 Join time cost with respect to sel % (n=40) 179

Figure 7.12 Join time cost with respect to sel % (n=80) 179

Figure 7.13 Join time cost with respect to sel % (n= 100) 180

Figure 7.14 Join time cost with respect to sel % (n= 180) 180

Figure 7.15 Join time cost with respect to n (sel=10%) (N<5000) 181

Figure 7.16 Join time cost with respect to n (sel=33%) (N<5000) 182

Figure 7.17 Join time cost with respect to n (sel=50%) (N<5000) 183

Figure 7.18 Join time cost with respect to n (sel=100%) (N<5000) 184

Figure 7.19 NLFJ time cost with respect to n (sel=10%)

without and with different time-slice intervals 185

Figure 7.20 NLFJ time cost with respect to n (sel=33%)

without and with different time-slice intervals 185

Figure 7.21 SMFJ time cost with respect to n (sel=10%)

without and with different time-slice intervals 186

Figure 7.22 SMFJ time cost with respect to n (sel=33%)

without and with different time-slice intervals 186

Figure 7.23 NLRJ time cost with respect to n (sel=10%)

without and with different time-slice intervals 187

Figure 7.24 NLRJ time cost with respect to n (sel=33%)

without and with different time-slice intervals 187

216

Figure 7.25 SMRJ time cost with respect to n (sel= 10%)

without and with different time-slice intervals 188
Figure 7.26 SMRJ time cost with respect to n (sel=33%)

without and with different time-slice intervals 188

List of Tables

Table 2.1 Temporal relational data models 38

Table 2.2 Temporal object-oriented data models 39

Table 2.3 Temporal relational query languages 40

Table 2.4 Temporal object-oriented query languages 41

Table 4.1 Equivalencies between post-relational and object-oriented terms 84

Table 4.2 Interaction of tuple lifespan and attribute lifespan 89

Table 4.3 Sample experiment setting 93

Table 5.1 Summary of algebraic operations 125

Table 7.1 Summary of join algorithm costs 163

217

List of Author's Publications Relevant to the Thesis

Lichun Wang, Michael Wing, Colin Davis and Non-nan Revell, Processing
temporal queries in the context of object-oriented databases, Infonnation and
Software Technology, Vol 41, No 5, p283-295,1999, Elsevier Science, ISSN 0950-
5849.

2 Lichun Wang, Michael Wing, Colin Davis and Norman Revell, Effects of time on
temporal object query processing algorithms, Chinese Journal of Advanced Software
Research, Vol 6, No 2,1999, Allerton Press, New York, USA, ISSN 1074 7443.

3 Lichun Wang, Michael Wing, Colin Davis and Norman Revell, A uniform
framework for processing temporal object queries, Technology of Object-Oriented
Languages and Systems: TOOLS 24, Proceedings, p28-37,1998, IEEE Press, ISBN
0-8186-8551-4.

4 Lichun Wang, Michael Wing, Colin Davis and Norman Revell, Decomposition: a
strategy for query processing in temporal object-oriented databases, New
technologies on Computer Software, p124-133, International Academic Publishers,
1997, ISBN 7-80003-408-9/TP. 15 (awarded the "BEST PAPER" by NTCS/W-97
Committee).

Lichun Wang, Michael Wing, Colin Davis and Norman Revell, Query processing
and optimization in temporal object-oriented databases, Proc. of Int. Workshop on
Database and Expert Systems Applications (DEXA 97), p474-48 1, Sept. 1997, IEEE
Press, ISBN 0-8186-7662-0.

6 Lichun Wang, Michael Wing, Colin Davis and Norman Revell, An algebra for a
temporal object data model, LNCS 1134, Database and Expert Systems Applications
(DEXA 96), Proceedings, p667-677, Zurich, Switzerland, 9-13 Sept. 1996, Springer,
ISSN 0302-9743.

7 Lichun Wang, Michael Wing, Colin Davis and Norman Revell, Query processing
in object-oriented databases, Cybernetics and Systems'96, Proceedings, p803-808,
Vienna, Austria, 8-12 April 1996 (won the "BEST PAPER AWARD" on the
conference), ISBN 3 85206 133 4.

8 Lichun Wang, Michael Wing, Colin Davis, Norman Revell and Jin Chen, Data

modelling and management in sequential image databases: a temporal object-
oriented approach, IEE Colloquium Digest on Intelligent Image Databases, pl/1-
1/6,22 May 1996,1996/119,1EE Press, ISSN 9063-3308.

9 Lichun Wang, Michael Wing, Colin Davis and Normal Revell, A temporal object-
oriented model for health-care information systems, Proc. of 1996 Chinese
Automation Conf. in UK, p193-198, Oxford, UK, 21-22 Sept. 1996.

218

10 Lichun Wang, Michael Wing, Colin Davis and Nonnan Revell, Query processing
in object-oriented databases, TR6.96, pl-6, ISSN 1362-2285.

I Lichun Wang, Michael Wing, Colin Davis and Norman Revell, An algebra for a
temporal object data model, TR6.96, p7-19, ISSN 1362-2285.

12 Lichun Wang, Jin Chen, Michael Wing, Colin Davis and Normal Revell, A
temporal object-oriented model for sequential image measurement and analysis
systems, TR6.96, p20-29, ISSN 1362-2285.

13 Lichun Wang, A framework for unifying RDB and OODB models, Proc. of
MUCORT"95, Middlesex University, UK, 1995, TR1.96, p49-54, ISSN 1362-
2285.

References

ADB, (1992). Matisse Technology Overview, Technical Report, ADB/hitellitic.

AlhaJ, R. and Arkun, M. E. (1993). A query model for object-oriented databases. Proc. of 9th Int. Conf. on Data Engineering, p 163-172.

Ariav, G. (1986). A temporal oriented model, ACM Trans. Database Systems, 11(4):
499-527.

Atkinson, M., et al. (1990). The object-oriented database system manifesto. Deductive
and Object-Oriented Databases, Kim, W., Nicholas K. M. and Nishio, S. (editors),
Elsvier Science Publishers.

Bassiouni, A A. and Lewellyn, (1992). A relational-calculus query language for
historical databases, J. Computer Languages, 17(3): 185-197.

Bancilhon, F. and Ramakrishnan, R. (1986). An amateur's introduction to recursive
query processing strategies. Proc ACM-SIGMOD Int. Conf. on Management of Data,
p16-52.

Banerjee, J., Kim, W. and Kim, K. C. (1988). Queries in object-oriented databases.
Proc. 4th Int. Conf. on Data Engineering, Los Angeles, Calif.

Beech, D. and Mahbod, (1988). Generalized version control in an object-oriented
database, Proc. Int. Conf. Very Large Databases, p 14-22.

Bell, D. and Grimson, J. (1992). Distributed Database Systems, Addison Wesley.

Ben-Zvi, J. (1982). The time relational model, PhD thesis, Computer Science Dept.,
UCLA, 1982.

Bemuth, B., et al. (1994). Algebraic query optimization in the CoOMS structurally
object-oriented database system. Query Processing for Advanced Database Systems,
p121-143, Morgan Kaufmann Publishers.

Bernstein, et al. (1998). The Asilomar Report on Database Research, SIGMOD Record,
Vol., 27, No. 4, Dec. 1998.

Bertino, E., Ferrari, E. and Guerrini, G. (1998). An approach to model and query event-
based temporal data, Proc. of 5th International Workshop on Temporal
Representation and Reasoning, p122-31, IEEE Press, 1998.

Bertino, E. and Guglielmina, C. (1993). Path-index: an approach to efficient execution
of object-oriented queries. Data and Knowledge Engineering, 10: 1-27.

INEW,
SEWT
NEW"

References
220

Bertino, E. and Foscoli, P. (1995). Index organization for object-oriented database
systems. IEEE Trans. on Knowledge and Data Engineering, 7(2): 193-209.

Bertino, E. and Martino, L. (1993). Object-Oriented Database Systems: Concepts and Architectures. Addison-Wesley Publishers Ltd.

Bertino, E. (1994). A survey of indexing techniques for object-oriented databases.
Query Processing for Advanced Database Systems, p383-417, Morgan Kaufmann
Publishers.

Bertino, E., Ferrari, E., and Guerrini, G. (1997). T Chimera: a temporal object-oriented
data model, Theory and Practice of Object Systems, 3(2): 103-125.

Bettini, C., Wang, X. S. and Jajiodia, S. (1998). An archetecture for supporting
interoperability among temporal databases, Temporal Databases: Research and
Practice, Springer-verlag, Berlin, 1998, p36-55.

Bettini, C., Wang, X. S., Bertino, E. and Jajodia, S. (1995). A semantic assumptions and
query evaluation in temporal databases, Proc. ACM-SIGMOD Int. Conf. on
Management of Data, San Jose, CA, USA, p257-268.

Bhargava, G. and Gadia, S. K. (1993). Relational database systems with zero
information loss, IEEE Trans. Knowledge and Data Engineering, 5(7): 76-87, Feb.

Blakely, J. A., et al. (1989). Updating derived relations: detecting irrelevant and
autonomously computable updates. ACM Trans. on Database Systems, 14(3): 369-
401.

Blakely, J. A., (1993). Experiences building the open OODB query optimizer, Proc.
ACM-SIGMOD Int. Conf. on Management of Data, Washington DC, USA, 287-296.

Bolour, A., Anderson, T. L., Dekeyser, L. J. and Wong, H. K. T. (1983). The role of time in
information processing: a survey, ACM SIGMOD Record, 12(3): 27-50.

Bohlen, M. H. (1995). Temporal database system implementation. SIGMOD RECORD,
24(4): 53-60.

Cardenas, A., et al. (1993). The knowledge-based object-oriented PICQUERY
language, IEEE Trans. Knowledge and Data Engineering, 5(4): 644-657, Aug.

Carey, M. J., et al. (1990). The EXODUS extensible DBMS project: an overview.
Readings on Object-Oriented Database Systems (Maier, D. and Zdonik, S., editors.).
Morgan Kaufmann, San Mateo, CA.

Carery, M. J., DeWitt, D. J. and Vandenburg, (1988). A data model and query language
for EXODUS, Proc. ACM Int. Conf. Management Data, Chicago, p413-423. June.

Carpenter, R. H. S. (1996). Neurophysiology. London: Edward Arnold.

References 221

Carrano, F. M. (1995). Data Abstraction and Problem Solving With C++. Benjamin/
Cunu-nings.

Caruso, M. and Sciore, E. (1988). Meta-functions and contexts in an object-oriented
database language, Proc. ACM Int. Conf. Management Data, Chicago, p56-65, June.

Cattell, R. G. G. (1994). Object Data Management: Object Oriented and Extended
Database Relational Systems, Addison Wesley.

Cattell, R. G. G. (editor) (1996). The Object Database Standard: ODMG-93 Releasel. 2.
Morgan Kaufmann

Cattell, R. G. G. et A (editors) (1997). The Object Database Standard: ODMG2.0-
Morgan Kaufmann.

Chakravarthy, U. S., et al. (1990). Logic-based approach to semantic query optimization.
ACM Trans. on Database Systems. 15(2): 162-207.

Chen, J., Clarke, T. A. and Robson, S. (1994). Optimised target matching based on a 3-D
space intersection and a constrained search for multiple camera views. Videometrics III,
SPIE Proc., Vol 2350, p 324-335.

Chu, W. W., et al. (1992). A temporal evolutionary object-oriented data model and its query
language for medical image management, Proc. Int. Conf. Very Large Databases, Aug.

Clarke, A., et al. (1995). Automated three dimensional measurement using multiple CCD
camera views. The Photogrammetric Record, 15(85): 27-42.

Clifford, J. and Croker, A. (1987). The historical relational data model (hrdm) and algebra
based on lifespans, Proc. Int. Conf. Data Engineering, p528-537, Los Angeles, Feb.

Clifford, J. and Warren, D. S. (1983). Formal semantics for time databases, ACM Trans.
Databases Systems, 8(2): 214-254, June.

Clifford, J., et al. (1993). The historical relational data model (HRDM) revisited. Temporal
Databases: Theot)ý Design, and Implementation (edited by Tansel, A. U. et al.), p6-27.
Benjanun/ Cununings.

Cluet S. and Delobel, C. (1994). Towards a unification of rewrite-based optimization
techniques for object-oriented queries. Query Processingfor Advanced Database Systems
(edited by J. Freytag, et aL). Morgan Kaufmann.

Codd, E. F. (1970). A relational model of data for large shared data banks,
Communication ofACM, Vol 13, No 6, June.

Codd, E. F. (197 1). A database sublanguage founded on the relational calculus, Proc. of
the ACM-SIGFIDET workshop, Data Description, Access and Control, San Diego,
Calif, Nov 11-12, ACM, New York p35-68.

References
222

Codd, E. F. (1972). Relational completeness of data base sublanguages. Courant
Computer Science Symposia No 6: Data Base Systems. Pretice-Hall, New York, p67- 101.

D'Andrea, A. and Janus, P. (1996). UNISQL's next-generation object-relational database
management system. SIGMOD RECORD, 25(3): 70-76, Sept.

Date, C. J. (1995). An Introduction to Database Systems, 6th Edition. Addison-Wesley.

Date, CT (1994). Marrying objects and relational (interview). Database Research
Group: Data Base Newsletter 22, No3, May/June 1994 (part 1); Data Base
Newsletter 22, No 4 July/August 19994 (Part 11).

Date, C. J. and Darwen, H. (1998). Foundation for ObjectlRelational Databases: The
Third Manifesto, Addison Wesley, 1998.

Darwen, H. and Date, C. J. (1995). The Third Manifesto, A CM SIGMOD Record 24, No
1.

Dayal, U., et al. (1985a). PROBE- A research project in knowledge-oriented database
systems: preliminary analysis, Technical Report, Computer Corporation of America,
CCA-85-03, July.

Dayal, U., et al. (1985b). PROBE: a knowledge-oriented database management system.
Proc. Islamorada Workshop on Large Scale Knowledge Base and Reasoning
Systems, Islarnorada, FL, Feb.

Dayal, U. and Wuu, G. T. J. (1992). A uniform approach to processing temporal queries,
Proc. of the 18th Int. Conf on VLDB, p407-417, Canada.

Demuth, B., Geppert, A. and Gorchs, T. (1994). Algebraic query optimization in the
CoOMS structurally object-oriented database system, Query Processing for Advanced
Database Systems (edited by J. Freytag, et aL). Morgan Kaufmann.

Desai, B. C. (1990). An Introduction to Databases Systems (Chapter 10 Query
Processing), West Publishing Company.

Dreyer, W., Dittrich, A. K. and Schmidt, D. (1994). Research respectives for time series
management systems, SIGMOD RECORD, 23(l): 10-15, March.

Eisenberg, A. and Melton, J. (1999). SQL 1999, formerly known as SQL3. SIGMOD
Record, Vol 28, No 1. March 1999.

French, J., et al., (1990). Summary of the final report of the NSF Workshop on
Scientific Database Management, SIGMOD RECORD, 19(4): 32-40.

Freytag, J. C., Maier, D. and Vossen, G. (editors). (1994). Query Processing for
Advanced Database Systems, Introduction, Morgan Kaufmann Publishers.

References 223

Gadia, S. K. (1986). Towards a multihomogeneous model for a temporal databases, Proc.
Int. Conf Data Engineering, p390-397, Los Angeles, Feb.

Gadia, S. K. (1988). A homogeneous relational model and query languages for temporal
databases. ACM Trans. on Database Systems, 13(4): 418-448.

Gadia, S. K., and Yeung, C. S. (1992). A generalized model for a relational temporal
databases, Proc. of Conf. Very Large Databases, Vancouver, Canada, Aug.

Gadia, S. K. and Nair, S. S. (1993). Temporal databases: a preclude to parametric data.
Temporal Databases: Theory, Design, and Implementation (edited by A. U. Tansel, et
al.), p28-66. Benjamin/ Cummings Publishing.

Gardarin, G., et al. (1996). Cost-based selection of path expression processing algorithms in
object-oriented databases. Proc. of the 22th Int. Conf. on VLDB, p390-401, Mumbai
(Bombay), India.

Gerald, C. F. and Wheatley, P. 0. (1994). Applied Numerical Analysis, Addison-Wesley
Publishing Company.

Ginsburg, S. (1993). A temporal data model based on time sequences, Temporal
Databases: Theory, Design, and Implementation (edited by A. U. Tansel, et al.), p248-
270. Benjamin/ Cummings Publishing.

Goralwalla, 1. A., Ozsu, M. T. and Szafron, D. (1998). An object-oriented framework for
temporal data models. Temporal Databases: Research and Practice, Springer-Verlag,
Berlin, Germany, 1998, pl-35.

Goralwalla, 1. And Ozsu, M. T. (1993), Temporal extensions to a uniform behavioural object
model, Proc. Int. Conf. Entity-Relationship Approach, Dallas, June.

Graefe, G. and Maier, D. (1988). Query optimization in object-oriented database
systems: a prospectus, 2nd Int. Workshop on Object-Oriented Database Systems,
Springer-Verlag.

Graefe, G. (1993). Query evaluation techniques for large databases. ACM Computing
Surveys, 25(2), p73-170.

Graefe, G., et al. (1994). Extensible query optimization and parallel execution in
Volcano. Query Processing for Advanced Database Systems, p305-336, Morgan
Kaufmann Publishers.

Graham, 1. (1994), Object- Oriented Methods, Addison-Wesley, 1994.

Griffiths, A. and Theodoulidis, B. (1996). SQL+i: Adding Temporal Indeterminacy to the
Database Language SQL. LNCS, Proc. of 15th British National Conference on
Databases, p204-22 1, UK.

References 224

Gunadhi, H. and Segev, A. (1990). A framework for query optimization in temporal
databases. Proc. of 5th Int. Conf. on Statistical & Scientific Database Management,
p131-147.

Gyssens, M., et al. (1994). Tagging as an alternative to object creation. Query
Processing for Advanced Database Systems, p201- 242, Morgan Kaufmann
Publishers.

Jarke, M. (1984). External semantic query simplification: a graph-theoretic approach
and its implementation in Prolog. Proc. Ist Int. Workshop Expert Database Systems,
p 467-482.

Jarke, A and Koch, J. (1984). Query optimization in database systems, Computing
Surveys, 16(2): 111-152.

Jarke, M. and Koch, J. (1985). Introduction to query processing, Query Processing in
Database Systems (edited by Kim, W., Reiner, D. S. and Batory, D. S.), Springer-
Verlay.

Jenq, P., Woelk, D., Kim, W. and Lee, W. (1990). Query processing in distributed
ORION. Proc. on Extending Database Technology, Venice: Springer-Verlag.

Jensen, C. S., Mark, L. and Roussopoulos, N. (199 1). Incremental implementation
model for relational databases with transaction time, IEEE Trans. Knowledge and
Data Engineering, 3(4): 461-473, Dec.

Jensen, C. S., and Mark, L. (1992). Queries on changes in an extended relational model,
IEEE Trans. Knowledge and Data Engineering, 4(2): 192-200, April.

Jensen, C. S., Mark, L. and Roussopoulos, N. (1993). Using differential techniques to
efficiently support transaction time, VLDB J., 2(l): 75-111, Jan.

Jensen, C. S., Soo, A D., and Snodgrass, R. T. (1994). Unifying temporal models via a
conceptual model, Information Systems, 19(7): 513-547, Dec.

Jensen, C. S., et al. (1994). A consensus glossary of temporal database concepts,
SIGMOD RECORD, 23(l): 52-64. March.

Jeusfeld, M. and Staudt, M. (1994). Query optimization in deductive object bases.
Query Processing for Advanced Database Systems, p145-176, Morgan Kaufmann
Publishers.

Jones, S., Mason, P. and Stamper, R. (1979). Legol 2.0: a relational specification
languages for complex rules, Information Systems, 4(4): 293-305, Nov.

Kafer, W., Ritter, N. and Schoning, H. (1990). Support for temporal data by complex
objects, Proc. of 16th VLDB Conf., Brisbane, Australia, P24-35.

References
225

Kafer, W., Ritter, N. and Schoning, H. (1992a). Mapping a version model to a complex
object data model, Proc. Int. Conf. Data Eng., p348-357.

Kafer, W., Ritter, N. and Schoning, H. (1992b). Realizing a temporal complex-object data model, Proc. ACM Int. Conf. Management Data, p266-275.

Keller, T., Graefe, G. and Maier, D. (1991). Efficient assembly of complex objects, Proc. ACM-SIGMOD Int. Conf. on Management of Data, p148-157.

Kendall, A and Ord, J. K. (1990). Time Series. Edward Arnold.

Kemper, A. and Moerkotte, G. (1994). Query optimization in object bases: Exploiting
Relational Techniques. Query Processing for Advanced Database Systems, p 63-97,
Morgan Kaufmann Publishers.

Khoshafian, S. (1993). Object- Oriented Databases. John Wiley &Sons, Inc.

Kifer, M., Kim, W. and Sagiv, Y. (1992). Querying object-oriented databases. Proc. ofACM
SIGMOD Conf. on Management of Data, 393-402.

Kim, W., Reiner, D. S., and Batony, A. S. (editors) (1985). Query Processing in Database
Systems. Springer-Verlay, 1985.

Kim, W. (1989). A model of queries for object-oriented databases. Proc. of the 5th Int. Conf.
on VLDB, p423-432, Amsterdam, 1989.

Kim W., et al., (1990), Architecture of the orion next-generation database system, IEEE
Trans. Knowledge and Data Eng., 2(1): 109-124, March.

Kim, W. (1990). Object-oriented approach to managing statistical and scientific databases,
Proc. of 5th Int. Conf. on Statistic & Scientific Database Management. pI- 13.

Kim, W. (1993). Object-oriented databases systems: promises, reality, and future. Proc. of
the 19th Int. Conf. on VLDB, P 676-687, Dublin, Ireland.

Kim, W. (1994). Next-generation database systems: objects and beyond. Proc. of IISEIACM
Japan Int. Symposium, Computers as our Better Partners, p188-196, Tokyo, Japan,
March 1994. World Scientific Publishing, Singapore.

Kim, W. (editor) (1995). Modem Database Systems: the Object Model, Interoperability, and
Beyond,. ACM Press.

Kim, W., Garza, J. F. and Graham, B. (1997). Database technology beyond object-relational,
Advances in Databases and Information Systems, Proc. of International Workshop in
Databases and Information Systems, Springer-Verlag, London, 1997.

Kim, K. C., Kim W. and Dale, A. (1989). Cyclic querying processing in object-oriented
databases. Proc. 5th Int. Conf. on Data Engineering, Los Angeles, Calif, Feb.

References
226

Kimball, K. A., (1978). The DATA system, master thesis, University of Pennsylvania.

Kline, N. (1993). An update of temporal databases bibliography, ACM SIGMOD Record,
22(4): 66-80.

Kotz-Dittrich A. and Dittrich, K. R. (1995). Where object-oriented DBMSs should do better:
a critique based on early experiences. Modem Database Systems: the Object Model,
Interoperability, and Beyond, (edited by W. Kim), p238-253. ACM Press.

Kulkarni, K., Bauer, J., et al. (1994). ADT-based type system for SQL. Query
Processingfor Advanced Database Systems, p6-33, Morgan Kaufmann Publishers.

Lausen, G. and Marx, B. (1994). Evaluation aspects of an object-oriented deductive
database language. Query Processing for Advanced Database Systems, p177-198,
Morgan Kaufmann Publishers.

Lehner, W., Ruf, T. and Teschke, M. (1995). Optimizing database access performance
in scientific applications without compromising logical data independence. Proc. of
the 2nd Int. Conf. on Applications of Databases, USA, 13-15 Dec.

Leung, T. Y. C. and Muntz, R. R. (1990). Query processing for temporal databases. Proc. of
IEEE Int. Conf. on Data Engineering, p200-207.

Leung, T. Y. C. and Muntz, R. R. (1992). Temporal query processing and optimization in
multiprocessor database machines, Proc. of the 18th VLDB Conf., p383-394, British
Columbia, Canada.

Leung, T. Y. C. and Muntz, R. R. (1993). Stream processing: temporal query processing and
optimization. Temporal Databases: Theory, Design, and Implementation (edited by
Tansel, A. U., et al.), p329-355. Benjamin/ Curninings.

Lomet, D. and Salzberg, B. (1989). Access methods for multiversion data, Proc. ACM Int.
Conf. Management Data, p315-324, June.

Lorentzos, N. A. and Johnson, R. G. (1998). Extending relational algebra to manipulate
temporal data, Information Systems, 13(3): 289-296.

Lorentzos, N. A. and Mitsopoulos, Y. G. (1997). SQL extension for interval data, IEEE
Trans. on Knowledge and Data Engingeering, 6(3): 480-499.

Lum, V., et al. (1984). Designing DBMS support for the temporal dimension, Proc. ACM
Int. Conf. Management Data, p 115-130, Boston, June.

Maier, D., Daniels, S., Keller, T., et al. (1994). Challenges for query processing in

object-oriented databases. Query Processing for Advanced Database Systems, p337-
380, Morgan Kaufmann Publishers.

Manola, F. and Dayal, U. (1986). PDM: an object-oriented data model. Proc. Int.
Workshop on Object-Oriented Database Systems, Sept.

References
227

McKenzie, L. E. and Snodgrass, R. T. (1991). Evaluation of relational algebras incorporating
the time dimension in databases, ACM Computing Surveys, 23(4): 501-543, Dec.

McKenzie, L. E., and Snodgrass, R. T. (1991). Supporting valid time in an historical
relational algebra: proofs and extensions, Technical Reporl TR-91-15, Dept of Computer
Science, Univ. of Arizona, Tucson, Aug.

McKenzie, L. E. (1986). Bibliography: temporal databases, ACM SIGMOD Record, 15(4):
40-52.

Melton, J. and Simon, A. R. (1993). Understanding the New SQL: A Complete Guide,
Morgan Kaufmann, San Mateo, Cal.

Microsoft Cooperation (1993). OLE2 Classes--For Microsoft Foundation Class
Libraries, Microsoft Press.

Mitchang, B. and Pirahesh, H. (1994). Integration of composite objects into relational
query processing: the SQL/XNF approach. Query Processing for Advanced Database
Systems, p35-62, Morgan Kaufmann Publishers.

Navathe, S. B. and Ahmed, R. (1989). A temporal relational model and a query
language, Information Sciences, Vol. 49, p147-175.

Nicolas, J-M. (1982). Logic for improving integrity checking in relational database, In
Acta Informatika, 18: p227-253.

OMG and Xopen. (1992). The Common Object Request Broker: Architecture and
Specification, Object Management Group and X/Open, Framingham, Mass. and Reading
Berkshire, UK.

Oppenhein, A. V. and Schafer, R. W. (1975). Digital Signal Processing, Prentice-Hall.

Orenstein, J. A., et al. (1986). The architecture of the PROBE database system. Probe
Project Workshop.

Osborn, S. L. (1988). Identity, equality and query optimization, Advances in Object-
Oriented Database Systems. 2nd Int. Workshop on Object-Oriented Databases
Systems (edited by Dittrich, K. R.), p346-351, Springer-Verlag, Lecture Notes in
Computer Science, 334, Sept.

Osborn, S. L. (1989a). Algebraic query optimization for an object algebra, Technical
Report, No 25 1, Univ. of Western Ontario.

Osbom, S. L. (1989b). The role of polymorphism in schema evolution in an object-
oriented database. IEEE Trans. on Knowledge Engineering, Sept.

Ozkan, C., et al. (1995). A heuristic approach for optimization of path expressions. Proc. of
Database and Expen Systems Applications, p523-534, London, Sept.

References
228

Ozsoyoglu, G. and Snodgrass, R. T. (1995). Temporal and real-time databases: a survey, IEEE Trans. on Knowledge and Data Engineering, 7(4): 513-532, August.

Ozsu, M. T. (1991). Query processing issues in object-oriented database systems-
preliminary ideas. Symposium on Applied Computing, Kansas City, Missouri, April.

Ozsu, M. T., et al. (1995). TIGUKAT: a uniform behavioural object base management
system, VLDB J.

Ozsu, A T. and Blakeley, J. A. (1995). Query processing in object-oriented database
systems. Modem Database Systems: the Object Model, Interoperability, and Beyond,
(edited by W. Kim), p 146-174. ACM Press.

Ozsu, M. T. and Straube, D. D. (1991). Issues in query model design in object-oriented
database systems, Computer Standards & Interfaces, 13(1991): 157-167.

Pang, H., Lu, H. and Ool, B. (1991). Query processing in OODB. Database Systems for
Advanced Applications'91, World Scientific Publishing Co.

Pickover, C. A. (1995). Future Health: Computers and Telecommunication in Medicine
in 21st Century. New York: St. Martin's Press.

Pissinou, N., et al. (1993). On temporal modelling in the context of object databases.
SIGMOD RECORD, 22(3): 8-15, Sept.

Pissinou, N, et al. (1994). Towards an infrastructure for temporal databases: report of an
invitational ARPANSF workshop. SIGMOD RECORD, 23(l): 35-5 1, March.

Rumbaugh, J., Blaha, M., et al. (199 1). Object- Oriented Modelling and Design, Englewood
Cliffs, NJ: Pretice-Hall.

Robinson, K. A. (1979). An entity/event data modelling method, Comput. J., 22(3): 270-281.

Robson, S., et al. (1995). Seeing the wood from the trees-an example of optimised digital
photogrammetric deformation detection. ISPRS Intercommission Workshop: From Pixels
to Sequences-Sensors, Algorithms, and Systems, Vol 30/5W 1, p379-3 84.

Roddick, J. F. and Patrick, J. D. (1992). Temporal semnatics in information systems-a
survey. Information Systems, 17(3): 249-267.

Rose, E. and Segev, A. (199 1). TOOM-A temporal object-oriented data model with temporal
constraints, Proc. Int. Conf. Entity-Relationship Approach, Oct.

Rose, E. and Segev, A. (1993a). TOOA: a temporal object-oriented algebra, Proc. European
Conf. Object-Oriented Programming, July.

Rose, E. and Segev, A. (1993b). TOOSQL- A temporal object-oriented query language,
Proc. Int. Conf. Entity-Relatioship Approach, Dallas.

References
229

Sadeghi, R. (1987). A database query language for operations on historical data, PhD thesis, Dundee College of Technology, Dundee, Scotland, Sept.

Sadeghi, R., et A (1987). HQL-A historical query language, Technical Report, Dundee
College of Technology, Dundee, Scotland, Dec.

Sarda, N. (1990a). Algebra and query language for a historical data model, The Computer J,
33(l): 11-18, Feb.

Sarda, N. (1990b). Extensions to SQL for historical databases, IEEE Trans. on Knowledge
and Data Engineering, 2(2): 220-230, June.

Sciore, E. (1991). Using annotations to support multiple kinds of versioning in an object-
oriented database system, ACM Trans. Database Systems, 16(3): 417-438, Sept.

Sciore, E. (1995). Versioning and configuration management in an object-oriented data
model, VLDB J.

Segev, A. and Shoshani, A. (1987). Logical modelling of temporal data, Proc. SIGMOD Int.
Conf Management Data, p454-466, San Francisco, May.

Segev, A. and Shoshani, A. (1993). A temporal data model based on time sequences,
Temporal Databases: Theory, Design, and Implementation (edited by Tansel, A. U., et
al.), p249-270.

Segev, A. (1993). Join processing and optimization in temporal relational databases,
Temporal Databases: Theory, Design, and Implementation (edited by Tansel, A. U., et
al.), p356-387.

Segev, A., Jensen C. S. and Snodgrass, R. (1995). Report on the 1995 International
Workshop on temporal databases. SIGMOD RECORD, 24(4): 46-52, Dec.

Seshadri, P., et aL (1994). Sequence query processing, Proc. of ACM SIGMOD Conf. on
Management of Data, p430-44 1, May.

Seshadri, P., et al. (1996). The design and implementation of a sequence database system.
Proc. of the 22th Int. Conf. on VLDB, P 99-110, India.

Seshadri, P., et aL (1996). Cost-based optimization for magic: algebra and implementation,
Proc. ACM-SIGMOD Int. Conf. on Management of Data, Montreal, Canada, p 435-
446.

Shaw, G. A and Zdonik, S. B. (1990). A query algebra for object-oriented databases. Proc.
of 6th Int. Conf. on Data Engineering, p 154-162, BEEE.

Shaw, G. M. and Zdonik, S. B. (1989). Object-oriented queries: equivalence and
optimization. Ist Int. Conf. on Deductive and Ob ect-Oriented Databases. j

References 230

Shaw, G. M. and Zdonik, S. B. (1989). An object-oriented algebra. Bulletin of IEEE
Technical Committee on Database Engineering, 12,3 (Sept. 89), 29-36.

Shekita E. J. and Carey, M. J. (1990). A performance evaluation of pointer-based joins.
Proc. ofACM SIGMOD Conf., p 300-311, Atlantic, NJ, May.

Silberschatz, A., Stonebraker M. and Ullman, J. (1996). Database research:
achievements and opportunities into the 21st century. SIGMOD RECORD, 25(l) 52-
63, March.

Simon, A. R. (1995). Strategic Database Technology: Management for the Year 2000.
Morgan Kaufmann Publishers, Inc.

Smith, J. M. and Chang, P. Y. T. (1975). Optimizing the performance of a relational
algebra database interface. Commun. ACM, 18(10): 568-579. Oct.

Snodgrass, R. T. (1987). The temporal query language Tquel, ACM Trans. Database
Systems, 12(2): 247-298, June.

Snodgrass, R. (1990). Temporal databases status and research directions, SIGMOD
RECORD, 19(4): 83-89. Dec.

Snodgrass, R. T. et al. (1994). TSQL2 language specification, ACM SIGMOD Record,
23(l): 65-86, March.

Snodgrass, R. (editor) (1995). The TSQL2 Temporal Query Language, Kluwer Acadernic
Publishers.

Snodgrass, R. (1995). Temporal object-oriented databases: a critical comparison. Modem
Database Systems: the Object Model, Interoperability, and Beyond, (edited by W. Kim),

p 386-408. ACM Press.

Snodgrass, R. (1995). An overview of Tquel, Temporal Databases: Theory, Design, and
Implementation (edited by Tansel, A. U., et al.), p 141-179.

Snodgrass, R. T. (1987). The temporal query language Tquel, ACM Trans. on Database
Systems, 12(2): 247-298, June.

Snodgrass, R. T. and Ahn, 1. (1986). Temporal databases, Computer, 19(9): 35-42, Sept.

Soo, M. D. (1991). Bibliography on Temporal Databases, ACM SIGMOD Record, 20(t): 14-

23.

Soo, M. D., Jensen, C. S. and Snodgrass, R. T. (1994). An algebra for TSQL2, TSQL2
Commentary, Sept.

Stem, and Snograss, R. T. (1988). A Bibliography on Temporal Databases, IEEE Database

Enginerring, 7(4): 231-239.

References

Stonebraker, M., et al. (1990).
SIGMOD RECORD, 19(3).

231

Third-generation data base system manifesto. ACM

Stonebraker, M., Rowe, L. and Hirohama, A (1990). The implementation of POSTGRES.
IEEE Trans. on Knowledge and Data Engineering, 2(l): 125-142.

Stonebraker, M. (1996). Object-Relational DBMSs: The Next Great Wave, Morgan
Kaufrnann.

Stonebraker, A (1998). Object-Relational DBMSs: Tracking the Next Great Wave, Morgan
Kaufmann.

Straube, D. D. and Ozsu, A T. (1990). Queries and query processing in object-oriented
database systems. A CM Trans. on Information Systems, 8 (4): 3 87-430,1990.

Straube, D. D. (1991). Queries and query processing in object-oriented database
systems. PhD Thesis, Univ. of Alberta, Spring.

Straube, D. D. and Ozsu, M. T. (1995). Queries optimization and execution plan generation
in object-oriented database management systems. IEEE Trans. on Knowledge and Data
Engineering, 7(2): 210-227, April.

Su, S. Y. W. and Chen, H. M. (1991), A temporal knowledge representation model
OSAM*/T and its query language OQL/T, Proc. Int. Conf. Very Large Databases.

Sung J. and Park, J. (1991). Semantic query processing in object-oriented database
systems, Database Systems for Advanced Applications' 91, World Scientific
Publishing Co.

Tang, Z., et al. (1996). Optirnizing path expressions using navigational algebraic operators.
Proc of Database and Expert Systems Applications, p574-583, Zurich, Switzerland, Sept.
9-13.

Tansel, A. U. and Tin, E. (1998). Expressive power of temporal relational query languages

and temporal completeness. Temporal Databases: Research and Practice, Springer-
Verlag, Berlin, Gen-nany, 1998, p129-49.

Tansel, A. U. (1986). Adding time dimension to relational model and extending relational
algebra, Information Systems, 11(4): 343-355.

Tansel, A. U., et aL (1989). Time-by-example query language for historical databases, IEEE
Trans. Software Eng., 15(4): 464-478, April.

Tansel, A. U. (1993). A generalized relational framework for modelling temporal data.
Temporal Databases: Theory, Design, and Implementation (edited by A. U. Tansel, et
al.), p183-201. Benjamin/ Cummings Publishing.

Tansel, A. U. (199 1). A historical query language, Infonnation Sciences, Vol. 53, pI-I- 133.

References
232

Tansel, A. U., et al. (editors). (1993). Temporal Databases: Theory, Design, and Implementation. Benjamin/ Cummings Publishing Company.

Thompson, P. A. (199 1). A temporal model based on accounting principles, PhD thesis, Dept of Computer Science, University of Calgary, Calgary, Alta., Canada, Mar.

Toman, D. (1998). Point-based temporal extensions of SQL and their efficient implemnlation, Temporal Databases: Research and Practice, Spnnger-Verlag, Berlin,
Germany, p2ll-37.

Tsotras, V. J. and Kumar, A. (1996). Temporal database bibliography update, SIGMOD
RECORD, 25(l): 41-51.

Ullman, J. D. (1989). Principles of Database and Knowledge-Base Systems, Vol 2: The
New Technologies, Chapter II Query optimization for database systems, p633-675.
Computer Science Press.

Unland, R., et al. (1992). Object-oriented database systems: state of art and research
problems. Expert Database Systems (edited by Keith Jeffery), Academic Press
Limited.

Vandenberg, S. L. and DeWitt, D. J. (1991). Algebraic Support for complex objects with
arrays, identity, and inheritance, Proc. ACM-SIGMOD Int. Conf. on Management of
Data, 1991, p158-167.

Wang, L., Wing, M., Davis, C. and Revell, N. (1996a). An algebra for a temporal object data
model. LNCS 1134, Database and Expert Systems Applications, Proceedings, p667-677,
Zurich, Switzerland, Sept. 9-13.

Wang, L., Wing, M., Davis, C. and Revell, N. (1996b). Query processing in object-onented
databases. Proc. of 13th European Meeting on Cybernetics and Systems Research, p803-
808, April 9-12,1996, Vienna, Austria.

Wang, L., Wing, M., Davis, C., Revell, N. and J. Chen. (1996c). Data modeling and
management in sequential image databases: a temporal object-oriented approach. IEE
Colloquium Digest on Intelligent Image Databases, p 1/1 -6.

Wang, L., Wing, M., Davis, C. and Revell, N. (1997a). Query processing and optimization in
temporal object-oriented databases. Proc. of the 8th Int. Workshop on Database and
Expert Systems Applications, Sept. 1-2 1997, Toulouse, France, EEEE press.

Wang, L., Wing, M., Davis, C. and Revell, N. (1998). A uniform framework for processing
temporal object queries, Technology of Object-Oriented Languages and Systems:
TOOLS 24, Proceedings, p28-37,1998, IEEE press.

Wang, L., Wing, M., Davis, C. and Revell, N. (1999). Processing Temporal Queries in the
Context of Object-Oriented Databases, Infonnation and Software Technology,
41(1999): 283-295, Elsevier Science, ISSN 0950-5849.

References 233

Wang, L., Wing, M., Davis, C. and Revell, N. (1999). Effects of time on temporal object
query processing algorithms, to appear in Chinese Journal o ! ftw f Advanced So are Research, NO. 2,1999, Allerton Press, Inc., New York, USA. ISSN 1074 7443.

Wiederhold, G., Fries, J. F. and Weyl, S. (1995). Structured organization of clinic data bases,
Proc. National Computing Conf

, p479-485.

Wolniewicz R. H. and Graefe, G. (1992). Automatic optimization and parallelization of
computations in scientific databases.

Wuu, G. T. J. and Dayal, U. (1992). A uniform model for temporal data retrieval, Proc.
Int. Conf. Data Eng., 584-593, Tempe, Ariz, Feb.

Yannakakis, M. (1995). Perspectives on database theory, IEEE.

Yao, S. B. (1979). Optimization of query evaluation algorithms. ACM Trans. on
Database Systems, 4 (2): 133-55.

Yau, C. and Chat, G. S. W. (1991). TempSQL- a language interface to a temporal
relational model, Infonnation Science and Technology, p40-60. Oct.

Yu, C. T. and Meng, W. (1998). Principles of Database Query Processing for Advanced
Applications, Morgan Kaufmann Publishers, Inc.

Yu, L. and Osborn, S. L. (1991). An evaluation framework for algebraic object-oriented
query models. Proc. of 7th Int. Conf. on Data Engineering, p 670-677. IEEE.

Zand, M. Collins, V. and Caviness, D. (1995). A survey of current object-oriented
databases, Data Base Advances, 26(l): 14-29, Feb.

Zdonic, S. B. (1989). Query optimization in object-oriented databases. Proc. 22nd
Annual Hawaii Int. Conf on System Sciences, p 19-25.

Zdonic, S. B. and Maier, D. (editors). (1990). Readings in object-Oriented Database
Systems. Morgan Kaufmann Publishers.

Zurek, T. (1998). Parallel processing of temporal joins. Informatica, 22(2): 153-66,
May.

234

APPENDIX

Selected Published Papers

A. 1 Processing Temporal Queries in the Context of Object-Oriented Databases

A. 2 An Algebra for a Temporal Object Data Model

Reprinted from

INFORMATION

AND

SOFTWARE

TECHNOLOGY

Information and Software Technology 41 (1999) 283-295

Processing temporal queries in the context of object-oriented databases
L. Wang", M. Wing b, C. Davis b, N. Revellb

'Department of Computer Science, University College London, Gower Street, London WCIE 6BT UK
'School of Computing Science, Middlesex University, Bounds Green Road, London NI I 2NQ UK

Received 12 January 1998; received in revised form 14 December 1998, accepted 15 December 1998

ELSEVIER

Co-EDITORS
Michael Dyer Professor Martin Shepperd
Suite 780, Department of Computing,
7201 Wisconsin Avenue, Bournemouth University,
Bethesda, MD 20814, Poole House, Talbot Campus,
USA Fem Barrow, Poole, Dorset BH 12 5BB, UK
E-mail: mdyer@access. digex. net E-mail: mshepper@boumernouth. ac. uk

INTERNATIONAL EDITORIAL BOARD

D. J. Andrews
Nene College of Higher Education,
School of Information Systems,
Park Campus, Boughton Green Road,
Northampton NN2 7AL, UK

Dr P. Hitchcock
School of Computer Engineering,
Technical University of Nova Scotia,
PO Box 1000, Halifax,
Nova Scotia, Canada BM 2X4

Dr Marc Roper
Department of Computer Science,
University of Strathclyde,
Livingstone Tower, Richmond Street,
Glasgow GII XH, UK

Dr B. W. Boehm
Centre for Software Engineering,
University of Southern California,
Los Angeles, CA 90089-0781, USA

Professor M. Broy
Institut für Informatik der Technischen,
Universität München, Postfach 20 24 20,
80290 München, Germany

I. J. Campbell
GIE Emeraude, 38 Boulevard H-Sellier,
92154 Suresnes-Cedex, France

D. N. Card
Software Productivity Consortium,
2214 Roch Hill Road, Herndon,
VA 20170-4227, USA

Professor D. N. Chorafas
Domaine Valmer, 06360 Saint Laurent,
d'Eze, Alpes-Maritimes, France

Professor B. J. Garner
Deakin University, Geelong,
Victoria 3217, Australia

Professor P. A. V. Hall
Computing Department, Open
University, Walton Hall, Milton Keynes,
MK7 6AA, UK

Professor D. Ince
Faculty of Mathematics, Open
University, Walton Hall,
Milton Keynes
MK7 6AA, UK

Mike Jackson
School of Computing and Information
Technology,
University of Wolverhampton,
Wulfruna Street, Wolverhampton
V*rV II SB, UK

Dr T. Matsubara
1-9-6 Fujimigaoka, Ninomiya,
Nakagun, Kanagawa 259-01,
Japan

Monika Mfillerburg
GMD, Postfach 1240,
Schloss Birlinghoven,
D-5205 Sankt Augustin 1, Germany

Professor C. RoHand
Universit6 de Paris 1,
Sorbonne, 17 rue de la Sorbonne,
75231 Paris Cedex 05, France

Dr T. Takeshita
School of Business Administration
and Information Science,
Chubu University,
Kasugai City, Japan

Professor T. Tamai
College of Arts and Sciences,
University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo 153, Japan

J. J. van Arnstel
Philips Research Laboratories,
Information and Software Technology,
Professor Hostlaan 4,5656 AA
Eindhoven, The Netherlands

J. B. Wordsworth
IBM United Kingdom Laboratories Ltd,
Hursley Park, Winchester,
Hampshire S021 2JN, UK

J. Verner
College of Information Sciences and
Technology,
University of Drexel,
Rush Building,
33rd and Market Street,
Philadelphia, PA 19104, USA

Information and Software Technology is an
international technical journal which cov-
ers all aspects of software development
and information processing, from state-
of-the-art research, through software
development and implementation, to
information systems management. The
journal gives equal emphasis to the
theories of software engineering and the
application of information technology
within organizations.

Papers published in the journal are drawn
from current developments in areas such
as: empirical and experimental analyses,
software metrics, software processes and
development methods, project manage-
ment, quality control and standards,
object orientation, concurrency, human
factors, testing, implementation tech-
niques, database design and information
systems, to provide a total view of infor-
mations systems technology.

Contributions Those wishing to submit
full-length papers, tutorials or review
papers should send four copies to either
of the Co-Editors. Contributors should
refer to the Notes for Authors printed in
this issue of the journal. These are also
available from the publishers.

ELSEVIER Infonnation and Software Technology 41 (1999) 283-295

INFORMA77ON
AND

SOFTWARE
7FCHNOLOGY

Processing temporal queries in the context of object-oriented databases

L. Wang"*, M. Wing b, C. DaviSb , N. Revellb
'Department of Computer Science, University College London, Gower Street, London WCIE 6BT UK

b School of Computing Science, Middlesex University, Bounds Green Road, London NI I 2NQ UK

Received 12 January 1998; received in revised form 14 December 1998; accepted 15 December 1998

Abstract

This article investigates an extensible approach to processing temporal queries in the context of object-oriented databases. Within the
uniform query processing framework, a strategy of decomposition is proposed for processing temporal queries that involve paths based on the
defined temporal object data model and query algebra. Algorithms for processing the decomposed query components have been implemented
using stream processing techniques and are presented with cost analyses. Heuristics that optimize the temporal queries are also presented.
Both cost analysis and simulations show that join time cost is linearly increased with the expansion in the number of time-epochs and that
utilising the heuristics presented in this article can lead to a significant time cost saving. 0 1999 Elsevier Science B. V. All fights reserved. Cý
Keywords: Object-oriented databases; Temporal data; Query processing

1. Introduction

Temporal properties play an essential role in many real
world applications. Most object-oriented database (OODB)
proposals and post-relational products include constructors
for complex types such as lists and arrays that allow time-
stamped entities to be represented as a 'blob' object (which
is managed by the system, but interpreted solely by the
application program); no facilities for temporal queries are
provided [15,17]. Research on temporal object-oriented
databases (TOODBs) is mainly focused on defining
temporal data models by extending existing models
[12,13,14,17,191. Not much work has been done on
temporal query processing and optimization [6].

In the context of databases, two time dimensions are of
general interest [17]: valid time and transaction time. Valid
time concerns the time a fact was true in reality whilst
transaction time concerns the time the fact was stored in
the database. This article is concerned with valid time
data management, and investigates temporal query proces-
sing within the formal object-oriented query processing
framework, based on our previously defined object data
model and algebra [20,21]. As a result of the extensible

* Corresponding author. Tel.: +44-171-419-3687; fax: +44-181-364-
7069.

E-nwil addresses: lichun. wang@cs. ucl. ac. uk (L. Wang), m. wing@mdx.
ac. uk (M. Wing), c, davis@mdx. ac. uk (C. Davis), n. revell@mdx. ac. uk
(N. Revell)

features of our temporal data model and the reducibility of
query algebra, a decomposition strategy is proposed for
processing temporal queries that involve a path expression.
Algorithms are provided to process the query components
that result from this decomposition. Cost analysis and simu-
lation results are given to illustrate how the time that is
present in the query affects the query costs and how the
heuristics could reduce the cost.

As relational databases (RDBs) always require the users
to explicitly join two relations, most attention to temporal
query processing in the context of RDBs has focused on
specific temporal join algorithms (4,13,19], following the
bottom up approach. However, OODBs significantly reduce
the need for joins of classes and replace this explicit join
with an implicit join (select operator). The path optimization
that deals with this implicit join is a difficult and central
issue in object query processing, and distinguishes object-
oriented from relational query processing [1,10,11,181. The
exploration of temporal query processing with path optimi-
zation is difficult and under investigation. This article has
made the first effort towards this investigation.

The remainder of this article is organised as follows.
Section 2 briefly reviews the temporal object data model
and algebra. The decomposition strategy for processing
temporal queries is proposed in Section 3. Section 4
provides algorithms to process the decomposed components
and heuristics for optimization. Simulation and evaluation
are given in Section 5. Section 6 includes concluding
remarks and future work.

0950-5849/99/$ - see front matter 0 1999 Elsevier Science B. V. All rights reserved.
Pll: S0950-5849(98)00128-1

284 L Wang et al. / Information and Software Technology 41 (1999) 283-295

2. A temporal object data model and algebra

Query processing techniques are dependent upon a data
model and algebra/language. Our previous work (20,2 1] has
presented a general temporal object data model and an alge-
bra for this model which are briefly described as follows.

2.1. A temporal object data model

The temporal data model extends the unified data model
of RDB and OODB from UniSQL/X [5,9,10] by adding a
time dimension. The unified data model of RDB and OODB
from UniSQL/X [5,9,10] extends the relational data model
in three important ways, each reflecting a key object-
oriented concept: (1) nested relations: the value of an attri-
bute entry of a relation can be a tuple of another relation; (2)
inheritance: a relation may be specialised through inheri-
tance; (3) encapsulation: a relation can have procedures
associated with it. UniSQLJX actually makes one more
extension: collections: the tuple/attribute entry of a relation
may have a set of values (i. e. any number of values) that can
further be of more than one arbitrary data type. When chan-
ging the relational terms to object terms such as "relation"
to "class", "tuple of a relation" to "instance/object of a
class", "procedure" to 'Imethod", etc. (see [5,9,10]), the
model is an object-oriented model. It is adopted as a snap-
shot model to incorporate time, and the use of tenninology
between relations and objects will be exchangeable in this
article.

Let T=(..., to, ti
I be a set of times, which is countably

infinite, over which is defined the linear (total) order < T,

< Tt where ti j means ti occurs before (earlier than) tp For the
sake of simplicity, we can assume that T is isomorphic to the
set of natural numbers I

.... n-1, n, n+ I_.) where the
time chronon, that is a non-decomposable unit of time, is 1.
Any subset of T is called a temporal set.

If an object o, that is any real world entity, exists for a
certain period of time which is a subset of T (i. e. a temporal
set), this period is called the object's lifespan, denoted as
L(o) for the object o. If the lifespan L(o) = Itstart, tend], the
duration of time is called a span: span(L(o)) ý tend - tstart +

A temporal object is defined as a time sequence (TS for
short): (t, o(t)), t E=- go) C T, denoted as (go), o(t% where
o(t) represents object o's value at the time t. A temporal
object (go), o(t)) asserts that the object o(t) is valid for its
lifespan go) and that its value changes with time. If a TS
contains a value for each time point in the lifespan duration,
it is called a regular TS [71: (go), o(t)) =(... ; ti- 19 oi - I; ti, oi;
ti, 1, oi, I; _)=(..., Oi- 1, oig Oi, I....)=I oi), where oi repre-
sents object o's value at the time point ti. If a TS contains
values for only a subset of time points within the lifespan, it
is called an irregular TS: (go), o(t)) =(... ; tj-,, oi-1; ti, oi; t
i+ 1, Oi+ 1;...). For a discrete time event where the value of the
entity is recorded at every single time point, it can be repre-
sented by a regular TS. For the discrete time event where the

value of the entity is not recorded at every single time point,
it can be represented by an irregular TS. For the step-wise
constant, it can be represented by an irregular TS where the
value oi is assumed to retain for [ti, ti, 1). We use the term
epoch from signal processing field to refer to the time at
which the object changes its value, e. g. ti. The interval
during which the value oi persists is decided by the epoch
ti and its succeeding epoch ti, 1, i. e. [ti, ti, l). If there are n
elements in a TS, it is said that there are n epochs. For
example, suppose that John has been working for a company
from 1975 to 1998, and that his salary was initially 1500 and
had been changed to 1900 in 1978, changed to 2300 in 1984,
to 2700 in 1991, and to 2900 in 1996. If the time chronon is
assumed as a year and the lifespan of John's salary is [1975,
1998], then the temporal object ([1975,1998], John's
Salary) is equal to

11975,1500; 1978,1900; 1984,2300; 1991,2700; 1996,2900).

Here, the temporal set is (1975,1978,1984,1991,1996),
and the value set is 11500,1900,2300,2700,2900) where
the first salary 1500 retains for [1975,1978) and the last
salary 2900 retains for [1996,19981. The epoch number is
five and the span is (1998 - 1975 + 1) = 24. From this
discussion it can be seen that the epoch represents a trans-
formed time space and will serve as a convenient indicator
for cost analysis. For a continuous time event, depending on
the recording of the data, it can be represented by either a
regular TS or an irregular TS. When it is represented by a
regular TS, it is treated as a discrete time signal created by
sampling the corresponding continuous time signal. As long
as the sampling frequency is greater than two times the
highest frequency of the signal, the continuous time signal
can be recovered from the discrete time signal. If it is repre-
sented by an irregular TS, as it is time varying the value
between two recorded time points can be decided by an
interpolation function depending on the application, e. g.
linear interpolation. For a constant object o, it may be repre-
sented with no timestamp where its time-reference is
implied as go). (It can also be represented with an explicit
time-reference as a temporal object: (L(o), o)).

As a TS is a set, a temporal object can be represented by
its sub-objects. In practice the lifespan may consist of
disjoint, non-contiguous segments, as in [7] we prefer to
use null rather than defining multiple segments in the life-
span. For instance, if we know Mary's salary records during
the time [1967,1982] and [1990,1998] as (1967,1400;
1977,1890) and (1990,2000; 1996,2100). However we
do not know her salary between 1982 and 1990. If the life-
span is assumed as [1967,1996], the object is defined as
(1967,1400; 1977,1890; 1982, null; 1990,2000; 1996,
2100) where null persists from 1982 till 1990 when the
value 2000 exists.

In OODBs, every real world entity is uniformly modelled
as an object that is grouped into a class/relation. Two ways
in which objects are interrelated are the associations of

L Wang et al. / Information and Software Technology 41 (1999) 283-295

Relation A, A, A.

tuple,

tuple,

...

tuple. value...

Fig. 1. Interaction of tuple lifespan and attribute lifespan.

aggregation and inheritance. If we ignore these associations,
a class/relation C can be seen as in Fig. I where A, repre-
sents the ith attribute of the relation. If value,,., is a temporal
object with lifespan and tuple. is also a temporal object
with the lifespan denoted as L(t,,), we have

L(tm) ý Im, l U lm, 2 U'** U Im,
n-

The lifespan of attribute A,, is

1 In U 12,
n

U, **U Im,
n -

The lifespan of relation C is

L(C) = L(A I) U LOD U *** U L(An)

= L(tl) U 1-02) U *** U Win)-

A temporal relation can thus be represented by a three-
dimensional "cube", as shown in Fig. 2, if objects in the
relation have uniformly the same lifespan.

It is obvious that

iij =, vti) n L(Aj).

Clearly our temporal object model can also support a
completely heterogeneous temporal dimension.

If the domain of attribute Ai of class C is another class D,
then implicitly, L(Ai) = L(D). If class C is a sub-class of
class C, then L(C) = L(C). If the class C' has more than
one sub-classes, e. g. C, and c'), then
L(C') = L(CI) U L(C2). Moreover, if a database consists
of n classes (relations) C1, C2, ---C,,, the lifespan of the data-
base schema is L= L(CI) U L(C2) U ... U L(C,,).

Time

Attributes, `

Values

Fig. 2. A 3-dimensional class.

2.2. Algebra

285

From the algebraic point of view, a TOODB can be
viewed as a collection of temporal objects, grouped together
in classes (relations) and interrelated through three associa-
tions: aggregation, generalisation and time-reference. Each
temporal relation can be viewed as a three-dimensional
structure (e. g. a cube).

Basically, the standard relational algebra provides a unary
operator for each of its two dimensions: select for the value
dimension and project for the attribute dimension. A
temporal algebra has the operation time-slice for the third,
i. e. time dimension. As we explain further in 3.2, an object
algebra allows the predicate of the select operation to apply
to a contiguous sequence of attributes along a branch of
class-aggregation hierarchy. This sort of query is usually
represented by a path [1]. We have defined the enhanced
path [20] that extends the path expression with time-refer-
ence so that the select provides an access of data with asso-
ciations of both aggregation hierarchy and time-reference.

The basic algebraic operators are listed in Table I
(detailed definitions are given in [20]), among which the
operator select will be the focus of our discussion on
query processing as it is the most powerful operator as
that in any OODB. In Table 1, P() is a predicate. There
are three basic types of predicate: a simple predicate, a
nested predicate and a temporal predicate. A simple predi-
cate is of the form (attribute-name op value). A nested
predicate is a predicate on a contiguous sequence of attri-
butes along a branch of the class-aggregation hierarchy of a
class, which is represented by path-expression [1], i. e. path
op value. A temporal predicate is a predicate referred to the
temporal set along the time dimension where comparators
<, >, =, etc. can represent the semantics of time referring
to such as occurred before, after, etc. The temporal predi-
cate can be embedded into. path expressions. The enhanced
path as defined refers to the value component of a temporal
object along a branch of the class-aggregation hierarchy. A
complex predicate is a combination of these predicates.

3. A decomposition strategy for processing temporal
object queries

Our temporal data model, as shown in Fig. 3, extends the
unified model of RDB and OODB by adding a time dimen-
sion, whilst the unified model itself refines the relational
model by incorporating three important object-oriented
features: nested relations, inheritance and encapsulation.
The algebra of the model possesses the property of reduci-
bility. That is, when the time dimension is not taken into
account, the algebra is reduced to the object algebra and
when object-oriented features are not taken into considera-
tion, it is reduced to the relational algebra. Further, the
algebra is closed, so that the output of operation can be
the input of another. These characteristics provide us with

286 L. Wang et at. / Information and Software Technologv 41 (1999) 283-295

a basis for applying existing relational and object-oriented
query processing techniques to process temporal object
queries.

3.1. Optimizer layering

Our optimizer can be of a layered structure where the
temporal optimizer is built on the top of an object optimizer
that in turn, is on the top of a relational optimizer. When the
time dimension does not exist, the object optimizer plays a
role. As the object optimizer is extended from the relational
optimizer, when the object-oriented features are removed
from the data model, the relational optimizer comes into

play. Separation of query processor functionality makes it

easy to exploit and extend the existing query processing
techniques at different layers that can be seen from the
discussion thereafter. Therefore, the temporal queries can
be processed and optimized within the existing object-
oriented query processing framework through a smooth
extension of the existing query processing techniques
[22,231.

3.2. Query transformation involving a path expression

the attribute Ai- 1 of the class Ci- 1 and the OID of Ci, if we
join Ci- I and Ci. Project specifies the query target.

If there is a complex predicate involving a single path
such as

P= Cl. A 1. op P, and Cl. A 1. A, op v and

CI. Al. A
.....

A,, ýAfop v,

= P, and P2 ... and P,

then we have a general form

O'P(C,. A 1. AA ýý%/)(c I)

ý 7rA(C])(O'p, Cl ýý '7TA, 0'/)2(c2) 04'- ýý O-p,, (cn))

where Pi is optional and can be omitted if it does not exist,
P,, involves both time and value dimensions, and the first
project specifies the query target.

The way to visit the path introduces a path traversal
operator [1,8]. The linear path traversal operator is a navi-
gational operator to execute the implicit join along a path,
denoted as Navi-op[C], A,,. _ ATm]. It is equivalent to a set
of joins as in Eq. (2):

Path optimization is a central issue in object query
processing. When the time is present, the path involving

C,
in a temporal predicate is represented by the enhanced
path expression. In this article, we will focus on temporal
object queries that are represented by the select operator
with the enhanced path expression. For simplicity we
suppose that the time-stamped class occurs at the end of
the path (if it also occurs at other points along the path,
then additional accesses to the second storage would be
required, although these would not significantly add the
complexity of the query).

The class-aggregation hierarchy holds an attribute/
domain link between a neighbouring pair of classes in the
hierarchy. The attribute/domain link between the pair of
classes e. g. Ci-I and Ci is effectively the join of these
classes, in which attributes Ai- 1 of Ci_ 1 and the object iden-
tifier (OID), which is defined by the system and which can
be considered as an attribute of class Ci, are join attributes
[I]. Therefore, an object query with a path expression invol-
ving N classes C1, C,,... C,, is equivalent to a relational
query, which requires the join in N relations corresponding
to N classes. That is why the select operator is often called
an implicitjoin. According to the definition of our algebra,
when the predicate of select involving a path expression is
CIA

.A......
AT, "' op v (where Tm represents that the path is

an enhanced path), the equivalence between an implicit join
and an explicit join is as

O'CI. A,. A A, 7, "lop JCI)

ý 7rA(CJC1 ý4' 7rA, (C2) ýý *** ýý O'A,,,,,,. (Cti)) (1)

We use W to represent the join that is more constrained than
the join defined in our algebra in that the join attributes are

Navi-op[CI. Al. A
.....

ATým I

= O-P, C, MP 74, up, (C,) MP ... MP o-p,, (C,)

The aforementioned linear path traversal operator can be
further rewritten into the following form:

Navi OP[CI. Al. zA A TAI

= Navi-op[CI. Al A, I] Wp O-P"(C")

= Navi-op[CI. Al. A-) A,,
-]]

m C,, (4)
C,

- 1-4=OID(C,,) V P,,

Thus

O'P(C,. A 1. A ATý")(Cl)
(5)

-rrA(C,)(Navi-op(Cj. A I Aj m CII)
G-I-A=01"c")Vp"

The aforementioned transformation equivalencies imply
that a select operator with path expressions can be evaluated
using different algorithms such as translating the query into

a sequence of joins, naive pointer chasing, or dividing the
query into sub-paths that can be evaluated separately using
different strategies or algorithms. It has been previously
shown that converting implicit joins to explicit joins during
the optimization phase may yield better execution plans [2]
and that object navigation and set-oriented join should
co-exist [8].

3.3. A decomposition strategy for processing temporal
queries

Fig. 4 gives an operator graph (OG) for Eq. (5) that

L. Wang et al. / Information and Software Technology 41 (/999) 283-295

Table I
Algebraic operators

287

Operations Definition Notes

O(TI) Time-insert 0(7ý) 0., =(ol oG 0) where L(O. 3) = T, UT

O(TI) time-delete O(T) 03 =I ol o Ez 01 where L(03) = T, T
Difference 01

-
0, 0.1 = 01-0, = (ol o E=- 01 A-o EH 0,)

where L(03) = L(01) - L(O,)

Union 01 U 0, 0 01 U 02 = (01 0 t= 01 V0 Eý 0')

where L(03) = L(01) U L(O,)

Intersection 0, n o. o, = o, n 02 = (01 0C 01 A0C0,1

where L(03)= L(O,) n L(O,)
Select ap 0 ap 0= (ol oG0A P(O, t))

Map g: 01 - 0, g: 01 - 0, = (g(o)(0 Cz 01)

Project 7r(Al ... p; A,)O ir(A,,..., A[)O = ((Al: gl(o),..., Ai: gi(o))l
0 F= Ol

Join01 Mp(A, 1, A�)02 01 NpýA, 1, A, 2ý02 ý
«A�1��A.

1-�2ýlo, GE 01 V 02 E

02 V P(O 1,02»
Time-slice §TI (0) §T, (0) ý (ol Vt GE J, n mo»[o(t)(oi)

Offset y(O, 1) Y(0(11), 1) = 0(t, + 1)

When t; 7(0) tu(O) = L(O)

represents the select operator involving a single path with n
classes: CI, C2,..., C,. An OG is a labelled n-ary tree where
the leaf nodes represent a collection of objects, the non-leaf
nodes represent operators (e. g. navigational operator, join,
etc.), and the edges represent temporary collections that can
be represented by support tables [8]. A support table can be
regarded as a collection of tuples of qualified object identi-
fiers and attributes. Two support tables can be joined
together if there exists a commonly supported collection
between them. The execution of an OG follows a bottom-
up order.

The query is more involved when time is present and
provides more opportunity for optimization [4,15,17,19].
As we have assumed a temporal class is at the end of a
path, in order to process temporal queries with a clear cost

Fig. 3. Extensible features of the data model: UniSQL is extended from
RDB modelý (Most TDBs are in the context of RDB); Adding a time
dimension into UniSQL forms a TOODB model.

O(TI) C 0,0(71,) C0
T, is a temporal set and 0 is a set/collection

0, is a collection/set

L(O) is the life-span of 0,

o-p 0 selects the elements "o" of set 0 such as the

predicate P(o. 0 holds

For the type of objects in 01 (i. e. oE 01), g returns an

object of type Of 02 (i. e. g(o) G 0,)

If g, =I it returns the OID of the domain object ofAi unless
Ai is atomic. We retain gi =I so that project on a set of

objects (relation) likes the relational project
Essentially a 0-join as in relational algebra

The life-span of T, (0) is T, n L(o). Time-slice purely
reduces the relation along the temporal dimension. If T,
equals to a time point ti, i. e. T, = ti, then T, (0) represents
an event o(ti) happened at t,
"Shifts" a snapshot relation at t, by the number of
positions specified by the offset I
Maps a set of objects 0 to its temporal set

analysis and to make use of the ordering information for
optimization, we propose the following decomposition
strategy that can be further illustrated in Fig. 5.

A complex user query with path expressions that involves
time-reference is first translated into a set of single path
expressions. A single path is then divided into two sub-
paths: a sub-path containing a time-stamped class that can
be optimized by making use of the ordering infon-nation of
temporal data and an ordinary sub-path (without time-
stamped class) that can be further decomposed and traversed
using different algorithms. The intermediate results of
traversed two sub-paths are joined together to create the
output query.

It will be shown in the next Section 4 that the decomposi-
tion strategy provides a convenience to exploit the existing

Fig. 4. An operator graph of the select with a single path: Block A is an
ordinary sub-path (without time-stamped class)ý Block B is a temporal sub-
path (with a time-stamped class).

288 L Wang et al. / Information and Software Technology 41 (1999) 283-295

e. 7oral
Fp

_ffime
r! lated

A collection u1b path loperation and User query p
ýj

with path ol'single vauation
:

Jaoin
expressions paths inary th

ub-path valuatio

Fig. 5. A decomposition strategy.

query evaluation algorithms to process temporal object
queries and provides an opportunity for optimization that
makes use of the order information of temporal data.

4. Algorithms for processing the decomposed temporal
query components

The block B in Fig. 4 comprises the temporal predicate
evaluation (as well as some time related processing) as
shown in Eqs. (4) and (5), and a join, which can be further

expressed in Fig. 6. When optimizing such a query, the
object optimizer works on the outer query block, and the
temporal optimizer operates on the nested query block. Each

optimizer is responsible for its own query block. The
temporal optimizer is responsible for time-related opera-
tions and optimization. Let C represent the support table
or the intermediate results of block A in Fig. 4 (that is a
derived non-time-stamped relation) and D represent the
intermediate results of block D in Fig. 6 (that is a derived
temporal relation), as shown in Fig. 7. The object optimizer
joins C and D together. This section provides algorithms for
both the outer and nested blocks. The algorithms are imple-

mented using stream processing techniques and described

with cost analysis in terms of major operations such as block
accesses to the second storage, and computational plus,
move, comparison, etc. (among these, block access will
dominate the others). The actual cost in seconds will be
used in simulation.

4.1. Assumptions

We assume that a temporal relation D (it could be C, in
Fig. 6 or D in Fig. 7, depending on the situation) is stored in
a file on disk. The data structure of D is as shown in Fig. 8,

Join

.......... \
rifmc-, Slice,

se
ggregation, etc.

....................................

Fig. 6. Further expression of temporal sub-path.

Output
query

where D is populated with temporal objects. A temporal
object d is viewed as a linked list, comprising a number of
records representing a number of history versions of the
same tuple field in a time ascending or descending order.
For simplicity, the lifespan is uniformly represented as
L(d) = [1^1, i. e. L(d) = L(D) where I is the starting time
and n, is the ending time of the relation. The timestamps
(temporal set) for all objects are the same and the number of
epochs (the number of records) in the temporal object d is
Idl = n. If n=n, then d represents a regular TS. A temporal
object is clustered (i. e. historical versions are stored together
on a set of blocks), as shown in Fig. 9.

We make further assumptions. Collections (relations) C
(it is C in Fig. 7) and D are stored as separate files on disk.
There is a many-to-one relationship from C to D. The
number of objects in C (or D) is represented as JCJ = n,
(or JDJ = nd). n, (or nd) objects are blocked as b, (or bd)
instances/block. Further, n records of a temporal object d of
D are blocked as bn records/block. Obviously, b, = n*bd. Let
fan(C, D) represent the average number of objects of D that
are referenced by an object of C through attribute A, No
relation is sorted or clustered. The OID is represented by the
physical address of an object. Selectivity of the predicate
P() on the temporal relation D is treated as the same as that
on an ordinary relation, denoted as sel (we ignore the
complexity of selectivity of a temporal relation here).

4.2. Time-related operators and optimization

The predicate evaluation in Fig. 6 involves the time-
related operators and value evaluation. Temporal operators
such as time-slice, offset, agg-func can be treated as methods
and their outputs can then participate in the value evalua-
tion. The temporal optimizer must be sure to 'plan' the
invocation of function and make use of the ordering infor-
mation for optimization.

We employ stream processing techniques [3,4]. Stream

Fig. 7. Join between C and D.

L Wang et al. /Information and Sofiware Technology 41 (1999) 283-295

Relation Dn records
12n

Object d,

Object d,

Object dd

Fig. 8. Data structure for temporal relation D: A temporal relation consists
of nd temporal objects; A temporal object comprises n records representing
n versions of same tuple field.

processing is a paradigm that has been widely studied and
used in languages such as C++, Lisp, etc. Abstractly, a
stream is defined as an ordered sequence of data objects.
As temporal data are often ordered by time, stream proces-
sing approach is a strategy of choice [4] so that tuples in a
data stream can be efficiently accessed one at a time and in
the order of successive time-stamp values, using the data

stream pointer.

4.2.1. Stream processing algorithm for time-slice
Time-slice § TIO [201 performs the following operation:

for every instance d in D, select its record ds whose time
point falls in T, = [nI, nm], T, C L(D) =[1, nJ. To mini-
mise the accesses of data, only records satisfying the afore-
mentioned condition are retrieved. Employing C++ stream
processing techniques to implement this operation can fulfil
this task. The file stream in C+ + allows a user to treat a file
as a stream of input or output. Given a data object, its size
can be decided by using the C+ + function sizeoft). When
the exact position (i. e. the exact address), from which a data
object is stored, is decided by using C++ function seekg,
the data object can be retrieved and the file pointer moves to
the next data object. Given a temporal object d, to retrieve
its records d, from time n, to n,,, we need to find out the exact
positions corresponding to n, and n in the file. We can
obtain these by employing either sequential or binary search
[3] within the scope of the object d to decide the epoch
number n, I that is corresponding to the time point nI, and
the epoch number nnm that is corresponding to the time point
n,,,. This can be shown in the following pseudo-code of
C+ +:

Bi B2 B3 B, Last block of a file

ISt object (Udi), di) Last object (L(dd). dw)

Tk
records per block jth record of ith block

Fig. 9. A file partitioned into blocks: n records (historical versions) of a
temporal object are stored together on a set of blocks.

289

search(nl^ý^I, nwn);
/* sequential or binary search to find out the epoch
number n,, l corresponding to time nI, and the epoch
number n,,, corresponding to time n.
for (int i=0; i< nd; i+ +)

/* for each object di+ 1, i+IE [1, nd], do the following
I
fiIeD. seekg(i* sizeof(d) + (nnI - I)*sizeof(ds));
/* seek the address of the first 4,, whose time point is n,
that is in T, */
for (int j=0; j<= nnm - nni; i+ +)
ffileD. read((char*)&Struc-Buf[j], sizeof (ds));
Buf < Struc-Buf[jlj;
/* sequentially read (nnm - nnI + 1) records d, of the
object di, l from the file and keep them in Struc-Buf[jl,

output results to Buf that could be a screen, a printer, a
buffer, etc.
I

Although C+ + provides stream access that allows to
access one record/object at a time, the system actually
performs 1/0 at the block level and perhaps hides this fact
from the program [3]. We follow the assumption [3] that
when the system provides an access for one record/object, it
accesses the entire block that contains the record/object. If
the next record/object is already in the stream accessed, it
does not need to access the block again. Therefore we still
can measure 1/0 access by blocks or pages. For the afore-
mentioned algorithm, the number of block accesses can be
estimated as:

nd*(njjj? j - n,,, + I)Ibn :5 nd*(n,,, - n, + I)Ibn

plus searching block access cost:

:5 nlb,, in the case of sequential search,
or :5 2*0092 n) in the case of binary search [3].

4.2.2. Stream processing aggregation algorithms
The operator agg-func T, [20] that is used to perform the

aggregation function (such as Avg, Sum, Max, etc.) can be
implemented using the following pseudo-code of C++:

search(ni, ný, nnim);
/* sequential or binary search to find out the epoch
number n., corresponding to time nI, and the epoch
number n,, corresponding to time n
for (int i=0; i< nd; i+ +)

/* for each object di, 1, i+I E=- [1, nd], do the following
I
fileD. seekg(i*sizeof(d) + (n,,, - I)*sizeof(ds));
/* seek the address of the first ds, whose time point is nI.
that is in TI. */
for (int j=0; j<=n,,,, - nnI; + +)
fileD. read((char*)&Struc-Buf[jJ, sizeof (ds));
/* sequentially read (nnm - n,,, + 1) records d, of the
object di+ I from the file and keep them in Struc-Buf[j]
agg_func(Struc-Buf. itemi, J'unc, value);

290 L Wang et at. / Information and Software Technology 4/ (1999) 283-295

/* perform an aggregation function func for a specified
attribute (i. e. itemi)
Buf < value;
/* output results to Buf that could be a screen, a printer. a
buffer, etc. */

void agg_func(item, char* junc, float value),
int m=n-n, j + 1;

switch (func)
I
case sum:
for (value 0; int i=0; i<m; i+ +)
for (int i2 0; 0<= co(item(i + 1)) - co(item(i)),
i2++) value += item[i];
/* insert data for missed time points and add them to
value, where co(item(i)) is our algebraic operator when
that maps item(i) to its time point for simplicity here
assumed missed data is of stepwise constant
break;

case avg:
for (value 0; int i=O; i < m; i+ +)
for (int i2 0; i2 <= Co(item(i + 1)) - co(item(i));
i2 + +) value += item[ij;
value = valuelm;
break;

case max:
for(value =_ 1035; int i=0; i<m; i
if (item[i] > value)
value = itenz[i];
break;

In addition to the same number of block access as that in
time-slice algorithms, the following major operations are
needed for Agg-fimc, if we ignore the time for assignment
and when:

sum needs tz,,, - n, +I plus;
avg needs n,,, - n, +I plus and I division;

max needs n-n,,, +I comparisons.

4.3. Join algorithms

This section offers the algorithms to join C and D
together. The advantage in representing them as explicit
joins is that we can use well -established join algorithm stra-
tegies to perform optimization. Here a temporal object is

regarded as a 'blob' object and can be treated as an ordinary
object in a snapshot OODB. There are two types of joins:
forward join and reverse join. According to the access meth-
ods employed to traverse the path, i. e. nested-loop method
and sort-merge method, there are four basic join algo-
rithms: nested-loop forward join, sort-merge forward join,

nested-loop reverse join and sort-merge reverse join [1].
The algorithms that are implemented using stream proces-
sing techniques are presented below with cost analysis.

4.3.1. Nested-loop forward join
Nested-loop forward join (NLFJ), sometimes called the

pointer-based nested-loop algorithm [16], is the algorithm
that uses naive pointer traversal to compute a join. An object
c of C is retrieved and the value of the attribute Ac is deter-
mined. Given this identifier, the address of the object d of D
is determined. The object d of D is retrieved and the predi-
cate is evaluated. If true, join c and d. Repeat this process till
all objects of D are visited. NLFJ can be expressed using the
following pseudo-code C++:

for (int i=0; i<n,; i+ +)
/* for each object c, do the following
[fileC read((char*)&BufC, sizeof(c));
/* read the object c of C */
fileD. seekg(c. Ac);
/* according to the value of the attribute Ac, i. e. the OID
of d, locate the address of d of D */
fileD. read((char*)&BqfD, sizeof (d));
/* read the object d of D */
if (predicate) Buf < (join c and d);
/* if the predicate is satisfied, join c and d, and then output
results to Buf that could be a screen, a printer, a buffer,
etc. */

For the aforementioned algorithm, the number of block
access can be estimated as

read C: n/b,;
read D: fan(CD)* nlbd + =fan(C, D)* n, *nlb,, +

There are:

fan(C, D)*n, comparisons for predicate evaluation;
se1*fan(C, D)*n, moves (for join).

One problem with NLFJ is that it makes no attempt to
optimize disk reads [16]. As a'result, a particular disk block

of D can end up being read more than once. For example,
suppose that two objects cl and C2 reference the same object
d in D. Depending on how C is organised, c, and C2 may not
be physically clustered together in C. If that is the case, then
between the time when c, isjoined to d and the time when C2
is joined to d, the block containing d may be paged out of
memory by buffer replacement algorithm. In that event, that
block would have to be read twice, once to join c, with d and
a second time to join C2 with d.

4.3.2. Sort-merge forward join
Sort-merge forward join (SMFJ), sometimes called the

pointer-based sort-merge algorithm [16], avoids the afore-
mentioned problem by first sorting all of the objects in C by
the value of the attribute Ac (i. e. the OID of d in D). The
effect of sorting C in this manner is to group all of the
objects in C that reference the same page in D. Doing so
guarantees that each page in D will be read only once. The
algorithm is executed as follows. All the objects of C are
read into memory and sorted as in the standard sort-merge

L Wang et al. / Information and Sofm are Technologv 41 (1999) 283-295

algorithm, except that here the output runs are sorted by
OID values rather than by the join attribute. According
the value of Ac, the address (i. e. the OID) of an object d
of D is determined so that the object d is retrieved, the
predicate is evaluated and if true, c and d are joined. Repeat
this process till all addresses are visited. The pseudo-code of
C++ is

fi1eCread((char*)&BufC, sizeof(C));
/* read the whole collection C
sort C according to Ac;
for (int i=0; i<n,; i+ +)
/* for each object c of C, do the following

fileD. seekg(c. Ac); /* according to the value of the attri-
bute Ac of c, i. e., the OID of d, locate the address of d of D

fileD. read((char*)&BqifD, sizeof (d));
/* read the object d of D */
if (predicate) Buf < (join c. and d);
/* if the predicate is satisfied, join c and d, and then output
results to Buf that could be a screen, a printer, a buffer,
etc.
I

For this algorithm, the number of block access can be esti
mated as

read C: nlb,;
read D: fan(CD) *nlbd = fan(CD)* n, *n1(b,,).

There are:

fan(C, D) *n, compari sons for predicate evaluation;
sel*fan(C, D)*nc moves (for join);
sorting cost: sorting(nj. .
When the epoch number n is big enough such that a

temporal object occupies more than one block, SMFJ will
obviously not be better than NLFJ (but at the price of sorting
C, and a bigger memory to hold the whole Q.

4.3.3. Nested-loop reverse join
In the nested-loop reverse join (NLRJ), the strategy is

similar to that of NLFJ, except that D is the first class
visited. An object d of D is read into memory and predicate
is evaluated. If the predicate is verified, then a search on the
object c of C is executed to determine which instance has
object d as the value of the attribute Ac. c and d are then
joined. This process is repeated until all instances of D are
visited. The pseudo-code C+ + for the algorithm is:

for (int i=0; i< nd; i+ +)

/* for each object di, 1, i+I E=- [l, nd], do the following
IfileD. read((char*)&BuJD, sizeof (d));
/* read an object di+ I of D */
if (predicate) /* if the predicate is satisfied
for (int j=0; j<n,; j+ +)
/* for each object cj+ 1, j+IG [1, n,], do the following

291

IfileC read((char*) &BufC, sizeof (c));
/* read an object cj, 1 of C */
if ((fileRtellg()-sizeof(d)) ==c. Ac)
/* verify if the address (the OID) of di, 1 is equal to the
value of cj, 1. Ac */
Buf < (join c and d);
/* if so, join c1 and di, 1, and output results to Buf that
could be a screen, a printer, a buffer, etc.

The number of block access can be estimated as

read C: sel *nd*nlb,;
read D: n, 11bd = n, l*nlb,,.

There are:

n, I comparisons for predicate evaluation;
sel*nd*n, comparisons for value evaluation;
seI*nd*(fan(C, D)*n, Jnd) = seI*fan(C, D)*n, moves (for
join).
Clearly objects in C have been read many times, resulting
in high 1/0 cost.

4.3.4. Sort-merge reverse join
In sort-merge reverse join (SMRJ), all the instances of D

are accessed, the predicate is evaluated and a list of OlDs of
instances qualifying the predicate is generated. C is read
into memory and sorted according to Ac. The instances of
C are then selected to determine which instances have an
identifier in the generated list as the value of attribute Ac. If
so, c and d are joined. The pseudo-code C++ for the
algorithm is:

for (int j=0; int i=0; i< nd; i+ +)
/* for each object d of D, do the following */
IfileD. read((char*)&d, sizeof(d)); /* read an object d of
D */
if (predicate)
tD'[j] = d; jd[j] =fileD. tellg ()-sizeof(d); j+ +J
/* if the predicate is satisfied, keep the object d in D'[
and its address (the OID) in jd[] */.
/* This is equivalent to perform select first, the resulting
relation is D'[], its cardinality is j */.
fileCread((char *)&BufC, sizeof(C)); /* read the relation
C */
sort C according to Ac;
j2 = 0;
for (int i=0; i< j-1; i+ +)
/* for each obj ect di in D'[1, iC [0, j- 11, do the following

for (int i2 = j2; i2 < n,.; i2 + +)
/* for each object Ci2 in C, i2 E &2, nc) (where j2 starts
from 0 and increases by I after a join is made), do the
following */
[if (C[i2l. Ac idtil) tBuf< < (join C[i2J and Uffl);
j2 = i2 +IJ;
/* if the value Of Ci2Ac is equal to the address (the OID) of

292 L Wang et al. / Infortnation and Software Technology 41 (1999) 283-295

CITY IM TESTINFO

City# INTEGER
TopTemporature FLOAT

City-Name STRING
LowTemporaturr

Weather TESTINP

I

Humidity FLOAT

WeatherType STRING

n days

based join must be used to check the OID membership
condition, i. e. it performs value-based comparisons of
OlDs, which is generally inefficient in CPU usage terms
[8). This algorithm is efficient when the predicate in the
last collection is selective [8,11].

We did not discuss hybrid-hash join here, as when the
epoch number n is big enough such that a temporal object
occupies more than one block, implementation of the algo-
rithms with stream processing techniques will not provide
an obvious advantage over NLFJ.

ý
Fig. 10. International weather record database.

di, join ci2 and di, and output results to Buf that could be a
screen, a printer, etc. */
else if (C[i2]. Ac > jd[iD break;
/* if the value of Ci2Ac is greater than the address (the
OID) of di, stop looping of i2
I

The number of block access can be estimated as

read C: nlb,;
read D: ndlbd = nd*nl(b,,).

There are:
nd comparisons for predicate evaluation;

se1*nd*(fan(C, D)*n, 1nd + 1) comparisons for value

evaluation;

sel* fan(CD)*n, moves (for join);

sorting cost: sorting(n,).

4.3.5. Sorting
If we use the SortMerge algorithm [3] to sort items in

relation C in ascending order according to the value of
attribute Ac, then the SortMerge algorithm is O(n, lognc),
in terms of major operations. If we use the SelectSort algo-

2).
rithm [31, it is 0(nc

4.3.6. Summary
As the time required for block accesses typically domi-

nates other factors [31, we can conclude that the order of
above four join algorithms are all O(n), in terms of block

access. That means the join time cost linearly increases with
the expansion in the number of time epochs (or the time
dimension, in the case of a regular TS).

The advantage of the sort-merge method over the nested-
loop method is that the storage pages containing class
instances of the class are never accessed more than once,
resulting in considerable saving in terms of response time.
The disadvantage is that the algorithms are restricted by

available memory because of reading in whole class C. If

all objects of the class cannot be read into the memory, the
algorithms need to be modified.

The disadvantage of reverse join algorithms is that as
there is no direct link from D collection to C, a value-

4.4. Heuristics for optimization

Adding time creates multiple tuple versions with the same
object. The aforementioned cost analysis shows the join
algorithm performance degradation caused by ever-growing
overflow chains. As reorganisation does not help to shorten
overflow chains [4], the objective of work in temporal query
evaluation then, is to avoid looking at all of the data [4,15].
Based on this principle, we present the following heuristics
for the optimization:

Transform the temporal predicate into time-slice;
Perform time-slice as early as possible.

5. Simulation

To illustrate the efficiency of the join algorithms when
time is present, a simulation of an international weather
record database is presented, as shown in Fig. 10. Daily
weather changes are recorded for major cities world-wide.
The granularity of a time chronon is a day. For simplicity,
suppose the database starts at I and ends at today (n). The
life-span can uniformly be represented as UTESTINFO) =
[I, n]. The number of records in a temporal object of relation
TESTINFO is also n, representing a regular TS. The relation
CITY, analogous to the support table of Fig. 6, is relatively
small: the cardinality of CITY is n, = 100, as our intention is
to show the relationship of the join response time with
respect to n, i. e. the number of epochs (records) in a
temporal object of relation TESTINFO. In this example, I
TESTINFOI, i. e. nd, is also 100. That meansfan(CITYTES-
TINFO) is 1.

The four join algorithms have been implemented on PC
using Borland C++ Version 4 where the SelectSort algo-
rithm [3] is employed. Fig. 11(a)-(d) present the perfor-
mance of four join algorithms, drawn in different lines,
where the vertical axis represents join time costs in second
and the horizontal axis represents the number of epochs in
TS: n. Selectivity is set as 10,33,50 and 100%, respectively.
It can be seen that the join cost is linearly increased with n.
The performance of NLRJ is the worst, because it reads the
relation CITY many times. Sort-merge join algorithms are
generally good when the relations are relatively small and n
is small. However they are limited by the memory of the

C

NUT
SMPI

-Mju
33dw

293

0 20 40 do so 100 no 140 160 M 200 220 -R0 2D 40 so ID IGO 120 VA ISO ici i; D i; i a

Fig. 11. (a) Time cost with respect to n (set = 10%), (b) Time cost with respect to n (set = 33%), (c) Join time cost with respect to n (set = 50%), (d) Join time
cost with respect to n (set = 100%).

Fig. 13. (a) NLFJ time cost with respect to n (sel = 10%), (b) NLFJ time cost with respect to n (sel = 33%)

computer as the algorithms are terminated when n is greater
than 100.

Fig. 12(a) and (b) shows the performance of join algo-
rithms with respect to selectivity sel.

S

4

3

2

0

L Wang et al. / Information and Software Technology 41 (1999) 283-295

1 TO
6 NLW

sun

r4w

4

2

..............
--- --- --- ---

t

NLO
shm
NLPJ 4

TH 20 40 60 so 100 ni(S)

Fig. 12. (a) Join time cost with respect to sel% (n = 40), (b) Join time cost with respect to sel% (n = 80).

tg .) t(W.)

Tm-310
lk = 40

Tm-40 Tm=IO
T. =10 ------ Tm-1
T. -1 4

3

2

-------- --

...............
20 40 60 40 100 1 0 140 160 180 W 220 n 2 2

20 40 60 80 100 120 140 160 180 200 220

Fig. 13 (a) and (b) (Fig. 14(a) and (b)) provides a compar-
ison of the performance of NLFJ (NLRJ) with and without
time-slice intervals. The performance of join algorithms
without time-slice is analogous to that of OODBs which

294 L. Wang el al. / Infonnation and Software Technology 41 (1999) 283-295

tc 1V ý') .)
, , - NUU ýi6. e

M. = 40 T. --40
T. =10 T. 40

T. 10
4 T. z, T. i

2

=7==«=1=ý --- --- -

............

20 4e 40 m t" 140 160 lee 230 220 L
2D 40 60 801 IOD 12D 14D 160 130 20D 221) -

Fig. 14. (a) NLRJ time cost with respect to n (sel = 10%), (b) NLRJ time cost with respect to n (sel = 33%)

allows a user to represent temporal data as 'blob' objects but

with no support for time varying query whilst the perfor-
mance of join algorithms with time-slice is analogous to that
of OODBs which support for time-varying data and utilise
the heuristics for optimization such as those presented in the
previous section. The span of time-slice T, = [nl, nmj is
denoted as T,, = (n,,, - n, + 1). When T,,, < n, there is a
significant saving. The bigger the value of (n -T), the
greater the cost saving. When T is close to n and n is

close to b, there is no significant cost saving. Therefore
we can conclude that for OODBs that support for time-vary-
ing data, when the number of epochs is big enough, i. e. n>
b, there is certainly a need of provision of facilities for
temporal query processing and optimization.

system, but interpreted by the user is not a strategy for
temporal support in OODBs. OODBs should provide
query facilities to support the query processing and optimi-
zation on time-varying data, especially when the number of
epochs is big enough.

Future work will include a detailed study of temporal
predicate optimization and global optimization.

Acknowledgments

The authors would like to thank the anonymous referees,
whose comments and suggestions helped to improve the
content and the presentation of the article.

6. Conclusions

In this article, an extensible approach was explored to
processing and optimizing temporal object queries within
the object-oriented query processing framework. A
temporal query that involves associations of both aggrega-
tion hierarchy and time-reference is processed by employ-
ing a decomposition strategy. The algorithms for processing
the decomposed sub-components of the query have been
implemented with stream processing techniques and
presented with cost analysis. Simulation results are also
provided. Through the description of our query processing
algorithms with cost analysis and the provision of simula-
tion results, we have demonstrated that the decomposition

strategy provides a convenient means to analyse and evalu-
ate the performance of execution algorithms that take
account of the time dimension and provides an opportunity
for optimization that makes use of the order of information.
Temporal and non-temporal queries can be handled in a
unifonn way. The temporal optimizer plays a role only
when time-related operations or temporal predicates exist.

Both cost analysis and simulations show that the join time
cost is linearly increased with the expansion in the number
of the time-epochs (or the time dimension, in the case of a
regular TS). Utilising heuristics could result in a significant
cost saving. We would also conclude that solely treating a
temporal object as a 'blob' object that is managed by the

References

[1] E. Bertino, L. Martino, Object-Oriented database systems: Concepts

and Architectures, Addison-Wesley, Reading, MA, USA, 1993.
[2) JA. Blakeley et al., Experiences building the open OODB query

optimizer, Proc. of ACM SIGMOD Conf., 1993 pp. 287-296.
[3] F. M. Carrano, Data abstraction and problem solving with C+ +,

Benjamin, Reading, MA, USA, t995.
[4] T. Y. Cliff Leung, R. R. Muntz, Stream processing: Temporal query

processing and optimization, in: A. U. Tansel (Ed.), Temporal Data-
bases: Theory, Design, and Implementation, Benjamin, Reading, MA,
USA, 1993, pp. 329.

[5] A. D'Andrea, P. Janus, UNISQL's next-generation object-relational
database management system, SIGMOD RECORD, 25 (3) (1996)
70-76.

[61 U. Dayal, G. T. J. Wuu, A uniform approach to processing temporal
queries, Proc. of the 18th Int. Conf. on VLDB. Canada, 1992, pp.
407-417.

[71 S. Ginsburg, A temporal data model based on time sequences, in: A.
U. Tansel (Ed.), Temporal databases: Theory, Design, and Implemen-

tation, Benjamin, Reading, MA, USA, 1993, pp. 248.
[81 G. Gardarin et al., Cost-based selection of path expression processing

algorithms in object-oriented databases, Proc. of the 22nd Int. Conf.

on VLDB, Mumbai, India, 1996, pp. 390-401.
[9] W. Kim, Next-generation database systems: objects and beyond,

Proc. of IISF/ACM Japan Int. Symposium, Computers as our Better
Partners, World Scientific Publishing, Singapore, Tokyo, Japan,
March 1994, pp. 188-196.

(101 W. Kim (Ed.), Modem database systemsý the Object Model, Intero-

perability, and Beyond ACM Press, New York. 1995.
[111 M. T. Ozsu, J. A. Blakeley, Query processing in object-oriented data-

base system, in: W. Kim (Ed.), Modem Database Systems: the Object

L. Wang et al. / Information and Software Technologv 41 (1999) 283-295

Model, Interoperability, and Beyond, ACM Press, New York, 1995,

pp. 146.
[121 N. Pissinou, et al., Towards an infrastructure for temporal databases:

report of an invitational ARPA/NSF workshop, SIGMOD RECORD,
23 (1) (1994) 35-51.

[131 A. Segev. Join processing and optimization in temporal relational
databases. in: A. U. Tansel (Ed.), Temporal Databases: Theory,
Design, and Implementation, Benjamin, Reading, MA, USA, 1993,

pp. 356.
[141 A. Seggev. et al., Report on the 1995 international workshop on

temporal databases, SIGMOD RECORD, 24 (4) (1995) 46-52.
[151 P. Seshadri et al., The design and implementation of a sequence

database system, Proc. of the 22nd Int. Conf. on VLDB, India,
1996, pp. 99-110.

[161 E. J. Shekita, M. J. Carey. A performance evaluation of pointer-based
joins, Proc. of ACM SIGMOD Conf., Atlantic, NJ, May 1990, pp.
300-311.

[17] R. Snodgrass, Temporal object-oriented databases: a critical
comparison, in: W. Kim (Ed.), Modern Database Systems: the Object
Model, Interoperability, and Beyond. ACM Press, New York, 1995,

pp. 386.

295

[181 D. D. Straube, M. T. Ozsu, Queries and query processing in object-
oriented database systems, ACM Trans. on Information Systems, 8 (4)
(1990) 387-430.

[191 A. U. Tansel (Ed.). Temporal databases: Theory, Design, and Imple-
mentation Benjamin, Reading, MA, USA. 1993.

[201 L. Wang, M. Wing, C. Davis, N. Revell. An algebra for a temporal
object data model, LNCS 1134, Database and Expert Systems
Applications, (DEXA '96), Proceedings. Springer-Verlag. Zurich,
Switzerland, September 9-13,1996, pp. 667-677.

[21] L. Wang, M. Wing, C. Davis, N. Revell. Query processing in object-
oriented databases. Proc. of 13th European Meeting on Cybernetics
and Systems Research, 9-12 April 1996. Vienna, Austria, pp. 803-
808.

[221 L. Wang, M. Wing, C. Davis, N. Revell, A uniform framework for
processing temporal object-oriented queries, Technology of Object-
Oriented Languages and Systems TOOLS 24. Proceedings, IEEE
Press, Beijing, China, 1997, pp. 33-42.

[231 L. Wang, M. Wing, C. Davis, N. Revell, Temporal query processing
and optimization in object-oriented databases, Database and Expert
Systems Applications (DEXA 97), Proceedings, IEEE Press, France,
August, 1997, pp. 474-481.

An Algebra for a Temporal Object Data Model

L. Wang, M. Wing, C. Davis, N. Revell
School of Computing Science, Middlesex University

Bound Green Road, London NII 2NQ, United Kingdom
email: (lichun 1, michae]47, colin 11, norman I@ mdx. ac. uk

Abstract: In this paper, we present a temporal object data model, which has been adapted from
the unified model of OODB and RDB in UniSQUX so that a time dimension can be easily
added to form temporal relational-like cubes but with aggregation and inheritance hierarchies. A
query algebra, that accesses objects through the associations of aggregation, inheritance and
time-reference, is thereby defined. Due to the adaptation of the unified model of RDB and
OODB, the temporal object data model supports both homogeneity and heterogeneity in the time
dimension, and the algebra reflects the spirit of both temporal relational algebra and object
algebra. Data query examples through 'The Wood Panel Deformation Measurement Database"
illustrate algebraic operations and a brief evaluation of algebra has been given.
Keywords: Object-oriented databases, temporal object, query algebra.

I Introduction
Temporal properties play an essential role in many real world applications and therefore a
recent trend in data modelling is the representation of temporal aspects in database
schema and the support of the corresponding data manipulation facilities directly by a
database management system (21,18,19]. The vast majority of research on temporal
database systems is the incorporation of time elements into relational and pseudo-
relational database models [13]. However, the widely recognised semantic limitations of
relational databases (RDBs) suggest that they are not suitable for advanced database
applications [2,10,11,7,22,231. Object-oriented technology forms a good basis for a rich
data model for the advanced database applications such as computer-aided design,
engineering systems, artificial intelligence, multimedia, etc., but little work has been
reported on time in object-oriented databases (OODBs), compared to temporal relational
models [13]. Management of temporal data is one of the key challenges that today's
OODBs need to address [10,11,22]. To meet this challenge, the project on query
processing in temporal object-oriented databases has been carried out at Middlesex
University.

An OODB is a database system based on object-oriented data model concepts. One

approach in introducing time into an object data model is to extend the semantics of a pre-
existing snapshot model to incorporate time directly [141. However, there is currently no

cce ed ob ec commonly accepted object data model, nor is there a commonly a pt jt algebra
[12]. We adopt the unified model of RDB and OODB from UniSQLJX [10,111 as a

snapshot object data model, and then incorporate within it with a time dimension. A

temporal object query algebra is thereby defined, making use of the research results of
temporal extensions to RDBs for OODBs.

The remainder of this paper is organised as follows. Section 2 describes the adaptation of
the unified data model of RDB and OODB with the inclusion of a time dimension.

668

Section 3 defines the algebra. Section 4 gives query examples and a brief evaluation. Section 5 discusses related work and Section 6 includes concluding remarks.

2 The Model

2.1 The Unified Model of OODB and RDB
The unified data model of RDB and OODB fi7orn UniSQLJX [10,111 extends the
relational data model in three important ways, each reflecting a key object-oriented
concept: (1) nested predicates; (2) inheritance; (3) methods. In this model, "relation"
equates to "class", "tuple of relation" equates to "instance of a class", "column" equates to
"attributC, "procedure7 equates to "method", "relation hierarchy" to "class hierarchy",
"child relation" to "subclass", "parent class" to "superclass", and "nested relation" to
"aggregation hierarchy". Allowing a column of a relation to hold a tuple of another
relation directly leads to a nested relation. Allowing the users to attach procedures to a
relation and to have the procedures operate on the column values in each tuple achieves
the combination of data with program. Allowing the users to organise all relations in the
database into hierarchy, such that between a pair of relations P and C, P is made the
parent of C, if C takes (inherits) all columns and procedures defined in P (besides those
defined in Q, the relational model integrates the object-oriented concept of inheritance.
This model is an object-oriented model and it is adopted as a basis for extending temporal
extensions of RDBs to OODBS.

Besides, we preserve the basic object concepts such as "any real-world entity is uniformly
modelled as an objecf', "each object is associated with a unique identifier", etc., so that
heterogeneity in the time dimension and the grouped completeness of algebra can be
maintained.

2.2 A Temporal Object

In order to address the temporal issues, we adopt the ideas of using temporal sets
(temporal elements) as timestamps [8,21] and associating the lifespan at both attribute and
tuple level [5]. Ixt T =1 ... to, tj

J be a set of times, at most countably infinite, over which
is defined the linear (total) order <T, where ti <T tj means ti occurs before (is earlier than)
tj. For the sake of simplicity, we can assume that T is isomorphic to the set of natural
numbers. Any subset of T is called a temporal set. A temporal set can be represented as a
union of disjoint time intervals. The most basic property of temporal sets is that they are
closed under finite unions, intersections, and complementation. That is, if T1 and T2 are
temporal sets, then so are TluT2, Tlr-)T2, TI-T2, and -, T1.

We incorporate the temporal dimension at the object level. If an object o exists in a certain
period of time, which is a subset of T (i. e., the temporal set), this period is called the
object's lifespan, denoted as 4o) for the object o. In order to support for derived lifespans,

we allow the usual set-theoretic operations over lifespans. That is, if L, and L2 are
lifespans, then so are LluL2, LlnL2, L1_L2, and-11.

A temporal object is defined as an ordered pair <4o), o>, where 4o)E T and o is any real
word entity, which asserts that the object o is valid for its lifespan 4o). For a constant
object, it may be represented with no timestamp where its time reference is implied as

669

Uo). It can also be represented with explicit time references as a temporal object <Lýo),
O>. Further, in the real world, even though the properties of an object change with time,
we think of it as the same object [16]. We treat an object such as an attribute value as a function of time. This helps us prevent fragmentation of an object description. Even if the firne domain is physically fragmented, as in [11,271 and [30,401, the attribute value can
stay in the database as a single logical entity. We express this as <4o), o(t)> (or simply
<Uo), o> without causing a confusion). In general, the word object %krill refer to a
temporal object within this paper.
In OODBs, every real world entity is uniformly modelled as an object that is grouped into
a class (relation) and interrelated to other objects through association. Now we isolate a
class (relation) C from its association relationship, as shown in Fig. 1. The valuermn is an
object with lifespan I., The tuple,,, is also an object, its lifespan is denoted as 4tm)- We
have

Utm)`ln4lUltm2U Ulm, n
The lifespan of attribute A,, is

UAnMJ, nUI2, nU ... Ultmn

The lifespan of relation C is

Relation Al A2
... An

tuplel
tuple2

...
tuplem valueý

Fig. 1. Interaction of Tuple lifespan and Attribute I-ifespan

UUAJ: --40ý40J ... u4tm)

It is obvious that
lij=4tdr)4Aj)

This implies that there is no value for an attribute in a tuple for any moment in time
outside the intersection of the life spans of the tuple and the attribute. Obviously our
temporal object model can support a completely heterogeneous temporal dimension, but at
the cost of maintaining a distinct lifespan for each value. This is important because
homogeneity is sometimes difficult to maintain, although homogeneity is necessary as no
timeslices of a homogenous relation produce null values [14].

It is possible to refer to the components of a temporal object. For a temporal object
o=<T, o>, o., u and o. T refer to its value and temporal set components, respectively.
Sometimes we omit -o, i. e., o. v=o, (or o. 1)(t)=o(t)) to
refer to the value of the object o without causing a Time

.................... confusion. Let A be the name of an attribute that can
Attributes-- take a temporal object for its values, then Am and A. T

represent names for the value and temporal set
components of the attribute A. Further, the same
notation may be applied to class (relation) C. If C is a
temporal relation, then Cm and CT represent names for the value and temporal set components of the class Values

C. Tbus a 2-dimensional relation (class) Aable"
Fig. 2. A 3-Dimensional Class

becomes a 3-dimensional "cube", as shown in Fig. 2,

which is also a set.

If the domain of attribute Ai of class C is another class C', then imPlicitlY, 4Ad=4C')- If

670

class C is a subclass of class C', then UC)=UC'). Moreover, if a database consists of n
classes (relations) C1, C2 C,,, the lifespan of the database schema is L-- UCIýjUC2ýj...

2.3 A Case Study

Using this model, a database is designed for "The Wood Panel Deformation Measurement
System" [3,4,15,231, which brings together the results of recent research in art observation,
electro-optical image processing and advanced database management in order to increase
knowledge and understanding of deformation and cracking of wood panel paintings
(which lead to paint loss) caused by changes in ambient conditions. A deformation
analysis of movement occurring in wood panels was required by the Hamilton Kerr
Institute of the Fitzwilliam Museum, University of Cambridge, where 74 wood panels
used for supporting fine art painting were tested. An automated 3-D measuring system
using photogrammetric and machine vision techniques has been developed at City
University. The panels to be measured were divided according to wood type: linden; oak;
poplar; and Scots pine. Each type was supported by a number of different reinforcement
type to give 74 panel reinforcement combinations. An array of retro-reflective targets were
placed on each test panel. The number and disposition of the targets on each test panel
varied from 175 to 464 according to the pattern of auxiliary supports. The total number of
epochs (the number of sequential images) at which the initial set of images of the 74 test
panels would be acquired was 25 (i. e. 25 humidity levels at different time). For each
epoch, there were about 400 images in total to be grabbed by 5 cameras at different

positions, which occupied about 170M storage. Tlierefore over 10,000 images were
grabbed and processed. The average number of targets on each test panel was 250,

resulting in a total of 2,500,000 targets to be processed.

WOODPANEL IMAGE

Day INTEGER
Puncl# INTEGER Hurni(fity FLOAT
W(xxrrype STRING TargetNumber INTEGER
Reinforcement SUPPORT 2-DCoordinates ARRAY(5(X). 2)
Test Description STRING

STRING d i
Pixel-Imagc ARRAY(I(X). 568)

Recornmen at on
e IMAGE Ima Display g

Processing
Analysis
Recognition

SUPPORT

Foffn STRING
Material STRING

IMAGE2 IMAGE5 IMAGEI

Cameral Cafncra2 Carncra5

Fig. 3. Database Schema of "Wood Panel Deformation Measurement System"

The database schema is shown in a simplified form in Fig. 3, which is a collection of

classes. Each node is a class (synonymously a relation). A node is subdivided into three
levels, the first of which contains the name of the class, the second the attributes and the

third the methods or procedures attached. Two nodes C and Ccan be connected by two

types of arcs: (1) a thin arc, indicating that C' is the domain of an attribute of A of C, or

671

h t at C'is the class of the result of a method of C (resulting in the aggregation hierarchy);
(2) a thick arc, indicating that C is the superclass of C' (resulting in the inheritance
hierarchy). Arrows indicate the directions of connection. We use the epoch to represent
the time dimension t, where tE L and L--[1,2,...

'25jr= T is a lifespan. t can be viewed as a
normalised time and may (or may not) be related to the attribute Day. IMAGE] to IMAGE5 are subsets of IMAGE, so they inherit all three dimensional attributes from
IMAGE. <L IMAGEI> represents the 25 sequential images grabbed by Camera 1.
IMAGEI(3) represents the 3rd image grabbed by Camera I.

3 Query Algebra
'--From the algebra point of view, a temporal OODB can be viewed as a collection of

temporal objects, grouped together in classes (relations) and interrelated through
associations: aggregation, generalisation and time-reference. Each temporal relation can
be viewed as a 3-dimensional cube. If the existing hierarchical structure of "inheritance"
hierarchy and "aggregation" hierarchy between classes is not considered, the structure of
queries is essentially the same in both the RDB and OODB paradigm. Temporal aspects
only transform some tables or even only some attributes to cubes (many relational
databases already support timestamps). We therefore have a common base to expand
(temporal) relational algebra to temporal object algebra.
Baýiically, the standard relational algebra provides a unary operator for each of its two
dimensions: select for the value dimension and project for the attribute dimension. An
object operator allows the predicate of the select operation on a contiguous sequence of
attributes along a branch of class-aggregation hierarchy. We will add more operators for
the added time dimension. The algebra is defined against set objects, and "a class" = "set
objects" = "relation" concept is preserved so that it can readily take advantage of

.
inheritance and enable application to automatically reach any existing objects of interest,
without acquiring explicit references to those objects [241.

3.1 Predicate

There are three types of predicate: a simple predicate, a nested predicate and a temporal
predicate.
A simple predicate is of the form <attribute-name operator value>. The value may be an
instance of a primitive class (type) (e. g., string, integer, etc.) or an object identifier (OID)

of the instance of some class. The latter is important because it may be used for testing the

object equality, that is, equality of referenced ob ects. The operator is a scalar comparison j

operator >, etc.) or a set comparison (e, c::, c, set-equality, etc.).

A nested predicate is a predicate on a contiguous sequence of attributes along a branch of
the class-aggregation hierarchy of a class. Path-expression [2] is used to express the nested

predicate. A path is defined as
P=CI. Al. A2 A,, (ný!])

where CI is the class in the database schema, Al is an attribute of class CI, Ai is an

attribute of a class Ci such that Ci is the domain of the attribute Ai-I of class Ci-1, I<i! -ýn.
For example, WOODPANEL Reinforcement. Form is a path, and WOODPANEL

672

Reinforcenzent. Form = "lattice" is a predicate.
A temporal predicate is a predicate referred to temporal set along the time dimension.
There are two types of temporal predicates: a simple temporal predicate and a nested
temporal predicate. A simple temporal predicate can be expressed as <ternporal-set
operator value>. The operator could be <, !ý, =, >, ý! , and the combination,
representing time before, whileAvhen, after, during, etc. A nested temporal predicate can
be expressed by integrating the path-expression into a simple temporal predicate. If o is a
attribute name or a path-expression or a predicate, we use function When 63(o) to express
the temporal domain of o(we will give a formal definition later). For example, we use the
following expression to refer to epoch 4 at which the image's humidity level is, say, 30 %
rh: W(WOODPANEL Image. Humidity =30% rh)=4.
We also extend the path-expression [2] to express the nested predicate %krith a time
dimension, using the enhanced path-like expression to refer to the value components of a
temporal object. For example, a path-like expression which refers to an image's humidity
level=30 % rh is WOODPANEL Image. Humidity(t)=30 % rh, say, t=4. More generally,
we use ol T1 to denote the restriction of o to the temporal set T1. For example,
WOODPANELImage. Humiditylt=4 = 30 % rh, and WOODPANELIniage. Humidity 1=4,5,6

= 130 % r/4 40% rh, 50% MI.

A method may be used for any part of a predicate, that is, as the attribute-name, the
operator, or the value. We could think of 63(0) and oJT1 as methods as well.

If P, and P2 are predicates, then so are P&P2, PIAP2, and -, P1. These constitute complex
predicates.

3.2 Identity and Equality

Identity is a property of an object that distinguishes the object from all others. It is
important to distinguish between the follo, 'Aring different types of equality.

1) Identity equality of objects: two objects o and o' are identity equal if they are the same
object (i. e., they have the same OID), denoted as "ý". That is, o==o' if
O1D(o)=OID(o').

2) Value equality of objects: two temporal objects are equal if the values and the temporal

sets of all their attributes are recursively equal, denoted by "=". That is, two temporal

objects o and o'are equal if o. T(Ai)=o'. T(Ad and o. wAiý--o'. i)(Ad (or om(Ai)(t) = o'-'J
(Ai)(t) at every t). The term value equality is analogous to the snapshot
equivalent/weekly equivalent in temporal RDBs that states that two tuples are snapshot
equivalent or weekly equivalent if the snapshots of the tuples at all times are identical.

Two identical objects are also equal whereas the reverse is not true.

3) Shallow-equality: two objects are shallow-equal if their attributes share the same value
and the same references, and their corresponding temporal sets are equal although
they are not identical, denoted as =I.

Duplication in set membership is based on object identity, i. e., a set will not contain two
objects with the same identifier. There are many cases in algebra that implicit

673

comparisons are made using identity equality. 71bere are also some cases that the
comparison is made by value equality. Shallow equality is required for join operation.

3.3 Set-Theoretical Operations

If 01,02 are temporal object sets, then the sets operators Union, Intersection and
Difference are identical to Codd's corresponding relational operators:
Difference 03=01-02=10 OG 01 A--ioE 021 where 403)=401ý-402)
Union 03=01UO2=10 OE OIVOE 021 where 403)=40]ýJU02)
Intersection 03=0, r)02=[o oE 01 AoE 021 where U03)=UOjYW02)

Like relational algebra, the duplication in the resulting set is eliminated.

3.4 Special Operations
Select op 0 selects the elements "o " of set 0 such as the predicate P(o, t) holds.

(Tp 0=[O 10E0
AP(Ot)]

Select is a hybrid operation, reducing a class (relation) in both the value and the temporal
dimension. If no predicate is referred to time, it then reduces the class along the value
dimension.

Map g: 01-02: for the type of objects in 01 (i. e., oE 01), g returns an object of type Of 02

(i. e., g(o)c= 02).

9: 01-ý02-'-'-'49(0) 1
OE 01)

Project 7E<A1,...
'Ai>O

extends Map by allowing the application of many functions to an

object, thus supporting the creation and maintenance of selected relationships between

objects.
7C<A1,...

'Ai>
0 ==[<A1: g1(o),... ' Ai: glfo)> I OE 01

where 0 is of type set [T], the Ai's are unique attribute names, and each gi takes a single
input of type T and returns an object of type Ti. gl... gi are similar to g. If gi=], it returns
OID of the domain object of Ai unless Ai is aton-ýic. We retain gi=1 (unless it is specified
not) so that we keep our project operator on a set of objects (relationy like the relational
project. Tberefore the project operator, when applied to class (relation) 0, removes from 0

all but a specified set of attributes. As such it reduces a relation along the attribute
dimension.

Unw-slice ýLI(O) defines the relation (set of objects) containing those objects derived by

restricting each objects in the operand relation to those times specified by LI.
ýLI(O)-""': (O' VtF: (LI(WOMO(OF: 011

Obviously the lifespan Of ýL](O) is LjrWo). So the time-slice reduces the relation solely
along the temporal dimension. If L, equals to a time point ti, i. e., Tl=tl, then ýU(O)

represents the event o(tj) happened at tj.

Offset ý(O, 1) "shifts" a snapshot relation at tj by the number of positions specified by the

offset.
7(0(tl), 1)= 0(tl+l)

674

When GYO) defines an operator that maps a relation (set of objects) 0 to its temporal set:
00=40)

The result of when is a time value; it can serve as a parameter or a predicate to those
operators, like time-slice, etc.
Join 010-`ý P<AolAo2> 02 is an explicit join operator used to create relationships between
Objects from two collections in the databases. Unlike relational joins, in which the
domains of the join attributes must be identical, we require the join attribute to only be
compatible [9]. Two attributes Ai and Aj are compatible, if the value domain and the
temporal domain of Ai is identical to those of Aj (or a superclass or subclass of the domain
of A). Shallow-equality could express this compatibility. Although join attributes are
compatible, they have different OIDs. So the join we defined is essentially a 0-join as in
relational algebra.

AO E AP 01"'>"ý'P<AolAo2>02ý--[<Aol: ol, Ao2: 02>IOIE: 01 2rO2 (01,02)]

T Unnest (4KO) Suppose relation (class) 01 have the scheme <AI,..., A, >=<oI(I), --., oI(n)>
and the scheme of ol(k) (i. e., <ntAk>) be <Ak.],..., Ak- M>,]!! ýk<-n, then Unnest T is defined
as

02 =-- 9KOI

: -- 102 102(i)=ol(i)for 1: 5i! ýk-l IN 02(i)=Ol(i+])for k-<isýn- I

A 02(i)=Ak(i-n+])for n<-i:! ýn+m-1j
T Nest (byo) Let the relation (class) 01 have the scheme <ý4,..., A, >=<oj(I),..., oj(n)>,

Y=flIJ2,... jkj is a subset of 11,2,..., n], and x=11,2,..., n-yj. Nest has the scheme of <B,,...,
Bn-k+]>= <02(I),... 'o2(n-k+I)>, where 02W=odr) for]! ýj<-n-k n=-x, and 02(n-k+]) has

the scheme relation: <B,, -k+].
],..., Bn-k+l. k>. Similar to the unnest operator, the nested

component is placed at the last column ofoyO. So Nest T is defined as
02=1)yOI=tO2I o2iy)=oI(r)for]: ýj! ýn-k rEx

A 02(n-k+])=tz 130 (OE 01 A o(r)=oI(r)for rE xA zU)=o(ij)for]: ýj:! ýk)j I

Besides the above database operators, we can easily define some aggregate operators.
Suppose Aggfiinc is one of functions Avg, Min, Max, and Sum, then Agg-fimcTI(O)

returns the function value over the specified period TI. Null records in tuples are ignored
if there is at least one non-Null records otherwise the output is Null record.

4 Data Query Examples and Evaluation

In this section the applicability of our algebra to data queries is illustrated through
following query examples and a brief evaluation is made at the end of the section.

Query I "Find all the wood panels whose type is 'pine' and was reinforced in form of
Iattice! by 'Oak, glued' ". '111is query did not involve any temporal aspect. We can treat it
like a constant object query while its lifespan implies the same as the lifespan of temporal
objects. We express this query in the following algebra:

Owl=. cy p, WOODPANEL

:= 10 1 or= WOODPANEL A WOODPANEL WoodType = "pine"

675

A WOODPANELRein rcententFonn= "lattice" Ifo
A WOODPANELReinforcenwntMaterial= "oak, glued"]

For the attributes of Reinforcement and Image, this query only gives the OIDs instead of
all the SUPPORT objects and MAGE objects (sequential images).

Qugýý 2'T)ecide when the humidity level of above selected wood panel is 30% rh".
Ot=W(oc-0,,, Ao. IMAGE. <Humidity., u>=30 % rh)

OuM 3 "Select the wood panel image whose wood type is'pine'and reinforced in form of
'lattice' by 'oak, glued', while its humidity level is 30 % rh (at the 4th epoch) and grabbed
by Camera V. We have the following algebra:

092
--': TC<WOODPANELlnzage> ((YPI WOODPANEL)ý 'c<WOODPANELlnwge> OWI

0%3=Map. - Ow2-->Io oE IMAGE]]
OW4 = cr p2 (OW3)=fo oE IMAGE] A Otj

Cp4gýý 4 "Find the humidity level values of above selected IMAGEI which appeared
before time Qt". This query involves the temporal reasoning. We apply the following
algebra operators to support this reasoning.

OW5==R
<IMAGEJ. Humi4itY> (0")

Ow6= (Yp3 (Ow5)=(o I
oE Humidity A t< Otl

QuM 5 'VwA the average humidity level of above selected panel".
Agg-fiinc T, OW6=Avg Tl=[,, Qtj Ovv6

The closure property states that output finom one operation can beconw input to another
[7]. Our algebra imposes operators (except when G3(o), we already treat it as a method) on
relations (sets of objects). So the output is also a relation. In this sense our algebra is
closed. Besides, because our algebra supports object identity, it is also polymorphic in the
sense that it is defined across all "objects" [241.

These models which employ tuple-time-stamping are termed temporally ungrouped
whereas those models that employ complex attribute values bearing the temporal
dimension are termed temporally grouped [14]. While the expressive power of ungrouped
complete was generally accepted as a desirable property for TSQL, there were
considerable concerns on grouped complete [14]. The benefit of being grouped complete
is that it supports a rather strong notion of the "history of an attribute". For example, one
can talk about "Panel #I's humidity history' as a single object, and ask to see it, or define

constraints over it, etc. In temporal RDBs, as stated in [5,14], there is no algebra that has
been shown to be grouped complete. In our temporal object data model, every object is

associated with a OID. If every OID is maintained in a database (in some data models,
primitive entities such as integers, or characters, are represented by values and have no
OID associated with), then our algebra will be grouped complete.

5 Related Work
Although temporal databases have been an active area of research for over fifteen years,

there is no commonly accepted consensus data model, nor is there well-accepted temporal

676

database algebra [141. It is advocated [14] that a very simple conceptual data model is
adopted that captures the essential semantics of time varying relations, but has no illusions
of being suitable for representation, storage, or query evaluation. Our work pursues this.
There are quite a few reports on defining a temporal relafional data model and algebra.
Clifford [5] associated lifespans at both attribute and tuple level as timestamps to define
the historical relational data model and algebra. Tansel [21] adopted temporal sets for
timestamps and a temporal atom for a timestamped object. Gadia et al. [16] provided a
parametric data model, treating the attribute value as a function of time. These features of
the above work have been integrated and applied to our data model and algebra. But
because our data model is a temporal object data model, the heterogeneity in time
dimension and grouped completeness of algebra can be supported.
Over two dozen proposals have been made for an object algebra [12]. No query algebra
thus defined is based on any unified model of RDBs and OODBs, although it has been
claimed that an object algebra should extend relational algebra consistently [21,17]. None
of these object algebra consider the temporal dimension. Our temporal object algebra
reflects the spirit of object algebra [17,20,6,1]. But in addition to support the access
through aggregation and inheritance associations, our algebra accesses objects through
time dimension. These are embodied in the enhanced nested predicates and (nested)
temporal predicates.

Conclusions
In this paper, we have presented a temporal object data model and its algebra. The
adaptation of the unified model of RDB and OODB by adding a time dimension to form
the relational-like cubes but with aggregation and inheritance associations provides a basis
to extends techniques of defining temporal relational algebra for developing the temporal
object algebra. The temporal object algebra will become an object algebra when the time
dimension is not taken into account, and the object algebra extends the relational algebra
consistently. On the other hand, the modelling capability of OODBs that every real world
entity can be uniformly modelled as an object, makes it easy to model the temporal
aspects. The temporal object we defined can be used to represent any object with a time
dimension, such as representing an attribute as a function of time which avoids
fragmentation of an object description. In addition, it can support both homogeneity and
heterogeneity in the time dimension. This is important because homogeneity sometimes
becomes difficult to maintain. Furthermore, the grouped completeness of the algebra can
be maintained.
Future work will extend the query evaluation and optimization techniques developed for
temporal RDBs and OODBs to temporal OODBs.

Acknowledgements

Authors would like to thank J. Chen of City University, UK for his cooperation with the "Wood
Panel Deformation Measurement System".

References
1 R. Alhaj and M. E. Arkun. A query model for object-oriented databases. Proc. of 9th Int. Conf on Data

Engineering, p 163-172,1993.

677

2 1- Bertino and L. Martino. Object-Oriented Database Systems: Concepts and Architectures. Addison-
Wesley Publishers Lid., 1993.

3 J. Chen, T. A. Clarke and S. Robson. Optirrýsed target matching based on a 3-D space intersection and a
constrained search for multiple camera views. Videometrics III, SPIE Proc., Vol 2350, p 324-335,1994.

4 A- Clarke, et al. Automated three dimensional measurement using multiple CCD camera views. The
Photogrammetric Record, 15(85): 27-42,1995.

5 J. Clifford, et al. The historical relational data model (HRDM) revisited. Temporal Databases: Theory,
Design, and Irnplementation (edited by A. U. Tansel, et al.), p6-27. Benjamin/ Cummings, 1993.

6 S. Cluet and C Delobel. Towards a unification of rewrite-based optimization techniques for object-oriented
queries. Query Processing for Advanced Database Systems (edited by 1. Freytag, et al.). Morgan
Kaufmann, 1994.

7 C. J. Date. An Introduction to Database Systems, 6th Edition. Addison-Wesley, 1995.
8 S. K. Gadia. A homogeneous relational model and query languages for temporal databases. ACH Trans.

on Database Systems, 13(4): 418-448,1988.
9 W. Kim. A model of queries for object-oriented databases. Proc. of the 5th Int. Conf on VLDB, p423-432,

Amsterdam, 1989.
10 W. Kim. Object-oriented databases systems: promises, reality, and future. Proc. of the 191h Ini. Conf. on

VLDB, p 676-687, Dublin, Ireland, 1993.
11 W. Kim. Next-generation database systems: objects and beyond. Proc. of IISFIACH Japan Int

Symposium, Computers as our Better Partners, p 188-196, Tokyo, Japan, March 1994. World Scientific
Pubfishing. Singapore.

12 M. T. Ozsu and J. A. Blakeley. Query processing in object-oriented database system. Modem Database
Systems: the Object Model, Interoperability, and Beyond, (edited by W. Kim), p 146-174. ACM Press,
1995.

13 N. Pissinou, et al. On temporal modelling in the context of object databases. SIGMOD RECORD. 22(3):
8-15, Setp. 1993.

14 N. Pissinou, et al. Towards an infrastructure for temporal databases: report of an invitational ARPA/NSF
workshop. SIGMOD RECORD, 23(l): 35-5 1, March 1994.

15 S. Robson, et al. Seeing the wood from the trees-an example of optirnýised digital photogrammetric
deformation detection. ISPRS Intercommission Workshop: From Pixels to Sequences-Sensors,
Algorithm,;, and Systems, Vol 30/5W 1, p379-384,1995.

16 S. K. Gadia and S. S. Nair, Temporal databases: a preclude to parametric data, Temporal Databases:
77teory, Design, and Implementation (edited by A. U. Tansel, et al.), p28-66. Benjamin/ Cummings
Publishing, 1993.

17 G. M. Shaw and S. B. Zdonik. A query algebra for object-oriented databases. Proc. of 6th Int Conf. on
Data Engineering, p 154-162,1990. IEEE.

18 R. Snodgrass. Temporal object-oriented databases: a critical comparison. Modem Database Systems: the
Object Model, Interoperability, and Beyond, (edited by W. Kim), p 386408. ACM Press, 1995

19 M. Stonebraker, L. Rowe, and M. Hirohama. The implementation of POSTGRES. IEEE Trans. on
Knowledge and Data Engineering, 2(l): 125-142,1990.

20 D. D. Straube and M. T. Ozsu. Queries and query processing in object-oriented database systems. ACM
Trans. on Information Systems, 8(4): 387430,1990.

21 A. U. Tansel. A generalized relational framework for modelling temporal data. TeMoral Databases:
77teory, Design, and Implementation (edited by A. U. Tansel, et al.), p183-201. Benjamin/ Cummings
Publishing, 1993.

22 L. Wang, M. Wing, C. Davis and N. Revell. Query processing in object-oriented databases. Proc- of 13th
European Meeting on Cybernetics and Systems Research, p8O3-808, April 9-12,1996, Vienna, Austria.

23 L. Wang, M. Wing, C. Davis, N. Revell and J. Chen. Data modeling and management in sequential image
databases: a temporal object-oriented approach. IEE Colloquium Digest on intelligent Image Databases,

pl/1-6,96.
24 L. Yu and S. L. Osborn. An evaluation framework for algebraic object-oriented query models. Proc. of 7th

Int. Con1f. on Data Engineering, p 670-677,199 1. IEEE.

