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Abstract 

This PhD thesis is concerned with historical data management in the context of object- 
oriented databases. An extensible approach has been explored to processing temporal 
object queries within a uniform query framework. By the uniform framework, we mean 
temporal queries can be processed within the existing object-oriented framework that is 

extended from relational framework, by extending the existing query processing 
techniques and strategies developed for OODBs and RDBs. 

The unified model of OODBs and RDBs in UmSQL/X has been adopted as a basis for 
this purpose. A temporal object data model is thereby defined by incorporating a time 
dimension into this unified model of OODBs and RDBs to form temporal relational-like 
cubes but with the addition of aggregation and inheritance hierarchies. A query algebra, 
that accesses objects through these associations of aggregation, inheritance and time- 
reference, is then defined as a general query model /language. Due to the extensive 
features of our data model and reducibility of the algebra, a layered structure of query 
processor is presented that provides a uniforrn framework for processing temporal object 
queries. Within the uniform framework, query transformation is carried out based on a set of 
transformation rules identified that includes the known relational and object rules plus those 

pertaining to the time dimension. To evaluate a temporal query involving a path with time- 

reference, a strategy of decomposition is proposed. That is, evaluation of an enhanced path, 
which is defined to extend a path with time-reference, is decomposed by initially dividing the 

path into two sub-paths: one containing the time-stamped class that can be optimized by 

making use of the ordering information of temporal data and another an ordinary sub-path 
(without time-stamped classes) which can be further decomposed and evaluated using 
different algorithms. The intermediate results of traversing the two sub-paths are then joined 

together to create the query output. Algorithms for processing the decomposed query 
components, i. e., time-related operation algorithms, four join algorithms (nested-loop 
forward join, sort-merge forward join, nested-loop reverse join and sort-merge reverse 
join) and their modifications, have been presented with cost analysis and implemented 

with stream processing techniques using C++. Simulation results are also provided. 
Both cost analysis and simulation show the effects of time on the query processing 
algorithms: the join time cost is linearly increased with the expansion in the number of 
time-epochs (time-dimension in the case of a regular TS). It is also shown that using 
heuristics that make use of time information can lead to a significant time cost saving. 
Query processing with incomplete temporal data has also been discussed. 
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Chapter 1 

Introduction 

This introductory chapter outlines the research background, main work, related work 

and organisation of thesis. 

1.1 Background 

We are living in a state of information explosion. Organisations have made extensive 

use of the ability of database management systems to store and manipulate vast amounts 

of data and knowledge. 

There are three major types of databases available today: relational databases (RDBs), 

object-oriented databases (OODBs) and recently emerged object-relational databases 

(ORDBs). 

Whilst the semantic limitations of RDBs are widely recognised, OODBs have emerged 

to represent some of the most promising ways of meeting the demands of the advanced 

database applications, such as computer-aided design (CAD), computer-aided 

manufacturing (CAM), computer-integrated manufacturing (CIM), computer-aided 

software engineering (CASE), document and multimedia preparation, office automation 

and scientific computing. 

However, most OODBs offer more restricted query capabilities than those found in 

RDBs [Kim, 1993; 1994; 1995; Kim et al., 1997]. Typically, the query facilities do not 

include nested subqueries, set queries (Union, Intersection, Difference), aggregation 

functions and group by, and even joins of multiple classes, etc., which are fully 

supported in RDBs [Kim, 1993; 1994; 1995; Kim et al., 1997]. Most OODB designers 

have not invested a great deal of time in design and development of appropriate 
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techniques for optimizing object-oriented queries. In other words, OODBs allow the 

users to create a flexible database schema and populate the database with many 

instances, but they do not provide a powerful enough means of retrieving objects from 

the databases. 

In addition, query processing techniques have not fully addressed the features arising 
from key challenges including interoperating OODBs with RDBs, management of 

multimedia data, spatial data and temporal data, etc., [Kim, 1993; 1994; 1995; Kim et 

al., 1997]. 

For example, temporal properties play an essential role in many real world applications. 
Many advanced database applications require the support for time-varying data. Support 

for time-varying data in most comi-nercial databases is almost at the level of user- 
defined time. The vast majority of research on temporal databases is on relational and 

pseudo-relational database models to incorporate time [Pissinou et al., 1993; 1994; 

Clifford et al., 1993; Gadia, 1988; Griffiths and Theodoulidis, 1996; Snodgrass, 1995; 

Stonebraker et al., 1990; Tansel et al., 1993; Tansel and Tin, 1998]. Compared to 

temporal relational data models, little work has been reported on time in OODBs 

[Pissinou et al., 1993; Snodgrass, 1995; Ozsu and Szafron, 1998]. Although most 

OODB proposals include constructors for complex types like lists and arrays that allow 

the time-stamped entity to be represented as a "blob", which is managed by the system, 

but interpreted solely by the application program, no facilities for temporal queries are 

provided [Seshadri et al., 1996]. Only a limited amount of work has been done on 

temporal query processing and optimization [Leung and Muntz, 1993; Dayal and Wuu, 

1992; Seshadri et al., 1996; Pissinou et al., 1994; Snodgrass, 1995; Zurek, 1998] and 

they are almost all in the context of relational databases. 

Query processing remains one of the most difficult problems to be addressed by 

researchers and developers of OODBs [Ozsu and Blakeley, 1995; Kotz-Dittrich and 

Dittrich, 1995; Straube and Ozsu, 1995; Yu and Meng, 19981, especially when time- 

varying data are taken into account. 
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Figure 1-1 Features in OODBs and RDBs. 
Items listed in bold are concerned with the query processing related issues. 

The features of both RDBs and OODBs, in terms of query processing, are listed in 

Figure 1-1. Obviously OODBs and RDBs are complementary, i. e., the drawbacks of 

OODBs can be compensated to some extent by the merits of RDBs. It is believed that 

the basis of the next generation database technology will be the combination of relations 

and objects [Kim, 1993; 1994; 1995; Kim et al., 1997; Date, 1994; Date, 1996; Date and 

Darwen, 1998; Darwen and Date, 1995; Stonebraker, 1996; Eisenberg and Melton, 

1999]. That is, RDBs will be extended to incorporate the concepts of encapsulation 

(methods), arbitrary data types, nested objects, and inheritance; or alternatively OODBs 

will be extended to incorporate an ANSI-SQL compatible non-procedural query 

language and all the major database features found in today's RDBs (such as, automatic 

query optimization, etc. ). Beyond the unification of relational and object-oriented 

database technologies, the database field has to address the aforementioned key 
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challenges such as management of temporal data, etc., to usher in a true revolution in 

database technology. 

Databases thereby emerged that support a dialect of SQL-3, include non-traditional 

tools, and optimize for complex SQL-3 queries are called object-relational DBMSs 

[Stonebraker, 1996; 1998]. They are relational in nature because they support SQL; they 

are object-oriented in nature because they support complex data. In essence they are a 

marriage of SQL from the relational world and modelling primitives from object world. 

Examples of object-relational DBMS vendors are UniSQL, 19lustra, Omniscience, 

Hewlee-Packard (with their Odapter for Oracle, also packaged for HP's own 

Allbase/SQL as Open ODB) [Stonebraker, 1996; 1998], etc. 

This thesis will in general not distinguish object-relational from object-oriented 

databases unless they are explicitly stated, i. e., it accepts the current commonly used 

classification: object-relational databases are still under the category of object-oriented 

databases. 

1.2 Research Project 

The project "Query Processing in Temporal Object-Oriented Databases" is addressing 

the difficult challenge of management of temporal data. More specifically, it is 

concerned with historical data management in the context of object-oriented databases 

and involves the study and development of novel methods for processing temporal 

object queries. The project initially started in 1993, and it has gone through an intensive 

research so far and resulted in 13 publications as shown in the list of author's 

publication at the end of the thesis. 

1.2.1 Presentation of Problem 

Query optimization techniques are dependent upon the query model or language. The 

query model, in turn, is based on the data (or object) model since the latter defines the 
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access primitives that are used by the query model. These primitives, at least partially, 
determine the power of the query model 

Almost all the object query processors proposed to date uses the optimization techniques 
developed for RDBs [Ozsu and Blakeley, 1995; Bertino and Martino, 1993; Yu and 
Meng, 1998]. But these OODBs introduce many new data model features to the 
database, that cannot be handled by traditional query processing technology (i. e., the 

query processing subsystems of RDBs). The difficulty is that there is no commonly 

accepted object data model and there is thereby no universally agreed query algebra on 

which to base development of the theory and architecture which would provide the basis 

for optimization [Bertino and Martino, 1993; Ozsu and Blakeley, 1995]. If we have a 

unified data model of OODBs and RDBs or an object data model that is extended from 

relational data model, the techniques of query processing and optimization developed 

for RDBs will be more smoothly and easily extended for OODBs. 

The majority of temporal database research has focused on extensions to a relational 
foundation in much the same way that object-oriented extensions to a relational model 

have developed and are still evolving [Simon, 1995]. If the temporal databases are 

typically extensions of conventional data models, then the temporal aspects should be 

accessible through extensions to traditional query processing techniques. 

The overall problem of temporal query processing in the context of OODBs, then, is 

how to develop a proper temporal data model (preferably, one that is extended from a 

unified model RDB and OODB) and algebra, and thereby to expand query optimization 

and query evaluation techniques of (temporal) RDBs to address and to exploit the new 

modelling and query extensions in temporal OODBs (TOODBs). 

1.2.2 Objectives of the Project 

The overall objective of the project is to address the above problem and to devise the 

techniques or strategies to process and optimize temporal object queries. To fulfil this 

objective, we have set up the following sub-objectives: 
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1) Investigate the current research status and available theory and techniques that could 
be used for our purpose. 

2) Define a temporal object data model that is preferably extended from the unified 

model of relations and objects, and can represent a variety of real world time varying 

entities, so that we can expand query processing techniques from (temporal) RDBs 

to address and to exploit the new modelling and query extensions in TOODBs. 

3) Develop a query algebra for the defined model. Ideally it should be 'closed' so that 

relational techniques can be applied. 

4) Devise techniques to process temporal object queries. 

1.3 Outline of Main Work 

Through this thesis, an extensible approach to process temporal queries in the context of 

OODBs, has been exploited in such a way that temporal queries can be processed within 

the existing object-oriented framework (that is extended from relational framework), by 

smoothly extending the existing query processing techniques, making use of the query 

processing techniques in (temporal) RDBs for TOODBs. There are three key elements 

in the thesis work that fulfil the objectives set above. 

(1) Derinition of a temporal object data model 

The unified model of OODBs and RDBs from UniSQL/X [Kim, 1993; 1994; 1995; 

D'Andrea and Janus, 1996; Kim et al., 1997], that is an object data model extended 

from the relational data model, has been adopted as a starting point. A temporal object 

data model is thereby defined by incorporating a time dimension into this unified model 

of OODBs and RDBs, i. e., via defining a time sequence as a temporal object and 

integrating it into the database schema defined by the unified model of RDB and 
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OODB. The database schema defined by the temporal object data model forms temporal 

relational-like cubes but with aggregation and inheritance hierarchies. 

Compared to other temporal relational object-oriented data models, the temporal object data 

model defined here is a temporally grouped model and possesses following distinguishable 

characteristics: 

9 Both homogeneity and heterogeneity in the time dimension can be supported; 

e The epoch (i. e., the time when the temporal object changes its value) represents a 

transfonned time space and can then serve as a convement token for the analysis of the 

query processing cost. 

9 The temporal object-oriented database presented is a superset of object-oriented database 

(i. e., retaining snapshot reducibility to an OODB) that in turn is a superset of relational 
database. 

The model provides a basis for the expansion of the techniques of query processing and 

optimization in RDBs to address and exploit new modelling features in OODBs and 

TOODBs. 

(2) Development of an algebra for the temporal object data model 

A query algebra, that provides an access to objects through these associations of 

aggregation, inheritance and time-reference, is then defined as a general query 

modelAanguage. 

The algebra is closed in the sense that the output from one operation can become input 

to another. The property of closure is important when the query processor uses and extends 

the query processing and optimization techniques developed for RDBs to process temporal 

object queries. 
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In addition, the algebra possesses the properties of reducibility and grouped 

completeness. By reducibility, we mean that the temporal object algebra can be reduced 

to the object algebra when time dimension is not taken into account and the object 

algebra can be further reduced to the relational algebra when aggregation hierarchy and 
inheritance hierarchy are not taken in to account. This allows query processing 

techniques developed for RDBs to be used and extended to process temporal object 

queries. By grouped completeness, we mean that it supports a rather strong notion of the 

"history of an attribute". For example, one can talk about "employee's salary history" as a 

single object, and ask to see it, or define constraints over it, etc. 

The fundamental intent of the algebra is to allow the writing of expressions of a user's query 

and to serve as a convenient basis for query processing and optimization. The properties of 

closure, reducibility and grouped completeness pave an extensible approach to processing 

temporal object queries within a uniform framework of object-oriented query processing. 

(3) Techniques and strategies for query processing and optimization 

Due to the extensible structure of our data model and the properties of reducibility and 

closure of the defined algebra, query processing and optimization are exploited. 

Especially, techniques and strategies to process temporal queries are presented. There 

are four components: 

1) Query transformation rules comprise: 

relational rules; 

temporal transformation rules; 

inheritance rules; and 

path transformation rules. 

Relational rules are derived from well-known algebraic optimization techniques in 

RDBs and play an essential role in query optimization. When the time-dimension is 
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taken into account, the temporal transformation rules play a role. Inheritance rules are 
object specific. Path transformation rules are important in developing query processing 
techniques and strategies for processing (temporal) object-oriented queries (e. g., as in 

the decomposition strategy and join algorithms described below). 

2) A decomposition strategy for processing temporal queries within the object-oriented 

query framework; 

Temporal object queries are represented by the enhanced path that is defined to refer to 

the path with time-reference in this thesis. A decomposition strategy is devised for such 

a query. Applying this strategy, an enhanced path is initially divided into two sub-paths: 

one containing time-stamped class that can be optimized by making use of the ordering 

information of temporal data, and the other, an ordinary sub-path (with no time-stamped 

class) that can be further decomposed and evaluated using different algorithms. The 

intermediate results of traversed two sub-paths are then joined together to create the 

query output. 

The advantages of decomposing the temporal query into sub-query components are that 

well-known join algorithms can be used to optimize the decomposed query components, 

and also provide a convenient means to observe and analyse the effects of the time on 

query processing costs (as pointed by Kim [1995; 1997] and Snodgrass [1995], these 

effects have not been reported so far but were deemed to be valuable). 

3) Implementation of time-related operation algorithms and join algorithms with stream 

processing techniques (along with cost analysis) for the decomposed query 

components. 

As temporal data often imply the ordering by time, the stream processing approach is a 

strategy of choice to implement relevant algorithms. With the stream processing 

techniques, the following algorithms have been implemented: 
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* Stream processing time-slice algorithms and stream processing aggregation 

algorithms for the time-related operations; 

Four basic join algorithms: nested-loop forward join, sort-merge forward join, 

nested-loop reverse join and sort-merge reverse join, and their modifications 

These algorithms are presented with the corresponding cost analysis and implemented 

on a PC using Borland C++ Version 4. To illustrate the efficiency of the above 

algorithms when the time is present, simulation based on the simulated International 

Weather Recording Database is provided. 

Both cost analysis and the simulation results show that the join time cost is linearly 

increased with the expansion in the number of time-epochs (it is linearly increased with 

the expansion of time in the case of regular TS). 

4) Heuristics for optimization 

To further reduce the time cost, the following heuristics have also been presented as 

optimization strategies: 

Transform the time-related predicate into the time-slice operation; 

e Perform time-slice as early as possible. 

The principle of these heuristics is to avoid looking at all of the data. It has been shown 

in the thesis by both analysis and simulation that utilising the heuristics can lead to a 

significant time cost saving. 

The PhD project has involved the designing of databases for these systems: 

* Wood Panel Deformation Measurement System, 

0 Health-Care Information System, and 
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* Intemational Weather Record System. 

These are taken as case studies to demonstrate the modelling capability of our model 

and are also used to illustrate our approach. 

This thesis also discusses the situation when a user's query requires the data that is not 

explicitly recorded in the database. It is shown that the techniques of interpolation, or 

assumption rules that make use of the implications of the temporal data can be used to 

answer such a query. Again, the efficiency can be improved by making use of the 

ordering information of the data and also heuristics to reduce the scope of sequence 

scans. 

1.4 Summary of Related work 

Although research on temporal databases has been carried out for over fifteen years, there are 

still some unmet challenges [Snodgrass, 1995; Kim, 1995; Kim et al, 19971. Support for 

time in conventional relational databases systems is almost entirely at the level of user- 

defined time (i. e., attribute values drawn from a temporal domain) [Snodgrass, 1995]. 

The user-defined time support in SQL2 is poorly designed [Snodgrass, 1995; Melton and 

Simon, 1993]. Although the ISO SQU conuTfittee in July 1995 voted unanimously to 

accept a new part: SQL/Temporal (also expected to incorporate object-oriented aspects), 

with Period predefined data type being the first aspect of TSQL2 to become part of 

SQU [Segev, Jensen and Snodgrass, 1995], no details have been revealed as for how it 

will address the central issues of temporal support [Eisenberg and Melton, 1999]. None 

of the other object-oriented database standards, including "The Object Database 

Standard: ODMG 2.0" [Cattell et al., 1997], specifies the management of temporal data. 

Research on temporal databases has mainly focused on defining temporal data models 

by extending existing models [Pissinou et al., 1993,1994; Clifford et al., 1993; Gadia, 

1988; Griffiths and Theodoulidis, 1996; Snodgrass, 1995; Stonebraker et al., 1990; 

Tansel et al., 1993; Golralwalla et al., 1998; Bohlen et al., 1998; Tansel and Tin, 1998], 

and there is no commonly accepted consensus temporal data model, nor well-accepted 
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temporal database algebra [Pissinou et al., 1993; Snodgrass, 1995]. Among the various 

reports on defining a temporal relational data model and algebra, Clifford [1993] associated 
lifespans at both attribute and tuple level as timestamps to define the historical relational data 

model and algebra, Tansel [ 1993] adopted temporal sets for timestamps and a temporal atom 
for a time-stamped object, and Gadia et al. [1993] provided a parametric data model, treating 

the attribute value as a function of time. These features of the above work are reflected in our 
data model and algebra. But because our temporal object data model is defined by 

incorporating the time-dimension into the unified data model of RDB and OODB via 
defining a time sequence as a temporal object and representing it into database schema, it is a 

temporally grouped model, and the heterogeneity in time dimension and grouped 

completeness of algebra can be supported. There is no temporal relational algebra that has 

been shown to be grouped complete as stated in [Clifford et al., 1993; Pissinou et al., 

1994] whilst the temporally grouped model has been considered desirable [Segev, 

Jensen and Snodgrass, 1995]. 

Over two dozen proposals have been made for an object algebra as mentioned in [Ozsu and 

Blakeley, 1995]. No query algebra thus defined is based on any unified model of RDBs and 

OODBs, although it has been claimed that an object algebra should extend relational algebra 

consistently [Ozsu and Blakeley, 1995; Shaw and Zdonik, 19990; Yu and Osborn, 1991]. 

Few of these object algebras are closed, and none of them consider the temporal dimension 

or supports temporal data management. Our temporal object algebra reflects some spirits 

of object algebras [Shaw and Zdonik, 1990; Straube and Ozsu, 1990; Cluet and Delobel, 

1994; AlhaJ and Arkun, 1993], but in addition to supporting access through aggregation and 

inheritance associations, our algebra also accesses objects through the time dimension. These 

are embodied in the nested predicates and (nested) temporal predicates, and are represented 

by the enhanced path expressions. The properties of closure, reducibility and grouped 

completeness thus allow an extensible approach to processing temporal object queries. 

There is little work reported on temporal query processing and optimization [Leung and 

Muntz, 1993; Dayal and Wuu, 1992; Seshadri et al., 1996; Pissinou et al., 1994; 

Snodgrass, 1995; Zurek, 1998] and most of them are in the context of RDBs. As RDBs 

always require the user to explicitly join two relations, temporal processing in the context 



Chapter I Introduction 13 

of RDBs has been focused on specific join algorithms, such as temporal join and 
optimization [Gunadhi and Segev, 1990; Segev, 1993; Zurek, 1998], the strategies of stream 
processing for temporal joins [Leung and Muntz, 1993], following the bottom up approach. 
The strategies of stream processing in [Leung and Muntz, 1993] have been adopted in our 
time-related operation and join algorithms. Seshadn et al. [19961 separated the optimizer 
functionality between the database optimizer and temporal optimizer and provided a 

paradigm for interaction between a relation and a sequence. Although they have provided a 

comprehensive approach for sequence data processing, they have not incorporated sequence 

processing in the relational query processing framework. The idea of separating optimizer 
functionality has been reflected in our query optimizer. Dayal and Wuu [1992] proposed a 

uniform approach to processing temporal queries in the context of functional object-oriented 
data model, but their work did not take into account the query optimization and evaluation in 

a query processing framework. Also their work is based on a functional model and language, 

that would lead to a functional optimization that is quite different from the algebraic, cost- 
based optimization techniques employed in relational as well as a number of object-oriented 

systems [Ozsu, 1995]. 

Our work provides a comprehensive approach to processing temporal object queries, 

from the data model, algebra to query processing techniques, which are required to 

support time-varying data. We have shown that the temporal object queries can be 

processed within the existing object framework through extending the existing query 

processing and optimization techniques. The approach is in contrast to other work in the 

field. 

1.5 Organisation of the Thesis 

Apart from Chapter 1 (Introduction) and Chapter 9 (Conclusions and Future Work), this 

thesis can be divided into three parts as follows. Part I is an overview of background and 

research status in this area and comprises Chapters 2 and 3. Part H constructs a 

fundamental part (i. e., the data model and algebra) for query processing and comprises 

Chapter 4 and 5. Part III comprises Chapter 6 to 8 where the techniques and algorithms 

are proposed for processing temporal object queries. 
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Part I 

Chapter 2 provides an overview of current status on relational databases, object-oriented 
databases and temporal databases. It is made clear that the next generation of databases 

trends to be a combination of relations and objects as strengths and weaknesses of 

commercial relational and object databases are complementary. Support for time varying 
data is required by many advanced database applications and temporal databases are still 

at the stage of research. Chapter 3 gives a survey on query processing techniques in 

databases. It summarised that relational databases have accumulated a lot of knowledge 

and experiences on query processing, the problem of query processing in OODBs has 

not yet been very widely researched and almost all object query processors use the 

optimization techniques developed for RDBs. Processing temporal queries in the 

context of relational databases only touched to the operator of join. Little work has been 

reported on processing temporal queries in the context of OODBs. 

Part II 

Query processing techniques are dependent upon a data model and algebra/language. 

Chapter 3 defines a temporal object data model that is extended from UniSQL/X with a 

time dimension. An algebra for the data model is developed in Chapter 5. The model 

with the extensible structure and the algebra with the properties of reducibility and 

closure form a basis for query processing. 

Part III 

Chapter 6 presents a uniform framework for processing temporal object queries. Within 

the framework, a set of algebraic transformation rules is specified for algebraic 

optimization, and a decomposition strategy is proposed for processing the temporal 

object queries. This addresses a central issue of path optimization in object-oriented 

databases. Chapter 7 presents algorithms for processing the decomposed query 

components. The algorithms are implemented with stream processing techniques that 
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make use of the ordering information for optimization. Both cost analysis and 

simulation are also provided. Chapter 8 discusses an important aspect in processing 

temporal object queries: when a user query has no data entry to the database. 

In addition, an appendix includes two selected published papers. 



Chapter 2 

Relational, Object-Oriented 

and Temporal Databases 

This chapter offers an overview of relational databases and object-oriented databases, 

and outlines existing research effort on temporal databases. 

2.1 Introduction 

A database system is essentially nothing more than a computerized record-keeping 

system [Date, 1995]. The database itself can be regarded as a kind of electronic filing 

cabinet; in other words, it is a repository for a collection of computerized data files. The 

user of the system will be given facilities to perform a variety of operations on such 

files, including the following, amongst others: 

Adding new, empty files to the database; 

Inserting new data into existing files; 

Retrieving data from existing files; 

Updating data in existing files; 

Deleting data from existing files; 

Removing existing files, empty or otherwise, from the database. 

All database management systems (DBMSs) are distinguished from other programs by 

their ability to manage persistent data and to access very large quantities of these data 

efficiently and safely. 
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Database systems can be based on a number of different data models. In general terms, a 
data model is a mathematical formalism consisting of a notation for describing data and 
data structures (information) and a set of valid operations which are used to manipulate 
those data, or at least the tokens representing them. Currently, the most popular data 

models are relational and object-oriented data models, resulting in two major types of 
databases available today: relational databases (RDBs) and object-oriented databases 

(OODBs). Whilst the semantic limitations of RDBs are widely recognised, OODBs are 

emerging to represent some of the most promising ways of meeting the demands of 

advanced database applications, such as computer-aided design (CAD), computer-aided 

manufacturing (CAM), computer-integrated manufacturing (CIM), computer-aided 

software engineering (CASE), document and multimedia preparation, office automation 

and scientific computing [Bertino and Martino, 1993; Cattell, 1994; Kim et al., 19971. 

These advanced database applications often require support for time-varying data. The 

enterprise modelled by a database is rarely static. Often the dynamics of an enterprise 

represent the most important aspect to be captured within a data model. Recent trends in 

data modelling emphasise the representation of temporal aspects in database schema and 

the support of corresponding data manipulation facilities directly by a database 

management system [Tansel, 1993; Snodgrass, 1995; Kim, 1994; 1995; Kim, et al., 

1997]. 

Most research on temporal databases concerns relational and pseudo-relational database 

models which incorporate time [Pissinou et al., 1993; 1994; Clifford et al., 1993; Gadia, 

1988; Griffiths and Theodoulidis, 1996; Snodgrass, 1995; Stonebraker et al., 1990; 

Tansel et al., 1993; Tansel and Tin, 1998]. There is, however, an increasing emphasis on 

the role of time in OODBs [Pissinou et al., 1993; Snodgrass, 1995; Kim, 1994; 1995; 

Kim, et al., 1997]. 

In this chapter, after briefly reviewing the basic concepts of relational databases and 

object-oriented databases, existing research on temporal databases will be outlined. The 

rest of the chapter is structured as follows. Section 2.2 looks at relational databases. An 
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overview of object-oriented databases is given in Section 2.3. Existing research on 

temporal databases is outlined in Section 2.4 and a summary of the chapter is given in 

Section 2.5. 

2.2 Relational Databases 

2.2.1 What Is a Relational Database? 

A relational database is based on the relational model of data. The relational model, in 

turn, is an abstract theory of data that is based on certain aspects of mathematics 

(principally set theory and predicate logic). 

In Date [1995], a relational database is described as "a database that is perceived by its 

users as a collection of relations or tables". All values in a relation are atomic or scalar 

(there are no repeating groups). A relational database management system (relational 

system for short) is a system that supports relational databases and operations on such 

databases, including in particular the operators Select (also known as Restrict), Project, 

and Join. These operators, and others like them, are all set-level, supporting user 

requests, e. g., for data retrieval. The optimizer is the system component that chooses an 

efficient way to implement user requests. 

2.2.2 The Relational Model of Data 

Codd's relational model of data was introduced in 1970 [Codd, 1970]. It was based on 

the first-order predicate calculus (FOPQ and provided a theoretical basis for the 

development of relational databases. 

The relational model of data is motivated by several aims, including: the desire to use 

formal methods in database design, enquiry and update; the desire to be able to prove 

the correctness of programs based on non-procedural descriptions; and the urge to meet 
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the demand that a theory should be as simple as possible while retaining its expressive 

power. 

The relational model is concerned with three aspects of data: data structure (or object), 

data integrity, and data manipulation (or operators). 

A relation, mathematically defined, is any subset of a Cartesian product of sets. Given a 

list of sets & ... ' A,, their Cartesian product is the set of all bags (a bag is a list wherein 

elements may be repeated as opposed to a set where repetition is not permitted) of n 

elements of A where there can be only one element in the bag from each A. Such a bag is 

called an ordered n-tuple, or just a tuple. The relation is sometimes said to be n-ary if 

there are n attributes. Each A is called a domain when viewed as a set of elements from 

which an attribute may take its values and an attribute when viewed as a label for that 

set. These concepts are illustrated in Figure 2.1. 
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Figure 2.1 An example relation: employee 
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The next order of structure in database concerns the relationships (links) between 

relations. These can be are relations themselves. Relation musts conform to certain 
integrity constraints. Every entity must have specified at least one primary key set of 
attributes that uniquely identifies each tuple at any given time. Furthermore, it must be 
in the first normal form, i. e., the attribute values cannot be complex structures (repeating 

groups, lists, and so on) but must be atomic data types (numbers, strings, and so on). 
The links have two kinds of property: multiplicity and modality. The multiplicity 
(sometimes called cardinality) of a link may be one-to-one or many-to-one and modality 

may be necessary or possible. Integrity, multiplicity and modality constrains are usually 

coded in the application and nearly always in some exogenous procedural language. A 

foreign key is also defined: this is an attribute (or a set of attributes) which is the 

primary key of some other relation. The integrity rules specify what happens to related 

relations when a table is subjected to update or deletion operations. 

The manipulation part of the model is the means (operators) by which queries and 

update requests can be expressed. There are essentially two methods, known as the 

relational calculus and the relational algebra. The relational calculus as introduced by 

Codd [ 197 1; 1972] is a retrieval and update language based on a subset of the first-order 

predicate calculus. The retrieval is done via a tuple-variable which may take values in 

some given relation. An expression of tuple calculus is defined recursively as a formula 

of predicate calculus formed from tuple variables, relational operators, logical operators 

and quantifiers. Briefly, a tuple variable is a variable that ranges over some relation, i. e., 

a variable whose only permitted values are tuples of that relation. In other words, if 

tuple variable T ranges over relation R, then, at any given time, T represents some tuple t 

of R. For example, the query "Get employee numbers for employees in the computer 

department", can be expressed in QUEL as follows: 

RANGE OF E IS EMPLOYEE 

RETRIEVE (E. E#) WHERE E. DEPT= "Computer" 
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The alternative approach is to regard queries and updates as expressed by a sequence of 
algebraic operations. The relational algebra as defined by Codd [1972] is based on five 

primitive operations: select, project, product, union and difference. Select <on 

predicate> yields those tuples that satisfy the predicate; it may be thought of as a 
horizontal subset operation. The corresponding vertical subset operation is the project 
that returns a relation consisting of all tuples that remain as (sub)tuples in a specified 

relation after specified attributes have been eliminated. Product returns a relation 

consisting of all possible tuples that are a combination of two tuples, one from each of 
two specified relations. If two tables have the same attributes, their union may be 

formed by appending them together and removing any duplicate in the primary key. 

Difference returns a relation consisting of all tuples appearing in the first and not the 

second of two specified relations. The derivative operations such as join, divide, 

intersection, can be defined in terms of these primitive operations. The join of two 

relations A and B over a relational operator (dyadic predicate) p is useful though not 

primitive and can be obtained by building all tuples that are concatenation of a tuple 

from A followed by one from B such that p holds for the attributes specified (Duplicates 

are eliminated here). In actual implementation, a query optimizer will usually attempt to 

select the optimal order of evaluation making use of the referential transparency of 

algebra. 

The algebra and calculus are isomorphically equivalent and thus represent alternatives to 

one another. The principal distinction between them is as follows [Date, 1995]: whereas 

the algebra provides a collection of explicit operations, that can be used to tell the 

system how actually to build some desired relation from the given relations in the 

databases, the calculus merely provides a notation for formulating the definition of that 

desired relation in terms of those given relations. At least superficially, it might be said 

that the calculus formulation is descriptive where the algebraic one is prescriptive: The 

calculus simply describes what the problem is, the algebra prescribes a procedure for 

solving that problem. Or very informally: the algebra is procedural (admittedly high- 

level, but still procedural); the calculus is non-procedural. Because the algebra and the 

calculus are precisely equivalent to one another, for every expression of the algebra, 
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there is an equivalent expression in the calculus; likewise, for every expression of 

calculus, there is an equivalent expression in the algebra, i. e., there is one-to-one 

correspondence between the two. The different formalisms simply represent different 

styles of expression: the calculus is arguably closer to natural language, the algebra is 

perhaps more like a programming language. 

Relational completeness can be regarded as a basic measure of selective or expressive 

power for database languages in general. Since the algebra and the calculus are both 

relationally complete, they both provide a basis for designing languages that provide this 

power of expressiveness. A manipulation language is said to be relationally complete if 

it is at least as powerful as the algebra (or calculus), i. e., if its expressions pen-nit the 

definition of every relation that can be defined by means of expressions of algebra (or 

calculus) [Date, 1995]. Several hybrid languages based partly on the calculus and the 

algebra exist, The most notable being those based on EBM System R language, SQL 

(Structured Query Language). SQL has now become the standard language for relational 

databases. 

2.2.3 Strengths and Weakness of Relational Databases 

Relational databases have great strengths. The greatest strength of relational model is its 

basis in a formal theory: first-order predicate logic. This is what makes it possible to 

have a relationally complete, non-procedural enquiry language such as SQL or QUEL. 

The logic ensures that certain things about this language can be proved mathematically. 

Another notable and very real benefit is that they make changes to the data structure 

relatively easy and they protect users from the complexity with the use of non- 

procedural enquiry languages, which can be optimized automatically. Performance 

problems have been gradually overcome. After initial resistance, relational databases 

have now achieved such wide acceptance in industry that most systems planners no 

longer consider hierarchical or network solutions. 
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Weaknesses include the difficulty of dealing with recursive queries; problems related to 

nulls; lack of support of abstract data types; severe shortcomings in the representation of 
data and functional semantics; etc. 

With regard to query processing, the strengths and weakness of relational databases 

have been surnmarised in Figure 1.1, in the previous chapter. 

2.3 Object-Oriented Databases 

2.3.1 What Is an Object-Oriented Database? 

An object-oriented database is a database which integrates object orientation with database 

capabilities and has the potential to provide powerful repositories for advanced database 

applications [Demuth et al., 1994; Khoshafian, 1993] so that 

Object-oriented databases = database capabilities + object-orientation 

Object orientation can be loosely defined as the software modelling and development 

disciplines that make it easy to construct complex systems out of individual components 

[Khoshafian, 1993]. The essential 00 characteristics of various applications of the term 

tend to have a fuzzy boundary, but generally, what makes something 'object-oriented' are: 

abstraction/encapsulation, class and inheritance, message-passing, and polymorphism 

[Jeusfeld and Staudt, 1994]. Taking the basic characteristics of an object-onented 

prograniming language, object orientation is defined as [Graham, 1993; Khoshafian, 

1993]: 

Object onentation = Abstract data typing/encapsulation 

+ Inheritance 

+ Object identity 
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As in relational databases, users are provided with database facilities to perfonn a variety 
of operations on the database. According to [Khoshafian, 1993], database capabilities are 
defined as: 

Database capabilities = persistence 

concurrency 

transactions 

+ recovery 

+ querying 

" versioning 

" integrity 

" security 

" perfon-nance 

2.3.2 An Object-Oriented Data Model and Query Language 

A database requires a proper data model that defines general rules for specification of the 

structures of the data and operations allowed on the data. Unlike the relational data model, 

there is no universally agreed object-oriented data model, nor is commonly accepted 

algebra. Several industry consortia, notably the Object Data Management Group (ODMG) 

and the Object Management Group (OMG), have proposed standards for the object- 

oriented data model and language. The latest version is ODMG2.0 [Cattell, 19971. 

Although these standards are not officially endorsed by ANSI or ISO, they give a good 

idea of what a basic object-oriented data model and an OODB language would like. 

Object Model 

The ODMG Object Model is based on the OMG Common Object Model, which in turn is 

based on a small number of basic concepts: 

0 objects 
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0 operations 

types 

* and subtyping 

The OMG Object Model defines a core set of requirements. ODMG adds components 
(e. g., relationships) to OMG Object Model to support object storage needs. 

According to the ODMG Object Model, the key concepts and constructs of the object- 

oriented data model can be informally (i. e., jargon and lengthy definitions are avoided) 

represented as follows [Cattell, 1998, Cattell, 1996; Yu and Meng 1998]. 

An object can be simple (such as an integer, a real number, a character string, etc. ) or 

complex (such as boat, a person, a document, etc. ). Complex objects are constructed from 

simple objects using constructors such as tuple, set, bag (a multiset, or a set that permits 
duplicate elements), list (in which the order of elements is significant), and array. Each 

complex object in the database has a system-generated and system-wide unique object- 

identifier (OID). Each object can be associated with its lifetime, and each object has a 

structural aspect and a behavioural aspect. The structural aspect describes the organisation 

of the object's data. It contains a set of attributes, and each attribute has a domain type that 

specifies the kind of values the attribute takes. The behaviour aspect of an object describes 

how its data can be acted upon, and is defined by a set of methods. Each method has a 

signature, which specifies the name of the method, the arguments and their types, and the 

result type of the method, and a body, which contains the implementation code of the 

method. The values of an object can be accessed through the use of methods defined upon 

the object. This is known as encapsulation. 

Objects with the same characteristics (i. e., attributes, relationships and methods) are 

grouped into a class and are defined collectively. 

Relationships may exist between the objects of different classes. When the value of an 

attribute of an object of a class is an object of another class, the OID is used to establish 
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such a relationship between a pair of classes. OlDs allow the traversal of objects of one 
class to objects of another class. Therefore a traversal path can be considered as a special 
kind of attribute, known as complex attribute, whose domain types are class definitions 

and whose values are OIDs. In addition to one-to-one, one-to-many and many-to-many 
relationships, numerous semantic relationships, such as the part-of relationship, can be 

represented by complex attributes. Through complex attributes, links are established to 

connect objects of different classes. The hierarchy created by these links is known as the 

composition or aggregation hierarchy. 

The set of all instances (or objects) of a class is called the extent of the class. In some cases 
individual instances of a type can be uniquely identified by the values they carry for some 

attribute or a set of attributes. These identifying attributes are called keys. 

Classes are organised into a class hierarchy. Saying a classC2 is a subclass of class C, or 

equivalently, saying class C, is a superclass of classC2, has two meanings: (1) the set of 

characteristics (i. e., attributes, including complex attributes, and methods) of class C, is a 

subset of the set of characteristicsOf C2, and (2) the set of objects MC2is a subset of the 

objects in C1. Semantically, a subclass is a specification of its superclass. As such, a 

subclass must have (inherit) all the characteristics its superclass has. But a subclass may 
have additional characteristics. Further, because of specification, each object in a subclass 

must also be an object in its superclass. A subclass may override the definition of a 

characteristic inherited from its superclass by redefining the characteristic. When the 

method is applied to an object, the system decides which implementation to invoke based 

on the type (e. g., subclass or superclass) of the object. The ability to apply a single method, 

with different implementations, to objects of different types is called polymorphism. By 

allowing polymorphism, the name of a method can be chosen based on its functionality 

rather than on which objects it can operate. The existence of polymorphism dictates that 

the binding between the signature and a body of a method referenced in a query can be 

determined not at compile time but rather at run time. This is called late-binding. 
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Every class has at least one superclass. A class may have multiple subclasses. A class can 
also have multiple superclasses. If a class has multiple superclasses, then it will inherit 

characteristics from multiple classes. This is called multiple inheritance. One problem 
associated with multiple inheritance is the inheritance conflict, which arises when a 
subclass inherits a characteristic with the same name but different definitions (e. g., 
different domain types for attribute names and different signatures for methods) or the 

same name and the same definition but different semantics, from two or more 
superclasses. The standard method for solving inheritance conflict is to inherit all 

conflicting characteristics accompanied with proper renaming. 

A general OODB schema can be best described as a class aggregation hierarchy since it is 

typically contains both the class hierarchy and the aggregation hierarchy 

OQL: Object Query Language 

Most OODBs provide a declarative database query language. Although OODBs can often 
be accessed through code written in an object-oriented language such as C++, the use of a 

query language is considered very important for writing interactive ad hoc queries and for 

simplifying the C++ code of application programs. Because of the success and popularity 

of SQL relational language, most proposed object-oriented database languages have 

adopted a syntax similar to that of SQL. OQL is an OODB query language proposed in 

ODMG [Cattell, 1998]. 

OQL is an SQL-like declarative language that provides a rich environment for efficient 

querying of database objects, including high-level primitives for object sets and structures. 

OQL is closely based on the query portion of SQL-92 and provides a superset of the SQL- 

92 SELECT syntax. 

OQL also includes object extensions for object identity, complex objects, path 

expressions, operation invocation and inheritance. OQL's queries can invoke operations in 

ODMG language bindings, and OQL may be embedded in an ODMG language binding. 
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OQL maintains object integrity by using an object's defined operations, rather its own 
operators. OQL is a functional language where operators can be freely composed, as long 

as the operands respect the type system. This is a consequence of the fact that the result of 
any query has a type that belongs to the ODMG type model, and thus can be queried again. 

The following is an example of an OQL query that appears in the published standard 
ODMG2.0 [Cattell, 19971. It is similar to a SQL, but with object extensions: 

Select c. address 

From Persons p, 

p. chichen c 

where p. address. street="Main Street" and 

count (p. chidren)>=2 and 

c. address. city! =p. address. city 

The "dot" notation is used in the query to traverse the data structure. The query inspects all 

children of all "Person" to find people who live on Main Street with at least two children. 

It returns only those addresses of children who do not live in the same city as their parents. 

It navigates from the Person class using the children reference to another instance of the 

Person class and then to the Address and City classes. 

2.3.3 Why Object-Oriented Databases? 

As object-oriented databases are extensions of two concepts: object orientation and 

databases, the potential of object-oriented database lies in the tight integration of these two 

technologies. Object orientation allows more direct representation and modelling of real 

world problems. Through object-oriented constructs users can hide the details of 

implementation of their modules, share objects referentially, and extend their systems by 

specialising existing modules. 
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There are three reasons, arising from the requirements of advanced database applications 
such as CAD, CASE, CAM, document and multimedia preparation, office automation and 
scientific computing, etc., why we might consider that object-oriented database is needed: 
to facilitate a clean interface with an object-oriented progamming language; to tackle an 

application that requires the flexibility of relational database but for which the 

performance of the latter is inadequate; or to tackle totally new kinds of application where 

message-passing metaphor seems particularly appropriate. 

2.3.4 Approaches to Object-Oriented Databases 

When looking at the recent developments in the database area, we can identify different 

approaches to object-oriented databases: 

Extended relational approach 

This approach bases its extensions and changes on the existing relation model and its 

implementation in various products and prototypes. The goal is to extend the relational 

framework with additional concepts in an "evolutionary" manner. That is, by building on 

available experience, new concepts and new functionality are added to the model and to 

corresponding existing relational database systems. The products that try to comply with 

SQL-3 fall into this category. 

Object-oriented approach 

Another approach takes object-oriented concepts as implemented in object-oriented 

programming languages as the basis for their extensions. Incrementally, database features 

and database functionality are added to provide the same capabilities as relational systems, 

such as a (declarative) query language and transaction management. In some cases this has 

resulted in user interfaces and implementations that differ considerably from those of 

relational database systems. The products that try to comply with ODMG fall into this 

category. 



Chapter 2 Relational, Object-Oriented and Temporal Databases 30 

Logic based approach 

The third approach relies heavily on concepts and implementation techniques that have 
developed for logic programming and deductive systems in general. The use of rules or 
calculus-oriented languages and deductive-based techniques as an important technique for 

evaluating complex requests reflects the logic-based approach. In many ways, this 

approach complements and extends the relational approach as far as the model and the 
language are concerned. 

2.3.5 Strengths and Weaknesses of Object-Oriented Databases 

OODBs have a number of advantages over RDBs. The main benefits, so far as 

commercial systems are concerned, is the possibility of capturing application semantics, 

thus better enabling reverse engineering and prototyping. A further important benefit is 

that of extensibility. OODBs remove the 'Impedance mismatch' between application 

and query languages. Compared with RDBs, they reduce the need to perform expensive 
joins when objects are used in an application. This makes them potentially much more 

efficient for applications involving complex objects. They add support for long 

transactions and automatic version control. Some offer dynamic schema evolution and 

support for multimedia and group work. 

However, there are unsolved problems concerning non-procedural query languages, 

query optimization and locking. Critics of the object-oriented approach frequently point 

to the theoretical limits of optimization as a major drawback of the object-oriented 

approach as compared with the relational approach [Unland et al., 1992]. 

There are still many problems with current-generation object-oriented databases. 

Products are immature. There is no universally agreed formal model behind them, nor is 

commonly accepted algebra. OODBs achieve many of the aims of semantic data 

models, but are not yet as structurally rich. They also ornit many of the features of 

knowledge management. There is a small, but growing number of commercial OODB 

products. These have been mostly applied to applications where complex objects 
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predominate, such as CASE tools, multimedia databases, geographic information 

systems and CAD/CAM systems. Commercial applications are in their infancy 

OODB is an immature but rapidly maturing technology of great significance to 
information technology in general. Several industry consortia, notably OMG and 
ODMG have been working on to propose standards for OODBs. OODBs are evolving 
toward a new generation of systems combining semantic models, expert systems, object- 
orientation and hypermedia technology. There are several ways to achieve benefits. One 

of them is the combination of relations and objects [Kim, 1993; 1994; 1995; Kim et al., 
1997; Date, 1995; Date and Darwen, 1998; Stonebraker, 1996; 1998; Eisenberg and 
Melton 1999]. 

The strengths and weaknesses of OODBs have also been included in Figure 1.1. 

2.4 Temporal Databases 

Time is an important aspect of all real-world phenomena. Events occur at specific points 

of time; objects and the relationships among objects exist over time. The ability to 

model this temporal dimension of the real world and to respond within time constrains 

to changes in the real world as well as to application-dependent operations is essential to 

many computer application, such as accounting, banking, econometrics, geographical 

information systems, inventory control, law, medical records, multimedia, process 

control, reservation systems, scientific dada analysis, etc. 

Nearly every database product today requires users' intervention to handle the temporal 

property. Temporal databases add the property of time to the underlying data. Temporal 

database systems will move this property into the DBMS environment itself, 

automatically storing multiple time-sensitive versions of data objects, and additionally, 

providing facilities to retrieve data by time-oriented queries. Temporal databases are 

basically research vehicles rather than truly commercial applications. This subsection 

outlines the research effort on temporal databases. 
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2.4.1 Time Dimensions 

In the context of databases, two time dimensions are of general interest [Snodgrass and 
Ahn, 1986; Snodgrass, 1995]: valid time and transaction time 

The valid time of a fact is defined [Jensen, et al., 1994] as the time when the fact is true 
in the modelled reality. A fact may have associated any number of instants and time 
intervals, with single instants and intervals being important special cases. Valid times 

are usually supplied by the user. Valid time can also be in the future, if it is expected 

that some fact will be true at a specified time in the future [Snodgrass, 1995]. 

A database fact is stored in a database at some point of time, and after it is stored, it may 
be retrieved. The transaction time of a database fact is defined [Tansel, 1993] as the 

time when the fact is stored in the database. Transaction times are consistent with the 

serialization order of the transactions. Trans action-time values cannot be after current 

time. Also, because it is impossible to change the past, transaction times cannot be 

changed. Transaction times can be implemented using transaction commit times. 

These two dimensions are not homogeneous; transaction time has different semantics 

from valid time. These two dimensions are orthogonal, though there are generally some 

application-dependent correlations between two times. A data model supporting neither 

dimension is termed snapshot, as it captures only a single snapshot in time of both the 

database and enterprise that the database models [Jensen et al., 1993]. A data model 

supporting valid time is termed, logically, a valid time model; one that supports 

transaction time is termed a transaction -time model; and one that supports both valid 

and transaction time is termed a bitemporal model. Temporal is a generic term implying 

some kind of time support. 

While valid time may be bounded or unbounded (it is at least bounded in the past), 

transaction time is bounded on both ends. Specially, transaction time starts when the 

database is created (before the creation time, nothing was stored) and does not extend 
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past the present (no facts are known to have been stored in the future). Changes to the 
database state are required to be stamped with the current transaction time. Hence, 

transaction time and bitemporal relations are append only. 

There is a third kind of time that might be included: user-defined time. This term refers 
to the fact that the semantics of these values are known only to the user and are not 
interpreted by the DBMS, in contrast to valid and transaction time, whose semantics are 
supported by the DBMS. 

A temporal database is a database supporting some aspect of time, not counting user- 
defined time. There are two components to temporal data management: historical data 

management and version management. The former refers to valid time dimension whilst 
the latter refers to transaction time dimension. 

2.4.2 Research on Temporal Databases 

The research on temporal databases has been an active area for at least fifteen years. 
There are six bibliographies on temporal databases: Tsotras and Kumar, Temporal 

Database Bibliography Update, ACM SIGMOD Record, 25(l): 41-52, March 1996; 

Kline, An Update of Temporal Database Bibliography, ACM SIGMOD Record, 22(4): 

66-80, Dec. 1993; Soo, Bibliography on Temporal Databases ACM SIGMOD Record, 

20(l): 14-23, March 1991; Stem and Snodgrass, A Bibliography on Temporal 

Databases, IEEE Database Engineering, 7(4): 231-239, Dec., 1988; McKenzie, 

Bibliography: Temporal Databases, ACM SIGMOD Record, 15(4): 40-52, Dec. 1986 

and Bolour, Anderson, Dekeyser, and Wong, The Role of Time in Information 

Processing: A Survey, ACM SIGMOD Record, 12(3): 27-50,1983. According to the 

sixth bibliography [Tsotras and Kumar, 1996], the growth of temporal database papers 

is superlinear, as shown in Figure 2.2, demonstrating that the area remains vibrant. 



Chapter 2 Relational, Object-Oriented and Temporal Databases 34 

1200 

1000 

800 

600 

400 

200 

Source: adapted from (Tsotras and Kumar, 1996) 

Figure 2.2 Temporal database papers 

Since the significant events of the first book on temporal databases [Tansel, 1993], the 
ARPA/NSF-sponsored International Workshop on Infrastructure for Temporal 

Databases that held in Arlington, Texas, in June 1993 (the report of that workshop was 

published in ACM SIGMOD Record, 23(l), March 1994), and two consensus glossary 

of temporal database concepts published [Jensen et al., 1994; Tansel, 1993], many ideas 

and concepts have been made clear and a great progress has been made. Another 

International Workshop on Temporal Databases was held in Zurich, Switzerland, Set 

1995. A consensus extension to SQL-92, the Temporal Structured Query Language, or 
TSQL2, was developed and published in the new book: The TSQL2 Temporal Query 

Language, edited by R. Snodgrass [19951. The ISO SQU committee in July 1995 voted 

unanimously to accept a new part: SQL/Temporal, also expected to incorporate object- 

oriented aspects, with Period predefined data type being the first aspect of TSQL2 to 

become part of SQU [Segev, Jensen and Snodgrass, 1995]. 

Temporal data model 

Research on temporal databases has mainly focused on defining temporal data models 

by extending existing models [Pissinou et al., 1993,1994; Clifford et al., 1993; Gadia, 

1988; Griffiths and Theodoulidis, 1996; Snodgrass, 1995; Stonebraker et al., 1990; 

Jan 88 Jan 90 Jan 92 Jan 94 Jan 96 Jan 98 Jan 99 



Chapter 2 Relational, Object-Oriented and Temporal Databases 35 

Tansel et al., 1993; Goralwalla, et al., 19981. Even so, there is no commonly accepted 
consensus data model, nor is there well-accepted temporal database algebra [Pissinou et al., 
1993; Goralwalla, et al., 19981. 

The majority of work on adding time to data models is based on the relational and object- 
oriented data models (here some post-relational models are also described as object- 
oriented data models). Table 2.1* lists most of the temporal relational data models that are 
defined in the literature. Some models are defined only over valid time or transaction time; 
others are defined over both. The last column gives a short identifier that denotes the model, 
the table is sorted on this column. Table 2.2 classifies the extant temporal object-Oriented 
data models. Models with "arbitrary" in the third and fourth colun-ins support time with user- 
or system-provided classes; hence anything is possible. N/A denotes "not applicable". 

With regard to the valid time, valid times can be represented with single chronon identifiers 

(i. e., event timestamps), with intervals (i. e., as interval timestamps), or as valid-time 

elements, which are finite sets of intervals. Valid time can be associated with entire tuples or 

with individual attribute values. A third alternative, associating valid time with sets of tuples 
(i. e., relations) has not been incorporated into any of the proposed data models, primarily 
because it leads to high data redundancy. 

There are two types of temporal data model: the temporal data models: temporally 

ungrouped and temporally grouped. These models which employ tuple-time-stamping are 

termed temporally ungrouped whereas those models that employ individual attribute time- 

stamping are termed temporally grouped [Pissinou et al., 1994]. The temporally grouped 

was considered as a desirable property [Segev, Jensen and Snodgrass, 1995]. 

Temporal query languages 

A data model consists of a set of objects with some structure, a set of constraints on 

those objects, and a set of operations, specifically temporal query languages, on those 

* Table 2.1-2.4 are adapted from [Ozsoyoglu and Snodgrass, 1995]. 
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objects. Several dozen temporal query languages have been proposed. Table 2.3 lists the 
major temporal relational query language proposals to date. The underlying data model 
refers to Table 2.1. Most of temporal relational query languages have a formal 
definition. Some of the calculus-based query languages have an associated algebra that 
provides a means of evaluating queries. Table 2.4 lists the object-oriented query 
languages that support time. Note many nested relational query languages and data 

models, such as HQuel, HRDM HTQuel, TempSQL, etc., have features that might be 

considered object-oriented. A few proposals provide algebras for their query languages. 
It is rare for a temporal object-oriented query language to have a formal semantics. 

The related topics of temporal reasoning (also termed inferencing or rule-based search) 

are usually excluded from the scope of temporal databases. Temporal reasoning 
typically uses artificial intelligence techniques to perform more sophisticated analyses of 
temporal relationships and intervals, generally resulting in much lower query-proces sing 

efficiency. 

While the expressive power of ungrouped completeness was generally accepted as a 
desirable property for TSQL as it avoids the creation of nulls, grouped completeness was 

also considered to be a useful quality [Pissinou et al., 19941. Grouped completeness implies 

the support of a rather strong notion of the "history of an attribute". For example, one can 

talk about "Employee's salary history" as a single object, and ask to see it, or define 

constraints over it, etc. In temporal RDBs, as stated in [Clifford et al., 1993; Pissinou et al., 

1994], there is no algebra that has been shown to be grouped complete. 

Database design and optimization 

In contrast to the flurry of activity in query language and data models, there is a dearth 

of results in temporal database design and temporal query optimization, in part because 

there is no commonly accepted consensus data model or query language upon which to 

base research and development. 



Chapter 2 Relational, Object-Oriented and Temporal Databases 37 

There is a little work reported on temporal query processing and optimization [Leung 
and Muntz, 1993; Dayal and Wuu, 1992; Seshadri et al., 1996; Pissinou et al., 1994; 
Snodgrass, 1995; Zurek, 1998], whose work was almost in the context of RDBs. This 

will be discussed in the next chapter. 

2.5 Summary 

Two major types of databases available today are relational databases and object- 
oriented databases. Strengths and weaknesses of RDBs and OODBs are complementary, 
i. e., the weaknesses of OODBs can be compensated to some extend by the merits of 
RDBs. Therefore it is a commonly accepted that the next generation of database 

technology will combine relations and objects. 

Due to pressing requirements to include time within databases from the user 

community, substantial effort is being made on temporal databases. Most temporal 
databases are based on relational and object-oriented data models (and compared with 
temporal relational models, little work has been done on adding time into object- 

oriented data models). 

Surprisingly, in spite of both this substantial activity and the pressing requirements from 

the user community, there are no widely used commercial temporal database 

management systems. A primary reason for the absence of technology transfer from 

research to practice is the lack of a commonly accepted consensus data model or query 

language. In contrast to the flurry of activity in query language and data models, there is 

a dearth of results in temporal database design and temporal query optimization, in part 

because, again, there is no commonly accepted data model or query language upon 

which to base research and development. 

Finally, we believe that developing a good temporal object-oriented database (probably 

the combination of RDB and OODB that addresses the temporal aspect) needs a proper 

temporal object data model. 
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Table 2.1 Temporal relational data models 
Data Model Name Citation Temporal 

Dimension(s) 

Identifier 

Accounting Data Model Thompson, 1991 Both ADM 

Snodgrass and Ahn, 1989 Both Ahn 

Temporally Oriented Data Model Ariav, 1986 Both Axiav 

Bassiouni and Llewellyn, 
1992 

Valid Bassiouni 

Bhargava and Gadia, 1993 both Bhargava 

Bitemporal. Conceptual Data Model Jensen et al., 1994 both BCDM 

Time Relational Model Ben-Zvi, 1982 both Ben-Zvi 

DATA Kimball, 1978 transaction DATA 

DMIT Jensen et al. 1991 transaction DM/T 

Homogeneous Relational Model Gadia, 1988 Valid Gadia-1 

Heterogeneous Relational Model Gadia and Yeung, 1988 valid Gadia-2 

Parametric Data Gadia and Nair, 1993 valid Gadia-3 

Historical Data Model Clifford and Warren, 1983 valid HDM 

Historical Relational Data Model Clifford, 1993 valid HRDM 

Jones et al., 1979 valid Jones 

Lomet and Salzberg, 1993 transaction Lomet 

Temporal Relational Model Lorentzos and Johnson, 
1988 

valid Lorentzos 

Lum et al. 1984 valid Lum 

Mckenzie and Snodgrass, 
1991 

both McKenzie 

Temporal Data Model Navathe and Ahmed, 1989 valid Navathe 

Sadeghi, 1987 valid Sadeghi 

Sarda, 1990 valid Sarda 

Temporal Data Model Segev and Shoshani, 1987 valid Segev 

Snodgrass, 1987 both Snodgrass 

Tansel, 1993 valid Tansel 

Tansel and Tin, 1998 valid Tansel and 
Tin 

TS-TDM Segve and Shoshani, 1993 valid TS-TDM 

Time Oriented Databank Model Wiederhold et al., 1975 valid Wiederhold 

Yau and Chat, 199 1. both Yau 
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Table 2.2 Temporal object-oriented data models 
Data Model Name Citation Temporal Transaction Identifier 

Dimension(s) Timestamp 

representation 
Caruso and Sciore, Both chronon Caruso 

1988 

IRIS Beech and Mahbod, transaction chronon, identifier IRIS 

1988 

Kim et al., 1990 transaction version hierarchy Kim 

MATISSE ADB, 1992 transaction chronon, identifier MATISSE 

OODA-PLEX Wuu and Dayal, arbitrary arbitrary OODA-PLEX 

1992 

OSAM*/T Su and Chen, 1991 valid N/A OSAM*/T 

0VM Kafer and transaction identifier 0VM 

Schoning, 1992 

Postgres Stonebraker et al., transaction interval Postgres 

1990 

Sciore, 1991 arbitrary arbitrary Sciore- I 

Sciore, 1995 both chronon Sciore-2 

TF-DM Chu et al., 1992 valid identifier TEDM 

TIGUKAT Goralwalla and both identifier TIGUKAT 

Ozsu, 1993 

TMAD Kafer and valid N/A TMAD 

Schoning, 1992 

Temporal Object- Rose and Segev, both temporal element TOODM 

Oriented Data 1991 

Model 

Temporal Object Wang et al., 1996 valid arbitrary TODM 

Data Model 
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Table 2.3 Temporal relational query languages 
Name Citation Underlying Based on Formal Underlying 

Data Model Semantics Algebra 
HQL Sadeghi 

' et al., Sadeghi DEAL partial Sadeghi, 1987 
19987 

HQuel Tansel, 1991 Tansel Quel yes Tansel, 1986 
HSQL Sarda, 1990b Sarda SQL no Sarda, 1990a 
HTQuel Cadia, 1988 Cadia- I Quel yes Cadia, 1988 
Legol 2.0 Jones, et al., Jones relational no N/A 

1979 algebra 
TDM Segev and Segev SQL no 

Schoshani, 
1987 

Temporal Lorentzos and Lorentzos relational yes N/A 
Relational Johnson, 1988 algebra 
Algebra 
Temp SQL Yau and Chat, Yau SQL yes 

1991 
Time-By- Tansel, 1989 Tansel QBE yes Tansel, 1986 
Example 
TOSQL Ariav, 1986 Ariav SQL no 
TQuel Snodgrass, _ Snodgrass Quel yes McKenzie and 

1987 Snodgrass, 
1991 

TSQL Navathe and Navathe SQL no 
Ahmed, 1989 

TSQL2 Snodgrass, TSQL2 SQL-92 yes Soo, et al., 
1995 1994 
Thompson, ADM relational yes N/A 
1991 algebra 
Bassiouni and Bassiouni Quel yes 
Llewellyn, 
1992 
Ben-Zvi, 1982 Ben-Zvi SQL yes 
Jensen et al., DM/T relational yes IM/T 
1991 algebra 
Jensen and Jensen et al., 
Mark, 1992 1993 

Gadia, 1986 Gadia-2 Quel no 
Clifford and HDM ILs yes 
Warren, 1983 
Clifford and HRDM relational yes N/A 
Croker, 1987 algebra 
Tansel and Tin, Tansel and Tin Relational TRA 
1998 calculus: TRC 

SQL/TP Toman 1998 Toman SQL/92 yes 

McKenzie and McKenzie relational yes N/A 
Snodgrass, algebra 
1991 
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Table 2.4 Temporal object-oriented query languages 
Name Citation Underlying _ . Based on Implemented Underlying 

___ - 
Data Model algebra 

MA-TISSF ADB, 1992 MA-TISSE SQL yes 
OODA-PLEX Wuu and OODA-PLEX DA-PLEX Wuu and 

Dayal, 1992b Dayal, 1992a 

OSQL Beech and IRIS SQL yes 
Mahbod, 1988 

OQL Kafer and OVM SQL yes 
Schoning, 

1992a 

OQL/T Su and Chen, OSAM*/T OSAM*/OQL TA-algebra 

1991 

Orion Kim et al., Kim SQL yes 
1990 

PIC-QUERY Gardenas, et TEDM PIC-QUERY yes 

al., 1993 

Post-quel Stonebraker, et Postgres QUEL yes 

al., 1990 

TMQL Kafer and TMAD SQL 

Schoning, 

1992b 

TQL Ozsu et al., TIGUKAT SQL yes 

1995 

TOO-SQL Rose and TOODM SQL yes Rose and 

Segev, 1993b Segev, 1993a 

TOSQL Rose and TOODM SQL Rose and 

Segve, 1991 Segev, 1993a 

VISION Caruso and Caruso meta-functions yes 

Sciore, 1988 

GCH-OSQL Coiriic at al., GCH-OODM SQL 

1998 

Sciore, 1991 Sciore- I annotations 

Sciore, 1995 Scior-2 EXTRA Carey et al., 

/EXCESS 1988 



Chapter 3 

Query Processing in Databases 

This chapter reviews the basic query processing techniques and strategies used in 

relational databases, looks at how the query processing is handled in object-oriented 
-1 -- databases and points out the current status in processing temporal queries 

3.1 Introduction 

Query processing is the procedure of selecting the best plan or strategy to be used in 

responding to a database request. The plan is then executed to generate a response. The 

component of the DBMS responsible for generating this strategy is called a query 

processor. In the database literature, query processing is also referred to as query 

optimization, and the process here is better described as improvement as the 

optimization done in practical systems does not necessarily find the best strategy. The 

optimal strategy may be too difficult to evaluate and on average may not be dramatically 

different from the one afforded through a heuristic strategy. 

The greatest innovation of the relational model of data was declarative queries and 

associated techniques for automated evaluation that were made possible. Optimization 

problems have been the focus of a great deal of theoretical and applications research, 

and much research is still being carried out in this field. 

The same cannot be said for OODBs. The problem of optimization of object-oriented 

queries has not yet been very widely researched. Almost all the object query processors 

proposed to date use the optimization techniques developed for RDBs [Ozsu and 
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Blakeley, 1995]. The techniques developed for RDBs can be adapted to developing 

optimizers for OODBs. Most OODBs designers have adopted this approach. But these 
OODBs introduce many new data model features to the database, that cannot be handled 

by traditional query processing technology (i. e., the query processing subsystems of 
RDBs). Thus query processing in OODBs remains a big challenge. In the context of this 

thesis, it is significant that there is little work that has been reported on processing 

temporal queries, especially in the context of OODBs. 

This chapter will introduce query processing in RDBs, in more detail, in Section 3.2. 

How query processing is handled in OODBs will be briefly discussed in Section 3-3. 

Few reports on processing temporal queries that have been published will be outlined in 

Section 3.4. Finally a summary will be given in Section 3.5. The discussion of this 

chapter will be based on centralized database systems. 

3.2 Query Processing in Relational Databases 

A feature that relational systems have introduced to database management has been a 

query system that includes a declarative language and system support to process queries 

efficiently. In many relational database management systems, SQL query commands 

entered by a user go through a process called query optimization before being executed. 

This process is carried out by a part of the DBMS known as the query optirrLizer. The 

query optimizer's job is to find the best strategy for actually carrying out the user's request. 

3.2.1 Optimization Objectives 

Economic necessity requires that optimization procedures either attempt to maximize 

the output for a given number of resources or to minimize the resource usage for a given 

output. Query optimization tries to minimize the response time for a given query 

language and mix of query types in a given system environment. 

The total cost to be minimized is the sum of the followings [Jarke and Koch, 1984]: 
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Communication Cost: The cost of transmitting data from the site where they are stored 
to the sites where computations are performed and results are presented. These costs are 

composed of costs for the communication line, which are usually related to the time the 

line is open, and the costs for the delay in processing caused by transmission. The latter, 

which is more important for query optimization, is often assumed to be a linear function 

of the volume of data transmitted. 

Secondary Storage Access Cost: The cost of (or time for) loading data pages from 

secondary storage into main memory. This is influenced by the volume of data to be 

retrieved (mainly relating to the size of intermediate results), the clustering of data on 

physical pages, the size of the available buffer space, and the speed of the devices used. 

Storage Cost: The cost of occupying secondary storage and memory buffers over time. 

Storage costs are relevant only if storage becomes a system bottleneck and if it varies 

from query to query. 

Computation Cost: The cost for (or time of) using the central processing unit (CPU). 

The structure of query optimization algorithms is strongly influenced by trade-offs 

amongst these cost components. In the long-range distributed DBMSs with relatively 

slow communication lines, communication delays dominates the costs, whereas the 

other factors are relevant only for local suboptimization [Jarke and Koch, 1984]. 

Telecommunication lines can be bottleneck resources in the distributed DBMSs [Bell 

and Grimson, 1992]. In centralized systems, the costs are dominated by the time for 

secondary storage accesses although the CPU costs may be quite high for complex 

queries. In locally distributed DBMSs, all the factors have similar weights, which results 

in very complex cost functions and optimization procedures. 

With regard to the centralized databases, communication costs are not considered 

because in such systems communication requirements are independent of the evaluation 
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strategy. For the optimization of single queries, storage costs are usually also assumed to 
be of secondary importance. They are considered only for the simultaneous optimization 
of multiple queries. There remain the costs of secondary storage accesses (usually 

measured by the number of page accesses) and CPU usage (often measured by the 
number of comparisons to be performed) 

A number of common ideas underlying most techniques developed to reduce these costs 
[Jarke and Koch, 1984] attempt to (1) avoid duplication of effort, (2) use standardized 
parts, (3) look ahead in order to avoid unnecessary operations, (4) choose the cheapest 

way to execute elementary operations, and (5) sequence them in an optimal fashion. 

3.2.2 General Processing Strategies 

3.2.2.1 Query Representation 

A query is a language expression that describes data to be retrieved from a database. 

Queries posed by users, while suited to people, are not always in a form convenient for 

internal system use. The query processor re-structures the user query, transforming it 

from some query language supported by the DBMS into a standard internal form that it 

can manipulate. Queries can be represented in a number of forms. In the context of 

query optimization, an appropriate query representation form must fulfil the following 

requirements: It should be powerful enough to express a large class of queries, and it 

should provide a well-defined basis for query transformation. According to Jarke and 

Koch [ 1984], there are four different query representation forms, each of which has been 

used in a number of approaches to query optimization. 

These forms are relational calculus, relational algebra, query graphs (object graph and 

operator graph) and tableau. 
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The relational calculus is a notation for defining the result of a query through the 
description of its properties. As mentioned in Chapter 2, relational calculus Is founded 

on a branch of mathematical logic called predicate calculus. 

The relational algebra, as mentioned in Chapter 2, is a collection of operators on 
relations. These operators fall into two classes, that is, traditional set operators, such as 
Cartesian product (*), union (u), intersection (r-)), and difference (-), and special 

relational algebra operators, such as select (cy), project (TC), join (><), and division (1. ). 
As described previously, for every expression of the algebra, there is an equivalent 
expression in the calculus; likewise, for every expression of the calculus, there is an 
equivalent expression in the algebra. There is a one-to-one correspondence between the 
two. 

Query graphs are used in query optimization for the representation of queries or query 

evaluation strategies. Two classes of graphs can be distinguished: object graphs and 

operator graphs. 

Nodes in object graphs represent objects such as (relation) variables and constants. 
Edges describe predicates that these objects are fulfilling. Object graphs contain the 

properties of the query result and are therefore closely related to the relational calculus. 

Operator graphs describe an operator-controlled data flow by representing operators as 

nodes that are connected by edges indicating the direction of data movement. An 

operator graph depicts how a sequence of operations can be performed. Operator graphs 

have been used for representation of algebra expressions. Equivalence transforinations 

such as the earlier application of the selection operation can be used to modify the 

graph. The graph clearly shows what the effect of such a transformation would be. For 

most simple queries, the graph resembles a tree. The graph can be used to discover 

redundancies in query expressions. 
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Tableaus are tabular notations for a subset of relational calculus queries, characterised 
by containing only AND-connected terms and no universal quantifiers. Thus tableau 

queries are a particular kind of conjunctive queries. Tableaus are specialised matrices, 
the columns of which correspond to the attributes of the underlying database schema. 
The first row of the matrix, the summary, serves the same purpose as the target list of a 
relational calculus expression. The other rows describe the predicate. The symbols 

appearing in a tableau are distinguished variables (corresponding to free variables), 

nondistingui shed variables (corresponding to existentially quantified variables), 

constants, blanks, and tags (indicating the range of relation). 

The algebra and query graph will be used for our discussion in this thesis 

3.2.2.2 Steps in Query Processing 

Query processing approaches in the literature can be divided in two classes, which can 
be described as bottom up and top down. Researchers have found that the overall query 

optimization problem to be very complex. Theoretical work began with a bottom-up 

approach, studying special cases, such as the optimal implementation of important 

operations and evaluation strategies for certain simple subclasses of queries. 

Subsequently researchers attempted to compose larger building blocks from these early 

results. A top-down approach incorporates more knowledge about special case 

optimization opportunities within the general procedures. At the same time, the general 

algorithms themselves have been augmented by combinatorial cost-minimization 

procedures for choosing amongst strategies. 

The top-down approach follows the following steps: 

Step 1 Find an internal query representation into which user queries can be easily be 

mapped that leaves the system all necessary degrees of freedom to optimize the 

evaluation. 
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Step 2 Apply a logical transformation to the query representation that (1) standardises 
the query, (2) simplifies the query to avoid duplication of effort, and (3) 

improves the query to streamline the evaluation and to allow special case 
procedures to be applied. 

Step 3 Map the transformed query into alternative sequences of elementary operations 
for which a good implementation and its associated cost are known. The result of 
this step is a set of candidate "access plans". 

Step 4 Compute the overall cost for each access plan, choose the cheapest one, and 

execute it. 

The first two steps of this procedure are to a large degree data independent and thus can 

often be handled at compile time. The quality of steps 3 and 4, that is, the richness of 

access plans generated and optimality of the choice algorithm, heavily depends upon 
knowledge about the values in the database. 

The consequences of data dependence are twofold. First, if the database is volatile, steps 
3 and 4 can be done only at run time. This means that the possible gain in efficiency 

must be traded off against the cost of the optimization itself. Second, a meta-database 

(e. g., an augmented data dictionary) must maintain general information about the 

database structure and statistical information about the database contents. 

3.2.2.3 General Processing Strategies 

Query processing strategies presented in Figure 3.1 [Desai, 1990] use general 

techniques for query modification. These techniques include: 

1) Expressing the query in an equivalent but more efficient form; 

2) Substituting a query involving n-relations by a group of simpler queries (query 

decomposition); 
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3) Replacing a query involving views to one expressed on the base relations; and 
4) Adding additional predicates to the query to enforce security. 

In addition, query processing strategies take into account the characteristics of the data 

and the expected sizes of both the intermediate and final results. Strategies are also 
included to enhance the query response time or reduce the cost of evaluating the query. 
It is unlikely that details of database statistics such as the precise sizes of relations, 

number of distinct values in each attribute of every relation, etc., can always be 

maintained. However, the query processing procedures estimate these values and use 

them in preparing a strategy for optimizing the query evaluation. The estimation cannot 

be exact and the optimization of costs may be computationally infeasible. Therefore, it 

is usual to employ heuristic strategies. 
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Figure 3.1 Query processing strategies 

3.2.3 Optimization Techniques 

There are two basic kinds of optimization found in query processors: algebraic 

manipulation and cost-estimation strategies [Ullman, 1989]. Algebraic simplification of 



Chapter 3 Query Processing in Databases 50 

queries is intended to improve the cost of answering the query independent of the actual 
data or the physical structure of the data. This is also called algebraic optimization. The 

general term "query transformation" or "query rewrite" falls into this category. This 

kind of optimization takes place at Step 2 in query processing process. 

The second class of optimization strategies considers the issues such as the existence of 
indexes, to select from among alternatives the strategy that is best for the data and 

structure at hand. Techniques involved here are called query evaluation techniques. This 

sort of query optimization is also called execution plan generation or plan optimization. 
This kind of optimization takes place at Steps 3 and 4 in the query processing process. 

In addition, further significant gains in efficiency can be obtained by using higher-level 

information, particularly information about the semantics of a database. The resulting 

optimization is called semantic optimization. 

3.2.3.1 Algebraic Optimization 

(1) Query Transformation 

Queries can be expressed in a number of different representational forms. Additionally, 

a number of semantically equivalent expressions may exist for each query, even within a 

given language. The transformation of a given expression into an equivalent one by 

means of well-defined rules is useful in Step 2 of query processing. The goals of query 

transformation are threefold: 

1) the construction of a standardized starting point for query optimization 

(standardization), 

2) the elimination of redundancy (simplification), and 

3) the construction of expressions that are improved with respect to evaluation 

performance (improvement). 
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Basic transformation laws 

These concern transformation that can be made without the benefit of any information 

on the relations and their schemes. They are based on the associative and commutative 
laws of relational algebra. Assure that R, S, T.. are relations on relational schemes R, S, 

T.. and C, CI, C2... are conditions. Also, 0 is an empty relation, that is, a relation with 

cardinality of zero, defined on an appropriate relation scheme. The basic transfornation 

laws are presented as follows [Desai, 1990]: 

RuS=-SuR commutative law 

RnS=-SnR commutative law 

R> <R=-R 

RuR=-R idempotent law 

Rr)REHR idempotent law 

R-R=-O 

RuOE: R 

Rr-)O=-O 

R, ><O=-O 

R-O=-R 

0 -R-=O 

R><S=-S><R commutative law 

R *S=-S *R commutative law 

R> <(S> JT)=-(R> <S) > <T associative law 

R*(S*T)=-(R*S)*T associative law 

Transformation (heuristic) rules 

Based on the above basic query transformation laws, heuristics like those regarding the 

general query processing strategies presented in the previous section can be applied to 
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control the transformation of the queries into equivalent but more efficient ones. Some 

example rules follow: 

(a) Perform select before ajoin or Cartesian product. Select reduces the cardinality 

of the relation and, as a result, reduces the subsequent processing time. 

Consider (Tc(R><S). If the attributes involved in the condition C are in the scheme of R 

and not in S, that is, attr(C) E=- R and attr(C)o S, then 

(yc(R >. -I S) =- (yc(R) >< 

If the attributes involved in the condition C are in the scheme of S but not in R, i. e., 

attr(C) cS and attr(C)iý R, then 

(Tc(R >< S) =- R >< cyc(S) 

If the attributes involved in the condition C are in the same scheme of R and S, i. e., 

attr(C)c R and attr(C)c S, then 

(Yc(R ý>4 S) =-(yc(R) ><(yc(S) 

If C=CIAC2 and the attributes involved in the condition C, are from R, i. e., attr(CI)E=- R, 

and the attributes involved in the condition C2are from S, i. e., attr(C2)c S, then 

(y c, (R) ý> "' (y C2 

If C=CIAC2AC3 and the attributes involved in the condition C2 are only in R, i. e., 

attr(C2)E=-RAattr(C2)0 S, the attributes involved in the condition C3 are only in S, i. e., 
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attr(C3)E=- S Aattr(C3)0 R, and the attributes involved in the condition C, are in R and S, 

then 

(T c (R >< S) =- a c, (a c, (R) ý> "I (y C3 
(S)) 

The above equivalencies also apply when the Cartesian product operation is substituted 
for the join. 

(b) Combine a number of unary operations. Consider the evaluation of Tcx((Ty(R)), 

where X, Yc- R. Both the select and project operations can be done on the tuples 

of R simultaneously, requiring a single pass over these tuples and singular access 

to them. Similarly, 

(T c, ((y c, (R)) =- (y c,, c, (R) 

Ic x (Tc y (R)) =- n x, y (R) 

If X c- Y, then Tc x (Tc y (R)) =- Tc x (R) 

(c) Convert the Cartesian product with a certain subsequent select into a join. 

Consider the evaluation of (Ty(R *S), where Y is, let us say, AOB and Ac R, Be S. 

In this case, the Cartesian product can be replaced by a theta join as follows: 

R>.. iS AOB 

(d) Use associative and commutative rules forjoins and Cartesian products: 

R>. <S-=S><R 
(R >< S) >< T =- (T >< S) >< R =-... 

R *S =- S *R 

R*S*T= R *(S*T) = (R*S) *T-= (R*T) *S= 
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The order of the join and product is very important as it can substantially affect the size 

of the intermediate relations and, therefore, the total cost of generating the result 

relation. 

Query Improvement 

A query can be improved in a number of ways before its evaluation is performed. 

Improvements are basically concerned with minimizing, if not altogether removing, 

redundancy from expressions and results. Elimination of redundancy is equivalent to 

pruning the query operator tree. The rules represented in the previous section are used to 

find equivalent expressions. 

3.2.3.2 Plan Optimization 

(1) Query Evaluation 

Having found the best equivalent form of a query, the next step is to evaluate it. We 

classify query evaluation approaches according to the number of relations involved in 

the query evaluation. Thus we distinguish between the approach to be used when the 

query expression involves one, two, or many relations. These are known as one-variable, 

two-variable, and N-variable expressions, respectively. A number of different query 

evaluation strategies have been proposed Here we look at some commonly 

implemented techniques. 

(a) One-variable expressions 

A one-variable expression involves the selection of tuples from a single relation. Let us 

consider the SQL query 

Select ap ..., ak 

from 
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where p 

The simplest approach would involve reading in each tuple of the relation and testing it 
to ascertain if it satisfies the required predicates. This is illustrated below. 

Sequential access 

Use sequential access to read in every tuple of the relation. If the tuple satisfies the 

qualification conditions, include the project of the tuple on the target list attributes in the 

result relation. The algorithm is given below: 

result: =Ofemptyl 
for every r in R do 

if satisfies (p, r) 
then result: =result+<r. al a-k-ý' 

where <r. al ... a-k> represents the tuple obtained by concatenating the projects of r onto 

the attributes in the target list. 

If the relation has n tuples that are blocked as b tuples/block, then for sequential access 

to the tuples, the number of block access is [n1b]. In dealing with large relations, this is 

an inefficient approach. For example, if relation R has 400000 tuples, and there are 400 

tuples per block of secondary storage devices, reading in all tuples of R would involve 

access to 400,000/400=1,000 block access. 

Access aid 

The number of tuples needing to be accessed could be reduced if the relation is sorted 

with respect to one or more attributes. In such cases, if the predicates involve one or 

more attributes on which the relation is sorted, then only some of tuples need be 

accessed. Use of indexes can provide faster access to the required tuples. 
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If the relation has an index, it may be used to improve evaluation performance when 
access is required to a subset of tuples. Such indices could be on one attribute or they 

may involve a combination of attributes. 

(b) Two-variable expressions 

A two-variable expression involves either two distinct tuples from the same relation or 

two distinct relations. Here we concentrate on the latter case. One of the most common 
(and expensive) binary operations is the join operation. In this section we consider how 

the join, for instance R, ><S, can be evaluated. There are two basic methods for join: 

nested-loop method and sort and merge method. 

Nested-loop method 

The nested loop method is a simple method in which every pair of tuples from the 

participating relations are accessed and tested for the join condition. The algorithm in 

the form of pseudo-code is sketched below. 

for i: = I to IRI do (* outer loop *) 

begin 

get ith tuple of R 

for j: =l to ISI do inner loop 

perform join of the ith tuple of R with the jth tuple of S 

end (* inner loop *) 

end (* outer loop *) 

The total number of secondary storage accesses required, assuming that each tuple 

requires an access, is given as IRI+IRI*IS1. The first ten-n represents the access to 

the tuple of the outer relation and for each such tuple, all the tuples of the inner relation 

must be accessed. It is preferable to have the smaller relation in the outer loop. Even in 

the case of small relations, the value IRI+IRI*ISI is quite large. The order of 

algorithm is o(n 



Chapter 3 Query Processing in Databases 57 

We can substantially improve the performance of the nested loop method by considering 
physical device characteristics. Data is accessed from secondary storage in chunks called 
blocks or pages. So the first improvement to the algorithm would be to move away from 

comparing a single tuple of the outer relation with a single tuple of inner, to comparing 
all tuples in a block of the outer relation with those from a block of the inner one. This 

strategy requires that there be space in the main memory for those blocks. The modified 
algorithm for a blocked nested loop is given below. 

for each B blocks of R do outer loop 

Begin 

read B blocks of R 

for each block of S do (* inner loop 

begin 

read block of S 

for each tuple in the B blocks of R do 

for each tuple in the block oS do 

ifjoin condition is satisfied 

then 

join the tuple of R with the tuple of S; 

end (* inner loop 

end (* outer loop *) 

Suppose we use blocked (or paged) accesses with the blocking factors of relation R and 

S represented by bfRand bfs, respectively. B blocks of memory are available to store the 

blocks of relation R (the outer relation). Then the outer loop involves reading B blocks 

of relation R (the outer relation). Then the outer loop involves reading B blocks at a 

time. Each tuple in the block of the inner relation can be compared with tuples from 

these B blocks of the outer relation. This results in the total number of secondary 

memory accesses given by the following expression: 

[IRI lbfR] + [(11B)*[ IRI lbfR]l *[ISI lbf, ]. 
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If one of the relations (let us say R, the smaller of the two) can be kept entirely in 

memory, then the number of disk accessed required is [IRI lbfR] +[ISI lbfs]. 

Sort and merge method 

Relations are assumed to be sorted in the sort and merge method. If they are not sorted, 

a preprocessing step in the query evaluation sorts them. These sorted relations can be 

scanned in ascending or descending order of the values of the join attributes. Tuples that 

satisfy the join predicate are merged. The process can be terminated as indicated in the 

algorithm below [Desai, 1990]. 

Algorithm Sort-Merge to Include a Many-to Many Relationship 

Input: R, S, the two relations to be Joined on attributes A and B, respectively. 

Output: T, the relation that is join of R and S (concatenation of attributes of R and S, 

including the attributes A and B). 

begin (sort-merge) 

T: =empty 

sort R by A values and S by B values in ascending order 

read (R) 

read (S) 

while not (eqf(R) or eof(S) do main while loop 

begin 

while not(eof(R) oreof(S) or RT. A#ST-B) do (*find ajoin value*) 

if RT. A<ST. B 

then read (R) 

else read (S) 

if not (eqf(R) or eof(S)) 
then 

begin (*join aR tuPle with one or more S tuples *) 

n: =O 
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Rcurrent. A: =RT. A 

while ST. B=Rcurrent. A and not (eof(S)) do 

begin 

n: =n+l 
U[nl: =ST 

read(S) 

end 

while RT. A=R current. A and not (eof(R)) do 

begin 

for i: =l to n do 

T: =T+RT 11 U[i]T 

read(R)(*does another tuple of R join with the tuples whose 

pointers are in array U? 

end 

end 

end (*main while loop 

end ( *sort-merge*) 

In the algorithm, we join the relation R with relation S and the join predicate is R. A=S. B. 

We assume that the relations have been sorted in ascending order with respect to the 

attributes A and B and that sufficient space for an appropriate number of buffers is 

available. The tuples are placed in the buffers by the file manager and the algorithm 

reads the tuples from these buffers. RT and ST are pointers that point to the 

corresponding tuples in the buffers. We assume that once the last tuple in a buffer has 

been read, the buffer is refilled. If the joining attributes are not the primary key of the 

relations, a many-to-many relationship could exist via the joining attributes. We use an 

array U where pointers to tuples of relation S that have the same attribute value as the 

current tuple of R are sorted. These tuples join with the current tuple of relation R and 

allow a single pass over the tuples of both the relations. A tuple whose pointer has been 

stored in this array locks the tuple so that the buffer containing it is not released. An 

attempt to read past the last tuple in the relation would raise the eof (end of file) 
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condition. The algorithm could be easily modified to include cases where the join 

involves more than one attribute. 

The number of accesses for algorithm is given by: 

[IRI /bfjR] +[ISI lbfsl + RCS +Scs 

where Rcs and SCS are the costs of sorting the relations, assumed to be equal to the 

number of accesses required during the sorting of the relations R and S, respectively. 

The sort costs depend on memory availability and the number of runs produced in the 

initial sort stage. For example, if we have enough memory to perform a max(NM)-way 

merge [Desai, 1990], where the number of accesses required for the join is as follows: 

Initial read: [IRI lbfR] +[ ISI lbfs blocks 

Writes of sorted runs: R lbfR] +[ ISI lbfsl blocks 

Read in merge phase: R lbfR]+[ ISI lbfsl blocks 

Writes of the join: [IT lbfT] blocks 

Note that T is the result relation and bfTis the blocking factor for it. Similar calculations 

can be done for other memory sizes. 

If the relations are already sorted on the joining attributes, the merge-sort method is an 

efficient method for evaluating aj oin. 

join selectivity and use of indexes 

Consider the join: 

R. A=S. B 

Join selectivity of a relation R in a natural join with a relation S denoted by PRS is the 

ratio of distinct attribute values for the same attribute A participating in the join to the 

total number of distinct values for the same attribute in R, that is, I R[A] I. Similarly, 

PSR is the join selectivity of the relation S in a natural join with the relation R. 
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Under the uniform distribution assumption, PRS* IRI tuples of R and PSR* ISI tuples of 
S would be involved in a natural join of relation R with S. The use of join selectivity 

statistics is an alternate and practical method of estimating the size of the join. 

If the relation S has an index on the join attribute and if we assume uniform distribution, 

then the number of accesses required is given by IRI+ PSR *IS1, where PSR is the join 

selectivity. The method of performing the join is as follows. We read in the tuples of R 

and for each attribute value of R. A we consult the index for S to determine if any tuples 

from S are involved in the join. If so, these tuples of S are retrieved and joined with the 

corresponding tuples of R. The tuples of S required to be retrieved would be PSR *ISI- 

Should the records of relations R be blocked, the number of block accesses is given by 
IRI lbfR. If the records of relation S are stored in blocks, the optimal number of block 

accesses required to access k records of S (where k=PSR* ISI) that is randomly 

distributed in a file of n records (n= ISI) and stored as m blocks (m= ISI lbfs) is given 

by the following expression: 

k n-nlm-i+l 
y(k, m, n)=m* 1-fl 

[ 

i=i n-i+l 

However, if indexes exist on the joining attributes for both relations, the use of these 

indexes provides a more efficient method of evaluating the join. In this case, we can 

determine if a given value that exists in one of the relations is also present in the order. 

If so, then the required tuples could be read and joined to produce the result tuples. 

Only those tuples that involved in the join are required, and therefore only PRS *IRI 

tuples of R and PSR* ISI tuples of S are retrieved. The total cost of the joln, however, 

includes the cost of retrieving the indexes. 
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Hash method and join indexes 

The use of hash and join indexes to implement the join operation provides more 

efficient join algorithms [Desai, 1990; Date, 1995]. 

(C) N-variable expressions 

An n-variable expression involves more than two variables. The strategy used here is to 

try to avoid accessing the same data more than once. One method of evaluating such 

expressions is to simultaneously evaluate all terms of the query. Therefore, if a number 

of terms in the query require unary operations on the data accesses, these could be done 

in parallel. If the data accessed participate in binary operations, these binary operations 

are partially evaluated. 

General n-variable queries can be reduced for evaluation by either tuple substitution or 

decomposition [Desai, 1990; Wong and Youssfi, 1976; Youssfi and Wong, 1979; Rowe 

and Stonebraker, 1985]. 

The presence of access aids and the commonality of attributes can be used to advantage 

in the evaluations of multiple variable queries. 

(2) Access Plans 

Once the method of evaluating various operations is determined, the steps involved in 

combining the query components to deduce the final results have to be planned. 

Generating an optimal access plan is a stepwise process done in conjunction with the 

query transformation operation. 

The techniques for the efficient evaluation of query components can be used as building 

blocks of a general query evaluation algorithm. Generating an optimal access plan is 
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then the combination of these blocks into an efficient evaluation procedure. The inputs 

of such a procedure are a logically preprocessed query, the existing storage structures 
and access paths, and a cost model. The output is an optimal (or at least heuristically 
It good") access plan. The procedure consists of the following steps. 

(a) Generate all reasonable logical access plans for evaluating the query. A logical 

access plan describes a sequence of operations or of intermediate results leading 
from existing relations to the final result of a query. 

(b) Augment the logical access plans by details of the physical representation of data 

(sort orders, existence of physical access paths, statistical information). 

(c) Choose the cheapest access plan by applying a model of access and processing 

costs. 

3.2.3.3 Semantic Optimization 

The conventional approach to query optimization, as mentioned above, is to use low- 

level information such as statistics about various processing costs to access individual 

tables in a relational database. Significant gains in efficiency can be achieved by using 

such information. 

Over a number of years researchers in the database area have indicated that additional 

gains in efficiency can be obtained by using higher-level information, particularly 

information about the semantics of a database. A transformation that is valid only 

because a certain integrity constraint is in force is called a semantic transformation, and 

resulting optimization is called semantic query optimization (SQO). SQO can be defined 

[Date, 1995] as the process of transforming a specified query into another, qualitatively 

different, query that is however guaranteed to produce the same result as the original 

one, because the data are guaranteed to satisfy a certain integrity constraint. 
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3.3 Query Processing in Object-Oriented Databases 

One of the basic facilities of database management system is to be able to process 
declarative user queries. As pointed out by Ozsu and Blakeley [1995], the first generation 

of OODBs did not provide declarative query capabilities. However, the last decade has 

seen significant research in defining a query model (including calculi, algebra and user 
languages) and in techniques for processing and optimizing the queries. Many of the 

current commercial products provide at least rudimentary query capabilities. The 

techniques developed for processing object-oriented queries are essentially extended from 

those of RDBs [Ozsu and Blakeley [1995]. 

There is no standard formulation of "the" query optimization problem among object- 

oriented database researchers, because data models and query languages differ as well as 

query execution engines, their facilities and execution costs. Query processing capabilities 

in most current OODB products and advanced prototypes are limited in their expressivity 

or the sophistication of their query optimization and processing techniques [Maier et al., 

1994]. In the current crop of systems, queries are generally limited to selecting a subset 

from a set of existing objects with conditions that are given as a conjunction of path 

comparisons. There is seldom post-processing of selected elements as part of the query, 

nor is the combination of the elements from different collections generally supported. 

Query optimization consists largely of detecting opportunities to apply indices. Often 

methods are excluded from consideration during the query processing, or limited to those 

procedures that can themselves be expressed as queries. Dynamic binding of operations to 

methods is generally inefficient or lacking, thus limiting query processing abilities on 

heterogeneous collections. Only few of them support querying against bulk types other 

than sets. Even so, where queries can be posed against ordered collections, there is no 

facility for constructing auxiliary access paths on such data structures. 

Although the proposals and solutions made here draw from experience with the relational 

model, they all heavily emphasise the object-oriented aspect. 
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3.3.1 Query Models 

3.3.1.1 A Model of Queries for Object-Oriented Databases 

The work in [Banerjee et al., 1988; Kim et al., 1989; Kim 1989; Jenq et al., 19891, which 
covers optimization for ORION, presented a rather comprehensive query model which is 

consistent with object-oriented concepts embodied in the object-oriented data model. The 

model takes into account the semantics of class hierarchy and nested objects, and as such 
is inherently richer than the relational or nested relational model of queries. The model 

restricts the target of a query to a single class or a class hierarchy rooted at that class. This 

is an important restriction, since this excludes operations comparable to relational joins 

and set operations. However, the model explicitly takes into consideration some of the 
important consequences of object-oriented concepts. First, it allows the user to use the 

directed graph model of the definition of the target class for specifying a query; predicates 

may be applied to any attributes of any classes on the graph. This is similar to the nested- 

relational extensions of relational selection operation. Second, a query may be directed 

against a single class or a class hierarchy rooted at the class. This is important, since a 

class hierarchy captures the IS-A relationship between a class and all its subclasses; and as 

such instances of a class may be regarded as belonging to the class and all classes on the 

superclass chain starting from the class. In fact, the domain of an attribute of a class is the 

specified class and all direct and indirect subclasses of the class. The model proposed in 

[Baneýee et al., 1988] and elaborated somewhat in [Kim et al., 1989] is based on the view 

that a query model may be defined as a subscherna of the database schema; the database 

schema is reduced to a query model by applying the selection and projections. It is the first 

query model which made a serious efforts to capture the semantics of object-oriented 

concepts. However, the model defined only limited types of queries concerning a single 

class or a class hierarchy rooted at that class. Further the model contained some important 

oversights, notably in its treatment of the projection operation, and the directionality of the 

arcs in the class-aggregation hierarchy. 
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Kim [ 1989], firstly, provided a considerably more rigorous treatment of the single-operand 

query, and corrected the mistakes in the model given [Banerjee et al., 1988]. Secondly, he 

significantly extended the model to provide a formal basis for a query which involves 

more than one operand, namely, object-oriented equivalents of the relational join. The 

query model was defined for a set of operations pertinent to relational database systems, 

namely, selection, projection, join, and set operations. Although he uses relational 

technology, the semantics of these operations are rather different from those used in 

relational systems. 

3.3.1.2 A Query Algebra for Object-Oriented Databases 

A major issue in development of query algebra is the potential for optimization. Many 

object algebras have been proposed for OODBs (e. g., AlhaJ and Arkun, 1993; Beeri and 

Kornatzky, 1990; Blakeley et al., 1993; Peters et al., 1993; Shaw and Zdonik 1990; 

Straube and Ozsu 1990; Vandenberg and Dewitt 199 1). 

However, unlike the relational algebra, there is not a commonly accepted object algebra, 

nor is it clear how an object algebra should be developed and what trade-offs should be 

made between elegance, optin-fizability and expressiveness. 

In many object-oriented database applications, the advantages of using a well-chosen 

family of algebra operations as the basis of a query model may outweigh the restrictions 

imposed on the expressive power of the model. This approach supports the ability to write 

programs that work independently of physical structures. When arbitrary programs are 

used as queries, end-users may need to know about the physical data structures used. They 

must write code which depends on the particular structure selected, leaving no opportunity 

for the physical structure to be tuned as database usage becomes clearer. In addition, using 

algebraic operations provides more opportunities for query optimization. Queries can be 

formulated in many equivalent forms and optinUzed by equivalence preserving 

transformations. The algebraic approach can also provide an important property of a query 

model- the closure property. This property guarantees that each operation on an object 
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(objects) produces a new object which has exactly the same status as the original one 
(ones), namely that all the operations of the object algebra are potentially applicable to the 

new object. By having this property, the result of a query can be used as the input for other 

queries or can be stored as user's view. Unfortunately, most existing query models for 

OODBs don't preserve closure [Ozsu and Blakeley, 1995]. 

The object algebra of [Manola and Dayal, 1986; Orenstein et al., 1986; Dayal et al., 1985; 

Dayal et al., 1985] called the PDM algebra, was developed for the PROBE database. The 

PDM algebra is a modified relational algebra operating upon functions. In particular, an 

entity type (such as PERSON) is treated as a unary function which, when evaluated, 

returns a set of entities of that type. Formal arguments of PDM functions are labelled, and 

can be declared to be in, out, or both so that functions can return multiple values. PDM 

functions can be extensional (i. e., stored as relations) or intensional (i. e., computed from a 

subroutine). The appearance of a function in an algebra expression means that the function 

is to be executed with some actual arguments substituted for its formal arguments. An 

algebra expression not only returns a function but also may produce assigned variables if 

the functions appearing in that expression have out arguments. In such a way, multiple 

results can be obtained from one expression and then serve as a context for the evaluation 

of subsequent functions. 

Osbom's object algebra [1988; 1989a; 1989b] was developed for a general object-oriented 

data model. The algebra is defined on three generic classes: atomic, aggregate and set 

objects. Relational algebra operations are extended. Also included are Naming, DeepCopy 

and Apply operations. Apply serves an iterator on set objects. DeepCopy creates a 

complete copy of an object without sharing any sub-objects with the old one. 

Straube and Ozsu's object algebra [Straube and Ozsu, 1990; Straube, 1991; Ozsu, 1991] 

was developed to provide a fon-nal basis for object-oriented query processing. To support 

encapsulation, the algebra allows only one object equality, namely the identity test. An 

object calculus is also provided. The translation from the algebra to the calculus is 

complete, but the translation from the calculus to the algebra is only partial. 
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Shaw and Zdonik's object algebra [Shaw and Zdonik, 1989; Zdonik, 1989; Shaw and 
Zdonik, 1990; Shaw and Zdonik, 1989] supports i-equality (i>O), where i indicates how 

"deep" the equality-test should go into two complex objects. DupEliminate and Coalesce 

operations are included to manipulate object identities. Besides i-equality, another equality 

called id-equality is introduced to compare, on two i-equal objects, the structures implied 

by the identities associated with their attribute values. The algebra operation access objects 

only through the external interface defined by their types. Results of queries are collections 

of existing objects or collections of tuples built by the query. By including parameterized 

types, the algebra can be statically type-checked while maintaining the ability to construct 

dynamic relationships between existing objects. 

3.3.2 Query Processing Methodology 

A query processing methodology similar to relational DBMSs, but modified to handle the 

difficulties rising from the new features typical of object-oriented models, can be seen in 

OODBs. Straube and Oszu [Straube and Ozsu, 1990; Straube, 1991; Ozsu, 1991] 

proposed such a methodology, which has been adapted and depicted in Figure 3.2. 
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Figure 3.2 Object query processing methodology 

The steps in the methodology are as follows. Queries are expressed in a declarative 

language that requires no user knowledge of object implementations, access paths, or 
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processing statistics. The calculus expression is first reduced to a standardized form by 

eliminating duplicate predicates, applying identifiers and rewriting. The standardized 
expression is then converted to an equivalent object algebra expression. This form of the 

query is a nested expression that can be viewed as a tree whose nodes are algebra 

operators and those leaves represent extents of classes in the database. The algebra 

expression is next checked for type consistency to insure that predicates and methods are 

not applied to objects that do not support the requested function. This is not as simple as 
type checking in general programming languages since intermediate results, which are set 

of objects, may be composed of heterogeneous types. The next step in query processing is 

the application of equivalence-preserving rewrite rules [Freytag, 1987] to the type 

consistent algebra expression. 

The separation of the algebraic optimization step from the execution plan generation step 
follows the distinction that is made between "query rewrite" and "plan optimization" 
[Haas et al., 1989]. Query rewrite is a high-level process in which general-purpose 
heuristics drive the application of transformation rules. Plan optimization, on the other 

hand, is a lower-level process that transforms a query into the most cost-effective access 

plan, based on a specific cost model and knowledge of access paths and database statistics. 

This methodology clearly separates the various concerns and provides extensibility to 

query processor. However, it faces one serious problem: the combinatorial cost of 

analysing the large number of plans that are generated. The algebraic optimization step 

generates a family of equivalent query expressions based on the transformation rules 

defined for algebra. The execution plan generation step creates a number of alternative 

mappings from each of these expressions to the object manager interface calls. Therefore, 

the number of alternatives that need to be considered may become quite high. One 

alternative followed in Starburst [Haas et al., 1989] is to use heuristic rules to control 

query rewrite so that a single query expression is generated as input to the plan 

optimization step. Cost-based optimization approaches, on the other hand, merge these 

two steps into one and consider the alternative execution algorithms as part of search 

space. 
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This methodology assumes the existence of a fully specified calculus-based language and 
an object algebra. There are only a few calculi that have been defined for OODBs 
[Abiteboul and Beeri, 1987; Peters et al., 1993; Straube and Ozsu, 1990] and a few object 
logics with declarative query facilities [Kifer and Wu, 1989; Maier, 1986]. There are a 
large number of declarative user languages (e. g., Blakeley [1991], Carey et al. [1988], 

Kifer et al. [1992], Orenstein et al. [1992]), but these generally do not have a formal 

calculus. Many algebras have been defined with a variety of operations (e. g., AlhaJ and 
Arkun [1993], Beeri and Kornatzky [1990], Blakeley et al. [1993], Peters et al. [1993], 

Shaw and Zdonik [ 1990], S traube and Ozsu [ 1990], and Vandenberg and Dewitt [ 199 1 ]). 

As far as the author is aware, the methodology of Straube and Oszu has never been 

implemented. 

3.3.3 Optimization Techniques 

Optimization techniques for object queries fall into two categories. The first is the cost- 
based optimization of queries based on algebraic manipulations. Algebraic optimization 

techniques have been extensively studied within the context of the relational model. The 

work on relational DBMS has benefited greatly from the availability of a universally 

accepted algebra definition. Despite over two dozen proposals, there is no universally 

accepted object algebra, making it difficult to generalise research results. 

The second is the optimization of path expressions that represent traversal paths 

between objects and are unique to OODBs, distinguishing object-oriented from 

relational query processing. 

3.3.3.1 Algebraic Optimization 

Algebraic optimization is well-understood for relational systems; there, an algebraic 

expression is given for the semantics of (e. g. SQL) queries, algebraic equivalencies have 

been specified, and heuristic rules have been discovered which are beneficial when 

applying those equivalencies for the transformation of queries. However, the "objects" in 
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question are very simply structured (i. e., they are sets of tuples). Thus, while the 

equivalencies (and rules) carry over to new data models, they are by no means sufficient. 
Namely, algebraic optimization has to take complex objects and type hierarchies into 

account. 

CoOMS [Demuth et al., 1994] is a structurally object-oriented database system. It 

generalises algebraic optimization from the relational data model to a structurally object 

oriented data model. Algebraic optimization takes idempotence, commutativity, 

associativity, and distributivity properties of operation into account. Some optimization 

rules (based on these properties) carry over from the relational algebra, while other rules 

are related to the specific features of the data model of CoOMS; thus they specify 
inheritance, subobject, and navigational rules. An algebra is especially useful to represent 

queries for optimization and evaluation, as rules and equivalence known from the 

relational algebra carry over. 

Cluet and Deloleb [1992; 1994] proposed a formalism that unifies optimization based on 

classes extensions (path) and algebraic query rewriting. The method introduces types in 

algebraic expressions and reduces complex expressions representing selection, projection 

or join criteria. Their approach "unifies" algebraic and type-based rewrite techniques, 

permits factorization of common subexpressions, and supports heuristics to limit 

rewriting. They exploit type information to decompose initial complex arguments of a 

query into a set of simpler operators and rewrite path expressions ("pointer chasing") into 

joins. 

Lanzelotte and Valduriez [1991] presented a similar attempt to optimize path expression 

within an algebraic framework using an operator called implicit join. 

Blakeley et al. [19931 proposed an object-algebra operator called materialize (Mat), to 

enable algebraic optimization of path expressions (e. g., e. dept. site, where e, dept, and site 

are classes and constitute a class-aggregation hierarchy). The purpose of Mat is to 

represent the computation of each interobject reference (i. e., path link) explicitly, allowing 
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a query optimizer to express the materialization of multiple components as a group using a 
single Mat operator or individually using a Mat operator per component. Therefore Mat 
indicates to the optimizer where path expressions are used and where algebraic 
transformations can be applied. 

Unlike RDBs, the use of "select pushdown" or "predicate pushdown" is no longer 

advantageous in all situations in OODBs. Strategies like "practical predicate placement" 
[Hellerstein, 1994], "predicate move-around" [Levy et al., 1994], "caching predicate 

method" [Hellerstein and Naughton, 1996], etc., have been proposed. These are often 
discussed in relation to query execution. (Query processing in OODBs does not always 

support the separation of algebraic optimization and plan generation). 

3.3.3.2 Path Execution 

RDBs benefit from the close correspondence between the relational algebra operations and 

the access primitives of the storage system. Therefore, the generation of the execution plan 
for a query expression basically concerns the choice and implementation of the most 

efficient algorithms for executing individual algebra operators and their combinations. In 

OODBs, the issue is more complicated due to the difference in the abstraction levels of 
behaviourally defined objects and their storage. A query-execution engine requires three 

basic classes of algorithms on collections of objects: (collection scan, indexed scan and 

collection matching). Collection scan is a straightforward algorithm that sequentially 

accesses all objects in a collection. Indexed scan allows efficient access to selected objects 

in a collection through an index. It is possible to use an object's field or the values 

returned by some method as a key to an index. Also, it is possible to define indexes on 

values deeply nested in the structure of an object (i. e., path index). Set-matching 

algorithms take multiple collections of objects as input and produce aggregate objects 

related to some criteria. Join, set intersection and assembly are examples of algorithms in 

this category. 
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Path indexing 

Indices are crucial in database systems to expedite the evaluation of queries that retrieve a 
small subset of data from a large database. Many indexing techniques designed to 
accelerate the computation of path expressions have been proposed. 

Bertino et al. [Bertino, 1994; Bertino and Guglielmina, 1993; Bertino and Foscoli, 1995] 
have discussed a number of indexing techniques specifically tailored for object-oriented 
databases. They present indexing techniques supporting an efficient evaluation of implicit 

joins among objects. However, of the several techniques developed, none is optimal for 
both retrieval and update costs. Techniques providing lower retrieval costs, such as path 
indices or access relations, have greater update costs compared to techniques, such as 

multi-index. However, these have greater retrieval costs. These research also introduce an 
indexing technique that provides integrated support for queries on both aggregation and 
inheritance graphs. This indexing technique is currently being extended to deal with multi- 

valued attributes. 

Set-matching 

OODBs significantly reduce the need for explicit joins. The select operation allows its 

predicate to be applied on a contiguous sequence of attributes along a branch of the class- 

aggregation hierarchy, where the path expression is used to represent this sort of predicate. 

The attribute/domain link between a class R and the domain S of one of the attributes A of R 

creates the join between the class R and S, in which the attribute A of the class R and 

identifier OID, which is defined by the system and which can be considered as an attribute of 

class S, are join attributes. This sort of query is generally called implicit join. Assume two 

sets of objects R and S stand in a many-to-one relationship from R to S. R and S are stored as 

separate disk files and the objects in R contain an OID to their related ob ects in S. Various j 

algorithms have been proposed to execute such a join. 
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Pointer-based join algorithms [Shekita and Carey, 1990] are used when objects in R are to be 

retrieved first. R always plays the role of the inner set because the direction of the pointer is 

from R to S. When the objects of S are retrieved first, the standard (relational) join algorithms 

can be used. Shekita and Carey [1990] showed that when R is significantly larger than S, 

standard hybrid-hash may outperform pointer-based hybrid-hash. Therefore, OODBs can 
benefit by supporting both algorithms. 

The assembly operator [Keller et al., 1991] is a generation of the pointer-based hash-join 

algorithm. 

Gardarin et al. [ 1996] and Tang et al. [ 1996] analysed the costs of path execution using 

both the navigational operator and join, and suggested that both object navigation and set- 

oriented join should co-exist as neither dominated the other. This confirms the results 

previously stated, that converting implicit joins to explicit joins during the optimization 

phase may yield better execution plans [Blakeley et al., 1993; Ozsu and Blakeley, 1995; 

Ozkan et al., 1995]. 

Multiple path expressions 

A query may involve multiple path expressions. Ozkan [ 19951 proposed a heuristic based 

approach for optimizing such queries involving multiple path expressions. 

3.3.3.3 Semantic Query Optimization 

Semantic Query Optimization (SQO) uses the semantic knowledge about objects to 

transform a query into more efficient expression. In the field of relational databases, much 

research on SQO has been carried out. OODBs may support many different ways of query 

processing. It seems likely that a SQO system can be inserted as a preprocessing system 

for OODB query optimization systems. Class instances have attributes that are instances of 

other complex classes, and different traversal mechanisms to find the target attribute 
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values for a query are required. Taking into account this structural property of an OODB, 

new heuristics which are different from those applied to relational databases are needed. 

Sung and Park [1991] presented a new semantic query processing technique in an object- 
oriented database system. The query technique takes advantage of semantic data integrity 
constraints to generate more efficient access plans. Semantic information relating to the 
target objects of a given query is utilized in a suitable way, either by eliminating the 

unnecessary part of the query or by transforming the given query into a more efficient 
form. Heuristics which guide the query processor into generating efficient access plans 

using semantic knowledge underpin the SQO process. 

Pang, Lu and Ool [1991] described their initial results in a study of query optimization in 

an object-oriented database, where semantic query transformation is used to preprocess the 

query and the semantically optimized query is then translated into a query evaluation plan 

which comprises method invocations that can be evaluated directly by the system. 

3.4 Processing Temporal Queries 

Temporal query optimization is substantially more involved than conventional-query 

optimization for several reasons [Ozsoyoglu and Snodgrass, 1995]. Temporal-query 

optimization is more critical, and it is thus easier to justify substantial effort in this area, 

compared with conventional optimization. The relations over which temporal queries are 

defined may be larger, and often grow monotonically, implying that unoptin-iized queries 

take longer and longer to execute. It is reasonable to expand effort in the optimization of 

queries on such data and to allow greater execution time in the performance of the 

optimization. The predicates used in temporal queries are more difficult to optimize 

[Leung and Muntz, 1990; 1993]. In traditional database applications, queries generally 

specify equality predicates (hence the prevalence of equijoins and natural joins); if an 

inequality predicate is involved, it is rarely in combination with other such predicates. In 

contrast, in temporal queries, joins with a conjunction of several inequiality predicates 

appear more frequently. Optimization techniques in conventional databases focus on 
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equality predicates and often implement inequality joins as Cartesian products, with their 

associated inefficiency 

On the other hand, there is greater opportunity for query optimization when time is present 

[Leung and Muntz, 1993]. Time advances in one direction; the time domain is 

continuously expanding, and the most recent time point is the largest value in the domain. 

This implies that a natural clustering on sort order will manifest itself, which can be 

exploited during optimization and evaluation. Query optimization can also consider time- 

oriented integrity constraints. tstart: ý tend holds for every time-interval tuple t. 

Unfortunately, there is little work reported on processing temporal queries, and the work 

that has been published is often described in the context of relational databases. 

As RDBs always require the user to explicitly join two relations, temporal processing in 

the context of RDBs has focused on specific join algorithms, following the bottom up 

approach. Gunadhi and Segev [1990] and Segev [1993] specified a temporal join and 

proposed an approach for optimization. Leung and Muntz [1990; 19931 proposed the 

strategies of stream processing for processing temporal joins (inequality join and semijoin). 

These strategies ware later extended to parallel processing strategies in multiprocessor 

database machines [ 1992]. Zurek [ 1998] presented a framework for parallel temporal joins. 

Seshadri et al. [ 19961 proposed separating general database optimizing from temporal 

optimizing and provided a paradigm for interaction between a relation and a time sequence 

(here temporal data is represented by a time sequence). Although they have provided a 

comprehensive approach for sequence data processing, they have not incorporated sequence 

processing in the relational query processing framework. 

Dayal and Wuu [1992] proposed a uniform approach to processing temporal queries III the 

context of a functional object-oriented data model. But their work did not take account query 

optimization and evaluation in a query processing framework. In addition, their work is 

based on the functional model and language. This leads to functional optimization that is 
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quite different from the algebraic, cost-based optimization techniques employed in relational, 

as well as a number of object-oriented systems [Ozsu, 1995]. 

It is worth noting that most object-oriented database proposals include constructors for 

complex types like lists and arrays that allow time-stamped entity to be represented as a 
"blob", which is managed by the system, but interpreted solely by the application 

program; no facilities for temporal queries are provided [Seshadri et al., 1996]. 

3.5 Summary 

Query processing and optimization problems in relational databases have been the focus 

of a great deal of theoretical and applied research. Much research is still being carried 

out in the area of RDBs, and a large body of knowledge, gathered over a period of 

almost two decades, on relational query processing and optimization techniques and 

strategies has accumulated. The great success of query processing in RDBs is attributed 

to the relational model of data that provides declarative queries and associated 

techniques for automated evaluation. 

The problem of optimization of object-oriented queries has not yet been very widely 

researched. Critics of the object-oriented approach frequently point to the theoretical 

limits of optimization as a major drawback of the object-oriented approach as compared 

with the relational approach [Unland et al., 1992; Ozsu and Blakeley, 1995; Kim, 1993; 

1994; 1995; Kim et al., 1997]. 

Almost all the object query processors proposed to date uses the optimization techniques 

developed for RDBs, as pointed out by Ozsu and Blakeley [1995]. The lack of 

universally accepted object data model and algebra makes it difficult to generalize 

research results. In general, it is impossible to achieve the same degree of optimization as 

in a relational language. It is important to develop extensible approaches to query 

processing that allows experimentation with new ideas as they evolve. 
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Although extensive activity in defining temporal data models by extending existing models, 
little work has been done on temporal query processing and optimization. Even so, it is 

mostly in the context of relational databases and follows a bottom-up approach: usually 
focusing on a specific algorithm such as a join. Because adding time creates multiple tuple 

versions for the same object, ignoring time will result rapid performance degradation 

due to ever-growing overflow chains or accumulated facts. As pointed out by Kim 

[1993; 1994; 1995; Kim et al., 1997] and Snodgrass [1995], empirical studies are 

needed to compare storage and query evaluation strategies that support time-varying 

data. 

At the moment, considerable research is needed to deal with optimization and execution of 

object-oriented queries when time is taken into account. Query processing in TOODBs 

remains a big challenge. 



Chapter 4 

A Temporal Object-Oriented Data Model 

This chapter defines a temporal object data model, which has been adaptedfrom the unified 

model of RDB and OODB in UniSQLIX to which a time dimension has been added to form 

temporal relational-like cubes. Aggregation and inheritance hierarchies are also retained. 

The characteristic of the model will be analysed and a number of case studies are given to 

illustrate the model. 

4.1 Introduction 

A data model is a prescription of a way of representing data, and a prescription for a way of 

manipulating such a presentation. Defining a data model has always been the start point for 

developing a database. 

The vast majority of research on temporal database systems has focused on eve oping a 

temporal data model by the incorporation of time elements into existing database models 

[Tansel et al., 1993; Snodgrass, 1995; Ozsoyoglu et al., 1995; Stonebraker et al., 1990; John 

and Patrick, 1992; Pissinou et al., 1993; Goralwalla et al., 1998]. Compared with temporal 

relational models, little work has been reported on time in object-oriented databases 

(OODBs), although there is a significant increase in the work on defining temporal object 

database models recently. An OODB is a database system based on object-oriented data 

model concepts. One approach in introducing time into an object data model is to extend the 

semantics of a pre-existing snapshot model to incorporate time directly [Snodgrass, 1995]. 

* The model presented in this chapter has initially published in paper 6, and its modified version has been 

properly described in paper 1. The case studies have been presented in papers 8,9,10,11, and 12. The 

List of Author's Publications includes paper 1- 13. 
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However, there is currently no commonly accepted object data model, and definitions of 
temporal object-oriented data models vary. 

The unified model of RDB and OODB from UniSQUX [Kim, 1993; 1994; 1995; Kim et al., 
1997; D'Andrea and Janus, 1996] is extended from relational data model and has an 
potential in making use of relational database techniques to process object queries. In this 

chapter, the author will adopt the unified model of RDB and OODB from UniSQLJX as a 
snapshot object data model, and then incorporate within it a time dimension so that we can 

make use of the research results of temporal extensions to RDBs for (temporal) OODBs. 

The remainder of this chapter is organised as follows. Section 4.2 describes the unified data 

model of RDB and OODB. Section 4.3 presents the temporal object-oriented data mode by 

defining the temporal object and integrating it into the unified model of RDB and OODB. 

Section 4.4 gives a number of application examples as case studies. Features of the data 

model are outlined in Section 4.5 and a summary of the chapter is given in Section 4.6. 

4.2 The Unified Model of 001313 and RDB 

The unified data model of RDB and OODB from UniSQLJX [Kim, 1993; 1994; 1995; 

D'Andrea and Janus, 1996] extends the relational data model in three important ways, each 

reflecting a key object-oriented concept: (1) nested predicates; (2) inheritance; (3) methods. 

The mechanism for such an extension follows the basic tenet of an object-oriented system or 

programming language that the value of an object is also an object. We will use the example 

database schema in Figure 4.1 to describe these extensions where each node is a relation 

(synonymous with a class). A node is divided into three levels, the first of which contains the 

name of the relation, the second the attributes and the third the methods or procedures 

attached. Two nodes C and C'may be connected by either a thin arc, indicating that Cis the 

domain of an attribute of A of C (or that C' is the class of the result of a method of Q-- 

resulting in the aggregation hierarchy; or a thick arc, indicating that C is the superclass of C'- 

-resulting in the inheritance hierarchy. Arrows indicate the directions of connection. 
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A RDB consists of a set of relations (tables), and a relation in turn consists of rows (tuples) 

and columns. A row/column entry in a relation may have a single value, and the value may 
belong to a set of system-defined data types (e. g., integers, string, float, date, time, money, 

etc. ). The user may impose further restrictions known as integrity constraints, on these values 
(e. g., the temperature of a city may be restricted to between -800C and 800C). The user may 

then issue a nonprocedural query against a relation to retrieve only those tuples of the 

relation, the values of whose columns satisfy user-specified conditions. Further, the user may 

correlate two or more relations by issuing a query that joins the relations on the basis of 

comparison of values in user-specified columns of relations. 

The first extension of UniSQLJX allows the value of a column of a relation to be a tuple of 

any arbitrary user-defined relation, rather than just an element of a system-defined data type. 

This means that the user may specify an arbitrary user-defined relation as the domain of a 

column of a relation. In Figure 4.1, the column Weather of WEATHER-RECORD (or the 

WEATHER-RECORD TESTINFO 

MaxTemporature FLOAT 
Site CITY 

Humidity FLOAT 
Site# INTEGER WindStrength INTEGER 

WindOrientation STRING 
Weather TESTINFO Sunshine STRING 

Rain STRING 

Procedure WeatherType 

CITY COUNTRY 

Name STRING Name STRING 
Country COUNTRY Capital CAPITAL 
Longitude FLOAT Continent STRIN( 
Latitude FLOAT 
Entertainment SET-of-ENTERTAINMENT 

L-> ENTERTAINMENT 
CAPITAL Name STRING 

Governor-address STRING 
Avalability BLOB 

Origin STRING 

legend: 

nested attribute 

inheritance path 

Figure 4.1 An example of OODB schema 
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Country of CIM no longer needs to be restricted to a system-defined type e. g., string. It now 
is a tuple of a user-defined relation TEST-INFO (or COUNTRY). Allowing a column of a 
relation to hold another relation directly leads to a nested relation. That is, the value of a 
row/column entry of a relation can now be a tuple of another relation, and the value can in 
turn be a tuple of another relation, and so forth, recursively. This gives a database system the 
potential to support advanced applications such like multimedia systems (which manage 
image, audio, text data, and compound documents that comprise of such data), scientific data 

processing systems (which manipulate vectors, matrices, etc. ), engineering and design 

systems (which deal with complex nested objects), and so forth. This is the basis for bridging 

the large gulf in data types supported in today's programming languages and database 

systems. 

Second, allowing the users to attach procedures to a relation and to have the procedures 

operate on the column values in each tuple achieves the combination of data with a program. 
For example, in Figure 4.1, the procedure WeatherType summaries the weather infori-nation 

and gives output of weather type. Procedures for reading and updating the value of each 

column are implicitly available in each relation. A relation now encapsulates the state and 
behaviour of its tuple: the state is the set of column values and the behaviour is the set of 

procedures that operate on column values. The user may write any procedure and attach it to 

a relation to operate on values of any tuple or tuples of relation. There is virtually an 

unlimited application of procedures in this way. 

Third, allowing the users to organise all relations in the database into hierarchy, such that 

between a pair of relations P and C, P is made the parent of C, if C takes (inherits) all 

columns and procedures defined in P (besides those defined in Q, and table C may have 

more than one parent relations from which it may take columns and procedures, the 

relational model integrates the object-oriented concept of inheritance. The child relation is 

said to inherit columns and procedures from the parent relations (This is called multiple 

inheritance) An IS-A (generation and specification) relationship holds between a child 

relation and its parent relation. In Figure 4.1, the relation CAPITAL is defined as a child of 

relation CITY. CAPITAL automatically inherits the five columns of CITY, i. e., Name, 
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Country, Longitude, Latitude, Entertainment, even if they are not specified in its definition. 
The inheritance hierarchy offers two advantages over the conventional relational model of a 
simple collection of largely unrelated relations: (1) it makes it possible for a user to create a 
new relation as a child relation of one or more existing relations; the new relation inherits 
(reuses) all columns and procedures defined in existing relations and their ancestor relations; 
(2) it makes it possible for a system to enforce the IS-A relationship between a pair of 

relations. RDBs require the users to manage and enforce this relationship. 

UniSQLJX also makes one more extension to the relational model: allowing the row/column 

entry of a relation to have a set of values (i. e., any number of values), rather than just a single 

value; and further allowing the set of values to be of more than one arbitrary data type. For 

example, the data type of column Entertainment of CITY is a set of ENTERTAINMENT, that 
is, the value of the column may be a set of tuples of a user-defined relation 
ENTERTAINMENT (e. g., carnival, horse racing, etc., each of which has a set of attributes). 
This extension is not an object-oriented concept, but it is designed to address a fundamental 

deficiency in the relational data model [Kim, 1994] that requires the column value to be 

atomic and therefore limits its modelling capability. It provides an ability to represent the 

many-to-many relationship between two collections along the aggregation hierarchy. The 

restriction in RDBs that the row/column entry may hold only a single value forces the users 

to create an extra relation and/or duplicate tuples in one relation if a column of a relation 

should hold more than one value. For instance, to model the above example of CITY and 

EA7ERTAINMENT in a RDB, where a city may have more than one entertainment activity, 

either each tuple of the relation CITY needs to be duplicated for each value of the column 

Entertainment, or an extra relation, say C17-Y-ENTERTAINMENT, need to be created. The 

relation CITY and CITY-ENTERTAINMENT need to be joined to retrieve information about 

cities and entertainment activities. 

UniSQLJX thus extends the relational model in four important ways. Although each 

extension individually may appear to be minor, the consequences of the extensions, 

individually and collectively, with respect to ease of application data modelling and /or 

subsequent increase in performance, can be significant. If we make an equivalence between 
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the post-relational and object-oriented ternis, then "relation" equates to "class", Auple of 
relation" equates to "instance of a class", "colun-m" equates to "attribute", "procedure" 

equates to "method", "relation hierarchy" to "class hierarchy", "child relation" to "subclass", 
44parent relation" to "superclass", and "nested relation" to "aggregation hierarchy". These 

equivalencies can be expressed in Table 4.1. In this thesis, we use two sets of terms 
interchangeably. 

Table 4.1 Equivalencies between post-relational and object-oriented terins 

Post-Relational Model Terms Object-Oriented Model Terms 

Relation Class 

Tuple of relation Instance of a class 
Column Attribute 

Procedure Method 

Relation hierarchy Class hierarchy 

Child relation Subclass 

Parent relation Superclass 

Nested relation Aggregation hierarchy 

Compared to the ODMG Object Model described in Section 2.3.2, this model possesses 

most key features of ODMG Object Model. It is an object-oriented data model! Because it is 

also extended from relational data model and has thereby its counterparts in relational model, 

it provides a potential in exploiting relational techniques for the management of objects. 

This model is adopted as a snapshot model to incorporate time. Additionally, we preserve the 

basic object concepts such as any real-world entity is modelled as an object, each complex 

object is associated with a unique identifier, etc., so that heterogeneity in the time dimension 

and the grouped completeness of algebra can be maintained (this will be discussed later in 

the next chapter). 
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4.3 A Temporal Object Data Model 

The temporal data are the record of the evolutionary history of entities. The states of entities 

may change in different ways, as shown in Figure 4.2. Representing temporal data in a 
database initially uses the interval description. It is quite suitable for step-wise constant data. 

Because continuous time-varying data can always be represented as discrete time-series in 

computers, time-point representation is often chosen as it makes it easy to generalise the 

various situations. We adopt the time-point representation and use temporal sets (temporal 

elements) as timestamps so that a temporal object can be represented by a time sequence, and 

the lifespan of an object can be associated at both attribute and tuple level for the unified 

model. 

ntity Value 
Salary: step-wise constant 

0t 

Entity Value 
Regular experimantal measurement: discrete 

0"'"" --- _t 

Value 

Room temperature: continuous 

Figure 4.2 Three basic types of temporal data 
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4.3.1 Time Space and Temporal Set 

A time space T =(.., to, tl,... ) is a set of times, at most countably infinite, over which is 

": ýT ',: ý 
Tt defined the linear (total) order , where ti I means ti occurs before (earlier than) tj. For 

the sake of simplicity, it can be assumed that T is isomorphic to the set of natural numbers 
[ .... n-1, n, n+I .... J. Any subset of T is called a temporal set. A temporal set can be 

represented as a union of disjoint time intervals. The most basic property of temporal sets is 

that they are closed under finite unions, intersections, and complementation. That is, if T, 

and T2are temporal sets, then so are Tlu T2, TIr-) T2, TI-T2, and -, TI. 

For example, let T, =I 1,2,5,8,231 and T2= 12,7,9,11,23,34 1. Then 

Tlu T2=11,2,5,7,8,11,23,34) 

TIn T? = 12,231 

TI-T2=1 1,5,81 

Absolute time indicates that a specific valid time at a given timestamp granulafity is 

associated with a fact. For example, 3/4/1990 is an absolute time point. Such a time depends 

neither on the valid time of another fact nor on the current time, now. 

Relative time indicates that a valid time of a fact is related to either the valid time of another 

fact or the current time, now. For example, seven days after his birth. 

Both absolute time and relative time can be represented by a time space. 

4.3.2 Chronon, Interval, Span and Lifespan 

Derinitions 

A chronon is the shortest duration of time supported by a temporal databases, i. e., a 

nondecomposable unit of time. 
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A thne interval is the time between two instants. For example, [ 1,51 is an interval - 

A span is a directed duration of time. A duration is an amount of time with known length, 

but no specific starting or ending instants. For example, the span of [1,5] is 5 if the time 

chronon is 1. A span is either positive, denoting forward motion of time, or negative, 
denoting backwards motion in time. 

A thmestamp is a time value associated with some object, e. g., an attribute value or tuple. 

The Hfespan of a database object is the time over which it is defined. If the object (attribute, 

tuple, relation) has an associated timestamp, then the lifespan of that object is the value of the 

timestainp. 

The above definitions are taken from [Jensen et al., 1994; Tansel et al., 1993]. 

If an object o exists in a certain period of time, which is a subset of T (i. e., the temporal set), 

this period is called the object's lifespan, denoted as L(o) for the object o. If the lifespan is 

continuousý, it can be denoted as L(o)=[tt, * tnd], the duration of time is called a span: 

span(o)= tend -tta, +]. In order to support for derived lifespans, it is allowed the usual set- 

theoretic operations over lifespans. That is, if LI and L2 are lifespans, then so are LI u L2, LI 

r-T2, L, 
-L2, and--, Li. 

A temporal object is defined as a time sequence (TS for short): ft, o(t)], t(-= L(o)cT, denoted 

as <L(o), o(t)>, where o(t) represents object o's value at the time t. A temporal object 

<L(o), o(t)> asserts that the object o(t) is valid for its lifespan L(o) and its value changes 

with time. If a TS contains a value for each time point in the lifespan duration, it is called 

a regular TS [7]: <L(o), o(t)> --.: [ 
... ; ti-1, Oi-1; ti, 0i; ti+J' Oi+I; ... 

I=f. 
- -, Oi-1,0i, 0 i+1' ---I=t 

oi. ], where oi represents object o's value at the time point ti. If a TS contains values for 

t in principle, the lifespan L(o), a subset of T, is not necessarily required to be continuous, though it is required to 
be in this thesis. 
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only subset of time points within the lifespan, it is called an irregular TS: <L(o), o(t)> 
"': t ... ; ti-1, Oi-1; ti, 0i; ti+j, Oi+I; ... I. 

A discrete time event, where the value of the entity is recorded at every single time 
point, as shown in Figure 4.2, can be represented by a regular TS. A discrete time event, 
where the value of the entity is not recorded at every single time point, can be 

represented by an irregular TS. 

A step-wise constant, as shown in Figure 4.2, can be represented by an irregular TS 

where the value oi at time ti, is assumed to retain for [ti, ti, I). We use the term epoch 
from signal processing field to refer to the time at which the object changes its value, 
e. g., ti. The interval during which the value oi persists is decided by the epoch ti and its 

succeeded epoch ti, I, i. e., [ti, ti, I). If there are n elements in a TS, it is said that there are 

n epochs. For example, suppose John has worked for a company from 1975 to 1998, his 

salary was initially 1500 and has been changed to 1900 in 1978, change to 2300 in 1984, 

2700 in 1991, and 2900 in 1996. If the time chronon is assumed as a year, the lifespan of 
John's salary is [1975,1998], and 

<[1975,1998], John's Salary> 

= [1975,1500; 1978,1900; 1984,2300; 1991,2 700; 1996,2900] 

where the first salary 1500 retains for [1975,1978) and the last salary 2900 retains for 

[1996,1998]. The epoch number is 5. It can be seen, from the later discussion in 

Chapter 6,7 and 8, that epoch represents a transformed time space and will serve as a 

convenient indicator for cost analysis and query processing. 

A continuous time event, as shown in Figure 4.2, depending on the recording of the data, 

can be represented by either a regular TS or an irregular TS. When it is represented by a 

regular TS, it is treated as a discrete time signal created by sampling the corresponding 

continuous time signal. As long as the sampling frequency is greater than two times the 

highest frequency of the signal, the continuous time signal can be recovered from the 
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discreet time signal [Oppenhein and Schafer, 1975]. If it is represented by an irregular 
TS, as it is time-varying the value between two recorded time points can be decided by 

an interpolation function depending on the application, e. g., linear interpolation. This will 
be further discussed in Chapter 8. 

A constant object o, may be represented with no timestamp where its time-reference is 
implied as L(o). It can also be represented with an explicit time-reference as a temporal 

object: <L(o), ox 

As a TS is a set, so a temporal object can be represented by its sub-objects. In practice the 
lifespan may consist of disjoint, noncontiguous segments. As in [Ginsbury, 19931, we prefer 
to use null rather than defining multiple segments in the lifespan. For instance, if we know 

Mary's salary records dwing the time [1967,1982] and [1990,1998] as 11967,1400; 1977, 

18901 and 11990,2000; 1996,2100). Although we do not know her salary between 1982 

and 1990, we will have 11967,1400; 1977,1890; 1982, null; 1990,2000; 1996,21001 

where null is persisted from 1982 till 1990 when the value 2000 exists. 

4.3.3 Integrating the Temporal Object with the Unified Model of RDB and OODB 

In the OODB represented by the unified model of RDB and OODB, every real world entity 
is uniformly modelled as an object that is grouped into a class (relation) and interrelated to 

other objects through associations. Now we take a class (relation) C (disregarding its 

associations of aggregation and inheritance hierarchies), as shown in Table 4.2. 

Table 4.2 Interaction of tuple lifespan and attribute lifespan 

Relation A, A2 
... An 

tuple, 

tuple2 

... 

tuple. 

... ... ... 

value,,,, n 
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If the value,, is a temporal object with lifespan 1,,,, and the tuple,, is also a temporal object 

with the lifespan denoted as L(t .. ), we have 

L(t,, )=1,1 Ulnt2 l-) 
... 

U ln7, 
n 

The lifespan of attribute A,, is 

L(A, )-'ý--llxU 12, 
n U 

... 
U lmn 

The lifespan of relation C is 

L(C)=L(AI)UL(A2)U ... UL(A n) =L(tj)UL(t2)U uL(t,, ) 

Thus a 2-dimensional relation (class) "table" becomes a 3-dimensional "cube", as shown in 

Figure 4.3, if objects in the relation have unifomily the same lifespan. 

Time 

ites-, ' 

Values 

Figure 4.3 A 3-dimensional class 
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It is obvious that 

li, j=L(ti)r')L(Aj) 

This implies that there is no value for an attribute in a tuple for any moment in time outside 

the intersection of the life spans of the tuple and the attribute. Obviously our temporal object 

model can support a completely heterogeneous temporal dimension, but at the cost of 

maintaining a distinct lifespan for each value. This is important because homogeneity is 

sometimes difficult to maintain, although homogeneity is necessary as no time-slices of a 

homogenous relation produce null values [Pissinou et al., 1994]. 

If the domain of attribute Ai of class C is another class C', then implicitly, L(Aj)=L(C'). If 

class C' is the superclass of class C, then L(C')=L(C). If the class C' has more than one 

subclasses, e. g., C, and C2, then L(C')=L(Cj)uL(C2). Moreover, if a database consists of n 

classes (relations) C1, C2, 
... ' 

C,, the lifespan of the database schema is L= L(Cl)uL(C2)u ... U 

I-(Cn)- 

It is possible to refer to the components of a temporal object. For a temporal object 

o=<T, o>, o. u and o. T refer to its value and temporal set components, respectively. For the 

above salary example, let o represent John's salary, o. 1) =1 1500,1900,2300,2700,2900) 

and o. T=J 1975,1978,1984,1991,1996). Sometimes we omitu, i. e., om=o, (or o. ii(t)=o(t)) 

to refer to the value of the object o without causing a confusion, e. g., o =[ 1500,1900,2300, 

2700,29001 refers to John's salary history. It is especially the case when talking about a 

regular TS, we use o(t)=[,... Oi-I, Oi, 0i'l .... J. 

Let A represent the name of an attribute that can take a temporal object for its values, then 

Am and A. T represent the value set and temporal set components of the attribute A. Further, 

the same notation may be applied to class (relation) C. If C is a temporal relation, then C. 'U 

and CT represent the value set and temporal set components of the class C. 
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Taking the database schema in Figure 4.1 as an example, its temporal database schema 

can be represented as shown in Figure 4.4. Note that now the class/relation TESTINFO 

becomes the temporal relation where daily weather changes are recorded for main cities. 
For simplicity we suppose that the temporal set (time stamps) starts at time I and ends up 
today (n), and time chronon is a day. Then the lifespan of relation TESTINFO can be 

uniformly represented as L=11,... 'n), i. e., TESTINFO is a regular TS. Other relations are 

constant relations whose lifespans are implied the same as L. 

WEATHER-RECORD TESTINFO 

Site CITY TopTemporature FLOAT 
Humidity FLOAT 

Site# INTEGER WindStrength INTEGER 

Weather TESTINFO WindOrientation STRING 
Sunshine STRING 
Rain STRING 

- Proc edure WeatherType 

CITY COUNTRY 

Name STRING Name STRING 
Country COUNTRY Capital CAPITAL 
Longitude FLOAT Continent STRING 
Latitude FLOAT 
Entertainnwnt SErof_ENTERTA94MENT -4 - 

CAPITAL 
ENTERTAINMENT 

Name STRING legend: 

n days 

Governor-address STRING 
Avalability BLOB nested attribute 
Ofigin STRING 

inhefitance path 

Figure 4.4 Database schema of "Intemational Weather Record Database" 

4.4 More Application Examples 

To illustrate the applicability of the temporal object data model to real world problems, 

this section provides two more examples as case studies. 

4.4.1 Case Study 1: "The Wood Panel Deformation Measurement Database" 

In this case study, the model defined in the previous section is applied to a real world 

sequential image measurement system. It deals with the problems of data modelling and 
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management of sequential image database that can not be handled by conventional 
databases (e. g., RDB or OODB). 

"The Wood Panel Deformation Measurement System" [Chen et al., 1994; Robson et al., 
1995; Clarke et al., 19951 brings together the results of recent research in art 

observation, electro-optical image processing and advanced database management in 

order to increase knowledge and understanding of deformation and cracking of wood 

panel paintings (which lead to paint loss) caused by changes in ambient conditions. A 

deformation analysis of movement occurring in wood panel was required by the 

Hamilton Kerr Institute of the Fitzwilliam Museum, University of Cambridge, where 74 

wood panels used for supporting fine art paintings were tested. An automated 3-D 

measuring system using photogrammetric and machine vision techniques has been 

developed at City University. The panels to be measured were divided according to 

wood type: linden; oak; poplar; and Scots pine. Each type was supported by a number of 

different reinforcement types to give 74 panel reinforcement combinations. An array of 

retro-reflective targets were placed on each test panel. The number and disposition of 

the targets on each test panel varied from 175 to 464 according to the pattern of 

auxiliary supports. The total number of epochs (the number of sequential images of a 

test panel) was 25 (i. e. 25 humidity levels at different time). The experiment was carried 

out in a uniform way, i. e., for each panel, there were 25 tests for different humidity 

levels at different times. Table 4.3 gives such an example. For each epoch, there were 

about 400 images in total to be grabbed by 5 cameras at different positions, which 

occupied about 170M storage. Therefore over 10,000 images were grabbed and 

processed. The average number of targets on each test panel was 250, resulting in a total 

of 2,500,000 targets to be processed. 

Table 4.3 Sample experiment setting 

day 0 10 20 21 31 1 41 42 52 62 

rh% 30 30 30 70 70 70 30 30 30 

epoch 0 1 2 3 4 5 6 7 8 
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WOODPANEL 

Panel# INTEGER 
WoodType STRING 
Reinforcement SUPPORT 
TestDescription STRING 
Recommendation STRING 
PanelTest PANEI TEST 

ISUPPORT 

Form STRING 
Material STRING 

PANELTEST 

Day INTEGER 
Humidity FLOAT 
TargetNumber INTEGER 
2-D-Coordinates ARRAY(500,2) 
Pixel-Image BLOB 

Display 
Processing 
Analysis 
Recognition 

n epochs 

TEST I TEST2 
... TEST5 legend: 

Cameral Camera2 Camera5 nested attribute 

inheritance path 

Figure 4.5 Database schema of "Wood Panel Defon-nation Measurement System" 

This database application represents a typical scientific application, collecting results 
from observation, experiments and simulation, and has features of large amount of data, 

complex data types (data, text and image), and timestamps (sequential images). It also 

involves a lot of data processing (e. g. image processing, pattern recognition, 2-D to 3-D 

image construction, etc. ). 

Applying our temporal object data model to this case, we have generated a database 

schema presented in Figure 4.5. WOODPANEL is a constant relation with a set of 

attributes. The domain of column Reinforcement of WOODPANEL is another relation 

SUPPORT. The domain of column Paneffest of WOODPANEL is another relation 

PANELTEST. PANELTEST is a temporal relation with a set of attributes that are of different 

data types. Note that absolute time (e. g., 12/3/1997) is not important, it is time relative to the 

fact of the test that is of interest. The time chronon is a day. If each test is completed within 6 

months, say, 180 days, the lifespan of PANALTEST is [0,180) whist the lifespan of other 

constant relations implies the same as [0,180). PANELTEST is an irregular TS and there are 

n epochs (e. g., n=25) in this relation. Data/image processing procedures are represented as 
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methods to attach to the relation PANELTEST. TEST] to TEST5 are subsets of PANELTEST, 

and inherit all three dimensional attributes and methods from PANELTEST <L, TEST] > 

represents the sequential test information and images grabbed by Camera]. 

4.4.2 Case Study 2: "The Neurological Patient Care Database" 

This case study concerns the data modelling and management in a health-care 

information system. From this practical example we will see how the time granularity is 

determined and different forms of tested data that may come from different sources are 

represented in a temporal object database. 

Physicians need to draw upon many different kinds of information in the course of their 

work. Health informatics [Pickover, 1995; Silberschatz, 1996] is therefore emerging as a 

field that concerns itself with the organisation and management of information in 

support of patient care, education, research, and administration. It draws from 

disciplines such as cognitive and educational psychology, decision theory, information 

science, and computer science. The application of health informatics relies on the use of 

computer and communication technology to translate theory into practice. The database 

management support plays an essential role to make this become reality [Silberschatz, 

1996], as a data model provides concepts and constructs for data modelling/processing 

required by real-world organisations and a database management system incorporates a 

data model and provides high-level facilities for storage, retrieve and maintenance of 

data. 

Much of the difficulty in managing health-care information systems comes from the 

different sources of data that is involved, complex data structures, historical information 

collection, data processing or dealing probabilities in clinic reasoning; but the 

organisation of data is also a major problem [French et al., 1990]. Here we look at "The 

Neurological Patient Care Database" example. 
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Figure 4.6 Computer-aided EEG system 

Electroencephalograph (EEG) [Carpenter, 1996] is a technique of recording the 

electrical activity of the brain through the intact skull. Electrodes are applied to the scalp 

and potential changes so recorded are amplified and presented for interpretation as an 
inked tracing on moving paper. Machines in common use have eight, sixteen or more 

channels so that the activity from many different areas of the head can be recorded 

simultaneously. The technique is simple and harmless and may give valuable diagnostic 

information, particularly in patients with suspected epilepsy, encephalitis, etc. But the 

time-domain signals are difficult for doctors to read. With the aid of a computer, as 

shown in Figure 4.6, the frequency-domain information such as the rhythms of (X, P, 8, 

0, etc. which reveal the direct correlation with the state of a patient, is easily provided 

through FFT transformation. The "topographic EEG" that is thereby created represents a 

more recent development of quantitative EEG method. However, using this approach, 

the most valuable information on "spike-and-wave" that is significant to the diagnosis of 

epilepsy becomes less distinct. The reason is that the measured EEG signal with "spike- 

and-wave" is a random process. Strictly speaking, there does not exist FFT for such a 

signal. Therefore looking into the time-domain signal or searching for different data 

processing methods is sometimes necessary. In addition, sole EEG index is not enough 
for doctors to make the diagnosis of cerebral diseases such as clinic doctors can not 
diagnose the structural damage on the brain like a cerebrovascular disease without 
looking the patient's CT scan image. Therefore sharing information with other systems 
is unavoidable. In short, clinical decision making, biomedical computing, reuse and 
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sharing of medical information, support for further research and education all require for 

data management support. Our temporal object data model provides a good approach to 

data modelling and management for such a medical information system. 

The database schema is designed for "The Neurological Patient Care Database" as 

shown in a simplified form in Figure 4.7. The relation PATIENT in concern has a set of 

attributes. Major EEG examination result is represented as a column of the relation. 

Some other assistant examination result (e. g., CT) is represented as another column. The 

domain of each of these two columns is another relation: EEG (or OTHERS). The 

chronon of time can be determined as a day that suits for hospital daily routine. Suppose 

the lifespan of EEG is L(EEG). (Instances of EEG do not need to be of the same 

lifespan). There are n epochs in relation EEG, representing n examinations (Instances of 

EEG do not need to be of the same times of examination). In each examination, there 

recorded a time-domain signal (as an attribute value) where the short time sequence is 

represented as 'blob'-like data, as the duration of the time sequence is much smaller 

than the chronon of time that needs to be recorded. There are m epochs in relation 

OTHERS with lifespan L(OTHERS). OTHERS may be recorded and stored at different 

site. The lifespan of constant relations is implied as L(EEG)uL(OTHERS). EEG- 

IMAGE and CT-IMAGE are subclasses of IMAGE, therefore they take all properties and 

methods from IMAGE, alongside their own properties and methods. 

The system represented by our data model has the following features: 

(1) Integration of data, text, and images (that come from different sources) where some 

metadata [French et al., 1990] such as description of test, etc. are uniformly 

represented into attributes; 

(2) Representation of collection of historical data where the time series of each EEG 

record is represented as 'blob' in database schema instead of temporal data; 

(3) Reuse of programs: the methods supporting image viewing, processing, etc., can be 

reused by its any subclass images. 
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PATIENT 

Patient# INTEGER 
Name STRING 
Date-of-birth DATE 
Symptom STRING 
EEG EEG 
Other-exas OTHERS 
Diagnosis STRING 
Treatment STRING 

Dicision-making 
Analysis 

I 

I OTHERS 

Day DATE 
CTscan CT-IMAGE 
BloodPressure FLOAT 

m-epochs 

legend: 

nested attribute 
inheritance path 

EEG 

Day DATE 
TestDescription STRING 
Time-domain ARRAY(1000,16) 
Frequency-domain ARRAY(256,16) 
Topography EEG-IMAGE - 

Processing 
Analysis 
Recognition 

n-epochs 

IMAGE 

Pixel-image BLOB 

Viewing 
Processing 

CT-IMAGE__ý 
I 

EEG-IMAGE X 

Figure 4.7 Database schema of "The Neurological Patient Care Database" 

Further data processing/analysis for research purpose is one of salient features of health- 

care information systems. The temporal OODB architecture has a generic connection 

with the clinic data processing/ analysis procedures (system). The connection is based 

on Object Linking and Embedding (OLE) techniques [Microsoft, 1993], as shown in 

Figure 4.8. 

For example, Figure 4.9 shows different data processing algorithms that require time- 

domain EEG signal from "The Neurological Patient Care Database". The data required 

can be supplied by the database management system. The output of data processing and 
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analysis procedures such as different topographic EEG, etc., can then be added to the 

databases for future use. 

Data 
processing 
/analysis 
system 

OLE 
linking 

E EH U croaGE FIo. aoe 

Figure 4.8 OLE link between database and analysis system 

Adaptive Filtering EEG 
EEG: X(t)=; S(t)+N(t) Modelling 

'Adaptive Filtering for P 
Evoked EEG: ection of 401t: cognitive 
Y, (t)=S'(t)+N(t) nction 

Figure 4.9 Different data processing procedures 

It can be seen that the temporal object-oriented database approach provides a data 

modelling capability for data representation in the health-care information system and 

direct database support for the corresponding data manipulation. Further data 

processing/analysis, as well as other research procedures can be easily supported by the 

database. 
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In addition, because our data model is adapted from the unified data model RDBs and 

OODBs, it provides a good basis for interoperating OODBs with RDBs and thereby 

distributed heterogeneous databases. That is highly required by health-care information 

systems for information sharing and interoperation between different databases at 

different sits. 

4.5 Features of the Temporal Object-Oriented Data Model 

Although temporal databases have been an active area of research for over fifteen years, 

there is no commonly accepted data model. It is advocated in [Segev et al., 1995] that a very 

simple conceptual data model is adopted that captures the essential semantics of time varying 

relations. Our work pursues this theme. The model presented in this chapter possesses the 

following characteristics. 

1) The model is grouped and supports both homogeneity and heterogeneity in the time 

dimension 

A temporal tuple is temporally homogenous if the lifespans of all attribute values within it 

are identical. A temporal relation is said to be temporally homogeneous if its tuples are 

temporally homogeneous. A temporal database is said to be temporally homogeneous if its 

relations are temporally homogenous. Models that employ tuple timestarnping rather than 

attribute-value timestarnping are necessarily temporally homogeneous as only temporally 

homogeneous relations are possible. On the other hand, those models that employ attribute- 

value timestamping rather than tuple timestamping can be temporally heterogeneous. The 

motivation for homogeneity arises from the fact that no time-slices of a homogeneous 

relation produce nulls. Support of homogeneity sometimes could create duplicate attribute 

values and is therefore difficult to maintain. In such cases, heterogeneity in the time- 

dimension is important. 

Those models which employ tuple-time-stamping are termed temporally ungrouped whereas 

those models that employ complex attribute values bearing the temporal dimension are 
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termed temporally grouped [Pissinou et al., 1994]. The temporally grouped model is 

commonly accepted to be desirable [Segev, Jensen and Snodgrass, 1995], as it will lead to 

grouped completeness of algebra, that can support the rather strong notion of the "history of 

attribute" (this will be discussed in the next chapter). 

A number of reports defining a temporal relational data model, including Clifford [1993], 

Tansel [1993; 1997], Gadia et al. [1993], Ginsburg [1993] and Kafer et al. [1990], etc., 

assume homogeneity in the time-dimension. 

Most object-oriented databases and post-relational products include constructors for complex 

types like lists and arrays that allow time-stamped entity to be represented as a "blob", both 

homogeneity and heterogeneity in time-dimension can be supported. But the "blob" is 

managed by the system, the interpretation is made solely by the application progam. A 

temporal object data model with the heterogeneity in time dimension is also a grouped 

model [Pissmou et al., 1994]. 

The data model defined in this dissertation is an object-oriented data model. Every real world 

entity can be represented as an object. In the database schema, an object can represent either 

a relation (class) tuple or an attribute value. The data model is also a temporal data model. 

An object can be either time-varying or constant. Therefore our data model is temporally 

grouped. Heterogeneity in the time dimension can be supported. Of course, homogeneity in 

the time-dimension can be supported when it is necessary, but at the cost of maintaining a 

uniform temporal set and lifespan, as it is special case of heterogeneity. 

2) The model uses epochs that represent a transformed time-space 

We borrowed the term epoch from the signal processing discipline to represent the time 

when an entity changes its value. The ordered epoch numbers constitute a transformed time 

space (as shown in Figure 4.10). From the query processing point of view, at each epoch, a 

new value of the entity will be created, which of course requires space to store the new value. 

Also, time is required to retrieve the value of the entity from the storage. Epochs, then, serve 
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as a convenient token for the analysis of the query processing cost (this will be further 

discussed in later chapters). 

kntity Value 

\ 

\ 

\ 

\ 

" 

\ 

C 

Entity'Value 

Salary: Step-wise constant 

t 

Non-linear mapping 

Figure 4.10 Illusion of mapping on time-spaces 

3) The model possesses an extensible structure 

The object-oriented data model presented in this chapter is adapted from the unified model 

of OODB and RDB to which a time dimension has been added. The database schema is in 

the form of relational-like cubes but with aggregation and inheritance hierarchies. So the 

temporal object-oriented database is a superset of object-oriented database that in turn is a 

superset of relational database. This provides a basis to extend the well proven query 

processing techniques of RDBs and TDBs to process temporal object queries. 

4.6 Summary 

In this chapter, a temporal object data model has been presented, which has been adapted 

from the unified model of OODB and RDB in UniSQLJX to which a time dimension has 

Epoch as transformed time space tl 
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been added to form temporal relational-like cubes and the aggregation and inheritance 

hierarchies are also retained. 

Compared to other temporal relational or object-oriented data models, the temporal object 

data model defined here possesses following distinguishable characteristics: 

0 It is a temporally grouped model and supports both homogeneity and heterogeneity in 

the time dimension; 

0 It uses epochs that represents a transformed time space and can serve as a convenient 

token for the cost analysis of the query processing. 

0 The temporal object-oriented database represents a hierarchical structure with three types 

of associations: aggregation, inheritance and time-reference. 

The temporal object-oriented data model determines access primitives and provides a basis 

for query processing, which will be discussed from the next chapter. 

Case studies were also provided to demonstrate the applicability of the model to real world 

problems. 



Chapter 5 

An Algebra for the Temporal Object Data Model 

This chapter develops an algebra for the temporal object data model described in the 

previous chapter. As the temporal object data model is adaptedfrom the unified model of 

RDB and OODB in UniSQLIX to form temporal relational-like cubes but with aggregation 

and inheritance hierarchies, a query algebra that provides operations for data accessing 

and manipulation through the associations of aggregation, inheritance and time-reference, 

reflects the spirit of both temporal relational algebra and object algebra. Data query 

examples from the Wood Panel Deformation Measurement Database illustrate algebraic 

operations, and the properties of the algebra are outlined. 

5.1 Introduction 

From the algebra point of view, a temporal OODB defined by the data model presented in 

the previous chapter can be viewed as a collection of temporal objects, grouped together in 

classes (relations) and interrelated through associations of aggregation, generalisation and 

time-reference. Each temporal relation can be viewed as a 3-dimensional cube. If the existing 

structure of "inheritance" hierarchy and "aggregation" hierarchy between classes is not 

considered, the structure of queries is essentially the same in both the RDB and OODB 

paradigm. The only effect that the temporal dimension has is to transform some tables (or 

even only some attributes) to cubes. There already are some reports on algebraic operations 

in temporal relational databases [Tansel, 1993; Clifford, 1993; Gadia, 1988; Mckenzie and 

. The work presented in this chapter has been published in the paper 6 listed in Author's Publications. 
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Snodgrass, 1991; Tansel and Tin, 1998]. We therefore have a common base to expand 
(temporal) relational algebra to temporal object algebra. 

TM 

seled 
I 

Value 

AvjibLte 

rr. - IUD, 

dioe 

Figure 5.1 Illustration of basic algebra. Time, Attribute and Value are three 
dimensions of a relation. Select, Project and Time-slice are basic operations on 
these three dimensions. 

Basically, the standard relational algebra provides a unary operator for each of its two 

dimensions: select for the value dimension and project for the attribute dimension, as shown 
in Figure 5.1. Temporal relational algebra introduces the operation of time-slice that 

operates on the time dimension. An object algebra allows the predicate of the select 

operation on a contiguous sequence of attributes along a branch of the class-aggregation 

hierarchy (which is usually expressed by a path--this concept will be discussed later in this 

chapter). The algebra which we are goMg to define for the model will extend the (temporal) 

relational and object algebra to address the features of the aggregation hierarchy and time 

dimension. The algebra is defined against a set of objects (which could be regarded as 

equivalent to class/relation). This concept is preserved so that it can readily take advantage of 
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inheritance and enable applications to automatically reach any existing objects of interest, 

without requiring explicit references to those objects [Yu and Osbom, 1991]ý. 

The remainder of this chapter is organised as follows. Section 2 specifies and classifies the 

predicates that appear in algebraic operation. Section 3 specifies the properties of identity and 

equality. A definition of algebraic operations is given in Section 4. Query examples and a 
brief evaluation are provided in Section 5. Properties of the algebra are presented in Section 

6 and Section 7 gives a summary. Through out this chapter, examples are taken from the 

Wood Panel Deformation Measurement Database presented in Chapter 4. 

5.2 Predicates 

Predicates play an essential role in query evaluation and processing in any database. There 

are basically three types of predicate in our temporal object-oriented database: a simple 

predicate, a nested predicate and a temporal predicate. 

A simple predicate is of the form <attribute-name operator value>. The value may be an 

instance of a primitive class (type) (e. g., string, integer, etc. ) or an object identifier (011)) of 

the instance of some class. The latter is important because it may be used for testing the 

object equality, that is, equality of referenced objects. The operator may be a scalar 

comparison operator (=, <, >, etc. ) or a set comparison (E-=, c, c, set-equality, etc. ). Examples 

of simple predicates are: Panel#=3, Reinforcement=001 where 001 represents the OID of an 

object in class SUPPORT. 

A nested predicate is a predicate on a contiguous sequence of attributes along a branch of the 

class-aggregation hierarchy of a class. Path-expressions [Bertino and Martino, 1993] are 

defined to express a nested predicate. 

' In the object-oriented methodology, the subclass will automatically take (inherit) all attributes and 
methods defined to its super-class, apart from its own attributes. So there is generally no need to define 
inheritance-like operators in a query algebra. 
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Definition Path expression 

Given an aggregation hierarchy H, a path P is defined as 

CI. Al. A2 .... A, (n>]) 

where 

C, is the class in H,, 

A, is an attribute of class CI; 

Ai is an attribute of a class Ci in H, such that Ci is the domain of the attribute Ai-I of 

class Ci-1, (I <i! ýn). 

Path expressions can be compared using the comparators =, #, ý!, !! ý, <, >, etc. Since path 

expressions represent sets, these comparators may have to be qualified with the use of 

some or all. Path-comparisons can be combined with Boolean connectives and, or, not. 

Path expressions can also be compared using standard set-comparators contains, 

containsEq, subset, subsetEq, etc. For example, WOODPANEL. Reinforcement. Fonn is a 

path, and WOODPANEL. Reinforcement. Fonn = "lattice " is a nested predicate. 

A temporal predicate is a predicate referring to a temporal set in the time dimension. There 

are two types of temporal predicates: a simple temporal predicate and a nested temporal 

predicate. A simple temporal predicate can be expressed as <temporal-set operator value>. 

The operator could be <, :! ý =, >, ý!, and the combination of these, representing the semantics 

of time such as before, until, while, after, since, during, etc. For example, '<' in t<4 retains 

the semantic of before, representing To=[1,2,3] if t starts from 1. t=5 retains the semantic of 

while time is 5, and 5! ýt:! ý10, represents an interval T=[5,10] that applies to during. A nested 

temporal predicate can be expressed by integrating the path-expression into a simple 

temporal predicate. If o is an attribute name or a path-expression or a predicate, we use the 

function when denoted as m(o), to express the temporal domain of o (we wiH give a formal 

definition later). For example, we use the following expression to refer to time point(s), at 
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which the image's humidity level is, say, 30%rh: m(WOODPANEL. Image. Humidity 

30%rh)=4 ( say, to=4 ). In this case, the only time point at which it occurs is to=4. 

The temporal predicate can also be embedded into a path expression and we may use an 

enhanced path expression to refer to the value component of a temporal object along a 
branch of the class-aggregation hierarchy whose formal definition is given below: 

Definition Enhanced path expression 

Given an aggregation hierarchy H, an enhanced path P is defined as a path expression 

with the addition of an explicit time-reference: 

CI. Al. A2 .... AnTM (n>]) 

where Tm denotes the path involving the time-reference, such as CIA, .... A, [tr= Tj 

CIA, .... A, [to<t<tll, etc. Obviously, the enhanced path expresses the nested predicate 

with an explicit time-reference. In other words, the enhanced path can express a 

predicate that refers to both the aggregation-hierarchy and the time-dimension. 

Therefore a path expression in a general OODB is a special case of the enhanced path 

expression and the path comparisons that are generally used in OODBs can also be applied 

to the enhanced path expression. Taking the above example, an enhanced path expression, 

which refers to an image's humidity level=30 % rh is WOODPANEL. Image. Humidity(to=4) 

= 30 % rh. Here the predicate specifies both Humidity value and time point value. More 

generally, we use oITI to denote the restriction of o on the temporal set TI. The examples can 

be given as: 

WOODPANEL. Image. HumidityltO=4 = 30%rh, and 

WOODPANEL. Image. Humidity lt=4,5,6 = f30 % rh, 40% rh, 50% rhj. 

A method may be used for any part of a predicate, that is, as the attribute-name, the operator, 

or the value. We could think q w(O) and o IT, as methods as well. ?f 
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If P, and P2 are predicates, then so are PIvP2, PIAP2, and -, PI. These constitute complex 
predicates. 

5.3 Identity and Equality 

Identity is a property of an object that distinguishes the object from all others. It is important 

to distinguish between the following different types of equality. 

1) Identity equality of objects: two objects o and o' are identity equal if they are the 

same object (i. e., they have the same OID), denoted as "==". That is, o==o' if 

OID(o)=OID(o') 

2) Value equality of objects: two temporal objects are equal if the values and the 

temporal sets of all their attributes are recursively equal, denoted by "=". That is, two 

temporal objects o and o' are value equal if o. T(A d=o'. T(A i) and om(A i)--o'x(A i) 
(or o. lj( A i)(t) = o'. u(Ai)(t) at every t). The term value equality is analogous to the 

snapshot equivalent/weekly equivalent in temporal RDBs that states that two tuples 

are snapshot equivalent or weekly equivalent if the snapshots of the tuples at all 

times are identical. 

Two identical objects are also equal whereas the reverse is not true. For example, the 

humidity attribute of panel#I and panel#2 may take the same value set and temporal set, 

therefore they are value identical. Of course they are not identical objects as they refer to 

different objects and have different OID. 

Shallow-equality: two objects are shallow-equal if their attributes share the same 

value and the same references, and their corresponding temporal sets are equal 

although they are not identical, denoted as 

Identity is important for a number of reasons. Duplication in set membership is based on 

object identity, i. e., a set will not contain two objects with the same identifier. In addition, 
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there are many cases in the algebra in which implicit comparisons are made using identity 
equality. There are also some cases when the comparison is made by value equality. Finally, 

shallow equality is required for the join operation. The use of identity will be illustrated in 
the following sections. 

5.4 Closure 

Before going to the definition of algebraic operations, let us recall the closure property 
in relational algebra. 

The relational closure property states that the output from each relational operation is 

another relation [Date, 1996]. Because the output of any relation is the same kind of 
objects as the input (they are all relations), so the output from one operation can become 
input to another. It is possible to write nested expressions, i. e., expressions in which the 

operands are themselves represented by expressions, instead of just by relation names. 
Although the temporal object data model is more complex than the relational data 

model, it is essentially a relation but with three additional associations: aggregation, 

inheritance and time-reference. If we could reserve the closure property in defining basic 

algebra, then it would be easy to represent a query referring to those associations. As we 

shall see, the algebra presented in this thesis retains the closure property. 

5.5 Query Algebra 

5.5.1 Temporal Unary Set Operations 

When the value of temporal object changes with time, even if the record of time-varying 

values is physically fragmented, it represents the same object. Records of time-varying 

objects may be amended due to availability of late measurement or better estimation for 

null or unreliable data. Two special temporal unary set operations are of interest here: 

Time-insert and Time-delete. 
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Given two fragmented subsets of a temporal object set 0: O(TI) and O(T2), we define 

O(TI) Time-insert O(T2)= (ol oc= 0] where L(O)=TuT2 

O(TI) Time-delete O(T2) [o I oc= 0] where L(O)=TI-T2 

where L represents the life-span of 0 after Time-insert or Time-delete. T, and T2 are 

temporal sets (for example, intervals) where two fragmented sub sets exist. An 

illustration of these operations is given in Figure 5.2. 

Operated 
sets 

Time 
domain 
situations 

Resulting 
sets 

t 
III 

tis tie I- t2s t2e 

t 
III 

T, uT2 

TI-T2 

O(T1) O(T2) 

TI=[tls, t1,1 

n 
T2=[t2s7t 

el 

t 
II I 

tls t2s tIe t2e 

t 

T, uT2 

TI-T2 

t 
IIII 

tis tle t2s t2e 

T, uT2 

TI-T2 

O(TI) Time-insert O(T2) 

Resulting 
sets 

O(TI) Time-delete O(T2) 

Figure 5.2 Ifflustration of temporal unary set operations. The first row represents two 

temporal sets. Below this row there are three cases of TuT2 and TI-T2, resulting in 

three cases of Time-insert and Time-delete. 
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For Time-insert, when the temporal sets of T, and T2are overlapped over the temporal set 

T3, i. e., T3(--Tl and T3gT2, the value set at T3is decided by the following rules: 

Suppose: 

OV(ti)(=- O(T3 

OVI(ti)E=- O(TI 

OV2(ti)C O(T2), 

and ti c T3, 

then: 

ov(ti)=( ovl(ti)+ ov2(ti) )V2, if no null value exists;. 
ov(ti )= ov, (ti), if ov2(ti) is null, - 
OV(0=0V2(ti)ý if ovi(ti) is null. 

5.5.2 Binary Set Operations 

Traditional binary set operations are union, difference and intersection. In mathematics, a set 

operation, for example, union, is the set of all elements belonging to either or both of the 

original sets. A relation is a set, very loosely speaking, a set of tuples. It is therefore possible 

to construct the union of two relations. The possible result could be a set consisting of all 

tuples appearing in either or both of original relations. This result, although, is a set, it is not 

a relation as relations can not contain a mixture of different kinds of tuples, they must be 

tuple-homogeneous. However, we do want the result to be a relation as we want to reserve 

the closure property. Therefore, the union in our algebra does not conform completely to the 

generally accepted notation of mathematical union, rather, it is a special forin. of union, in 

which the two input relations should be what we might loosely call "the same shape" or 

46same type", i. e., both must have the same attributes and methods. If the two relations are the 

same shape in this sense, then we can perform a union, and the result will also be a relation 

of the same shape. In other words, the closure property will be preserved. The term type- 

compatibility is often used to refer to "same shape" concept [Date, 19961. Here we define 

this concept in terms of our temporal object oriented model. 
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Definition Type-compatibility 

Two relations are type-compatible if 

1) they have the same set of attribute names and method names; 

2) the corresponding attributes ( i. e., attributes with the same name in the two relations) 

are defined on the same domain. 

Now we are ready to define set operators as below and illustration of set operations is given 

in Figure 5.3. 

Two type-compatible temporal object sets 01 and02 

Operated sets 

L2 

01 02 

Resulting sets 
in 

OlUO2 01-02 02-01 01(')02 

Figure 5.3 Illustration of set operations 
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If 01,02are type-compatible temporal object sets, then the sets operators Union, Intersection 

and Difference, are identical to Codd! s corresponding relational operators [Codd, 1971; 1972]: 

Union 03=OluO2=(o lo 
EO, vo eO2j where L(03)=L(OduL(02) 

Difference 03=01-02=(o lo 
cOl A--o eO2) where L(03)=L(Od-L(02) 

Intmecdon 03=OjnO2=fo1oeOjAoeO2) where L(03) =L(OdnL(O) 

As in relational algebra, the duplication in the resulting set is eliminated following the 

temporal unary set operation rules. 

5.5.3 Special Operations 

Select up 0 selects the elements "o " of set 0 such as the predicate P(o, t) holds. 

OPO = 
1010 E=- 0A P(O, t)) 

Selected oýjects 
IIS 

III 

!! t' 
_________ Ii 

' ii I' 

\ ///\ . 

(a) (b) 

Figure 5.4 Mustration of operator select 

Select is a hybrid operation, reducing a class (relation) in both the value and the temporal 

dimension as shown in Figure 5.4. If the predicate does not refer to time, it then merely 
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reduces the class along the value dimension as shown in Figure 5.4 (b). Note that although 

the predicate P(6, t) may involve the association of aggregation hierarchy, the query target 

class is only at 0. For example, for upWOODPAAEL, the predicate P may involve 

aggregation class RANALYEST or SUPPORT, but the target of query is WOODPAAEL, i. e., 

the query output only gives the objects of this class and the values of attribute Reinforcement 

or Panelfest are OlDs instead of objects of relation PANMEST or SUPPORT 

Map g. -Ol -> 02. For the type of objects in 01 (i. e., oE=- 01), g retums an object of type of 02 

(i. e., g(o)E=- 
02). 

g- 01 --> 02 = (g(O) 10 E=- 01) 

Map provides a capability of mapping between different types. For example, the column 

PanelTest of the relation WOODPAAEL only gives the value of OID of objects in the relation 

PAAELTEST, if we want to return the objects of PANALTEST, Map g. -PanelTesf 

PAAEUEST will do the work. 

Project ; r<A,,..., 4, >O extends Map by allowing the application of many functions to an 

- 1-. object, thus supporting the creation and maintenance of selected relationships between 

- 1-. objects. 

Selected objects 

Figure 5.5 Illustration of operator project 
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7r Al".., At >0= ý< Ai: gi(o)�... Ai: gi(o) > lo cz 

where 0 is of type set [T], the Ai 's are unique attribute names, and each gi takes a single 
input of type T and returns an object of type T. g,... gi are similar to g in map . If gi = 1, it 

returns OID of the domain ob ect of Ai unless Ai is atomic. We retain gi =1 (unless it is j 

specified not) so that we keep our project operator on a set of objects (relation) like the 

relational project. Therefore the project operator, when applied to class (relation) 0, removes 
from 0 all but a specified set of attributes. As such it reduces a relation along the attribute 
dimension. For example, Projecor<panelTest> WOODPAAEL will return OlDs of objects of 

the relation PAAEUEST Project 7r<Humidyty>PAAEL7EST will return a sequence of 

hun-fidity values with timestamps. 

7"Ime-slice ýL, 1(0) defines the relation (set of objects) containing those objects derived by 

restricting each object in the operand relation to those times specified by L, 

4, (0) = 
ýJVt 

E: -: (Li r-) L(o))[o(t) e 0]) 

Selected objects 

1ý1 

Figure 5.6 Illustration of operator time-slice 

Obviously the lifespan of ýL, (Q) is Lr-L(Q). So the time-slice reduces the relation solely 

along the temporal dimension. If L, equals to a time point t,, i. e., T, =t,, then ýJO) 
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represents the event o(td happened at t,. For example, ýL] 
=[20,21] (Humidity) will return a set of 

attribute values of humidity, for each object there are two values: one at time 20, another at 
time 2 1. 

Offset KO, 1) (-Lslffls77 a snapshot relation at tj by the number of positions specified by the 

offset. 

, V(O(ti), 1) = 0(ti + 1) 

For example, OffSet ALI 
=[20,21](Humidity), 

20) will return a set of attribute values of humidity, 

for each object there are two values: one at time 40 (=20+20), another at time 41(=21+20). 

-1+1 
t, 

Figure 5.7 Elustration of operator offset 

nenw(O) defines an operator that maps a relation (set of objects) 0 to its temporal set: 

ZU(O) =: 

The result of when is a time value; it can serve as a parameter or a predicate to those 

operators, Eke time-slice, etc. An example has been given in Section 5.2, and Figure 5.8 

Mustrates the operation effect. 
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Figure 5.8 Illustration of operator when 

Operated 
relations 

01 (Ai) 02 (A2) 

Join: 

Resulting 
relation 

03 (A,, AD 

Figure 5.9 Elustration of operatorjoin 

JOin 01 
ý> "I P<A ol, Ao2 > 

02 is an explicit join operator used to create relationships between 

objects from two collections in the databases. Unlike relational joins, in which the domains 

of the join attributes must be identical, we require the join attribute to only be compatible 

[Kim, 1989]. Two attributes Ai and Aj are compatible, if the value domain and the temporal 

domain of Ai are identical to those of Aj (or a superclass or subclass of the domain of Aj). 

tstart tend 
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Shaflow-equality could express this compatibility. Although join attributes are compatible, 
they have different OIUDs. So the join we defined is essentially a 0-join as in relational 
algebra. 

01 J>'IP<A ol, Ao2 > 02=[<A, l: ol, Ao2: 02> 
1 

01 Eý- 01 A 02 Ei 02AP(O1,02)J 

Unned(ýtKQ)- Suppose a relation (class) 01 has the scheme <&..., An > -",: <01(1), 
-, 

ol(n)> and the schema of ol(k) (i. e., <mAk>) be <Ak- I) 
.... Ak-M>, T! ýk<-n, then UnnestT is 

defined as 

02 ýtKOI 

-": 102102(0ý01(i)for I<i:! ýk-]A 02(i)=: Ol(i+])for k<-i-<n-I 

A 02(i)=Ak(i-n+])for n! ýi! <an+m-1j 

NestT(uyO). Let the relation (class) 01 have the scheme <&..., A, > =<oj(I), ... ' ol(n)>, 

y=[ij, i2, 
..., 

Q is a subset of [1,2, ..., nj, and x=(I, 2, ..., n-yj. NestT has the scheme of <BJ, 

..., 
Bn-k+J > =<02(l), --., 02(n-k+])>, where o2(j)=oj(r) for Pýjý<ý: In-k, rex, and02(n-k+]) has 

the scheme relation: <Bn-k+]. ], 
---, Bn-k+]. k>. Similar to the unnest operator, the nested 

component is placed at the last column of uyO. So NestT is defined as 

02=1)y 01==1021 02(j)=ol(r)for Pýj-<n-k, rE=- x 

A o2(n-k+])=[z 
130 (OC= 01 A o(r)=ol(r)for rE: xA z(j)=o(ij)for P, ý' : J:! ýk)j j 

The effects of unnesiTand nestý' are illustrated in Figure 5.10. They provide different ways 

(nest or unnest) to represent a temporal relation. Taking an extreme example, the Humidity 

value is a temporal object, if it is represented in a nest format, it is one element object; if it 

takes unnested format, it is n (n=l (Humidity) ) elements object. UnnestTand nestTare not 

really necessary in temporal object-oriented database systems, as OODB can always 

represent a 'blob' object. The reservation of these two operators is just for the completeness 

of algebraic definitions as most temporal relational algebra retains these (e. g., [Clifford et al., 

19931). 
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UnnestT 

Nest'r 

Figure 5.10 Elustration of operators unnestT and nestT 

Besides the above database operators, we can easily define some aggregate operators. 

Suppose Agg-func is one of functions Avg, Min, Max, and Sum, then Agg-juncTI(O) returns 

the function value over the specified period T,. Null records in tuples are ignored if there is at 

least one non-null record otherwise the output is a null record. 

5.6 Query Examples 

In this section the applicability of our algebra to more complex data queries is illustrated 

through following query examples. 

Quely I "Find all the wood panels whose type is 'pine' and was reinforced in form of 'lattice' 

by 'oak, glued' ". This query did not involve any temporal aspect. We can treat it like a 

constant object query while its lifespan implies the same as the lifespan of temporal objects. 

We express this query in the following algebra: 

0 wl=(y p, WOODPANEL 

to I oc WOODPANEL A WOODPANEL. WoodType=' ine' p 

AWOODPANEL. Reinforcement. Fonn ='lattice' 
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AWOODPANEL. Reinforcement. Material='oak, glued) 

For the attributes of Reinforcement and PanelTest, this query only gives the OlDs instead of 

all the SUPPORT objects and PANELTEST objects (with sequential images). 

QueKy 2 "Decide when the humidity level of above selected wood panel is 30% rh". The 

algebra is as 

Ot =m( oe 0 wll\o. PanelTest. <Humidity., u> =30 % rh) 

Quely 3 "Select the wood panel's PANELTEST whose wood type is'pine'and reinforced in 

form of 'lattice' by 'oak, glued', while its humidity level is 30 % rh and grabbed by Camera 

1 ". We have the following algebra: 

0 W2=7u<WOODPANEL. PanelTest> ((T P, WOODPANEL) 

= 71< WOODPANEL. PanelTest> Owl 

0 
W3 =Map: 0 W2->to 

I 
oc TESD] 

0W4 =a p2(0w3)=(oloE2TESTI A o. <Humidity. u>=30%rhj 

Or: 
0 

W4 = cy p2 
(0 

w3)=fo 
1 

oe- TESTIA te 0,1 

QueKy 4 "Find the humidity level values of above selected TEST] which appeared during 

time Ot". This query involves the temporal reasoning. We apply the following algebra 

operators to support this reasoning. 

0 
W5=TC <TESTI. Humidity> (0 w3) 

0 
W6 = (yp3 (0 

w5)=fo 
1 oEHumidity A te 0, j 
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Or: 
0 

"": TC <TESTI. Humidity>(O W4) W6' 

Query 5 "Get the average humidity level of above selected panel". The corresponding 

algebraic expression is : 

Agg-juncT, 0 W6=AvgT, =Q, 
0 w6 

5.7 Properties of Algebra 

The algebra defined possesses the following properties: 

(1) Closure 

The closure property states that output from one operation can become input to another 
[Date, 1995]. Our algebra imposes operators on relations (sets of objects) (except when M(o), 

we already treat it as a method). The output is also a relation. In this sense our algebra is 

closed. 

Compared with other object algebra definitions, such as Shaw and Zdonik [1990], Straube 

and Ozsu [1990], Cluet and Delobel [1994], and AlhaJ and Arkun [19931, the project 

operator integrates map operator, the output is a class hierarchy rooted at target class and is 

therefore not a relation (class) any more. The retention of the closure property in our algebra 

is through the reservation of gi =I in project operator so that the output of project is also a 

relation. The closure property is important when a temporal object query processor is to 

exploit the query processing and optimization techniques that are developed and extended 

from RDBs techniques. 

Note that over two dozen proposals have been made for an object algebra [Ozsu and 

Blakeley, 1995], no algebra so far defined is based on any unified model of RDBs and 

OODBs, although it has been claimed that an object algebra should extend relational algebra 
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consistently [Yu and Osborn, 199 1; Shaw and Zdonik, 1990]. Furthen-nore, none of these 

object algebras consider the temporal dimension. Our temporal object algebra reflects the 

spirit of object algebra [Shaw and Zdonik, 1990; Straube and Ozsu, 1990; Cluet and Delobel, 

1994; AlhaJ and Arkun, 19931, but in addition to supporting access through aggregation and 

inheritance associations, it also accesses objects through the time dimension. These access 

mechanisms are embodied in the enhanced nested predicates and (nested) temporal 

predicates. 

(2) Reducibility 

The algebra defined possesses the property of reducibility. By the reducibility, we mean 

that, when the time dimension is not taken into account the temporal object algebra will 

be reduced to the object algebra and when the object-oriented features of aggregation 

and inheritance are not taken into consideration, the algebra will be reduced to the 

relational algebra. 

The reducibility of algebra provides good foundation to build up a temporal object 

query optimizer that is extended from object optirMzer and relation optiryuizer, and to 

extend the existing query processing strategy and techniques to process temporal object 

queries, which will be discussed in more detail in the later chapters. 

(3) Grouped completeness 

As mentioned in previous chapters, temporal data models are classified into two categories: 

temporally ungrouped and temporally grouped. Models which employ tuple-time-stamping 

are termed temporally ungrouped whereas models that employ complex attribute values 

bearing the temporal dimension are termed temporally grouped [Pissinou et al., 1994]. 

While the expressive power of ungrouped completeness was generally accepted as a 

desirable property for TSQL, there were considerable concerns on grouped complete 

[Pissinou et al., 1994]. By grouped completeness, we mean that the model supports the 

rather strong notion of the "history of an attribute". For example, one can talk about "Panel 

#1's humidity history" as a single object, and ask to see it, or define constraints over it, etc. In 
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temporal RDBs, as stated in [Clifford et al., 1993; Pissinou et al., 1994], there is no algebra 

that has been shown to be grouped complete. In our temporal object data model, every object 
is associated with an OID. If every OID is maintained in a database (in some data models, 

primitive entities such as integers, or characters, are represented by values and have no OID 

associated with; our temporal object is represented by a time sequence, which is not a 

primitive data), then our algebra will be grouped complete. 

5.8 Summary 

In this chapter, we have defined an algebra, i. e., a collection of operations, for our temporal 

object data model. The adaptation of the unified model of RDB and OODB by the addition 

of a time dimension to form the relational-like cubes that allow aggregation and inheritance 

associations, provides a basis to develop the temporal object algebra that extends a 

(temporal) relational and object algebra. The temporal object algebra defined retains the 

closure property of relational algebra. It also possesses the property of reducibility. 

Furthermore, the grouped completeness of the algebra can also be maintained. 

The basic algebraic operators are summarised in Table 5.1. 

The fundamental intent of the algebra is to allow the writing of expression representing user's 

queries. In general, algebraic expressions serve as a high-level and symbolic representation 

of user's intent. Because they are high-level and symbolic, they can be manipulated 

according to a variety of high-level, symbolic transformation rules. The algebra can then 

serve as a convenient basis for query processing and optimization. This will be discussed in 

the next chapters. 
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Table 5.1 Summary of algebraic operators 
Operations Definition Notes 

O(TI)Time-insert O(T2) O3=f0 1 0C= 0) O(Tl)c: O, O(T 2)g 0 

where L(03)=T1ýJ1`2 

O(f I)Time-delete O(T2) 03=(O 1 OE= 01 OUDE-0, O(T 2)9: 0 

where L(03)=Tl -T2 

Difference 01-02 03--01--02=(O 1 C`Eý 01 A-, OE 02) Oi is a collection. 

where L(O3)=L(O1)-L(O2) L(Oi ) is the life-span of Oi. 

Union 01ý_ý 03--Olk-)02=10 I 0E=_ O1v0E 02) 

where L(03)=L(01)uL(O2) 

Intersection O1r)O2 03=01(-ý02=(C` 1 0E=_ 01 AOc 021 

where L(O3)=L(O1)r-)L(O2) 

Select up 0 OP 0--10 10E0 
AP(Ot)) cip 0 selects the elements "o" of set 0 such as 

the predicate P(o, t) holds. 

Map g0l-402 9: O1->O2=fg(0) 1 OE 01) For the type of objects in 01 (i. e., oE=- 01), g 

returns an object of type of 02 i. e., g(o)E=- 02). 

Project TE<Al,..., Ai>O 7E<Al,..., Ai> 0 If gi=1 it returns the OID of the domain object 

=(<Al: gl (o),..., Ai: gi(o)> I oc 0) of Ai unless Ai is atorrýic. We retain gi= I so that 

the project on a set of objects (relation) likes the 

relational project. 

join 01>-, 1p<A. i, Ao2> 02=(<Ao1: o1, Ao2: o2> Essentially a 0-join as in relational algebra. 
01 >. I p< Aoi, Ao2 > 02 

1o1(=-01Ao2e02AP(o1,02) ) 

Time-slice §Tl(O) §Tl(O)=Jo I Vtc (Tlr-)L(o)) [o(t)E 01) The fife-span of §Tl (0) is Tl rLýo). Time-slice 

purely reduces the relation along the temporal 

dimension. If Tl equals to a time point tl, i. e., 

Tl=tl, then §-rl(O) represents an event o(tl) 

happened at tl. 

Offset ý (0,1) (041), I)= O(t1+l) "Shifts" a snapshot relation at tj by the number 

of positions specified by the offset 1. 

When M(O) M(O)=L(O) Maps a set of objects 0 to its temporal set. 

Aggregation Agg-func TI(O), where 

Agg-func Tl(O) func--(Avg, Min, Max, Sum, etc. ) Returns the function value over TI. 



Chapter 6 

A Uniform Framework 
a for Processing Temporal Object Queries* 

This chapter presents a uniform framework for processing temporal queries. Within the 

uniform framework a set of transformation rules are specifledfor the algebraic optimization. 
Based on these transformation rules, a decomposition strategy is proposed for evaluating 

the queries that involve a path with time-reference. 

6.1 Introduction 

Our temporal data model, as shown in Figure 6.1, extends the unified model of RDB 

and OODB by adding a time-dimension, whilst the unified model itself refines the 

relational model by incorporating three important object-oriented features: nested 

relation, inheritance and encapsulation. The algebra of the model possesses the property of 

reducibility. That is, when the time-dimension is not taken into account, the algebra is 

reduced to the ob ect algebra and when object-oriented features are not taken into j 

consideration, it is reduced to the relational algebra. Further, the algebra is closed, so that the 

output of one operation can be the input of another. These features provide us with a basis 

for using existing relational and object-oriented query processing techniques to process 

temporal object queries. In this chapter we explore an extensible approach to processing 

temporal queries that exploits the widely adopted existing object query processing 

techniques and the well established relational query processing techniques. In particular, 

we will identify a set of query transformation rules for algebraic optimization within this 

uniform query processing framework. With a view to addressing the central issue of 

path optimization in object query processing when time is present, a decomposition 

* The work in this chapter has been presented in the paper 3 and 4 listed in Author's Publications. 
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strategy is proposed to process the temporal query involves a path with time-reference, 

based on the identified transformation rules. The detail of processing the decomposed 

query components will be discussed in the next chapter. 

The rest of chapter is organised as follows. The layered structure of query optimizer is 

presented in Section 6.2. Query transformation is discussed in Section 6.3. A 

decomposition strategy for query evaluation is described in Section 6.4 and Section 6.5 

provides a summary of the chapter. 

RDB 

10 0DB: 
F niSQL 

(a) (b) 

(C) 

Figure 6.1 Data model extensibility: 
(a) UniSQL is extended from RDB model; 
(b) Most TDBs are in the context of RDB; 
(c) Adding a time-dimension into UniSQL forms a TOODB model 
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6.2 Optimizer Layering 

Our optimizer can be seen to be a layered structure as shown in Figure 6.2, where the 

temporal optimizer is built on the top of an object optimizer that in turn, is founded on a 

relational optimizer. When the time dimension does not exist, the object optimizer plays 

the key role. As the object optimizer is extended from the relational optimizer, when the 

object-oriented features are removed from the data model, the relational optimizer 

comes into play. The separation of query processor functionality in this way makes it 

easy to exploit existing query processing techniques at the appropriate layer during both 

algebraic and non-algebraic optimization stages as can be seen from the discussion 

hereafter. In summary, temporal queries can be processed and optimized within the 

existing object-oriented query processing framework through a smooth extension of 

existing query processing techniques. 

I* 

Tenpaal cptimizer 
Oject Tfinizer 
Relational cpfiniizer 

Figure 6.2 Optimizer layering: 

separation of query processing functionality 
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6.3 Query Transformations 

Query optimization concerns the problem of selecting an efficient query plan for a query 
from the set of all its possible query plans. The size of the search space of equivalent 
query plans for a snapshot queryt is determined in part by the algebraic equivalence 

available in the snapshot algebra as each query has a number of equivalent expressions, 

which make up the search space. These expressions are equivalent in terms of the results 
they generate but may be quite different in terms of their costs. The query optimizer 

modifies the query expressions, by means of algebraic transformation rules, in an 

attempt to obtain one that generates the same result with the lowest possible cost. 
Therefore the algebraic manipulation for query optimization is the transformation of one 

query into an equivalent query that might be more efficient to evaluate. 

The algebraic manipulation for query optimization in a temporal object-oriented 
database follows the same principle as above, but the time dimension needs to be taken 

into consideration where applicable. In principle, as the temporal object is represented 

as a time sequence that can be thought of as the equivalence of a 'blob' object, the 

transformation rules in the snapshot object algebraic optimization can be carried over. 

Also, as our temporal algebra is consistently extended from relational algebra, the 

relational algebraic transformation rules can also apply. But, the algebraic optimization 

has to take object-oriented features and the time dimension into account, that results in a 

set of query transformation rules that are not only relation rules. In this section, we 

specify the following transformation rules that can be applied during optimization to 

generate equivalent query expression. Taking into account the object-oriented features, 

and the time dimension, these rules are characterised as relational rules, temporal rules, 

inheritance rules and path transformation rules, and are discussed below. 

t In this thesis, a data model that does not concern the time dimension is referred as a snapshot data model 
and its corresponding database is referred as a snapshot database. A query to such a snapshot database is 
called a snapshot query. Similarly the algebra for a snapshot data model is called a snapshot algebra. 
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6.3.1 Relational Rules 

The following rules are called relational rules as they are derived from well-known 

algebraic optimization techniques in RDBs [Desai, 1990; Ullman, 1989; Jarke and 

Koch, 1984] and can be applied to the situations where the object-oriented features and 

time dimension are not taken into consideration. These rules are based on basic 

algebraic laws of idempotence, commutativity, associativity and distributivity [Desal, 

1990], which have been previously presented in Chapter 3. These basic laws can be 

incorporated in the basic rules discussed below, which can be applied during algebraic 

optimization to generate equivalent query expressions. The effects of the transformation 

rules are either to avoid redundant creation and manipulation of intermediate results, or 

to reduce the size of the intermediate result relations. 

In the following, we suppose PI, ..., Pi ... are predicates, A, & ..., Ai ... are sets of 

attributes, and C1, ..., Ci ... are classes /tables. 

(1) Combine a cascade of selects. 

Cy P1 
(Cy 

P2 
(Cl P2 

(Cy 
PI 

(Cd) P2A PI(CI) (1) 

Rule (1) means that if the predicates P, and P2 are only involved in the attributes of C1, 

they can be evaluated at the same time. 

Example 6.1 Consider the database schema in Figure 4.5, for the query "Get the details 

of WOODPANEL with Panel# =40 where the WoodType is 4pine' ", the algebra can be 

expressed as: 

CF Panel#=40 
((T 

WoodType=pine' (WOODPANEL)) 

which is equivalent to: 
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(y Panel#=40 A WoodType=pine' (WOODPANEL) 

The latter expression can be evaluated by testing for the predicate 

Panel#=40AWoodType='Pine' 

against each tuple of relation WOODPANEL. 

(2) Combine a union of selects. 

Cy PI 
(CI) 

P2 
(CI) 

Plv P2(CI) 

clua P, (C] ) -= C, 

(2-]) 

(2-2) 

Obviously, the right side expressions of equation (2-1) and (2-2) have simplified the left 

side expressions. 

(3) Combine a cascade of project into a single project. 

TC Ai 
( TC Aj 

Cl)-= IC AiC where Ai gAýj 

Example 6.2 Consider the query against the database schema in Figure 4.5: 

7C Panel# 
OC 

Panel#, WoodType (WOODPANEL)) 

This query can be simplified as 

TC Panel# (WOODPANEL) 

avoiding a redundant project. 

(3) 

(4) Commute select and project. 
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Cy P OC A (C))- (4-1) = TC A (CYP (Q) 

and 
TC A (GP (0) 

- CF P (TC A (0) (4-2) 

This rule provides an equivalent expression. Depending on the applicable situation, 

either the project or the select can be performed first. However, if P involved attributes 

Ai cý A, then when commuting project with select we have to use the following 

equivalence: 

RA (C7P (0) --': TC A Cy P 
(TC 

AuAi 
(0) (4-3) 

Or the select has to be performed first. 

(5) Use associative and commutative laws for joins and Cartesian products. 

R><S=-S>. <R (5) 

R >. ýi S >. < T -= R >< (S >-i T) -= (R >-I S) >. < T -= (T >. < S) >. < R 

R *S =- S *R 

R *S *T =- R *(S *T) =- (R *S) *T= (R*T) *S = 

The order of the join and product is very important as it can substantially affect the size 

of the intennediate relations and, therefore, the total cost of generating the result 

re ation. 
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(6) Perform select before ajoin or Cartesian product. 

Consider (yc(R><S). If the attributes involved in the predicates P are in the scheme of 

C, and not in C2, that is, attr(P) c C, and attr(P)o C2, then 

(YP (Cl > "ý C2) (YP(Cd C2 (6-]) 

If the attributes involved in the predicate P are in the scheme of C, but not in C2, i. e., 

attr(P) E=- C2 and attr(P)o Cl, then 

GP (Cl > "; ý C2) Cl > ": ý C7P W2) (6-2) 

If the attributes involved in the predicate P are in the same scheme of C, and C2, i. e., 

attr(P)c C, and attr(P)c C2, then 

CYP (C 
I 

C2) 
-=(YP 

(C 
1) 16-'* `ý CFP (C2) (6-3) 

If P=P 1\P2 and the attributes involved in the predicate P, are from C1, i. e., attr(PI)E 

C1, and the attributes involved in the predicate P2 are from C2, i. e., attr(P2)EE C2, then 

(TP (C 
I 

C2) 
--: (YPI (C 

1) 10* "* GP2 (C2) (6-4) 

lf P=p]Ap2AP3 and the attributes involved in the predicateP2 are only in C1, i. e., 

attr(P2) E=- C, Aattr(P2) 0 C2, the attributes involved in the predicateP3 are only in C2, 

* Note that when we talk about relational rules, it is assumed that the object-oriented and temporal features 
are not taken into account. Otherwise these rules may not apply. For example, if the predicate P involves a 
path, then it may take longer time to evaluate select than join. In this case, rule (6) may not apply. 
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i. e., attr(P3) (=- C2 Aattr(p) 0 CI, and the attributes involved in the predicate P, are in 

C, and C21 then 

CYP (Cl C2) 
- ýCYPI (CYP2(Cd 

Ir"' ̀ ý CFP3 (c2)) (6-4) 

The above equivalencies also apply when the Cartesian product operation is substituted 
for the join. 

It is possible to combine projects with a binary operation that precedes or follows it. 
Only the attributes values specified in the project need to be retained. The remaining 

ones can be eliminated as we evaluate the binary operation. 

Perform a modified project before a join. 

Note that when a project operation is preceded by a join, it is possible to push the 

project down before the join, but the project requires new attributes. This necessitates 

performing the original project after join. However, unless the cardinalities of 

intermediate relations are reduced, which would reduce the cost of the join operation 

and the subsequent size of the joined relation, the usefulness of pushing a project before 

ajoin is questionable. 

A(7CAI(CdIý--: ýTCA2(C2)) 7C A (C I C2) --7r (7) 

where A, = Clr-)(AuC2) and A2= C2n(AuC, ), and Cl, C2 represent the set of attributes 

in these relation schemes. When A =- CuC2-Clr)C2, there is no improvement because 

A, =- C, and A2- = C2- 

(8) Commuting project with a Cartesian product. 
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Consider the expression 'KA (CI *C2). This expression can be replaced by the following 

equivalent one under these conditions: A, is the set of attributes in A that is in the 

scheme of Cl, and A2is the set of attributes in A that is in the scheme of C2. 

IU A 
(C] *C2) : --- TU AI 

(CI) *7U 
A2(c2) 

Commuting project with a union. 

(8) 

Consider the expression TcA(C1uC2). It can be substituted by the equivalent one given 

below provided the relations C, and C2 are compatible. In other words, they are defined 

on similar relation schemes. Dissimilarities in the names of attributes could be handled 

by appropriate renaming. 

TCA(CIUC2) = TC A 
(Cd U7C A 

W2) 

(10) Commute select with a union. 

(9) 

Again, the relations C, and C2must be compatible and any difference in names of the 

attributes could be handled by appropriate renaming. 

CYP(Cl U C2) -"ý ý5P(Cd UCYP(C2) 

(11) Commute select with a difference. 

(10) 

As in rules (9) and (10) above, relations C, and C2must be compatible and renaming 

would resolve any differences in the names of the attributes. 

(TP(Cl-c2) - (YP(CI) -(YP(C2) 
(11) 



Chapter 6A Uniform Framework for Processing Temporal Object Queries 136 

We could replace the relations C1, C2, etc. in each of the above rules by a relational 

expression. Note that the difference operation is not commutative. 

Finally the query processor can use the knowledge of the relation schemes and 
functional dependencies to find additional equivalent forms for a query expression. The 
following example illustrates this. 

Example 6.3 Given CI(Aj, A2, A3) andC2(A3, A4, A5, ... ), where Ai is a set of attributes, 

the query TcA, 
=,,, 

(C, >< C2) can be replaced by (TcA, 
=,, 

Cl)>< C2and the query (T A3 A4(C2) 

> <(TA4 A5(C2) is equivalent to(TA3 
A4 A5((79)' 

6.3.2 Temporal Transformation Rules 

When the time-dimension is taken into consideration, the following transformation rules 

play roles that are called temporal transformation rules§. 

(12) Perform time-slice before select. 

time-slicep ( cy p, 
(CI) ) =- (T p, 

(time-sliceTI Cl ) (12) 

As is the case for most relational databases, we assume that the data of a relation/class 

are stored tuple by tuple instead of column by column. For a temporal relation/class, the 

effect of time on a temporal object is to generate multiple versions of the same tuple 

fields. For a temporal object in a temporal relation/class, multiple versions of the same 

tuple fields can be assumed to be stored together in a disk space (physical blocks), 

unless it is stated that it has been partitioned (that is usually only considered during 

query evaluation stage). The exact cost of time-slice depends on the implementation, 

but, at least we can assume that only data ranged over T, are retrieved for time-sliceTI. 

ý Although the actual physical data structure is not usually considered during algebraic manipulation, we 
will generally assume that the data of a relation/class are stored tuple by tuple instead of column by 
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Therefore, doing time-slice first will avoid reading out all data during execution stage 

and therefore saves the corresponding cost. It is especially the case when a temporal 

object occupies more than one page or block in disk, so only the pages/blocks that 

contain the requested data are retrieved from the disk (not the whole temporal object). 
This is one of the features that distinguishes temporal and object-oriented query 

processing from traditional relational query processing: i. e., the query transformation 

can not always take place at a logical level; the costs related to physical data storage 
have to be taken into consideration sometimes. That is why query processing in 

temporal or object-oriented databases can not completely separate query transformation 

from query evaluation [Leung and Muntz, 1993; Blakeley et al., 1993; Seshadri et al., 
1996; Cluet and Delobel, 1992; Ozkan et al., 1995], and some even merge these two 

into one, as mentioned in [Ozsu and Blayeley, 1995]. 

Unless the predicate P is involved in the range outside TI, the time-slice can always be 

perfonned before select. 

Example 6.4 Consider the database schema in Figure 4.4, list TESTINFO in July 

whose maximum top temperature during July is higher than 350 C. This query can be 

expressed as: 

time-sliceT, ( (T p, (TESTINFO) ) =-= (7 Pl=(TopTemperature>=35) (time-sliceT, 
=july 

TESTINFO) 

If the database keeps a one-year record, doing the right side of above equation only 

needs to retrieve a one-month record for each instance of TESTINFO from the disk. The 

instance of TESTINFO is listed, if the predicate is satisfied. Note that the predicate in 

the example also specifies the range of time that can be incorporated into the range of 

time-slice. There is obviously no need to retrieve a one-year record to check if the 

predicate is satisfied. 

column, the former being the case for most relational databases. For a temporal relation/class, the effect of 
time on a temporal object is to generate multiple versions of the same tuple fields. 
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(13) Perform time-slice before project. 

time-sliceT] OU Ai (C 1) ): 
-: TC Ai (time-sliceT] CI) (13) 

Like Rule (12), doing time-slice first reduces query cost as a smaller range of each 

temporal object (time sequence) is accessed. 

(14) Perform offset before project. 

! -- TC Ai (offset, offset, OC 
Ai 

(C])- (14) 

Depending on the organisation of storage, if executing offset first will avoid the need to 

examine all data or reduce the duplicate operations, it is performed before project. 

Example 6.5 Consider Example 6.4. If the listed TESTINFO in that example is 

TESTINFO-1, then the query "list TESTINFO-l's TopTemperature in October that is 

three months later than July" can be expressed as: 

offset, (R 
Ai (TESTINFO-l)=-= 7C Ai=TopTemperature (offset, TESTINFO_l ) 

However, doing project first does not answer the query, so when the October's record is 

retrieved, it has to do project again to answer the query. Therefore it is better to perform 

offset before project. 

Commute agg-func and project. 

TC Ai (agg-funCTI C, ) =- agg-funcT, 
OC Ai (Cl)) (15) 

If executing agg-funCTI could greatly reduce the need to examine all data (i. e., T, is 

much smaller than the lifespan of CI) or the degree0f OC 
Ai 

(CI)) is close to that of C1, 

agg-funcT, should be performed before project; if T, covers almost the range of lifespan 
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of C1, perforining project first will reduce the unnecessary calculation on the results of 

agg-funcT,. 

Rules (12)-(15) can be incorporated into Rules (l)-(1 1) whenever applicable. It is also a 

good heuristic to push select, project and time-slice as far down the query graph as 

possible, especially to perform the time-slice as early as possible. 

It has been identified that some transformations are incorrect [Seshadri et al., 1994]: 

A select can not be pushed through an aggregate (i. e., agg-funcT, ) operator or 

offset operator. 

Example 6.6 Consider Example 6.4. If the listed TESTINFO in that example is 

TESTINFO-1, the query "select TESTINFO-l whose average top temperature in July is 

greater than 300" can be expressed as: 

(7 p, (TESTINFO-1) =-- G Pl=(agg-agv (T] =July)( TopTemperature)=30) (TESTINFO-1) 

For this query, the select can not be performed before agg-agv ti=j. iy, Instead, agg-agv is 

performed first and the result of this operation then participates in the predicate 

evaluation for the select. 

Example 6.7 The query "select TESTINFO-1 whose top temperature on the first of July 

is the same as that on the last day of July" can be expressed as: 

p, (TESTINFO-1) ---= G PI =( TopTemperature(l) =offset (31)(TopTemperature(l)) (TESTINFO-1) 

For this query, offset has to be performed before select. 

0 An agg-funcT, operator can not be pushed through an offset operator and vice 

versa. 
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Example 6.8 Consider 

agg-aV9 TI=August (offset 1=one month 
( TESTINFO-1) 

Obviously, both offset and agg-func have specified the range of time, and agg-avgT, 

returns a value of the function, not a temporal object. Therefore offset and agg-func 

cannot be commuted. 

6.3.3 Inheritance Rules 

One particularly important difference between defining transformation rules for 

relational systems and for object-oriented systems, is that relational query expressions 

are defined on flat relations whereas object queries are defined on classes that have 

inheritance relationships amongst them. The transformation rules that take into account 

such inheritance relationships are called inheritance rules. 

Suppose C2 is subclass of C1, i. e., an is-a relationship between C2 and C, holds. C2 is 

more specific in the sense that it has more attributes than C, has. Apart from the 

attributes inherited from CI, it has its own attributes. Taking account this relationship, 

the following rules apply: 

TCAI (CIUC2)= 7CA I 
Cl 

where C2 is subclass of C, and A, E=- C, 

TC AI 
(CFP(C])UCYP (CA TC A] 

(CFP(Cl)) 

(16) 

where C2 is subclass of C, and A, c C, and attr(P) E-= C, (17) 

Rules (16)-(17) can be used to simplify the expression. 
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Example 6.9 Consider the database schema in Figure 4.4. For the query "find the 

names of cities and capitals whose first letter is 'A' ", we have the following equivalent 

expressions. Obviously, the expression on the right of the equation eliminates an 

unnecessary operation. 

Name 
(0 

Name= 'A *'(CITY)UCYName='A*' (CAPITAL)) - 
= TU Name 

(CFP(CITY)) 

6.3.4 Path Transformation Rules 

Object-oriented databases significantly reduce the need for ajoin. Responding to user queries 

frequently involves the execution of selects rather than joins. The select operation allows its 

predicate to apply to a contiguous sequence of attributes along a branch of the class- 

aggregation hierarchy. The path expression is used to represent this sort of predicate. In the 

definition of our algebra, we have extended the select operator by allowing its predicate to 

apply to a contiguous sequence of attributes along both the aggregation hierarchy and time- 

dimension, and the enhanced path expression has been defined for this purpose. These have 

been fully discussed in Chapter 5. As in most object-oriented databases [Demuth et al., 

1994], the select is the most powerful operator in temporal object-oriented databases. 

The class-aggregation hierarchy holds an attribute/domain link between a neighboured pair 

of classes. The attribute/domain link between this pair of classes, e. g., Ci-I and Ci, is 

effectively the join of these classes, in which the attribute A i-I of the class Ci and identifier 

OID, which is defined by the system and can be considered as an attribute of class G_I, are 

join attributes [Bertino and Martino, 1993]. Therefore, an object query with a path 

expression involving N classes CI, C2, ..., Q, is equivalent to a relational query, which 

requires joining N relations corresponding to N classes. That is why the select operator is 

often called an implicitjoin. According to the definition of our algebra, when the predicate 

of the select operator involves a path expression (denoted as CI. AI. A2 .... A, TM op value), 

it is equivalent to a series of joins, i. e., 
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a 
Ci. Ai. A2 .... AnTM op -0 

(CI) = TC A(Ci) 
(Cl >< p 

TC A2 
(C2) ><p... >. < p 

(Y An opu 
(Cn)) 

HereTm indicates that the path is an enhanced path involving a time dimension. We use ><' 
to represent the join that is more restricted than the join defined in our algebra in that the 
join attributes are the attribute Ai-I of the class Ci-I and identifier OID of Ci, which is defined 

by the system and can be considered as an attribute of class Ci, if we join Ci-I and Ci. The 

project ( i. e., n) in the right side of equation specifies the query target. 

If there is a complex predicate involving a single path such as 

P= CI. AlOP VI A C). Al. A2 op v2 ... A O. Al. A2 
... An 'Mop 

vn 

=PI AP2 .... A Pn 

then we have a general form 

CY 
P(CI. Aj. A2 

.... 
AnM) 

(Cl) = 71 A(Cl)(CTA 
cl ><p n A2ýP2(Cý) ><p ... ý>j CY A 

(Cn)) 

where Pi is optional in that it can be omitted if it does not exist, although P, which involves 

both time and value dimensions of the last class in the class-aggregation hierarchy, must be 

specified. The first project specifies the query target. 

The purpose of defining path transfon-nation rules is to provide alternative expressions that 

might be easier to evaluate during the plan generation step. 

The way that a path is visited necessitates a path traversal operator, which allows alternative 

ways to execute the path. Whenever applicable, different methods of visiting the path such as 

forward traversal, reverse traversal and mixed traversal may apply. 
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Queries may involve a single path or multiple paths. If we ignore the methods of visiting 

classes above, there can be classified two types of path traversal operators: the linear path 

traversal operator is for a single path execution whereas the star path traversal operator is for 

multiple path execution [Tang et al., 19961. For simplicity in our discussion, only the single 

path is considered here". 

Definition Linearpath traversal operator 

The linear path traversal operator is a navigational operator that executes the implicit join 

through a path, denoted as Navi-op[CIA2 .... A, Tm 1. It is equivalent to a set of joins as in 

equation 

Navi-op[Ci. Ai, A2 .... A, ']=(y 
pi 

Cl >., I p 71 A2 
CY 

P2 
(C2) ><p 

... 
>. <p G 

Pn 
(Cn) (20) 

According to the query equivalencies (associative law) of the previous subsection, the above 

linear path traversal operator can be fim1her rewritten into the following form: 

Navi-op[Ci. Ai. A2 
.... 

A, '] =Navi_op[Ci. Al 
..... 

A, - il >ý<p (y Pn (G) 

=Navi-op[Ci. Ai. A2 .... A, - 1] > . 11 
Cn 

Cn-i. A=OID(Cn)APn 

Thus 

G (CI) TE (Navi- op[C,. A ...... Aýl ý> -1 C. ) (22) 
P(Cj-Ai. A2 AnTM) A(Ci) C,, j. A=OID(Cn)APn 

Rules (18)-(22) implies that a select operator with path expressions (i. e., an implicit join) can 

be evaluated using different algorithms, such as, translating the query into a sequence of 

joins, naive pointer chasing, or subdividing the query into sub-paths that can be evaluated 

separately using different strategies or algorithms. This is desirable as it has previously been 

** For the situation of multiple paths without a common path, the solution provided here can be applied 
directly. For the situation of multiple paths with a common path, the common path will be identified first 

to avoid repeatedly visiting the same classes. 
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shown that converting implicit joins to explicit joins during the optimization phase may yield 
better execution plans [Blakeley et al., 1993; Ozsu and Blakeley, 1995; Ozkan at al., 1995] 

and that object navigation and set-oriented join should co-exist [Gardarin et al., 1996; Tang 

et al., 1996]. 

6.4 A Decomposition Strategy for Processing Temporal 
Object Queries 

Path optimization is a central issue in object query processing that distinguishes object- 

oriented from relational query processing. When time is present, the enhanced path is used to 

express the query involving the path with time-reference. Processing such a query is more 
involved than that for a pure object query. In this section, we investigate a strategy to 

process such a temporal object query, i. e., a strategy to traverse the enhanced path 

expression, within the object-onented query processing framework. 

For the sake of simplicity, we suppose the time-reference occurs only at the end of the path 
(even if it does not, then additional accesses to the second storage are required. But this 

would not significantly add the complexity to the query optirnization). Thus predicate P, 

involves both time and value dimensions. 

Based on the path transformation rule (22), a path can be divided into a series of sub- 

paths and different strategies or algorithms can be used to evaluate the individual sub- 

paths. In order to handle the query involving the time-reference and make use of the 

ordering information of temporal data for optimization, the evaluation of the enhanced 

path can thus be initially decomposed into two parts: one involves a temporal sub-path 

(i. e., with time-reference) and another involves an ordinary sub-path (without time- 

reference) which can be further decomposed into sub-paths. 
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D 
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Figure 6.3 A single path 
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Figure 6.4 An operator graph of the select with a single path 
Block A is an ordinary sub-path (without time-stamped classes); 
Block B is a temporal sub-path (with time stamped class). 

Figure 6.4 gives such an operator graph (OG) of the select operator in equation (23) that 

involves a single path as shown in Figure 6.3. An OG is a labelled n-ary tree where the 

leaf nodes represent collections of objects, the non-leaf nodes represent operators (e. g., 

navigational operator, join, project, etc. ), and the edges represent temporary collections 

that can be represented by supporting tables. A support table [Gardarin et al., 1996] can 

be regarded as a collection of tuples of qualified object identifiers and attributes. Two 

support tables can be joined together if there exists a common supported collection 

between them. The execution of an OG follows bottom-up order. The navigational 

operator may have more than two children, and starts from the objects in the left most 

collection and navigates to the right most collection. Given an OG rooted at node N, the 

cost of evaluating a single path can be expressed as [Gardarin et al., 1996; Tang et al., 

1996]: 
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Cost(OG) = Cost(N) + Cost(Childi) 

The decomposition strategy for processing temporal queries can be further illustrated in 
Figure 6.5. A complex user query with path expressions that involves time-reference is first 

translated into a set of single path expressions. A single path is then divided into two sub- 
paths: a sub-path involving time-stamped class that can be optimized by making use of the 

ordering infori-nation of data and an ordinary sub-path (without time-stamped class) that can 
be further decomposed and traversed using different algorithms. The intermediate results of 
traversed two sub-paths are then joined together to create the output query. 

related 
query I JA collection 
path ýýof single 

Join " Project 

Figure 6.5 Decomposition strategy for processing temporal object queries 

For instance, when responding to a user query is represented by the select operator with 

the predicate in the form of CI. AI. A2 .... A, TM op value, the execution of the operator can 

take the form of the operator graph shown in Figure 6.4, i. e., first, splitting the single 

path into two: P 1: C1. C2 ..... C, 
_1 and P2: C,; second, using the navigational operator (or 

other algorithms) to traverse PI, and applying time-related operations or evaluating the 

temporal predicates while evaluating P2 (the intermediate result of each traversing 

creates a support table or a derived class); third, joining two derived classes; finally, 

projecting the join outputs to C, to create the output query. 
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It will be shown in the following chapters that the decomposition strategy provides a 
convenient means to exploit the existing query evaluation algorithms to process 
temporal object queries and to analyse the effects of time on query processing 
algorithms. It provides an opportunity for optimization that makes use of the ordering 
information of temporal data. 

6.5 Summary 

Query processing techniques are dependant upon the data model and query algebra/language. 
In this chapter, a uniform query processing framework has been presented for processing 
temporal object queries based on our data model and query algebra defined in Chapters 4 and 
5. Within the uniform framework, the query processor can be constructed as a layered 

structure and its functionality can be separated between the temporal optimizer, object 

optimizer and relational optimzer. Thereby an extensible approach can be explored, i. e., the 

query processing techniques and strategies of RDBs and OODBs, as well as sequence 

processing can be applied or extended at an appropriate layer of the optimizer. 

Algebraic optimization for query transformation is carried out within the framework. Taking 

into account the object-oriented features and time-reference, various sets of query 

transformation rules are specified for algebraic optimization. These are relational rules, 

temporal transformation rules, inheritance rules and path transformation rules. Effects of 

these transformation rules are either to avoid redundant operations, or to reduce the size of 

intermediate results, or to provide an alternative that might be easier to execute. As the range 

of time would affect the efficiency of reading the data from the secondary storage, time- 

slice, offset should be performed as early as possible. The query transformation rules are 

applied to generate an equivalent expression but with the lowest possible cost. 

In order to address the central issue of path otimization in object-oriented query processing 

when time is present, a strategy of decomposition is proposed for processing temporal 

queries that involve the enhanced paths, based on the path transformation rules. An enhanced 

path (defined as an extended path with time-references), can be initially divided into two 
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sub-paths: one involving time-stamped classes and the other an ordinary sub-path (with no 

time-stamped class) which can itself be further decomposed. The intermediate results 
following traversal of the two sub-paths are then joined together to create the query output. 
Execution of the decomposed sub-query components can be optimized by making use of 

well-known relational join algorithms, sequence processing and stream processing 

techniques which will be discussed in detail in the next chapter. 

It has been shown that temporal queries can be processed within an existing object query 

processing framework that in turn is extended from a relational query processing 
framework, through the smooth extension of existing techniques. The extensible structure 

of the temporal data model and the properties of reducibility and closure in our query algebra 

provide a basis for this extensible approach. Separation of functionality between the 

temporal optiMIzer, the ob ect optimizer and relational optirMzer requires less modification j 

to the lower level optirnizer. Existing query processing techniques in both relational and 

object-oriented databases as well as sequence processing can be easily applied and extended. 



Chapter 7 

Algorithms for Processing 

Decomposed Query Components* 

The last chapter proposed a decomposition strategy to process a temporal object query 

involving a path with time-reference. This chapter presents algorithms for processing 

the decomposed query components. These include the time-related operation algorithms 

and basic join algorithms. These algorithms are implemented with stream processing 

techniques and described with cost analysis. Simulation results are also provided. 

7.1 Introduction 

Path optimization is a central issue in object-oriented databases. When time is present, an 

enhanced path is defined to express a query involving a path with time-references. In order to 

exploit existing query processing techniques and to make use of the ordering inforination of 

time varying data, a decomposition strategy has been proposed for processing such a 

temporal object query involving the enhanced path in Chapter 6. This chapter considers the 

corresponding query evaluation with the provision of appropriate algorithms. 

Block B in Figure 6.4 in Chapter 6 consists of temporal predicate evaluation (as well as 

time-series processing) and ajoin, and is re-presented in Figure 7.1. When optimizing such a 

query, the object optimizer processes the outer query block, and the temporal optimizer 

operates on the nested query block. Each optimizer is responsible for its own query block. 

The temporal data provides more opportunities for optimization as discussed in [Pissinou et 

al., 1994; Seshedri et al., 1996]. The temporal optimizer is responsible for time-related 

. The work in this chapter has been presented in the paper 1,2 and 5 listed in Author's Publications. 
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operation and optimization. Let C represent the supporting tables or the intermediate results 
of block A of Figure 6.4 (that is a derived ordinary relation), and D represent the 
intermediate results of block D of Figure 7.1 (that is a derived temporal relation), as shown 
in Figure 7.2. The object optimizerjoins C and D together. 

I 
D in 

B 

........................ 

C: 
upport table 
f block A 

Figure 7.1 Further expression of temporal sub-path 

kin 

Figure 7.2 Join between C and D 

This chapter provides algorithms for both the outer and nested blocks. The algorithms are 

implemented with stream processing techniques and described with cost analysis in terms of 

major operations such as block accesses, plus, move, comparison, etc., (among these, block 

access will dorninate others). The actual cost in seconds will be used in simulation. 

The remainder of chapter is organised as follows. Section 7.2 describes storage structures for 

query processing. Section 7.3 presents the algorithms for time-related operations. Join 
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algorithms are described in Section 7.4 and modifications of these are included in Section 

7.5. Section 7.6 provides algorithm simulation results. Heuristics that makes use of time 
infori-nation for optimization will be outlined in Section 7.7 and Section 7.8 offers a 

summary. 

7.2 Assumptions 

Relation D 

Object di 

Object d, 

Object dw 

n records 
n 

"1 Ii 
II 

I II 

Figure 7.3 Data structure for a relation: 
A temporal relation consists of nd temporal objects; 

A temporal object comprises n records representing n versions of same tuple field. 

I st object (L(di), di) Last object (L(did), drid) 

jth record of ith block 
k records per block 

Figure 7.4 A file partitioned into blocks: 
n records (history versions) of a temporal object 

are stored together on a set of blocks 

1 

B, B2 B3 Bi Last block of a file 
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A temporal relation D (it could be Cý in Figure 7.1 or D in Figure 7.2, depending on the 

situation ) is stored in a file on disk. The data structure of D is as shown in Figure 7.3, where 
D is populated with temporal objects. A temporal object d is viewed as a linked list, 

comprising a number of records representing a number of versions of the same tuple field in 

a time ascending or descending order. For simplicity, the life-span is uniformly represented 

as L(d)=[I, n, ], i. e., L(d)=L(D) where I is the start time point and nr is the end time point of 

the relation. The timestamps (temporal set) for all objects are the same and the number of 

epochs (the number of records/versions) in the temporal object d is IdI=n. If n =nr then d 

represents a regular TS. A temporal object can be supposed to be clustered (storing history 

versions together on a set of blocks), as shown in Figure 7.4. 

We make further assumptions. Collections C and D are stored as separate files on disk. 

There is a many-to-one relationship from C to D. The number of objects in C (or D) is 

represented as I CI=n, (or IDI=nd ). n, (or nd ) objects are blocked as b, (or bd) objects/block. 

Further, n records of a temporal object d of D are blocked as bn records/block. Obviously, bn 

=n* bd. Letfan(C, D) represent the average number of objects of D that are referenced by an 

object of C through attribute Ac. No relation is sorted or clustered. The OID is represented by 

a physical address of the object. Selectivity of the predicate P0 on the temporal collection D 

is treated as the same as that on an ordinary relation, denoted as sel (the complexity of 

selectivity of temporal relations is ignored). 

7.3 Stream Processing Algorithms for Time-related 

Operations 

Predicate evaluation in Figure 7.1 involves the time-related operations and value evaluation. 

Temporal operations such as time-slice, offset, agg-func can be treated as methods and their 

outputs can then participate in the value evaluation. The temporal optimizer must be sure to 

4 plan' the evocation of function and to make use of the ordering information for optimization 

[Pissinou et al., 19941. 
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We employ the stream processing techniques [Leung and Muntz, 1993; Carrano, 1995]. 

Stream processing is a paradigm that has been widely studied and used in languages such as 

C++, Lisp, etc. Abstractly, a stream is defined as an ordered sequence of data objects. As 

temporal data often implies ordering by time, stream processing approach is a strategy of 

choice [Leung and Muntz, 1993], so that tuples in a data stream can be efficiently accessed 

one at a time and in the order of successive time-stamp values, using the data stream pointer. 

7.3.1 Stream Processing Algorithm for Time-slice 

Time-slice §Tl(O) presented in Chapter 5, perforrns the operation: for every object d in A 

select its records ds whose positions fall in Tl=[nb nj, TIcL(D)=[I, nJ supposing that 

there are n records in an object of relation D. To minimise the number of accesses to data, 

only records satisfying the above condition are retrieved. Employing the C++ stream 

processing technique to implement this operation can fulfil this task. The file stream in 

C++ allows a user to treat a file as a stream of input or output. Given a data object, its 

size can be decided by using the C++ function sizeof( ). When the exact position (i. e., 

the exact address), from which the data object is stored, is determined by C++ function 

seekg, the data object can retrieved and the file pointer moves to the next data object. 

Given a temporal object d, to retrieve its records ds from time n, and n,,,, we need to find 

out its exact Positions corresponding to n, and n,, in the file. We can obtain these by 

either sequential or binary search within the scope of the object d to decide the epoch 

number n, that is corresponding to time point n,, and the epoch number n,,,,, that is 

corresponding to time point n,,,. This can be shown in the following pseudo code of C++: 

search (nb nnb nnb nnm); 

/* sequential or binary search to find out the epoch number nnl corresponding to time nb 

and the epoch number nnm corresponding to time nm */ 

for (int i=O, - i<nd, - i++) Mor each object di+I, i+]E=- [1, nd], do the following 

t 
fileD. seekg(i*sizeof(d)+ (nnj -1) *sizeof(ds) ); 

/*seek the address of the first ds, whose time point is n,, that is in T,. */ 
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fbr(intj=OJ<=nnm -nnl; j++) 

tfiIeD. read((char*)&Struc Bu 
- 

f[j], sizeof (ds)); 

Buft <Struc-Buf[j]; J 

/*sequentially read (nnm -nnl+l) records ds of the object d i+J from the file, 

keep them in Stntc-Buf[fl, and output results to Buf that could be a screen, a printer, a buffer, 

etc. 

I 

fi1e2. write((char*)&Bqf, sizeof (Buj)); Pif we want to write the output results to a file */ 

Although C++ provides stream access that allows access one record/object at a time, the 

system actually performs 1/0 at the block level and perhaps hides this fact from the program 

[Carrano, 1995]. We follow the assumption [Carrano, 1995] that when the system provides 

an access for one record/object, it assesses the entire block that contains the record/object. If 

the next record/object is already in the stream accessed, it does not need to access the block 

again. Therefore we still can measure 110 access by blocks or pages. For the above 

algorithm, the number of block accesses is estimated as: 

nd*(nnm -nnl +I)Ibn ý5nd*(nm-nj+l)1b, 

plus searching block access cost: 

:! ý nlb,, in the case of sequential search [Carrano, 1995]; 

or :! ý 2*(1092n) in the case of binary search [Carrano, 1995]. 

As with other database executive algorithm analysis [Shekita and Carey, 1990], the output 

cost is ignored here because it does not make a contribution to the algorithm efficiency. (This 

will be assumed in the algorithms analysis hereafter too. ) 
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7.3.2 Stream Processing Aggregation Algorithms 

The operator agg-junc T, used to perform the aggregation (such as avg, sum, max, etc. ) can 
be implemented with stream processing techniques as shown in following pseudo-code of 
C++: 

search( nb nm nnb nnm); 
/* sequential or binary search to find out the epoch number nnl corresponding to time nb 
and the epoch number nnm corresponding to time nm */ 

for (int i=O,, i<nd, - i+ +) /* for each object di+I, i+IC- [1, nd], do the following 

t 

fileD. seekg(i *sizeof(d) +( nnl - 1) *sizeof(ds) 

/* seek the address of the first ds, whose time point is n,, that is in T, 

for (intj=O, - j< = nnm-nnl; j+ +)fileD. read((char*)&Struc-Buf[jJ, sizeof (ds)); 

Psequentially read (nnm -nnl+l) records ds of the object di+1 from the file 

and keep them in Struc-Buf[j] */ 

agg-fiunc(Struc-Buf. itemi, func, value); 
/*perform an aggregation ftinctionfunc for a specified attribute (i. e., itern11) 
Buft <value; /* output results to Buf that could be a screen, a printer, a buffer, etc. 
I 

void agg-, func(item, char*func, float value); 

int m= nnm-nnl+ 1; 

switch (func) 

I 

case sum: 
for (value=O; int i=O, - km; i+ +) 

for (int i2=0, -i2<=M( item(i+]) )-M( item(i) ); i2++) value+=item[i]; 

/* insert data for missed time points and add them to the value, where G5( item(i)) is our 

algebraic operator when that maps item(i) to its time point. For simplicity here we assume that 

missed data is of stepwise constant. */ 

break 
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case avg: 

for (value=O, - int i=O, - i<m; i+ +) 

for (int i2=0, - i2<=M( item(i+]) )-M( item(i) ); i2++) value+=item[i]; 

value=valuelm; 

break; 

case max: 

for (value=-10ý'; int i=O, - i<m; i++) 

if (item[ij>value) 

value=item[i]; 

break 

I 

fiIe2. write((char*)&Bqf, sizeof (Buj)); /*if we want to write the output results to a file */ 

In addition to the number of block accesses as in the time-slice algorithm, the following 

major operations are needed for Agg-func, if we ignore the time for assignment and when: 

nm-nl+l plus for sum; 

n,, -nl+l plus and I division for avg; 

nm-nl+l comparisons for max; 

7.4 Join Algorithms 

This section discusses the algorithms to join C and D together. The advantage to represent 

them as explicit joins is that we can use well-established join algorithm strategies to perform 

optimization. Here a temporal object stands as a "blob" object that can be treated as an 

ordinary object in a snapshot OODBs. There are two types of joins to join C and D together: 

forward join and reverse join. According to the access methods of traversing the path, i. e., 
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nested-loop method and sort-merge method, there are four basic join algorithms: nested- 
loop forward join, sort-merge forward join, nested-loop reverse join and sort-merge 

reverse join [Bertino and Martino, 1993]. The following presents these algorithms that are 
implemented employing stream processing techniques. 

7.4.1 Nested-Loop Forward join (NLFJ) 

NLFJ, sometimes called the pointer-based nested-loop algorithm [Shekita and Carey, 1990], 

is the algorithm that uses naive pointer traversal to compute the join. An instance c of C is 

retrieved and the value of Ac is determined. Given this identifier, the address of the object d 

of D is detern-iined. The object d of D is retrieved and the predicate is evaluated. If true, c and 

d are joined. This process is repeated until all instances of D are visited. NLFJ can be 

expressed using the following pseudo-code C++: 

for (int i=0; knc; i++) P for each object c, do the following */ 

(fiIeCread((char*)&BufC, sizeof(c) ); Pread the object c of C*1 

fileRseekg(c. Ac); 

/* according to the value of the attribute Ac, i. e., the OID of d, locate the address of d of DV 

fiIeD. read((char*)&BqfD, sizeof (d) ); P read the object d of DV 

if (predicate) Buft <(join c and d); 

/*if the predicate satisfied, join c and d, and then output results to Buf that could be a screen, a 

printer, a buffer, etc. 

I 

fi1e2. write((char*)&Buf, sizeof (Bqt)); 1*if we want to write the output results to a file. */ 

For the above algorithm, the number of block access is estimated as 

read C: nlb,; 

read D: fan(CD) * n, 1bd+ = fan(CD) * n, *n/b, +. 

There are 
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fan(C, D) * n, comparisons for predicate evaluation; 

sel *fan(C, D) * n, moves (for join). 

One of the problems with the pointer-based nested-loop algorithm is that it makes no attempt 

to optiMIze disk reads [Shekita and Carey, 1990]. As a result, a particular disk block in D can 

end up being read more than once. For example, suppose that two objects c, and c2 reference 

the same object d in D. Depending on how C is organised, cl and c2may not be physically 

clustered together in C. If that is the case, then between the time when cl is joined to d and 

the time when c? is joined to d, the block containing d may be paged out of memory by 

buffer replacement algorithm. In that event, that block would have to be read twice, once to 

join c, with d and a second time to join c2with d. 

7.4.2 Sort-Merge Forward join (SMFJ) 

SNMJ, sometimes called the pointer-based sort-merge algorithm [Shekita and Carey, 1990], 

avoids the aforementioned problem by first sorting all of the objects in C by the value of Ac 

(i. e., the OID of d in D). The effect of sorting C in this manner is to group all of the objects 

in C that reference the same page in D. Doing so guarantees that each page in D will be read 

only once. The algorithm is executed as follows. All the objects of C are read into memory 

and sorted as in the standard sort-merge algorithm, except that here the output runs are sorted 

by OID values rather than by the join attribute. According the value of Ac, the address (i. e., 

the OID) of an object d of D is determined so that the object d is retrieved, the predicate is 

evaluated and if true, c and d are joined. Repeat this process till all addresses are visited. The 

pseudo-code of C++ is 

fileC read((char*)&BufC, sizeofi(C) ); /* read the whole collection CV 

sort C according to Ac; 

for (int i=O, - i<nc; i++) Mor each object c of C, do the following 

t 

fileD. seekg(c. Ac); 

/*according to the value of the attribute Ac of c, i. e., the OID of d, locate the address of d of D*1 

fiJeD. read((char*)&BqJD, sizeof (d)); /* read the object d of DV 
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if (predicate) Buft <(join c and d); 

/*If the predicate is satisfied, join c and d, and then output results to Buf that could be a screen, a 
printer, a buffer, etc. 
I 

fi1e2. write((char*)&Bqf, sizeof (Bup); /*if we want to write the output results to a file */ 

For the above algorithm, the number of block access is estimated as 

read C: nlb,; 

read D: fan(C, D) * n, lbd= fan(C, D) * n, *nl(b, ). 

There are: 

fan(C, D) * n, comparisons for predicate evaluation; 

sel*fan(C, D) * n, moves (forjoin); 

sorting cost: sorting(nj 

When the time-dimension n is big enough such that a temporal object occupies more than 

one block, SMFJ will not obviously be better than NLFJ (but at the price of sorting C, and a 

bigger memory to hold the whole C). 

7.4.3 Nested-Loop Reverse join (NLRJ) 

This strategy is similar to NLFJ, except that D is the first class visited. An object d of D is 

read into memory and predicate is evaluated. If the predicate is verified, then a search on the 

instance c of C is executed to deten-nine which instance has object d as the value of the 

attribute Ac. c and d are then joined. This process is repeated until all instances of D are 

visited. The pseudo-code for the algorithm is: 

for (inti=O, - i<nd, - i++)1* for each object di+1, i+lc=[1, nd], do the following*/ 

ffileD. read((char*)&BuJD, sizeof (d)); /* read an object di+l of D */ 
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if (predicate) /* if the predicate is satisfied */ 

for (intj=O; j<nc; j+ +) /* for each object cj+I, i+ Ic [1, nc], do the following 

ffileC read((char*) &BufC, sizeof (c) ); /* read an object cj+ I of C 

if ((fi1eD. teI1gO-sizeof(d))==c. Ac) 

Buft <join c and d); J 

/* verify if the address (the OID) of di+1 is equal to the value of cj+I. Ac, if so, join cj+1 and 
di+ 1, and output results to Buf that could be a screen, a printer, a buffer, etc. 
I 

fiIe2. write((char*)&Buf, sizeof (Buf)); Pif we want to write the output results to a file. */ 

The number of block access is estimated as 

read C: sel *nd *n, /b,; 

read D: ndlbd= nd *nlbn. 

There are: 

nd comparisons operations for predicate evaluation; 

sel *nd*n, comparisons for value evaluation; 

sel* nd*(fan(CD)*nlnd)=sel*fan(CD) * n, moves (forjoin). 

Clearly objects in C have to be read many times, resulting in high 1/0 cost. If there are 

reverse references from the instances of D to the instances of C, the instances of C do not 

needed to be examined. Instead, the objects are accessed directly by the following these 

references. 

7.4.4 Sort-Merge Reverse join (SMRJ) 

In SNIRJ, all the instances of D are accessed, the predicate is evaluated and a list of OlDs of 

instances qualifying the predicate is generated. C is read into memory and sorted according 
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to Ac. The instances of C are then selected to deten-nine which instances have the identifier 

as the value of attribute Ac. If so, c and d are joined. The pseudo-code for the algorithm is: 

for (intj=O; int i=O; i<nd i++) /* for each object d of D, do the following 

[fileD. read((char*)&d, sizeof(d)); /* read an object d of D 

if (predicate) tD'[j]=d; jd[jJ=fileD. tellgo-sizeof(d); j+ +J 

I 

/* if the predicate is satisfied, keep the object d in D'[ J, and its address (the OID) in jd[ 

This is equivalent to perform select first, the resulting relation is D'[ J, its cardinality isj. 

fileC. read((char*)&BttfC, sizeof (Q); /* read the relation C 

sort C according to Ac; 

j2=0; 

for (int i=O; i<j-1; i++) /* for each object di in D'[ ], ir= [0, j-1), do the following 

for (int i2=j2; i2<nc; i2++) 

/* for each object ci2 in C, i2E=- [j2, nc), do the following 

(wherej2 starts from 0 and increases by I after a join is made) 

f if (C[i2l. Ac= =jd[il) [Buf<<(join C[i2J and D'[i]); j2=i2+ 1; J; 

/* if the value of ci2. Ac is equal to the address (the OID) of di, join ci2 and di, 

and output results to Buf that could be a screen ,a printer, etc. 

else if (C[i2J. Ac>jd[iJ) break; 

/* if the value Of ci2. Ac is greater than the address (the OID) of di, stop looping of i2- 

I 

fi1e2. write((char*)&Bqf, sizeof (Buf)); /* if we want to write the output results to a file. 

*1 

The number of block access can be estimated as 

read C: n, 1b,; 

read D: nd lbd= nd *nl(bn). 

There are: 
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ndcomparisons for predicate evaluation; 

sel*nd*(fan(C, D)*n, lnd+l) comparisons for value evaluation; 

sel*fan(C, D)*nc moves (forjoin); and 

sorting cost: sorting(nc). 

7.4.5 Sorting 

If SelectSort algorithm [Carrano, 1995] is used to sort items in relation C in the ascending 

order by the attribute A it is O(nc 2) in terrns of major operations. 

The pseudo code of C++ that applies SelectSort algorithm [Carrano, 1995] to sort the 

relation C in the ascending order by attribute Ac can be represented in the following: 

void Soq(unction(C, n, Ac) 

/* sort the items in relation C of size nc in the ascending order by the attribute Ac V 

foifint Last= nc -1; Last>=]; --Last) 
fint L=IndexOfLargest(CAc, Last+]); /* select largest item in CAc[O. Iastj V 

Swap (C[L), C[Last]; /*swap largest item C[L] with C[Lastj V 

] Pend for */ 

The function calls other two functions: 

int IndexOfLargest (const dataType Ac, int Size) /*find the largest item in the column Ac V 

tint IndexSoFar=O, - /*index of largest item found so far */ 

for (int CurrentIndex= 1; CurrentIndex<Size; ++ CurrentIndex) 

[if (Ac[CurrentIndex] > =Ac[IndexSoFarj) IndexSoFar= CurrentIndex, 

] /*end for */ 

return IndexSoFar; P index of largest item 

j /* end IndexOfLargest */ 

void Swap (dataType & X, dataType &Y) /*ftmction for swapping X and Y */ 

I 
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dataType Temp=X; 

X= Y; 

Y=Temp; 

I Pend Swap 

One important divide-and-conquer sorting algonthm, MergeSort [Carrano, 1995], has an 

elegant recursive formulation and is highly efficient. MergeSort is a recursive sorting 

algorithm that always gives the same performance, regardless of the initial order of the 

collection items. The order of MergeSort algorithm is 0(n, log n, ). 

7.4.6 Summary 

Table 7.1 Summary of join algorithm costs 

Algorithm Number of block access Other operations 

NLFJ read C: n1b,; fan(CD) * nc comparisons; 

read D: fan(C, D) * nc lbd+ sel*fan(CD) * n, moves. 

=fan(C, D) * nc *n/bn+ 

SMFJ read C: nlbc; fan(CD) * nc comparisons; 

read D: fan(C, D) * nc lbd sel*fan(CD) * nc moves; 

=fan(C, D) * nc *nl(bn) sorting cost: sorting(nj 

NLRJ read C: sel *nd *nc Ibc; nd + sel *nd *nc comparisons; 

read D: ndlbd= nd *nlbn- sel* nd*(fan(CD)*nlnd) 

=sel*fan(C, D) * n, moves. 

SMRJ read C: nc Ibc; Nd-Fsel*nd*(fan(CD)*nlnd+l) 

read D: ndlbd= nd *nl(bn)- comparisons; 

sel*fan(C, D)*nc moves; 

sorting cost: sorting(nj 



Chapter 7 Algorithms for Processing Decomposed Query Components 164 

Table 7.1 gives a summary of join algorithm costs in tenns of major operations. As the time 

required for block accesses typically dominates other factors [Carrano, 1995], it can be 

concluded that the order of above four basic join algorithms are 0 O(n), in terms of block 

access. That means the join time cost linearly increases with the expansion in the number of 
time epochs (or time dimension, in the case of a regular TS). 

The advantage of sort-merge method over the nested-loop method is that the storage pages 
containing class instances of the class are never accessed more than once, resulting in 

considerable saving in terms of response time. The disadvantage is that the algorithms are 
restricted by available memory. If the memory is relatively small or the number of the objects 
in a relation is too big, all objects of the class cannot be read into the memory. The 

algorithms need to be modified in order to be more practical. This will be discussed in the 
following section. 

The disadvantage of reverse join algorithms is that as there is no direct link from D 

collection to C, a value-based join must be used to check the OID membership 

condition, i. e., it performs value-based comparisons of OlDs, which is generally 
inefficient in CPU usage terms [Gardarin et al., 1996]. This algorithm is efficient when 

the predicate in the last collection is selective [Ozsu and Blakeley, 1995; Tang et al., 
1996]. 

We did not discuss hybrid-hash join here, as when the epoch number n is big enough such 

that a temporal object occupies more than one block, implementation of the algorithms with 

strearn processing techniques will not provide an obvious advantage over NLFJ. 

7.5 Modification of Join Algorithms 

As mentioned in previous section, sort-merge algonthms require a relatively large memory. 

If the memory is relatively small, all instances of the class can not be read into the memory 

and the algorithms are not useful. In this case, the algorithms need to be modified. This 

section presents a solution to amend this problem. 
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Sorting the collection C in the external storage 

When the file of C is far too large to fit into internal memory all at once, it presents 

some restriction on sort-merge join algorithms because the sorting algorithms presented 

earlier in previous section assume that all the data to be sorted are available at one time 

in internal memory. To solve this problem, alternative is to sort C using the techniques 

of sorting data in an external file [Carrano, 1995]. Using this technique, SMFJ will be 

modified as below: 

sort C according to Ac; 

/* sort the collection C by using an external MergeSort or SelectSort. 

for (int i=O, - i<nCY- i++) 

IfileC read((char%BqfC, sizeofi(c) ); Pread one instance c of collection C 

fileD. seekg(c. Ac); /* seek the address of d by OID of (d) (i. e., the value of Ac) 

fi1eD. read((char*)&BqfD, sizeof (d)); 

if (predicate) Buf< <join c and d); Poutput results 

I 

file2. write((char*)&Bqf, sizeof (Buf)); Pwrite output to a file */ 

It is essentially an NLFJ, except C is sorted before the execution. Therefore the join cost 

is that of NLFJ plus the cost of sorting using external sorting techniques that require at 

least additional nc Ibc block access to read C. 

For SMRJ, in addition to sorting C using external techniques, there is no need to read all 

objects of D before C is read because the addresses of instances imply the ascending 

order of OlDs. This means that the memory that SMRJ requires to hold the derived D 

whose objects have satisfied the predicate is not necessary. The modified SMRJ is as 

follows: 
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sort C according to Ac; 

/* sort the collection C by using an external MergeSort or SelectSort*/ 

j2=0, - 

for (int i=O, - i<nd, - i+ +) 

ffi1eD. read((char*)&d, sizeof (d)); /* read an object d of D 

if (predicate) 

I 

for (intj=j2; j<nc; j+ +) 

t 

fileC seekgo *sizeof (c) 

fileC read((char*) &c, sizeof (c) ); /* read an object c of C 

if ((c. Ac == fileD. tellgo-sizeofi(d))) 

/* verify if the address of d is equal to the value of c. Ac 

tBuft < Uoin c and d); j2 + +J 

else if (c. Ac>(fi1eD. te1IgO-sizeofi(d))) break; 

IR 

fi1e2. wfite((char*)&Buf, sizeof (Buj)); Poutput results */ 

Compared with SMRJ, the modified SNW exchange the cost soning(nc) to the external file 

sorting cost that requires at least additional n, lb, block access to read C. As a trade-off, it 

saves the memory to hold the whole C and the derived D. 

7.6 Simulation 

This section provides simulation results to evaluate the join algorithms presented in the 

previous chapter. 
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7.6.1 Experimental Database: "The International Weather Record Database" 

The experimental database is taken from the database example presented in Chapter 4: 

"The International Weather Record Database" as shown in Figure 7.5. Daily weather 

changes are recorded for major cities world-wide. The time chronon is a day. For 

simplicity, suppose that time starts from I and ends at today (n). The life-span can 

uniformly be L(TESTINFO)=[J, nJ. The number of records in a temporal object of 

relation TESTINFO is n, representing a regular TS. The relation CITY, analogous to a 

supporting table that is described in Chapter 6, is relatively small: the cardinality of 

CITY is nc= 100, as our intention is to show the relationship of the join response time 

with respect to n, i. e., the number of epochs (records) in a temporal object of relation 

TESTINFO. In this example, ITESTINFOI, i. e., nd, is also 100. That means fan(CITY, 

TESTINFO) is 1. 

CITY 

City# INTEGER 
City_Name STRING 
Weather TESTINFO 

TESTINFO 

TopTemperature FLOAT 
LowTemperature FLOAT 
Hun-ýdity FLOAT 
WeatherType STRING 

Figure 7.5 Extracted from simplified Intemational Weather Record Database 

7.6.2 Simulation Programs 

Simulation environment 

The simulation environment is Borland C++ Version 4 on a PC. 
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Simulation programs 

The simulation consists of a set of programs: 

& The head file that defines the data structures; 

0 The data generating program that creates two collections CHY and TESTINFO and 

stores them in separate files on disk; 

Sort program that use SelectSort[Carrano, 1995] to sort items in a relation in the 

ascending order by an attribute . 

Unsorting program that unsorts, the collection CITY and saves the results. The OlDs 

of TESTINFO, that are the values of attribute weather of CITY, are the physical 

addresses of TESTINFO instances. As the addresses are generated in an ascending 

order whilst our algorithms suppose both join collections are unsorted, so we need to 

unsort them by sorting the CITY by different attribute such as City-Name. 

0 NLFJ program that implements the nested-loop forward join algorithm; 

0 SUFJ program that implements the sort-merge forward join algorithm; 

0 NLRJ program that implements the nested-loop reverse join algorithm; 

SNW program that implements the sort-merge reverse join algorithm; 

The modified SMFJ program that implements the modified algorithm for the sort- 

merge forward join; 

0 The modified SMRJ program that implements the modified algorithm for the sort- 

merge forward join. 

The definition of classes is as follows: 

struct testinfo 
I 

int top-temperature; 
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int low-temperature; 

float humidity; 

char weather t e[101; Yp 

const int max int 
_ 

fo=n; 

typedef testinfo groupinfo[ma)ý_jnfo]; 

struct city 

I 

int number; 

char name[] 0]; 

groupinfo gi; 

1; 

struct city2 

I 

int number; 

char name[] 01; 

long g; 
1; 
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m 'P * gin 

Nc=100; Nd=100; n=: O; I 

n+Vn, 
, vrr-=Io 

MY and TIESTINFO and save 
in separate files on disk 

Unsoft C-TIY I 

................................. I .......................................... N 

ný>ý-200? 

y 

End 

Figure 7.6 Execution of simulation programs of basic join algorithms 
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Here groupinfo extends testinfo with n elements to represent a temporal class, and city2 is a 

copy of city but the third attribute is used to keep the address of testinfo, (i. e., the OID of 

testinfo). Once the database schema is defined, the database needs to be populated with a 
large number of objects by the data generating program. Query processing algorithms such as 
NLFJ, etc. provide the means to retrieve the data on request. The execution of the basic join 

algorithm programs is as shown in Figure 7.6. Simulations of these algorithms applying 
different time-slice intervals as well as the modified SWJ and the modified SMRJ are also 

provided. 

7.6.3 Simulation Results and Discussion 

The four basic join algorithms and modified sort-merge algorithms have been implemented 

on PC using Borland C++ Version 4 where SelectSort algorithm is employed. 

Figure 7.7,7.8,7.9 and 7.10 present the perforinance of four join algorithms, where the 

vertical axis represents join time costs in second and the horizontal axis represents the 

number of epochs in the TS, i. e., n. Different join algorithms are denoted with different 

types of lines as shown in the figures. Selectivity is set at 10%, 33%, 50% and 100% 

respectively. Obviously the join cost increases linearly with n. Performance of NLRJ is 

worst, because it reads the relation CHY many times. Sort-merge join algorithms are 

generally good when the relations are relatively small and n is small. But they are limited by 

the memory of the computer and the algorithms are terminated when n is greater than 100, 

because the algorithms can not work in the given hardware environment when ný! 100. There 

is not too much difference between NLFJ and sort-merge join algorithms, which is because 

the experimental example possesses a one-to-one relationship. 

Figure 7.117.12,7.13 and 7.14 show the performance of join algorithms with respect to 

selectivity sel. It can be seen that the join time cost increases when the selectivity increases. 
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Figure 7.15,7.16,7.17 and 7.18 provide a comparison of the performance of NLFJ, the 

modified SMFJ, NLRJ and the modified SMRJ when n is expanded to 5000. 

All the above simulation results conform to the cost analysis presented in previous sections. 
That is, the join time cost is linearly increased with the expansion of the time-epochs (the 

time-dimension, in the case of a regular TS). 

Figure 7.19 and 7.20 /Figure 7.21 and 7.22 /Figure 7.23 and 7.24 /Figure 7.25 and 7.26 

provide a comparison of the performance of NLFJ /SNIFJ /NLRJ /SMRJ with and without 

time-slice intervals. The performance of join algorithms without time-slice is analogous to 

that of OODBs which allow users to represent temporal data as a 'blob' object but with no 

support for time varying query whilst the performance of join algorithms with time-slice is 

analogous to that of OODBs which support for time-varying data and utilise the heuristics 

for optimization such as that presented in previous section. The span of time-slice T, =[nb 

n, J is denoted as Tn = (nn -n, + 1). When Tn <<n, there is a significant saving. The bigger 

the value of (n-T,,, ), the greater the cost saving. When Tn is close to n and n is close to bn, 

there is no significant cost saving. 

Discussion 

It is generally recognised [e. g., in Ozsoyoglu and Snodgrass, 1995, Leung and Muntz, 19931 

that optimization of temporal queries is substantially more involved than that for 

conventional queries on the one hand, and there is a greater opportunity for query 

optimization when time is present on the other hand. As is shown in our simulation, the rapid 

perfonnance degradation is due to ever-growing overflow chains, and if the query is 

unoptimized, it takes longer and longer to execute. This justifies trying harder to optimize the 

queries and spending more execution time to perform the optimization. 

Most object-oriented database proposals include constructors for complex types like lists and 

arrays that allow time-stamped entity to be represented as a "blob", which is managed by 

the system, but interpreted solely by the application program; no facilities for temporal 
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queries are provided [Seshadri et al., 1996]. It has been pointed out by Kim et al. [ 19971 

and Kim [1995; 1994; 1993] that one necessary topic of research in historical data 

management is to quantitatively establish the performance (and even productivity) 
differences between using a database system that directly supports temporal attributes 
and using a conventional database system that does not support either the set-valued 
attributes or temporal attributes. If it can be convincingly established that the benefits of 
a database system that supports temporal attributes are substantial, database vendors will 
strongly motivated to augment their systems with historical data management. 

The simulation results as well as cost analysis imply that solely treating a temporal object 

as a 'blob' object that is managed by the system, but interpreted by user is not a strategy for 

temporal support in OODBs. It also suggests that for OODBs that support for time-varying 
data, when the number of epochs is big enough, i. e., n>>bn, there is certainly a need to 

provide facilities that support temporal queries. 

7.7 Heuristics for Optimization 

The last section shows the effects of time on query processing algorithms. As pointed out by 

Leung and Muntz [1993] and Ozsoyoglu and Snodgrass [1995], that because adding time 

creates multiple tuple versions of the same object, reorganisation does not help to shorten 

overflow chains, the objective of work in temporal query evaluation, then is to avoid looking 

at all of the data [Leung and Muntz, 1993; Seshadri et al., 1996]. Good heuristics that take 

advantage of data ordering and restrict the scope of a sequence can attain this objective. 

Here we simply outline the following heuristics that make use of the ordering information of 

data and can be exploited for optimization. These ideas have been introduced in earlier in 

chapters. 

1) Transform the time-related predicate into time-slice. 
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For example, select the city whose top temperature at to is higher than 300 C. If the life- 

span of TESTINFO is [1,10000], i. e., n=10000, and the record/block is b, = 100, 

retrieving an object needs 100 block accesses. Retrieving the record at to, that specifies 

the range of access, only needs I block access. That is, given po = 

CITY. Weather. TopTemperaturel,, O ý300, the algebra for the query is 

p 
Cypo (cI7-y=TC<City#, 

O"ame, Weather> 
(CITY >14 TESTINFO) 

CITY. Weather= OID of TESTINFO and PO 

It is equivalent to 

(YPO(CITY)= 

ll<City#, Cit)ýYame, Weather>(CI7-y 

P 

CITY. Weather= OID of TESTINFO and PO 
ýT, 

=, O(TESTINFO)) 

The block access of TESTINFO for the first expression is nd*nlbn==10000*nlbn =100 nd 

whilst the block access for the second expression is nd. The second expression is 

obviously much more economic. i. e., the block access to TESTINFO using the first 

expression costs 100 times more than that in the second expression.. 

2) Perform time-slice as early as possible. 

The use of this heuristic is to avoid looking at all data. For example, for the following 

expression: 

7C<TopTemperature> (ýTl=[nlnm](TESTINFO))=4T]=[nl, 
nml 

(IC<TopTemperature> (TESTINFO)) 

The block access of TESTINFO for the left expression is nd*(n,, -nl)lbn whilst the block 

access for the right expression is nd*nlb,,. As long as n>>(nn-nd, a considerable saving 

will be attained from the left hand expression (e. g., n= 10000 whereas (nn-nd =10, 
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choosing the left hand expression will be 1000 times cheaper than the right hand 

expression. 

3) Combine sequences of unary operations 

A cascade of unary operations such as time-slice, offset, select and project can be 

combined by applying them in a group as we scan each object. Similarly, we can combine 

these unary operations with a prior binary operation such as join, if we apply the unary 

operations to the result of the binary operations as we construct it. 

4) Making use of temporal constraints 

7.8 Summary 

In this chapter, we have presented a set of algorithms for processing the decomposed query 

components which have resulted from employing the decomposition strategy presented in 

the previous chapter. These algorithms can be employed to process a temporal object query 

that involves an enhanced path (a path with an explicit time-reference). The algorithms 

include time-related operations and four basic join algorithms, which are described with cost 

analyses and implemented using stream processing techniques. The order of all four join 

algorithms is 0(n). Of them, NLRJ has the worst performance because it tends to perform an 

excessive number of disk accesses. Sort-merge algorithms (i. e., SNMJ, SNIRJ) are generally 

good, but limited by their heavy demands on memory. When all instances of class C cannot 

be read into the memory, the modified join algorithms, i. e., the modified SNWJ and the 

modified SNW, can be used. 

Simulation results that evaluate the four basic join algorithms (NLFJ, SMFJ, NLRJ and 

SMRJ) and the modified algorithms (the modified SMFJ and the modified SMRJ) are 

also provided. The simulated results conform with the cost analysis presented. That is, 

the join time costs of four basic join algorithms are linearly increased with the expansion 

in the number of the time-epochs (or the time-dimension, in the case of a regular TS). As 
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predicated the performance of NLRJ is worst, as it reads through the relation CITY many 

times. The simulation shows that as expected, sort-merge join algorithms are generally good 

when the relations are relatively small and n is small, but they are limited by memory 

capability. The modified sort-merge algorithms amend this limitation. 

Simulation results that compare join algorithms of NLFJ, SMFJ, NLRJ and SMRJ both 

without time-slice, and with different time-slice intervals justify investigation into 

temporal processing and optimization. Utilising heuristics that make use of the ordering 

information of time varying data could lead to considerable cost savings. 

It has been demonstrated that the decomposition strategy provides a convenient way of 

evaluating the performance of algorithms that take account of the time-dimension, and 

provides an opportunity for optimization that makes use of the ordering information of 

temporal data. It is also shown that the number of epochs is a significant token and plays an 

important role in the cost analysis. 
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Figure 7.7 Join time cost with respect to n (sel=10%) 
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Figure 7.8 Join time cost with respect to n (sel=33%) 
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Figure 7.11 Join time cost with respect to sel% (n--40) 
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Figure 7.12 Join time cost with respect to sel% (n--80) 
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Figure 7.14 Join time cost with respect to sel% (n-- 180) 
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Figure 7.13 Join time cost with respect to sel% (n= 100) 
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Figure 7.15 Join time cost with respect to n (sel= 10%) 
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Figure 7.17 Join tirne cost with respect to n (sel=50%) 
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Figure 7.18 Join time cost with respect to n (sel= 100%) 
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Figure 7.19 NLFJ time cost with respect to n (sel=10%) 
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Figure 7.20 NLFJ time cost with respect to n (sel=33%) 
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Figure 7.21 SMFJ time cost with respect to n (sel=10%) 

t ec. ) 

6 
SWJ without time-slice-Expected SWJ without time-slice 

Tm =80 

5 Tm = 40 

Tm = 10 
4 

------- Tm =I 

--------------- 

0LL, L- ,j 

20 40 60 80 100 120 140 160 180 200 22o 

Figure 7.22 SMFJ time cost with respect to n (sel=33%) 
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Chapter 8 

Query Processing 

with Incomplete Temporal Data 

Previous chapters have presented an extensible approach to processing temporal object 

queries within the uniform query processing framework. In particular, a decomposition 

strategy is employed to process a query involving a path when time is present and 

algorithms have been presented to process the decomposed query components. This chapter 

will discuss the situation where user's queries require data that have not been explicitly 

recorded in the database. Temporal data allows substantial information to be exploitedfor 

query processing in such a situation. 

8.1 Introduction 

Our definition of the temporal data model describes a TOODB that is populated with 

temporal objects that are grouped into classes/relations and interrelated through associations 

of aggregation, generalisation and time-reference. A temporal object is represented as a time 

sequence, which can be either regular or irregular. 

Time advances in one direction: the time domain is continuously expanding, and the most 

recent time point is the largest value in the domain. This implies that there is a lot of 

information associated with temporal data, which can be exploited during query processing. 

It has been shown from the previous chapter that exploiting the natural clustering or sort 

order will be beneficial to query optimization, and evaluations that use stream processing 

techniques and heuristics will reduce the scope of sequence scan. 
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Unlike query processing in a snapshot database where the user query always asks for data 

that have been recorded in the database, in temporal databases, a user query may require the 

value of an event at a specific time for which the database has no entry (no record) at that 

time point. In such a case, drawing implications from existing temporal data would help to 

answer user quenes. 

This chapter will first look at implications of temporal data and then discuss how to exploit 

these implications in query processing with incomplete temporal data. The rest of the chapter 
is organised as follows. Implications of temporal data will be briefly described in Section 

8.2. Exploiting these implications to respond to a query requiring data that have not been 

explicitly recorded in the database is discussed under the title of interpolation in Section 8.3. 

Section 8.4 outlines a method for query processing in such a situation. Finally, Section 8.5 

offers a summary. 

8.2 Implications of Temporal Data 

Time advances in one direction. This implies temporal completeness, temporal succession, 

temporal density, and temporal constraint [Roddick and Patrick, 1992], which can be 

exploited during query processing. 

Temporal completeness 

Temporal completeness can be compared with Robinson's definition of data completeness 

[1979]: 

A thing playing a role of some relevance in the object system must be represented by a single 

thing playing a corresponding role in the model. That is, a thing in the model must have the 

same characteristics with respect to the model as the thing in the object system has with 

respect to that system. 

The same applies to the temporal dimension. If an event of relevance occurs in the object 

system and the time at which it occurs is of interest, then it must be possible to model the 
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time of occurrence, and the temporal context pertaining to that event must be preserved 
regardless of future events. For example, if the absolute time of occurrence of an event is 

required then recording of absolute time should be supported. 

According to Robinson: 

Any thing in the model must be the sole representation of something playing an appropriate 

role in the object system. A corollary to this is that if there is something we do not want to 

say about the object system we should not say anything in the model. We should not have an 

elaborate way of saying something that is unimportant or absent in the object system. 

Robinson's comments have a corollary within temporal data capture with the degree of 
description of temporal events. 

Temporal succession 

If a relevant sequence of events occurs in a modelled envirom-nent then the model should be 

nil ., Ie to record faithfully the sequence of the events. 

The difference between this feature and that of temporal completeness is that completeness 

permits the model to fully describe the events in their temporal context, whereas temporal 

succession facilitates the accurate recording of the sequence of events or changes in the 

object system. 

Temporal density 

If the facts in a database model are, in some way, time-stamped, then what is the value of an 

attribute at a time where there is no specific entry? To be more specific, if a variable has a 

value at time tj, then at time t2where tj # t2, even if there is no information recorded for the 

variable at t2, an assumption (or the application of one of a set of rules) should be possible to 

estimate the attribute's value. Obviously a useful modelling technique will have to allow for 

such assumption routines to cater for these cases, or at least state the assumption rules being 

used. These assumption rules generally fall into three categories: 
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0 Step-wise constant 

A fact true (or a variable with a value) at time tj should be assumed to be true (or have 
the same value) at time t2where tj < t2, unless it is explicitly recorded different at a time 
tj where tj < t3< t2. 

0 Discrete events 

A fact true (or a variable with a value) at time t, should be assumed to be false (or have 

the value zero or null according to the context) at time t2where tj # t2, unless it is 

explicitly recorded otherwise. 

9 Continuous change 

It should be possible for a variable with a value v, at time tj to be approximated at time t2 

even if its value v, at time t, is not explicitly recorded. 

For the time sequence that represents continuous change event in time, interpolation 

algorithms or temporal modelling techniques may be required to estimate the such 

values that will be discussed in the next section. 

Handling of error terms and incomplete data 

The handling of fuzzy data has been dealt with extensively in the literature in relation to 

static, non-temporal databases, however, handling of error terms in temporal databases 

requires special consideration. Where there is a measure of uncertainty about the accuracy of 

a piece of temporal data it may become difficult to provide accurate response to database 

queries. These uncertainties can be categorised as follows: 

* Granularity errors-- the difference between time points is too coarse; 

9 Recording inaccuracies--the time data is erroneous or inaccurate; 

* Relational uncertainties--the relationship between events and intervals is incompletely 

known. 
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As the time sequence is continuous in the time dimension, stochastic estimation approaches 

can be applied for curve fitting or smoothing, which can be exploited in interpolation 

algorithms. 

Temporal constraints 

The ability of a model to enforce data to adhere to integrity constrains is fundamental to the 

functionality of any database system, and has been covered well in the literature in relation to 

snapshot databases. Many constraints have a time element associated with them which is 

frequently ignored, even by those designing temporal modelling systems. Examples of 

temporal constraints are [Roddick and Patrick, 1992]: 

* An event (or the beginning or end of a temporal set) that is constrained to fall at or within 

a given set of absolute time intervals. 

9 An event may be considered to occur within a given set of absolute time intervals 

relative to another event. 

An event may be considered to occur within a given set of relative constraints with 

respect to another event. 

Temporal constraints can be exploited for interpolation and semantic optimization. 

8.3 Interpolation 

As discussed in the last section, temporal data implies substantial information that can be 

exploited for query processing and optimization. In this section, we will focus on how to 

make use of this infon-nation to respond to a user's query requiring data that is not explicitly 

recorded by introducing some techniques of interpolation. 
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Recall that a temporal object is represented as a time sequence (TS) in Chapter 4. For a 

continuous change event, it can be represented by either a regular TS or an irregular TS 

depending on the recording of the data. When it is represented by a regular TS, there is a 

corresponding value for every time point. However, if the granularity is too coarse, there 

would be a need for interpolation in order to answer a user's query that does not correspond 

to an explicit record. When it is represented by an irregular TS, interpolation algorithms or 

temporal modelling techniques may be required to decide the immediate value of an object 

between the values at various times recorded. (Note that for discrete and step-wise constants, 

the aforementioned assumptions would allow us to decide a value at a time point that has not 

been recorded. Even for discrete events, stochastic approaches can also be applied to 

estimate the missing data). 

Therefore, interpolation is often required in processing temporal queries, because: 

" granularity is too coarse in the case of both irregular and regular TS; 

" missing values (null) in the case of both irregular and regular TS; and 

" unequal spacing in the case of irregular TS. 

The implications of temporal completeness, temporal succession and temporal density 

assure the use of interpolating. 

The algorithms of interpolation themselves are outside of the scope of query processing. 

But employing interpolation is useful within a temporal database when a user's query 

requires data not explicitly recorded. To clarify the use of interpolation, this section 

briefly introduces some interpolation techniques, especially in situations where the data 

are not linear. Problems directly related to query processing would then be made clear. 

Given values of an unknown function of time corresponding to certain values of time t, 

to answer the question "What is the function" is always impossible with a limited 

amount of data. Determining the behaviour of a functionf(t), as evidenced by the sample 

of data pairs ft, f(t)] by approximation is the task of interpolation (or extrapolation) 

[Gerald and Wheatley, 19941. The approach to be used is to fit a polynomial curve to the 

points. This approach is appropriate to many applications. 
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The strategy discussed here used in approximating unknown values of a function is 

straightforward. We will find a polynomial that fits a selected set of points (ti, f(ti)) and 

assume that the polynomial and function behave nearly the same over the interval in 

question. Values of the polynomial then should be reasonable estimates of the values of 
the unknown function. When the polynomial is of the first degree, this leads to linear 

interpolation. If the polynomial is of degree higher than the first, it can approximate a 
function that is non-linear. 

However, there are problems with interpolating polynomials when the data are not 
"smooth" (i. e., that there are local irregularities). In such cases, a polynomial of high 

degree would be required to follow the irregularities, but it can be found that such 

polynomials, while fitting irregularities, deviate widely at other regions where the 

function is smooth. One solution is to fit subregions of data with different polynomials, 

but this method too is problematic in that the joins of the different polynomials are not 

continuous in their slope. To remedy this problem, special types of polynomials, called 

splines, are useful [Gerald and Wheatley, 1994]. 

The study of splines leads to some other special forms of polynomials (Bezier curves 

and B-spline curves) that do not interpolate (they do not pass exactly through all of the 

points) but they are useful for sketching smooth curves. 

We do not always want to find a polynomial that fits exactly to the data. Often the 

values we wish to fit are not exact, or they may come from a set of experimental 

measurements that are subject to error. Fitting exactly a polynomial in this instance 

would also fit the errors in the data and this is undesirable. 

A technique called least squares is normally used in such cases [Gerald and Wheatley, 

1994]. Based on statistical theory, this method finds a polynomial (or some other kind of 

approximating function) that is more likely to approximate the true values. 
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To illustrate the idea of interpolation, the following gives two examples of popular 

methods for interpolation from [Gerald and Wheatley, 1994], i. e., Lagrangian 

polynomials and least squares approximation. 

1) Lagrangian polynomials 

Assume that the given data are exact and represent values of unknown function. If we 

want to find a polynomial that passes through the same points as our unknown function, 

we need to set up a system of equations involving the coefficients of the polynomial. 

For example, suppose we want to fit a cubic to these data: 

f(2 
3.2 22.0 

2.7 17.8 

1.0 14.2 

4.8 38.3 

5.6 51.7 

First, we need to select four points to determine the polynomial (The maximum degree 

of the polynomials is always one less than the number of points). Suppose we choose 

the first four points. If the cubic is a? +W +ct +d, we can write four equations 

involving the unknown coefficients a, b, c and d: 

when t--3.2: a(3.2) 3 +b(3.2)2 +c(3.2) +d 

if t=2.7: a(2.7)3 +b(2.7)2 +c(2.7) +d 

if t=LO: a(1 o)3 +b(1 o)2 +C(I. 0) +d 

if t=4.8: a(4.8) 3 +b(4.8)2 +c(4.8) +d 

The set of equations gives: 

a=-0.5275; b=6.4952; c=-16.1177; d=24.3499 
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and the polynomial is 

f(t)=-0.5275 ? +6.4952 ý 
-16.1177 t +24.3499 (8-1) 

We can then estimate the values of the function at some value of t, say t=3.0, by 

substituting 3.0 for t in the polynomial. At t=3.0 the estimated value is 20.21. 

This procedure is awkward and this technique leads to an ill-conditioned system of 

equations [Gerald and Wheatley, 1994]. 

The Lagrangian polynomial is perhaps the simplest way to obtain a polynomial for 

interpolation with unevenly spaced data (i. e., irregular TS). Data where t-values are not 

equally spaced often occurs as the result of experimental observations or where historic 

data are examined. 

Suppose we have a table of data with four pairs of t- and f(t)-values, with tj indexed by 

variable t: 

T NO 

TO fo 

T, f, 

T2 f2 

T3 f3 

Through these four pairs we can pass a cubic. The Lagrangian form for this is 

P3(t) = 
(t - tl)(t t2)(t - t3) 

fo+ 
(t 

- tO)(t t2)(t - t3) 
fl 

(tO 
- tl)(tO t2)(tO - t3) (ti 

- tO)(tl t2)(tl - t3) 

(8-2) 
tf - f-Wf t'Vt - f, ý (t - tn)(t - ti)(t - t, )) kt-tv)kt tljk& &J. 1 f2+k. - f3 

(t2 - tO)(t2 - tl)(t2 - t3) (t3 
- tO)(t3 - tl)(t3 - t2) 
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We can write the algorithm for interpolation with a Lagrangian polynomial of degree m 
in pseudo-code of C++: 

To interpolate for f(t), given t and a set of m+1 data pairs, (ti, fi), 1=0,1,... m. It is not 
assumed the uniform spacing between the t values, nor does it is needed that values 
arranged in a particular order. The t-values must all be distinct, however. 

sum=O; //set sum=0 
for (int i=O; i=m; i++); 

real P= 1; 

for (intj=O; j=m; j+ +); 

if (j; &i) P=P*(t-t(j) )1(t(i)-t(j)); 

Hend of j 

SUM=SUM+P*f(i); 
] Hend of i 

Hsurn is the interpolated valuef(t). 

The trouble with the standard Lagrangian polynomial technique is that we do not know 

which degree of polynomial to use. If the degree is to low, the interpolating polynomial 

does not give good estimates of f(t). If the degree it too high, undesirable oscillations in 

polynomial values can occur. Nevill's method can overcome this difficulty [Gerald and 

Wheatley, 1994]. It essentially computes the interpolated value with polynomials of 

successively higher degree, stopping when the successive values are close together. The 

successive approximations are actually computed by linear interpolation from the 

intermediate values. 

There are two disadvantages in using the Lagrangian polynomial method for 

interpolation. First, it involves more arithmetic operations than does the divided- 

difference method [Gerald and Wheatley, 1994]. Second, and more important, if we 

want to add or subtract a point from the set used to construct the polynomial, we 

essentially have to start over the computations. Both the Lagrangian polynomial and 

Nevill's method also must repeat all of the calculations if we must interpolate at a new 
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t-value. The divided-difference methods avoid all of this computation [Gerald and 
Wheatley, 19941. The problem of interpolating from tabulated data is considerably 

simplified if the values of the function are given at evenly spaced intervals of the 

independent variable. It is necessary to arrange the data with t-values in ascending order. 

2) Least-squares approximation 

When the values we wish to fit are not exact, or they may come from a set of 

experimental measurements that are subject to error, a technique called least squares is 

normally used in such cases. Based on statistical theory, this method finds a polynomial 

that is more likely to approximate the true values. 

We use m as the degree of the polynomial and N as the number of data pairs. Obviously 

if N=m+ 1, the polynomial passes exactly through each point and the methods in 

previous sub-section apply. Here, we consider the situation N>m+ 1. 

We assume the functional relationship 

y=ao+al t+ a2 ý +... +a,, t' (8-3) 

with errors defined by 

ei=Yi-yi=Yi- ao-al ti- a2 ti 2_... 
-a,, ti' (8-4) 

where Yj represents the observed or experimental value corresponding to ti, i= 1,2,..., N. 

We minimise the sum of squares 
NN 

S= lei'= Y, (Yi-ao-aiti' -a2t, 
2 

a. ti' 
)2 (8-5) 

i=l i=l 

At the minimum, all the partial derivatives vanish, giving m+I equations: 
as N2 

=0= Y, 2(Yi-ao-aiti' -a2ti amti 
aao 
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as N2 

=0=j2(Y-ao-aiti' -a2ti amtin ) 00, (8-6) am i=l 

as N2 

=0 2(Yi - ao - aiti' - a2 a. ti" )(-tim aam 

Dividing each by -2 and rearranging the m+I normal equations to be solved 

simultaneously: 

aoN + aiy, ti + a2l ti 2 
+... + am I tim = Y, Yi 

aol ti + aiy, t, 2+ 
a2y, t, 3 

+... +a. ti m+' =I tiYi 

aol ti 
2+ 

ail ti 
3+ 

a2l ti 4 
+... +am I ti m+2 t, 2y, (8-7) 

t, m+2 t, 2m Y, t, my 
i aoy, tim + ail ti'+' + a2'y, + am 

-d 
i 

where the summations run from I to N. 

Putting these equations in matrix form shows an interesting pattern in the coefficient 

matnx: 

N ti .... 
Y tim Yi 

Yý 
ti 

I 
ti 2 

... 
Iti M+l 

a= 
itiyi 

(8-8) 
... ... ... ... ... 

Y, tim 
I ti M+l 

... 
Y, ti 2m Y, timyi- 

where a=[ao, a,, a2, ..., a .. 1. The matrix of above equation is called the normal matrix for 

the least-squares problem. There is another matrix that corresponds to this, called the 

design matrix. It is of the form: 

ti t2 N 

... ... ... ... 
tim t2m Nm 
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It is easy to show that AAT is just the coefficient matrix of equation (8-8). We can 
rewrite the above equation in matrix form as: 

AA Ta 
=Ba = AY 

where B= AA T 
and Y=[YI, Y2,..., YN]. 

(8-9) 

There are various methods to solve equation (8-9). The following method avoids ill- 

conditioning [Gerald and Wheatley, 1994]. 

The matrix B=AA T is symmetric and positive semidefinite [Gerald and Wheatley, 1994]. 

In linear algebra, it is shown that B can be diagonalized by an orthogonal matrix P: 

PBP T=pAATpT =D 

where the diagonal elements of D are the eigenvalues of B. Note that orthogonality 
implies that PP T =I, the identity matrix. 

Since B is positive semidefinite, all of its eigenvalues are nonnegative. This means that 

we can define a matrix R as 

V-D, or R2= 

The diagonal elements of R are called the singular value of A. The equation and its 

solution can be rewritten as: 

AATa=PTDPa=PR(PR) T a=AY 
T 

a=PD-1 P AY 

(8-10) 

(8-11) 

This eliminates having to multiply out AA T and by extending this approach, leads to an 

important methods for solving the equation (8-8) called singular-value decomposition 

[Gerald and Wheatley, 1994]. 
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8.4 Query Processing with Incomplete Temporal Data 

From the discussion in last section, it is clear that the main problem concerned with query 

optimization, when interpolation is used, is to efficiently retrieve N epochs of data required 
for interpolation, in order to produce an efficient interpolation algorithm 

Any smooth function can, under very general conditions, be represented locally by a 

polynomial, to any desired degree of accuracy [Kendall and Ord, 1990]. The implications of 

temporal completeness, temporal succession, temporal density and temporal constraints 

imply that a continuous time event is, at least locally, a smooth function. It can then be 

required that the N epochs (N records) of data are close or around the estimated time point t. 

Suppose that the temporal object has n records (i. e., the total number of epochs is n) that are 

naturally clustered together in time ascending or descending order. We can summaries the 

method for query processing that corresponds to returning an object value at time t below: 

1) According to the application, deterraine the degree m of the polynornIal to be applied. 

For example, for a temporal time event, which changes dramatically, we can choose a 

higher degree. Otherwise we choose a lower degree. 

2) Deterrr. Line the method for interpolation. In case of the stochastic method, for example, 

the least-squares approximation, N is determined, otherwise N=m+ I 

3) Retrieve N records of the temporal object from the database. 

a) N=n 

Retrieve the whole historical records (n records) of the object from the database. 

b) N<n 

Perform a binary search or sequential search (as discussed in Chapter 7) to determine the 

epoch number i whose time value is tj and its successive epoch number i+ I whose time 

value is ti,,, and there exists ti<t<ti,,. 
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If i <N12 < n/2, retrieve the first N records of the object from the database. 

If i> n-N12, retrieve the last N records of the object from the database. 

If N12<i < n-N12, retrieve N12 records before and including i and N12 records after and 
including i+ 1, i. e., retrieve N records of the object whose time epoch numbered as: 

i-N12, ..., i, i+1,..., i+N12 

Note that for simplicity, we retrieve N12 data before the estimated time t and N/2 data 

after the estimated time t. In some (extremely) uneven time space situations, unevenly 

retrieval of data can be applied. 

4) Execute the chosen interpolation algorithm. 

5) Retum the object value at time t. 

For some discrete time events with data missing at some time points, we can apply the above 

method to estimate the value at those time points. If missing data is not the case, we can 

simply return null for an unrecorded time point. 

For the step-wise constant situation, perform a binary search or sequential search to 

determine the epoch number 1 whose time value is tj and its successive epoch number 

i+I whose time value is ti,,, where ti<t<ti+,. Return the object value at point i. 

Note that if a user query requires data whose time point is outside the object's lifespan, 

i. e., at a future time point, we have the problem of predication. Predication is required 

by many temporal database applications such as sales forecasting, weather forecasting, 

etc. The purpose of maintaining such a temporal database is not only to record the 

history of time-varying events, but also to predicate the trend or future change of the 

events. Predication algorithms are often based on a regular TS. In the case of irregular 
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TS, the interpolation is applied first to construct a regular TS. Once a TS is modelled by 

some function, the predication can then be easily carried out based on that function. The 

subject of predication is outside of the scope of query processing. 

8.5 Summary 

This chapter has been dealing with query processing with incomplete temporal data. When a 

user query requests the data that is not explicitly recorded in the database, the techniques 

of interpolation or assumption rules that make use of the implication of the time would 

correspond to the user's query. The implications of temporal completeness, temporal 

succession, temporal density and temporal constraints assure the interpolation approach 

and assumption rules. Again, making use of the ordering information of the data and 

utilising the heuristics that reduces the scope of scanning a sequence would improve the 

efficiency of the algorithms. 



Chapter 9 

Conclusions and Future Work 

This chapter concludes the thesis. The main contributions of the work are highlighted 

and conclusions have been drawn. Query processing in temporal object-oriented 
databases is a broad subject posing a major challenge, and this leads to a need to 

specify the limitations of the work carried out and to proposefurther work. 

9.1 Major Contributions of the Work 

This thesis mainly consists of three parts. Part I (Chapters 2 and 3) was an overview of 
background and research status in this area. Part 1[[ (Chapter 4 and 5) constructed a 
fundamental part for query processing, i. e., the temporal data model and its algebra. The 

techniques and algorithms for processing temporal object queries were presented in Part 

III (Chapter 6 to 8). The main work done in the thesis has been expounded through out 

these chapters and has been summarised in Chapter 1. Here we highlight the major 

contributions of the work as follows. 

The major contributions of this work are concerned with employing an extensible 

approach to processing temporal object queries within a uniform query processing 

framework. Firstly, a temporal object data model has been defined, in which a temporal 

object represented by a time sequence can model various time varying entities in the real 

world. The model possesses the extensive features of object orientation, and the 

temporal aspects. Secondly, an algebra with the properties of closure and reducibility 



Chapter 9 Conclusions and Future Work 206 

has been developed to provide access to objects that are interrelated through 

associations of aggregation, inheritance and time-reference. Thirdly, this thesis presents 
a layered structure for optimizer design. The importance of this structure is that it 
separates the functionality between the temporal optimizer, the object optimzer and 
relation optimizer and allows the exploitation or extension of the existing query 

processing techniques at different layers. Fourthly, a set of query transformation rules 

are specified for the algebraic manipulation. Fifthly, the enhanced path has been defined 

to refer to a path with a time reference and a decomposition strategy is proposed for 

processing temporal object queries involving such an enhanced path. Sixthly, query 

processing algorithms are implemented using stream processing techniques that makes 

use of ordering information of time varying data. Seventhly, this thesis presents valuable 

cost analysis and simulation results: the join time cost is linearly increased with the 

expansion in the number of time-epochs (it is linearly increased with the expansion of 

time in the case of a regular TS). The term epoch taken from the signal processing field 

has been served as an important token for cost analysis. It is shown that utilising 
heuristics would result in a considerable cost saving. Finally, it has been shown that the 

implications of temporal data can be exploited to respond to the user query requiring the 

data that are not explicitly stored in the database. 

It has been demonstrated that an object query processor can enhance its query 

processing capability by utilising relational query processing techniques, and that 

temporal object queries can be processed within the existing object query processing 

framework, through smoothly extending existing techniques. Techniques that take 

advantage of the semantic richness of temporal data, including stream processing 

techniques, natural clustering or sort order, heuristics for reducing the scope of sequence 

scanning, interpolation, etc., are beneficial to query processing and optimization. 

Note that the project initially started in 1993. During the time we were writing up 

publications from our research results (papers 1-5 listed in author's publications), 

ODMG2.0 [Cattell, 19971 was released. ODMG Object Model introduced the concepts 

of lifetime of an object and structure of timestamp, though there is no construct has been 

specified for defining temporal object. OQL uses the relational standard SQL as a basis 
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but supports more powerful capabilities, i. e., it includes object extensions for object 
identity, complex objects, path expressions, etc. The temporal object data model defined 

in this thesis, via incorporating time elements into the unified model of RDB and OODB 

from UniSQLJX, possesses the main key object features defined in ODMG Object 

Model. The temporal object that is represented as a time sequence, complies with the 
ODMG Object Model concepts: the values of an object's properties can change over 

time; even though it changes over time it has the same OID. The algebra presented in 

the thesis defines operations that support OQL defined primitives such as implicit join, 

explicit join, path traversal, etc. Therefore, the idea of the extensible approach proposed 
in this thesis to processing temporal object queries, and its techniques and strategies, 

though they are based on the unified model of RDB and OODB from UniSQL, can be 

applied to both object-oriented databases (based on ODMG) and object-relational 

databases (based on SQL-3). 

9.2 Conclusions 

Here we draw the following conclusions or lessons learnt from the work, which further 

make clear why our contributions are significant. 

1) The temporal object data model defines access primitives and provides a 

starting point for query processing 

The temporal object data model is defined by incorporating a time dimension into the 

unified model of OODBs and RDBs from UniSQL/X [Kim, 1993; 1994; 1995; 

D'Andrea and Janus, 1996], which is extended from the relational data model. 

* The model presents an extensible structure, i. e., it forms temporal relational-like 

cubes but with aggregation and inheritance hierarchies so that the temporal object- 

oriented database defined by the model is a superset of object-oriented database (i. e., 

retaining snapshot reducibility to an OODB) that in turn is a superset of relational 

database. 
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A temporal object is represented by a time sequence that can model various practical 
time varying entities. Both homogeneity and heterogeneity in the time dimension can be 

supported. 

9 The epoch, which refers to the time when temporal object changes its value, represents a 
transformed time space and can then serve as a convenient token for the analysis of the 

query processing cost. 

The model with these features defines the access primitives that at least partially determine 

the power of algebra. It provides a start point towards query processing. 

2) A query algebra with the properties of reducibility and closure allows extending 

and using of existing query processing techniques for processing temporal 

object queries 

A query algebra, that provides access to objects through aggregation, inheritance and 

time-reference, is then defined as a general query model /language. This algebra has the 

following desirable properties. 

e The algebra is closed in the sense that the output from one operation can become 

input to another. This ensures that the use of relational techniques is possible. 

* The algebra possesses the property of reducibility. By reducibility, we mean that the 

temporal object algebra can be reduced to the object algebra when the time 

dimension is not taken into account and the object algebra can be further reduced to 

the relational algebra when the aggregation hierarchy and inheritance hierarchy are 

not taken into account. This enhances the abilities to utilise and extend the existing 

query processing techniques for temporal queries. 

* The algebra can be grouped complete so that it supports a rather strong notion of the 

"history of an attribute". This satisfies the needs required by many temporal database 

applications. 
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The algebra provides a basis for query processing and optim- ization. The features of the 
algebra allow the extended approach to be exploited. 

3) Separation of the functionality between temporal optimizer, object optimizer 
and relational optimizer ensures existing techniques can be used or extended 

Due to the extensible structure of our data model and reducibility of the algebra, the query 
optimizer can be designed as a layered structure. That is, the temporal optimizer is built on 
the top of the object optimizer that is on the top of the relational optimizer. This 

separates the functionality between different optimizers, and the existing query 
processing techniques can be exploited or extended (when necessary) at different levels. 

The layered structure of the query optimizer lays out a uniform framework for processing 
temporal object queries. 

4) Algebraic manipulation can be performed by specifying a set of transformation 

rules that expands relational rules by taking into account of object-oriented 
features and time dimension 

We have identified a set of query transformation rules that comprise: 

" relational rules; 

" temporal transformation rules; 

" inheritance rules; and 

" path transformation rules. 

The relational rules derived from well-known algebraic optimization techniques in 

RDBs play an essential role in query optimization. When the time-dimension is taken 

into account, the temporal transformation rules come into effect. Inheritance rules are 

object specific and simplify queries. The path transformation rules in OODBs have been 

extended to address the features of the time dimension, that conceive query processing 

techniques and strategies for processing temporal object-oriented queries (e. g., the 

decomposition strategy and join algorithms see below). 
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5) A decomposition strategy provides a convenient means for temporal object 

query processing and cost analysis, and an opportunity for optimization 

A temporal object query can be represented by an enhanced path (defined as an 

extended path with time-reference). A decomposition strategy is devised for such a 

query. 

The decomposition strategy for processing temporal queries can be formerly stated as 
follows. A complex user query with path expressions that involves a time-reference is first 

translated into a set of single path expressions. A single path is then divided into two sub- 

paths: a sub-path involving time-stamped class that can be optimized by making use of the 

ordering information of data and an ordinary sub-path (without a time-stamped class) that 

can be further decomposed and traversed using different algorithms. The intermediate results 

of traversed two sub-paths are then joined together to create the output query. 

The advantages of decomposing the temporal query into sub-query components are that 

it provides a convenient means for evaluating query processing algorithms and analysing 

the effects of the time on query processing costs. It also provides an opportunity for 

optimization, e. g., well-known join algorithms can be used to optimize the query. 

6) Stream processing technique is a good choice of implementing temporal query 

processing algorithms 

As temporal data often ordered by time, the stream processing approach is a strategy of 

choice to implement relevant algorithms. 

With the stream processing techniques, the following algorithms have been 

implemented: 

* Stream processing time-slice algorithms and stream processing aggregation 

algorithms for the time-related operations; 
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Four basic join algorithms (i. e., nested-loop forward join, sort-merge forward join, 

nested-loop reverse join and sort-merge reverse join) and their modifications. 

These algorithms are presented with the corresponding cost analysis and implemented 

on a PC using Borland C++ Version 4. 

7) The join time cost is linearly increased with the expansion in the number of 
time-epochs (it is linearly increased with the expansion of time in the case of a 

regular TS) 

Adding time creates multiple versions for the same object that in turn affects query 

efficiency. Both cost analysis and simulation results presented in this thesis reveal the 

effects of time on query processing algorithms, i. e., the join time cost is linearly 

increased with the expansion in the number of time-epochs (it is linearly increased with 

the expansion of time dimension in the case of regular TS). 

This justifies the effort involved in trying harder to optimize queries and performance 

comparison between join algorithms with and without time-related operation support. 

8) Utilising heuristics, that take advantage of data ordering and restrict the scope 

of search space, will result in a considerable cost saving 

There is a great opportunity to exploit temporal semantics in query optimization. To 

further reduce the time cost, the following heuristics that take advantage of data 

ordering and restrict the scope of search space have been presented as optimization 

strategies: 

* Transform the time-related predicate into time-slice operations; 

* Perform time-slice as early as possible; 

* Transform temporal constraints into time-slice operations. 
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The principle of these heuristics is to look only at the data that is relevant to the query. 
It has been shown in the thesis by both analysis and simulation that utilising the 
heuristics could lead to a significant time cost saving. 

9) Implications of temporal data can be used to derive data that is not explicitly 

stored in the database. 

When a user query requiring the data that is not explicitly recorded in the database, the 

techniques of interpolation or assumption rules that exploit the implication of temporal 

data would help to answer the user's query. The implications of temporal completeness, 

temporal succession and temporal density assure the use of interpolation and assumption 

rules. Again, making use of the ordering information of the data and utilising the 

heuristics that reduces the scope of scanning a sequence can improve the efficiency of 

interpolation algorithms. 

10) Solely treating a temporal object as a 'blob' object that is managed by the system, 

but interpreted by the user is not a strategy for temporal support in OODBs 

Because of the rapid perforinance degradation due to ever-growing overflow chains, for 

OODBs that support for time-varying data, when the number of epochs is large, i. e., n>>bn, 

there is certainly a need to provide facilities for temporal queries. 

9.3 Future Work 

Query processing in temporal object-oriented databases is a broad subject and poses 

many difficult challenges. The work done in this thesis is still limited. We would 

envisage the future work that might include: 

1) Extending the join algorithms to operate on the classes with many-to-many 

relationships 

Like many path executing algorithms used OODBs, the join algorithms presented in the 

thesis operate under the assumption that the two join classes have a many-to-one 
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relationship. Future work could be to extend the join algorithms to operate on classes 
with many-to-many relationships. 

2) Multiple path optimization 

For simplification, we have discussed the query processing with a single path. When 

queries involve multiple paths, the techniques proposed in the thesis can be extended 
and applied to such cases. But, further study on cost analysis is needed to demonstrate 

the performance of global optimization in this case. 

3) Making use of temporal information for further optimization 

Time implies a lot of information that can be used for optimization. This has been 

demonstrated in this thesis in some extent. Building on work in this thesis, utilising 
temporal constraints for semantic optimization would be a good topic of further 

research. Detailed temporal predicate optimization would also be worth investigating. 

4) Dealing with generalisation and specification 

This thesis has focused on the central issue of object query processing, i. e., path 

optimization. As is the case for most OODBs, it is assumed that once a class is specified 

as a subclass of a class, it will automatically have the attributes defined by its superclass. 
Support for generalisation and specification is quite system-implementation dependent 

(most RDBs and post-relational databases require users to manage and enforce this 

relationship). If it is supported by the system, query processing algorithms like what 

have been presented in this thesis will be affected, and it should be taken into 

consideration. 
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Abstract 

This article investigates an extensible approach to processing temporal queries in the context of object-oriented databases. Within the 
uniform query processing framework, a strategy of decomposition is proposed for processing temporal queries that involve paths based on the 
defined temporal object data model and query algebra. Algorithms for processing the decomposed query components have been implemented 
using stream processing techniques and are presented with cost analyses. Heuristics that optimize the temporal queries are also presented. 
Both cost analysis and simulations show that join time cost is linearly increased with the expansion in the number of time-epochs and that 
utilising the heuristics presented in this article can lead to a significant time cost saving. 0 1999 Elsevier Science B. V. All fights reserved. Cý 
Keywords: Object-oriented databases; Temporal data; Query processing 

1. Introduction 

Temporal properties play an essential role in many real 
world applications. Most object-oriented database (OODB) 
proposals and post-relational products include constructors 
for complex types such as lists and arrays that allow time- 
stamped entities to be represented as a 'blob' object (which 
is managed by the system, but interpreted solely by the 
application program); no facilities for temporal queries are 
provided [15,17]. Research on temporal object-oriented 
databases (TOODBs) is mainly focused on defining 
temporal data models by extending existing models 
[12,13,14,17,191. Not much work has been done on 
temporal query processing and optimization [6]. 

In the context of databases, two time dimensions are of 
general interest [17]: valid time and transaction time. Valid 
time concerns the time a fact was true in reality whilst 
transaction time concerns the time the fact was stored in 
the database. This article is concerned with valid time 
data management, and investigates temporal query proces- 
sing within the formal object-oriented query processing 
framework, based on our previously defined object data 
model and algebra [20,21]. As a result of the extensible 

* Corresponding author. Tel.: +44-171-419-3687; fax: +44-181-364- 
7069. 

E-nwil addresses: lichun. wang@cs. ucl. ac. uk (L. Wang), m. wing@mdx. 
ac. uk (M. Wing), c, davis@mdx. ac. uk (C. Davis), n. revell@mdx. ac. uk 
(N. Revell) 

features of our temporal data model and the reducibility of 
query algebra, a decomposition strategy is proposed for 
processing temporal queries that involve a path expression. 
Algorithms are provided to process the query components 
that result from this decomposition. Cost analysis and simu- 
lation results are given to illustrate how the time that is 
present in the query affects the query costs and how the 
heuristics could reduce the cost. 

As relational databases (RDBs) always require the users 
to explicitly join two relations, most attention to temporal 
query processing in the context of RDBs has focused on 
specific temporal join algorithms (4,13,19], following the 
bottom up approach. However, OODBs significantly reduce 
the need for joins of classes and replace this explicit join 
with an implicit join (select operator). The path optimization 
that deals with this implicit join is a difficult and central 
issue in object query processing, and distinguishes object- 
oriented from relational query processing [ 1,10,11,181. The 
exploration of temporal query processing with path optimi- 
zation is difficult and under investigation. This article has 
made the first effort towards this investigation. 

The remainder of this article is organised as follows. 
Section 2 briefly reviews the temporal object data model 
and algebra. The decomposition strategy for processing 
temporal queries is proposed in Section 3. Section 4 
provides algorithms to process the decomposed components 
and heuristics for optimization. Simulation and evaluation 
are given in Section 5. Section 6 includes concluding 
remarks and future work. 

0950-5849/99/$ - see front matter 0 1999 Elsevier Science B. V. All rights reserved. 
Pll: S0950-5849(98)00128-1 
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2. A temporal object data model and algebra 

Query processing techniques are dependent upon a data 
model and algebra/language. Our previous work (20,2 1] has 
presented a general temporal object data model and an alge- 
bra for this model which are briefly described as follows. 

2.1. A temporal object data model 

The temporal data model extends the unified data model 
of RDB and OODB from UniSQL/X [5,9,10] by adding a 
time dimension. The unified data model of RDB and OODB 
from UniSQL/X [5,9,10] extends the relational data model 
in three important ways, each reflecting a key object- 
oriented concept: (1) nested relations: the value of an attri- 
bute entry of a relation can be a tuple of another relation; (2) 
inheritance: a relation may be specialised through inheri- 
tance; (3) encapsulation: a relation can have procedures 
associated with it. UniSQLJX actually makes one more 
extension: collections: the tuple/attribute entry of a relation 
may have a set of values (i. e. any number of values) that can 
further be of more than one arbitrary data type. When chan- 
ging the relational terms to object terms such as "relation" 
to "class", "tuple of a relation" to "instance/object of a 
class", "procedure" to 'Imethod", etc. (see [5,9,10]), the 
model is an object-oriented model. It is adopted as a snap- 
shot model to incorporate time, and the use of tenninology 
between relations and objects will be exchangeable in this 
article. 

Let T=(..., to, ti .... 
I be a set of times, which is countably 

infinite, over which is defined the linear (total) order < T, 

< Tt where ti j means ti occurs before (earlier than) tp For the 
sake of simplicity, we can assume that T is isomorphic to the 
set of natural numbers I 

.... n-1, n, n+ I_. ) where the 
time chronon, that is a non-decomposable unit of time, is 1. 
Any subset of T is called a temporal set. 

If an object o, that is any real world entity, exists for a 
certain period of time which is a subset of T (i. e. a temporal 
set), this period is called the object's lifespan, denoted as 
L(o) for the object o. If the lifespan L(o) = Itstart, tend], the 
duration of time is called a span: span(L(o)) ý tend - tstart + 

A temporal object is defined as a time sequence (TS for 
short): (t, o(t)), t E=- go) C T, denoted as (go), o(t% where 
o(t) represents object o's value at the time t. A temporal 
object (go), o(t)) asserts that the object o(t) is valid for its 
lifespan go) and that its value changes with time. If a TS 
contains a value for each time point in the lifespan duration, 
it is called a regular TS [71: (go), o(t)) =(... ; ti- 19 oi - I; ti, oi; 
ti, 1, oi, I; _ )=(..., Oi- 1, oig Oi, I.... )=I oi ), where oi repre- 
sents object o's value at the time point ti. If a TS contains 
values for only a subset of time points within the lifespan, it 
is called an irregular TS: (go), o(t)) =(... ; tj-,, oi-1; ti, oi; t 
i+ 1, Oi+ 1;... ). For a discrete time event where the value of the 
entity is recorded at every single time point, it can be repre- 
sented by a regular TS. For the discrete time event where the 

value of the entity is not recorded at every single time point, 
it can be represented by an irregular TS. For the step-wise 
constant, it can be represented by an irregular TS where the 
value oi is assumed to retain for [ti, ti, 1). We use the term 
epoch from signal processing field to refer to the time at 
which the object changes its value, e. g. ti. The interval 
during which the value oi persists is decided by the epoch 
ti and its succeeding epoch ti, 1, i. e. [ti, ti, l). If there are n 
elements in a TS, it is said that there are n epochs. For 
example, suppose that John has been working for a company 
from 1975 to 1998, and that his salary was initially 1500 and 
had been changed to 1900 in 1978, changed to 2300 in 1984, 
to 2700 in 1991, and to 2900 in 1996. If the time chronon is 
assumed as a year and the lifespan of John's salary is [1975, 
1998], then the temporal object ([1975,1998], John's 
Salary) is equal to 

11975,1500; 1978,1900; 1984,2300; 1991,2700; 1996,2900). 

Here, the temporal set is ( 1975,1978,1984,1991,1996), 
and the value set is 11500,1900,2300,2700,2900) where 
the first salary 1500 retains for [1975,1978) and the last 
salary 2900 retains for [1996,19981. The epoch number is 
five and the span is (1998 - 1975 + 1) = 24. From this 
discussion it can be seen that the epoch represents a trans- 
formed time space and will serve as a convenient indicator 
for cost analysis. For a continuous time event, depending on 
the recording of the data, it can be represented by either a 
regular TS or an irregular TS. When it is represented by a 
regular TS, it is treated as a discrete time signal created by 
sampling the corresponding continuous time signal. As long 
as the sampling frequency is greater than two times the 
highest frequency of the signal, the continuous time signal 
can be recovered from the discrete time signal. If it is repre- 
sented by an irregular TS, as it is time varying the value 
between two recorded time points can be decided by an 
interpolation function depending on the application, e. g. 
linear interpolation. For a constant object o, it may be repre- 
sented with no timestamp where its time-reference is 
implied as go). (It can also be represented with an explicit 
time-reference as a temporal object: (L(o), o)). 

As a TS is a set, a temporal object can be represented by 
its sub-objects. In practice the lifespan may consist of 
disjoint, non-contiguous segments, as in [7] we prefer to 
use null rather than defining multiple segments in the life- 
span. For instance, if we know Mary's salary records during 
the time [1967,1982] and [1990,1998] as (1967,1400; 
1977,1890) and (1990,2000; 1996,2100). However we 
do not know her salary between 1982 and 1990. If the life- 
span is assumed as [1967,1996], the object is defined as 
( 1967,1400; 1977,1890; 1982, null; 1990,2000; 1996, 
2100) where null persists from 1982 till 1990 when the 
value 2000 exists. 

In OODBs, every real world entity is uniformly modelled 
as an object that is grouped into a class/relation. Two ways 
in which objects are interrelated are the associations of 
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Relation A, A, A. 

tuple, 

tuple, 

... ... ... ... 

tuple. value... 

Fig. 1. Interaction of tuple lifespan and attribute lifespan. 

aggregation and inheritance. If we ignore these associations, 
a class/relation C can be seen as in Fig. I where A, repre- 
sents the ith attribute of the relation. If value,,., is a temporal 
object with lifespan and tuple. is also a temporal object 
with the lifespan denoted as L(t,, ), we have 

L(tm) ý Im, l U lm, 2 U'** U Im, 
n- 

The lifespan of attribute A,, is 

1 In U 12, 
n 

U, **U Im, 
n - 

The lifespan of relation C is 

L(C) = L(A I) U LOD U *** U L(An) 

= L(tl) U 1-02) U *** U Win)- 

A temporal relation can thus be represented by a three- 
dimensional "cube", as shown in Fig. 2, if objects in the 
relation have uniformly the same lifespan. 

It is obvious that 

iij =, vti) n L(Aj). 

Clearly our temporal object model can also support a 
completely heterogeneous temporal dimension. 

If the domain of attribute Ai of class C is another class D, 
then implicitly, L(Ai) = L(D). If class C is a sub-class of 
class C, then L(C) = L(C). If the class C' has more than 
one sub-classes, e. g. C, and c'), then 
L(C') = L(CI) U L(C2). Moreover, if a database consists 
of n classes (relations) C1, C2, ---C,,, the lifespan of the data- 
base schema is L= L(CI) U L(C2) U ... U L(C,, ). 

Time 

Attributes, ` 

Values 

Fig. 2. A 3-dimensional class. 

2.2. Algebra 

285 

From the algebraic point of view, a TOODB can be 
viewed as a collection of temporal objects, grouped together 
in classes (relations) and interrelated through three associa- 
tions: aggregation, generalisation and time-reference. Each 
temporal relation can be viewed as a three-dimensional 
structure (e. g. a cube). 

Basically, the standard relational algebra provides a unary 
operator for each of its two dimensions: select for the value 
dimension and project for the attribute dimension. A 
temporal algebra has the operation time-slice for the third, 
i. e. time dimension. As we explain further in 3.2, an object 
algebra allows the predicate of the select operation to apply 
to a contiguous sequence of attributes along a branch of 
class-aggregation hierarchy. This sort of query is usually 
represented by a path [1]. We have defined the enhanced 
path [20] that extends the path expression with time-refer- 
ence so that the select provides an access of data with asso- 
ciations of both aggregation hierarchy and time-reference. 

The basic algebraic operators are listed in Table I 
(detailed definitions are given in [20]), among which the 
operator select will be the focus of our discussion on 
query processing as it is the most powerful operator as 
that in any OODB. In Table 1, P( ) is a predicate. There 
are three basic types of predicate: a simple predicate, a 
nested predicate and a temporal predicate. A simple predi- 
cate is of the form (attribute-name op value). A nested 
predicate is a predicate on a contiguous sequence of attri- 
butes along a branch of the class-aggregation hierarchy of a 
class, which is represented by path-expression [1], i. e. path 
op value. A temporal predicate is a predicate referred to the 
temporal set along the time dimension where comparators 
<, >, =, etc. can represent the semantics of time referring 
to such as occurred before, after, etc. The temporal predi- 
cate can be embedded into. path expressions. The enhanced 
path as defined refers to the value component of a temporal 
object along a branch of the class-aggregation hierarchy. A 
complex predicate is a combination of these predicates. 

3. A decomposition strategy for processing temporal 
object queries 

Our temporal data model, as shown in Fig. 3, extends the 
unified model of RDB and OODB by adding a time dimen- 
sion, whilst the unified model itself refines the relational 
model by incorporating three important object-oriented 
features: nested relations, inheritance and encapsulation. 
The algebra of the model possesses the property of reduci- 
bility. That is, when the time dimension is not taken into 
account, the algebra is reduced to the object algebra and 
when object-oriented features are not taken into considera- 
tion, it is reduced to the relational algebra. Further, the 
algebra is closed, so that the output of operation can be 
the input of another. These characteristics provide us with 
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a basis for applying existing relational and object-oriented 
query processing techniques to process temporal object 
queries. 

3.1. Optimizer layering 

Our optimizer can be of a layered structure where the 
temporal optimizer is built on the top of an object optimizer 
that in turn, is on the top of a relational optimizer. When the 
time dimension does not exist, the object optimizer plays a 
role. As the object optimizer is extended from the relational 
optimizer, when the object-oriented features are removed 
from the data model, the relational optimizer comes into 

play. Separation of query processor functionality makes it 

easy to exploit and extend the existing query processing 
techniques at different layers that can be seen from the 
discussion thereafter. Therefore, the temporal queries can 
be processed and optimized within the existing object- 
oriented query processing framework through a smooth 
extension of the existing query processing techniques 
[22,231. 

3.2. Query transformation involving a path expression 

the attribute Ai- 1 of the class Ci- 1 and the OID of Ci, if we 
join Ci- I and Ci. Project specifies the query target. 

If there is a complex predicate involving a single path 
such as 

P= Cl. A 1. op P, and Cl. A 1. A, op v ..... and 

CI. Al. A 
..... 

A,, ýAfop v, 

= P, and P2 ... and P, 

then we have a general form 

O'P(C,. A 1. AA ýý%/)(c I) 

ý 7rA(C])(O'p, Cl ýý '7TA, 0'/)2(c2) 04'- ýý O-p,, (cn)) 

where Pi is optional and can be omitted if it does not exist, 
P,, involves both time and value dimensions, and the first 
project specifies the query target. 

The way to visit the path introduces a path traversal 
operator [ 1,8]. The linear path traversal operator is a navi- 
gational operator to execute the implicit join along a path, 
denoted as Navi-op[C], A,,. _ ATm]. It is equivalent to a set 
of joins as in Eq. (2): 

Path optimization is a central issue in object query 
processing. When the time is present, the path involving 

C, 
in a temporal predicate is represented by the enhanced 
path expression. In this article, we will focus on temporal 
object queries that are represented by the select operator 
with the enhanced path expression. For simplicity we 
suppose that the time-stamped class occurs at the end of 
the path (if it also occurs at other points along the path, 
then additional accesses to the second storage would be 
required, although these would not significantly add the 
complexity of the query). 

The class-aggregation hierarchy holds an attribute/ 
domain link between a neighbouring pair of classes in the 
hierarchy. The attribute/domain link between the pair of 
classes e. g. Ci-I and Ci is effectively the join of these 
classes, in which attributes Ai- 1 of Ci_ 1 and the object iden- 
tifier (OID), which is defined by the system and which can 
be considered as an attribute of class Ci, are join attributes 
[I]. Therefore, an object query with a path expression invol- 
ving N classes C1, C,,... C,, is equivalent to a relational 
query, which requires the join in N relations corresponding 
to N classes. That is why the select operator is often called 
an implicitjoin. According to the definition of our algebra, 
when the predicate of select involving a path expression is 
CIA 

.A...... 
AT, "' op v (where Tm represents that the path is 

an enhanced path), the equivalence between an implicit join 
and an explicit join is as 

O'CI. A,. A ...... A, 7, "lop JCI) 

ý 7rA(CJC1 ý4' 7rA, (C2) ýý *** ýý O'A,,,,,,. (Cti)) (1) 

We use W to represent the join that is more constrained than 
the join defined in our algebra in that the join attributes are 

Navi-op[CI. Al. A 
..... 

ATým I 

= O-P, C, MP 74, up, (C, ) MP ... MP o-p,, (C, ) 

The aforementioned linear path traversal operator can be 
further rewritten into the following form: 

Navi OP[CI. Al. zA ..... A TAI 

= Navi-op[CI. Al ..... A, I] Wp O-P"(C") 

= Navi-op[CI. Al. A-) ..... A,, 
-]] 

m C,, (4) 
C, 

- 1-4=OID(C,, ) V P,, 

Thus 

O'P(C,. A 1. A ...... ATý")(Cl) 
(5) 

-rrA(C, )(Navi-op(Cj. A I .... Aj m CII) 
G-I-A=01"c")Vp" 

The aforementioned transformation equivalencies imply 
that a select operator with path expressions can be evaluated 
using different algorithms such as translating the query into 

a sequence of joins, naive pointer chasing, or dividing the 
query into sub-paths that can be evaluated separately using 
different strategies or algorithms. It has been previously 
shown that converting implicit joins to explicit joins during 
the optimization phase may yield better execution plans [2] 
and that object navigation and set-oriented join should 
co-exist [8]. 

3.3. A decomposition strategy for processing temporal 
queries 

Fig. 4 gives an operator graph (OG) for Eq. (5) that 
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Table I 
Algebraic operators 
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Operations Definition Notes 

O(TI) Time-insert 0(7ý) 0., =( ol oG 0) where L(O. 3) = T, UT 

O(TI) time-delete O(T) 03 =I ol o Ez 01 where L(03) = T, T 
Difference 01 

- 
0, 0.1 = 01-0, = (ol o E=- 01 A-o EH 0, ) 

where L(03) = L(01) - L(O, ) 

Union 01 U 0, 0 01 U 02 = (01 0 t= 01 V0 Eý 0') 

where L(03) = L(01) U L(O, ) 

Intersection 0, n o. o, = o, n 02 = (01 0C 01 A0C0,1 

where L(03)= L(O, ) n L(O, ) 
Select ap 0 ap 0= (ol oG0A P(O, t)) 

Map g: 01 - 0, g: 01 - 0, = (g(o)(0 Cz 01) 

Project 7r(Al ... p; A, )O ir(A,,..., A[)O = ((Al: gl(o),..., Ai: gi(o))l 
0 F= Ol 

Join01 Mp(A, 1, A�)02 01 NpýA, 1, A, 2ý02 ý 
«A�1��A. 

1-�2ýlo, GE 01 V 02 E 

02 V P(O 1,02» 
Time-slice §TI (0) §T, (0) ý (ol Vt GE J, n mo»[o(t)(oi) 

Offset y(O, 1) Y(0(11), 1) = 0(t, + 1) 

When t; 7(0) tu(O) = L(O) 

represents the select operator involving a single path with n 
classes: CI, C2,..., C,. An OG is a labelled n-ary tree where 
the leaf nodes represent a collection of objects, the non-leaf 
nodes represent operators (e. g. navigational operator, join, 
etc. ), and the edges represent temporary collections that can 
be represented by support tables [8]. A support table can be 
regarded as a collection of tuples of qualified object identi- 
fiers and attributes. Two support tables can be joined 
together if there exists a commonly supported collection 
between them. The execution of an OG follows a bottom- 
up order. 

The query is more involved when time is present and 
provides more opportunity for optimization [4,15,17,19]. 
As we have assumed a temporal class is at the end of a 
path, in order to process temporal queries with a clear cost 

Fig. 3. Extensible features of the data model: UniSQL is extended from 
RDB modelý (Most TDBs are in the context of RDB); Adding a time 
dimension into UniSQL forms a TOODB model. 

O(TI) C 0,0(71, ) C0 
T, is a temporal set and 0 is a set/collection 

0, is a collection/set 

L(O) is the life-span of 0, 

o-p 0 selects the elements "o" of set 0 such as the 

predicate P(o. 0 holds 

For the type of objects in 01 (i. e. oE 01), g returns an 

object of type Of 02 (i. e. g(o) G 0, ) 

If g, =I it returns the OID of the domain object ofAi unless 
Ai is atomic. We retain gi =I so that project on a set of 

objects (relation) likes the relational project 
Essentially a 0-join as in relational algebra 

The life-span of T, (0) is T, n L(o). Time-slice purely 
reduces the relation along the temporal dimension. If T, 
equals to a time point ti, i. e. T, = ti, then T, (0) represents 
an event o(ti) happened at t, 
"Shifts" a snapshot relation at t, by the number of 
positions specified by the offset I 
Maps a set of objects 0 to its temporal set 

analysis and to make use of the ordering information for 
optimization, we propose the following decomposition 
strategy that can be further illustrated in Fig. 5. 

A complex user query with path expressions that involves 
time-reference is first translated into a set of single path 
expressions. A single path is then divided into two sub- 
paths: a sub-path containing a time-stamped class that can 
be optimized by making use of the ordering infon-nation of 
temporal data and an ordinary sub-path (without time- 
stamped class) that can be further decomposed and traversed 
using different algorithms. The intermediate results of 
traversed two sub-paths are joined together to create the 
output query. 

It will be shown in the next Section 4 that the decomposi- 
tion strategy provides a convenience to exploit the existing 

Fig. 4. An operator graph of the select with a single path: Block A is an 
ordinary sub-path (without time-stamped class)ý Block B is a temporal sub- 
path (with a time-stamped class). 



288 L Wang et al. / Information and Software Technology 41 (1999) 283-295 

e. 7oral 
Fp 

_ffime 
r! lated 

A collection u1b path loperation and User query p 
ýj 

with path ol'single vauation 
: 

Jaoin 
expressions paths inary th 

ub-path valuatio 

Fig. 5. A decomposition strategy. 

query evaluation algorithms to process temporal object 
queries and provides an opportunity for optimization that 
makes use of the order information of temporal data. 

4. Algorithms for processing the decomposed temporal 
query components 

The block B in Fig. 4 comprises the temporal predicate 
evaluation (as well as some time related processing) as 
shown in Eqs. (4) and (5), and a join, which can be further 

expressed in Fig. 6. When optimizing such a query, the 
object optimizer works on the outer query block, and the 
temporal optimizer operates on the nested query block. Each 

optimizer is responsible for its own query block. The 
temporal optimizer is responsible for time-related opera- 
tions and optimization. Let C represent the support table 
or the intermediate results of block A in Fig. 4 (that is a 
derived non-time-stamped relation) and D represent the 
intermediate results of block D in Fig. 6 (that is a derived 
temporal relation), as shown in Fig. 7. The object optimizer 
joins C and D together. This section provides algorithms for 
both the outer and nested blocks. The algorithms are imple- 

mented using stream processing techniques and described 

with cost analysis in terms of major operations such as block 
accesses to the second storage, and computational plus, 
move, comparison, etc. (among these, block access will 
dominate the others). The actual cost in seconds will be 
used in simulation. 

4.1. Assumptions 

We assume that a temporal relation D (it could be C, in 
Fig. 6 or D in Fig. 7, depending on the situation) is stored in 
a file on disk. The data structure of D is as shown in Fig. 8, 

Join 

.......... \ .............. .......... 
rifmc-, Slice, 

se 
ggregation, etc. 

.................................... 

Fig. 6. Further expression of temporal sub-path. 

Output 
query 

where D is populated with temporal objects. A temporal 
object d is viewed as a linked list, comprising a number of 
records representing a number of history versions of the 
same tuple field in a time ascending or descending order. 
For simplicity, the lifespan is uniformly represented as 
L(d) = [1^1, i. e. L(d) = L(D) where I is the starting time 
and n, is the ending time of the relation. The timestamps 
(temporal set) for all objects are the same and the number of 
epochs (the number of records) in the temporal object d is 
Idl = n. If n=n, then d represents a regular TS. A temporal 
object is clustered (i. e. historical versions are stored together 
on a set of blocks), as shown in Fig. 9. 

We make further assumptions. Collections (relations) C 
(it is C in Fig. 7) and D are stored as separate files on disk. 
There is a many-to-one relationship from C to D. The 
number of objects in C (or D) is represented as JCJ = n, 
(or JDJ = nd). n, (or nd) objects are blocked as b, (or bd) 
instances/block. Further, n records of a temporal object d of 
D are blocked as bn records/block. Obviously, b, = n*bd. Let 
fan(C, D) represent the average number of objects of D that 
are referenced by an object of C through attribute A, No 
relation is sorted or clustered. The OID is represented by the 
physical address of an object. Selectivity of the predicate 
P( ) on the temporal relation D is treated as the same as that 
on an ordinary relation, denoted as sel (we ignore the 
complexity of selectivity of a temporal relation here). 

4.2. Time-related operators and optimization 

The predicate evaluation in Fig. 6 involves the time- 
related operators and value evaluation. Temporal operators 
such as time-slice, offset, agg-func can be treated as methods 
and their outputs can then participate in the value evalua- 
tion. The temporal optimizer must be sure to 'plan' the 
invocation of function and make use of the ordering infor- 
mation for optimization. 

We employ stream processing techniques [3,4]. Stream 

Fig. 7. Join between C and D. 
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Relation Dn records 
12n 

Object d, 

Object d, 

Object dd 

Fig. 8. Data structure for temporal relation D: A temporal relation consists 
of nd temporal objects; A temporal object comprises n records representing 
n versions of same tuple field. 

processing is a paradigm that has been widely studied and 
used in languages such as C++, Lisp, etc. Abstractly, a 
stream is defined as an ordered sequence of data objects. 
As temporal data are often ordered by time, stream proces- 
sing approach is a strategy of choice [4] so that tuples in a 
data stream can be efficiently accessed one at a time and in 
the order of successive time-stamp values, using the data 

stream pointer. 

4.2.1. Stream processing algorithm for time-slice 
Time-slice § TIO [201 performs the following operation: 

for every instance d in D, select its record ds whose time 
point falls in T, = [nI, nm ], T, C L(D) =[1, nJ. To mini- 
mise the accesses of data, only records satisfying the afore- 
mentioned condition are retrieved. Employing C++ stream 
processing techniques to implement this operation can fulfil 
this task. The file stream in C+ + allows a user to treat a file 
as a stream of input or output. Given a data object, its size 
can be decided by using the C+ + function sizeoft ). When 
the exact position (i. e. the exact address), from which a data 
object is stored, is decided by using C++ function seekg, 
the data object can be retrieved and the file pointer moves to 
the next data object. Given a temporal object d, to retrieve 
its records d, from time n, to n,,, we need to find out the exact 
positions corresponding to n, and n in the file. We can 
obtain these by employing either sequential or binary search 
[3] within the scope of the object d to decide the epoch 
number n, I that is corresponding to the time point nI, and 
the epoch number nnm that is corresponding to the time point 
n,,,. This can be shown in the following pseudo-code of 
C+ +: 

Bi B2 B3 B, Last block of a file 

ISt object (Udi), di) Last object (L(dd). dw) 

Tk 
records per block jth record of ith block 

Fig. 9. A file partitioned into blocks: n records (historical versions) of a 
temporal object are stored together on a set of blocks. 
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search(nl^ý^I, nwn); 
/* sequential or binary search to find out the epoch 
number n,, l corresponding to time nI, and the epoch 
number n,,, corresponding to time n. 
for (int i=0; i< nd; i+ +) 

/* for each object di+ 1, i+IE [1, nd], do the following 
I 
fiIeD. seekg(i* sizeof(d) + (nnI - I)*sizeof(ds)); 
/* seek the address of the first 4,, whose time point is n, 
that is in T, */ 
for (int j=0; j<= nnm - nni; i+ +) 
ffileD. read((char*)&Struc-Buf[j], sizeof (ds)); 
Buf < Struc-Buf[jlj; 
/* sequentially read (nnm - nnI + 1) records d, of the 
object di, l from the file and keep them in Struc-Buf[jl, 

output results to Buf that could be a screen, a printer, a 
buffer, etc. 
I 

Although C+ + provides stream access that allows to 
access one record/object at a time, the system actually 
performs 1/0 at the block level and perhaps hides this fact 
from the program [3]. We follow the assumption [3] that 
when the system provides an access for one record/object, it 
accesses the entire block that contains the record/object. If 
the next record/object is already in the stream accessed, it 
does not need to access the block again. Therefore we still 
can measure 1/0 access by blocks or pages. For the afore- 
mentioned algorithm, the number of block accesses can be 
estimated as: 

nd*(njjj? j - n,,, + I)Ibn :5 nd*(n,,, - n, + I)Ibn 

plus searching block access cost: 

:5 nlb,, in the case of sequential search, 
or :5 2*0092 n) in the case of binary search [3]. 

4.2.2. Stream processing aggregation algorithms 
The operator agg-func T, [20] that is used to perform the 

aggregation function (such as Avg, Sum, Max, etc. ) can be 
implemented using the following pseudo-code of C++: 

search(ni, ný, nnim ); 
/* sequential or binary search to find out the epoch 
number n., corresponding to time nI, and the epoch 
number n,, corresponding to time n 
for (int i=0; i< nd; i+ +) 

/* for each object di, 1, i+I E=- [1, nd], do the following 
I 
fileD. seekg(i*sizeof(d) + (n,,, - I)*sizeof(ds)); 
/* seek the address of the first ds, whose time point is nI. 
that is in TI. */ 
for (int j=0; j<=n,,,, - nnI; + +) 
fileD. read((char*)&Struc-Buf[jJ, sizeof (ds)); 
/* sequentially read (nnm - n,,, + 1) records d, of the 
object di+ I from the file and keep them in Struc-Buf[j] 
agg_func(Struc-Buf. itemi, J'unc, value); 
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/* perform an aggregation function func for a specified 
attribute (i. e. itemi) 
Buf < value; 
/* output results to Buf that could be a screen, a printer. a 
buffer, etc. */ 

void agg_func(item, char* junc, float value), 
int m=n-n, j + 1; 

switch (func) 
I 
case sum: 
for (value 0; int i=0; i<m; i+ +) 
for (int i2 0; 0<= co(item(i + 1)) - co(item(i)), 
i2++) value += item[i]; 
/* insert data for missed time points and add them to 
value, where co(item(i)) is our algebraic operator when 
that maps item(i) to its time point for simplicity here 
assumed missed data is of stepwise constant 
break; 

case avg: 
for (value 0; int i=O; i < m; i+ +) 
for (int i2 0; i2 <= Co(item(i + 1)) - co(item(i)); 
i2 + +) value += item[ij; 
value = valuelm; 
break; 

case max: 
for(value =_ 1035; int i=0; i<m; i 
if (item[i] > value) 
value = itenz[i]; 
break; 

In addition to the same number of block access as that in 
time-slice algorithms, the following major operations are 
needed for Agg-fimc, if we ignore the time for assignment 
and when: 

sum needs tz,,, - n, +I plus; 
avg needs n,,, - n, +I plus and I division; 

max needs n-n,,, +I comparisons. 

4.3. Join algorithms 

This section offers the algorithms to join C and D 
together. The advantage in representing them as explicit 
joins is that we can use well -established join algorithm stra- 
tegies to perform optimization. Here a temporal object is 

regarded as a 'blob' object and can be treated as an ordinary 
object in a snapshot OODB. There are two types of joins: 
forward join and reverse join. According to the access meth- 
ods employed to traverse the path, i. e. nested-loop method 
and sort-merge method, there are four basic join algo- 
rithms: nested-loop forward join, sort-merge forward join, 

nested-loop reverse join and sort-merge reverse join [1]. 
The algorithms that are implemented using stream proces- 
sing techniques are presented below with cost analysis. 

4.3.1. Nested-loop forward join 
Nested-loop forward join (NLFJ), sometimes called the 

pointer-based nested-loop algorithm [16], is the algorithm 
that uses naive pointer traversal to compute a join. An object 
c of C is retrieved and the value of the attribute Ac is deter- 
mined. Given this identifier, the address of the object d of D 
is determined. The object d of D is retrieved and the predi- 
cate is evaluated. If true, join c and d. Repeat this process till 
all objects of D are visited. NLFJ can be expressed using the 
following pseudo-code C++: 

for (int i=0; i<n,; i+ +) 
/* for each object c, do the following 
[fileC read((char*)&BufC, sizeof(c)); 
/* read the object c of C */ 
fileD. seekg(c. Ac); 
/* according to the value of the attribute Ac, i. e. the OID 
of d, locate the address of d of D */ 
fileD. read((char*)&BqfD, sizeof (d)); 
/* read the object d of D */ 
if (predicate) Buf < (join c and d); 
/* if the predicate is satisfied, join c and d, and then output 
results to Buf that could be a screen, a printer, a buffer, 
etc. */ 

For the aforementioned algorithm, the number of block 
access can be estimated as 

read C: n/b,; 
read D: fan(CD)* nlbd + =fan(C, D)* n, *nlb,, + 

There are: 

fan(C, D)*n, comparisons for predicate evaluation; 
se1*fan(C, D)*n, moves (for join). 

One problem with NLFJ is that it makes no attempt to 
optimize disk reads [ 16]. As a'result, a particular disk block 

of D can end up being read more than once. For example, 
suppose that two objects cl and C2 reference the same object 
d in D. Depending on how C is organised, c, and C2 may not 
be physically clustered together in C. If that is the case, then 
between the time when c, isjoined to d and the time when C2 
is joined to d, the block containing d may be paged out of 
memory by buffer replacement algorithm. In that event, that 
block would have to be read twice, once to join c, with d and 
a second time to join C2 with d. 

4.3.2. Sort-merge forward join 
Sort-merge forward join (SMFJ), sometimes called the 

pointer-based sort-merge algorithm [16], avoids the afore- 
mentioned problem by first sorting all of the objects in C by 
the value of the attribute Ac (i. e. the OID of d in D). The 
effect of sorting C in this manner is to group all of the 
objects in C that reference the same page in D. Doing so 
guarantees that each page in D will be read only once. The 
algorithm is executed as follows. All the objects of C are 
read into memory and sorted as in the standard sort-merge 
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algorithm, except that here the output runs are sorted by 
OID values rather than by the join attribute. According 
the value of Ac, the address (i. e. the OID) of an object d 
of D is determined so that the object d is retrieved, the 
predicate is evaluated and if true, c and d are joined. Repeat 
this process till all addresses are visited. The pseudo-code of 
C++ is 

fi1eCread((char*)&BufC, sizeof(C)); 
/* read the whole collection C 
sort C according to Ac; 
for (int i=0; i<n,; i+ +) 
/* for each object c of C, do the following 

fileD. seekg(c. Ac); /* according to the value of the attri- 
bute Ac of c, i. e., the OID of d, locate the address of d of D 

fileD. read((char*)&BqifD, sizeof (d)); 
/* read the object d of D */ 
if (predicate) Buf < (join c. and d); 
/* if the predicate is satisfied, join c and d, and then output 
results to Buf that could be a screen, a printer, a buffer, 
etc. 
I 

For this algorithm, the number of block access can be esti 
mated as 

read C: nlb,; 
read D: fan(CD) *nlbd = fan(CD)* n, *n1(b,, ). 

There are: 

fan(C, D) *n, compari sons for predicate evaluation; 
sel*fan(C, D)*nc moves (for join); 
sorting cost: sorting(nj. . 
When the epoch number n is big enough such that a 

temporal object occupies more than one block, SMFJ will 
obviously not be better than NLFJ (but at the price of sorting 
C, and a bigger memory to hold the whole Q. 

4.3.3. Nested-loop reverse join 
In the nested-loop reverse join (NLRJ), the strategy is 

similar to that of NLFJ, except that D is the first class 
visited. An object d of D is read into memory and predicate 
is evaluated. If the predicate is verified, then a search on the 
object c of C is executed to determine which instance has 
object d as the value of the attribute Ac. c and d are then 
joined. This process is repeated until all instances of D are 
visited. The pseudo-code C+ + for the algorithm is: 

for (int i=0; i< nd; i+ +) 

/* for each object di, 1, i+I E=- [l, nd], do the following 
IfileD. read((char*)&BuJD, sizeof (d)); 
/* read an object di+ I of D */ 
if (predicate) /* if the predicate is satisfied 
for (int j=0; j<n,; j+ +) 
/* for each object cj+ 1, j+IG [1, n, ], do the following 
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IfileC read((char*) &BufC, sizeof (c)); 
/* read an object cj, 1 of C */ 
if ((fileRtellg( )-sizeof(d)) ==c. Ac) 
/* verify if the address (the OID) of di, 1 is equal to the 
value of cj, 1. Ac */ 
Buf < (join c and d); 
/* if so, join c1 and di, 1, and output results to Buf that 
could be a screen, a printer, a buffer, etc. 

The number of block access can be estimated as 

read C: sel *nd*nlb,; 
read D: n, 11bd = n, l*nlb,,. 

There are: 

n, I comparisons for predicate evaluation; 
sel*nd*n, comparisons for value evaluation; 
seI*nd*(fan(C, D)*n, Jnd) = seI*fan(C, D)*n, moves (for 
join). 
Clearly objects in C have been read many times, resulting 
in high 1/0 cost. 

4.3.4. Sort-merge reverse join 
In sort-merge reverse join (SMRJ), all the instances of D 

are accessed, the predicate is evaluated and a list of OlDs of 
instances qualifying the predicate is generated. C is read 
into memory and sorted according to Ac. The instances of 
C are then selected to determine which instances have an 
identifier in the generated list as the value of attribute Ac. If 
so, c and d are joined. The pseudo-code C++ for the 
algorithm is: 

for (int j=0; int i=0; i< nd; i+ +) 
/* for each object d of D, do the following */ 
IfileD. read((char*)&d, sizeof(d)); /* read an object d of 
D */ 
if (predicate) 
tD'[j] = d; jd[j] =fileD. tellg ( )-sizeof(d); j+ +J 
/* if the predicate is satisfied, keep the object d in D'[ 
and its address (the OID) in jd[ ] */. 
/* This is equivalent to perform select first, the resulting 
relation is D'[ ], its cardinality is j */. 
fileCread((char *)&BufC, sizeof(C)); /* read the relation 
C */ 
sort C according to Ac; 
j2 = 0; 
for (int i=0; i< j-1; i+ +) 
/* for each obj ect di in D'[ 1, iC [0, j- 11, do the following 

for (int i2 = j2; i2 < n,.; i2 + +) 
/* for each object Ci2 in C, i2 E &2, nc) (where j2 starts 
from 0 and increases by I after a join is made), do the 
following */ 
[if (C[i2l. Ac idtil) tBuf< < (join C[i2J and Uffl); 
j2 = i2 +IJ; 
/* if the value Of Ci2Ac is equal to the address (the OID) of 
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CITY IM TESTINFO 

City# INTEGER 
TopTemporature FLOAT 

City-Name STRING 
LowTemporaturr 

Weather TESTINP 

I 

Humidity FLOAT 

WeatherType STRING 

n days 

based join must be used to check the OID membership 
condition, i. e. it performs value-based comparisons of 
OlDs, which is generally inefficient in CPU usage terms 
[8). This algorithm is efficient when the predicate in the 
last collection is selective [8,11]. 

We did not discuss hybrid-hash join here, as when the 
epoch number n is big enough such that a temporal object 
occupies more than one block, implementation of the algo- 
rithms with stream processing techniques will not provide 
an obvious advantage over NLFJ. 

ý 
Fig. 10. International weather record database. 

di, join ci2 and di, and output results to Buf that could be a 
screen, a printer, etc. */ 
else if (C[i2]. Ac > jd[iD break; 
/* if the value of Ci2Ac is greater than the address (the 
OID) of di, stop looping of i2 
I 

The number of block access can be estimated as 

read C: nlb,; 
read D: ndlbd = nd*nl(b,, ). 

There are: 
nd comparisons for predicate evaluation; 

se1*nd*(fan(C, D)*n, 1nd + 1) comparisons for value 

evaluation; 

sel* fan(CD)*n, moves (for join); 

sorting cost: sorting(n, ). 

4.3.5. Sorting 
If we use the SortMerge algorithm [3] to sort items in 

relation C in ascending order according to the value of 
attribute Ac, then the SortMerge algorithm is O(n, lognc), 
in terms of major operations. If we use the SelectSort algo- 

2). 
rithm [31, it is 0(nc 

4.3.6. Summary 
As the time required for block accesses typically domi- 

nates other factors [31, we can conclude that the order of 
above four join algorithms are all O(n), in terms of block 

access. That means the join time cost linearly increases with 
the expansion in the number of time epochs (or the time 
dimension, in the case of a regular TS). 

The advantage of the sort-merge method over the nested- 
loop method is that the storage pages containing class 
instances of the class are never accessed more than once, 
resulting in considerable saving in terms of response time. 
The disadvantage is that the algorithms are restricted by 

available memory because of reading in whole class C. If 

all objects of the class cannot be read into the memory, the 
algorithms need to be modified. 

The disadvantage of reverse join algorithms is that as 
there is no direct link from D collection to C, a value- 

4.4. Heuristics for optimization 

Adding time creates multiple tuple versions with the same 
object. The aforementioned cost analysis shows the join 
algorithm performance degradation caused by ever-growing 
overflow chains. As reorganisation does not help to shorten 
overflow chains [4], the objective of work in temporal query 
evaluation then, is to avoid looking at all of the data [4,15]. 
Based on this principle, we present the following heuristics 
for the optimization: 

Transform the temporal predicate into time-slice; 
Perform time-slice as early as possible. 

5. Simulation 

To illustrate the efficiency of the join algorithms when 
time is present, a simulation of an international weather 
record database is presented, as shown in Fig. 10. Daily 
weather changes are recorded for major cities world-wide. 
The granularity of a time chronon is a day. For simplicity, 
suppose the database starts at I and ends at today (n). The 
life-span can uniformly be represented as UTESTINFO) = 
[I, n]. The number of records in a temporal object of relation 
TESTINFO is also n, representing a regular TS. The relation 
CITY, analogous to the support table of Fig. 6, is relatively 
small: the cardinality of CITY is n, = 100, as our intention is 
to show the relationship of the join response time with 
respect to n, i. e. the number of epochs (records) in a 
temporal object of relation TESTINFO. In this example, I 
TESTINFOI, i. e. nd, is also 100. That meansfan(CITYTES- 
TINFO) is 1. 

The four join algorithms have been implemented on PC 
using Borland C++ Version 4 where the SelectSort algo- 
rithm [3] is employed. Fig. 11(a)-(d) present the perfor- 
mance of four join algorithms, drawn in different lines, 
where the vertical axis represents join time costs in second 
and the horizontal axis represents the number of epochs in 
TS: n. Selectivity is set as 10,33,50 and 100%, respectively. 
It can be seen that the join cost is linearly increased with n. 
The performance of NLRJ is the worst, because it reads the 
relation CITY many times. Sort-merge join algorithms are 
generally good when the relations are relatively small and n 
is small. However they are limited by the memory of the 
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Fig. 11. (a) Time cost with respect to n (set = 10%), (b) Time cost with respect to n (set = 33%), (c) Join time cost with respect to n (set = 50%), (d) Join time 
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Fig. 13. (a) NLFJ time cost with respect to n (sel = 10%), (b) NLFJ time cost with respect to n (sel = 33%) 

computer as the algorithms are terminated when n is greater 
than 100. 

Fig. 12(a) and (b) shows the performance of join algo- 
rithms with respect to selectivity sel. 
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Fig. 13 (a) and (b) (Fig. 14(a) and (b)) provides a compar- 
ison of the performance of NLFJ (NLRJ) with and without 
time-slice intervals. The performance of join algorithms 
without time-slice is analogous to that of OODBs which 
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Fig. 14. (a) NLRJ time cost with respect to n (sel = 10%), (b) NLRJ time cost with respect to n (sel = 33%) 

allows a user to represent temporal data as 'blob' objects but 

with no support for time varying query whilst the perfor- 
mance of join algorithms with time-slice is analogous to that 
of OODBs which support for time-varying data and utilise 
the heuristics for optimization such as those presented in the 
previous section. The span of time-slice T, = [nl, nmj is 
denoted as T,, = (n,,, - n, + 1). When T,,, < n, there is a 
significant saving. The bigger the value of (n -T), the 
greater the cost saving. When T is close to n and n is 

close to b, there is no significant cost saving. Therefore 
we can conclude that for OODBs that support for time-vary- 
ing data, when the number of epochs is big enough, i. e. n> 
b, there is certainly a need of provision of facilities for 
temporal query processing and optimization. 

system, but interpreted by the user is not a strategy for 
temporal support in OODBs. OODBs should provide 
query facilities to support the query processing and optimi- 
zation on time-varying data, especially when the number of 
epochs is big enough. 

Future work will include a detailed study of temporal 
predicate optimization and global optimization. 
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6. Conclusions 

In this article, an extensible approach was explored to 
processing and optimizing temporal object queries within 
the object-oriented query processing framework. A 
temporal query that involves associations of both aggrega- 
tion hierarchy and time-reference is processed by employ- 
ing a decomposition strategy. The algorithms for processing 
the decomposed sub-components of the query have been 
implemented with stream processing techniques and 
presented with cost analysis. Simulation results are also 
provided. Through the description of our query processing 
algorithms with cost analysis and the provision of simula- 
tion results, we have demonstrated that the decomposition 

strategy provides a convenient means to analyse and evalu- 
ate the performance of execution algorithms that take 
account of the time dimension and provides an opportunity 
for optimization that makes use of the order of information. 
Temporal and non-temporal queries can be handled in a 
unifonn way. The temporal optimizer plays a role only 
when time-related operations or temporal predicates exist. 

Both cost analysis and simulations show that the join time 
cost is linearly increased with the expansion in the number 
of the time-epochs (or the time dimension, in the case of a 
regular TS). Utilising heuristics could result in a significant 
cost saving. We would also conclude that solely treating a 
temporal object as a 'blob' object that is managed by the 
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Abstract: In this paper, we present a temporal object data model, which has been adapted from 
the unified model of OODB and RDB in UniSQUX so that a time dimension can be easily 
added to form temporal relational-like cubes but with aggregation and inheritance hierarchies. A 
query algebra, that accesses objects through the associations of aggregation, inheritance and 
time-reference, is thereby defined. Due to the adaptation of the unified model of RDB and 
OODB, the temporal object data model supports both homogeneity and heterogeneity in the time 
dimension, and the algebra reflects the spirit of both temporal relational algebra and object 
algebra. Data query examples through 'The Wood Panel Deformation Measurement Database" 
illustrate algebraic operations and a brief evaluation of algebra has been given. 
Keywords: Object-oriented databases, temporal object, query algebra. 

I Introduction 
Temporal properties play an essential role in many real world applications and therefore a 
recent trend in data modelling is the representation of temporal aspects in database 
schema and the support of the corresponding data manipulation facilities directly by a 
database management system (21,18,19]. The vast majority of research on temporal 
database systems is the incorporation of time elements into relational and pseudo- 
relational database models [13]. However, the widely recognised semantic limitations of 
relational databases (RDBs) suggest that they are not suitable for advanced database 
applications [2,10,11,7,22,231. Object-oriented technology forms a good basis for a rich 
data model for the advanced database applications such as computer-aided design, 
engineering systems, artificial intelligence, multimedia, etc., but little work has been 
reported on time in object-oriented databases (OODBs), compared to temporal relational 
models [13]. Management of temporal data is one of the key challenges that today's 
OODBs need to address [10,11,22]. To meet this challenge, the project on query 
processing in temporal object-oriented databases has been carried out at Middlesex 
University. 

An OODB is a database system based on object-oriented data model concepts. One 

approach in introducing time into an object data model is to extend the semantics of a pre- 
existing snapshot model to incorporate time directly [141. However, there is currently no 

cce ed ob ec commonly accepted object data model, nor is there a commonly a pt jt algebra 
[12]. We adopt the unified model of RDB and OODB from UniSQLJX [10,111 as a 

snapshot object data model, and then incorporate within it with a time dimension. A 

temporal object query algebra is thereby defined, making use of the research results of 
temporal extensions to RDBs for OODBs. 

The remainder of this paper is organised as follows. Section 2 describes the adaptation of 
the unified data model of RDB and OODB with the inclusion of a time dimension. 
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Section 3 defines the algebra. Section 4 gives query examples and a brief evaluation. Section 5 discusses related work and Section 6 includes concluding remarks. 

2 The Model 

2.1 The Unified Model of OODB and RDB 
The unified data model of RDB and OODB fi7orn UniSQLJX [10,111 extends the 
relational data model in three important ways, each reflecting a key object-oriented 
concept: (1) nested predicates; (2) inheritance; (3) methods. In this model, "relation" 
equates to "class", "tuple of relation" equates to "instance of a class", "column" equates to 
"attributC, "procedure7 equates to "method", "relation hierarchy" to "class hierarchy", 
"child relation" to "subclass", "parent class" to "superclass", and "nested relation" to 
"aggregation hierarchy". Allowing a column of a relation to hold a tuple of another 
relation directly leads to a nested relation. Allowing the users to attach procedures to a 
relation and to have the procedures operate on the column values in each tuple achieves 
the combination of data with program. Allowing the users to organise all relations in the 
database into hierarchy, such that between a pair of relations P and C, P is made the 
parent of C, if C takes (inherits) all columns and procedures defined in P (besides those 
defined in Q, the relational model integrates the object-oriented concept of inheritance. 
This model is an object-oriented model and it is adopted as a basis for extending temporal 
extensions of RDBs to OODBS. 

Besides, we preserve the basic object concepts such as "any real-world entity is uniformly 
modelled as an objecf', "each object is associated with a unique identifier", etc., so that 
heterogeneity in the time dimension and the grouped completeness of algebra can be 
maintained. 

2.2 A Temporal Object 

In order to address the temporal issues, we adopt the ideas of using temporal sets 
(temporal elements) as timestamps [8,21] and associating the lifespan at both attribute and 
tuple level [5]. Ixt T =1 ... to, tj .... 

J be a set of times, at most countably infinite, over which 
is defined the linear (total) order <T, where ti <T tj means ti occurs before (is earlier than) 
tj. For the sake of simplicity, we can assume that T is isomorphic to the set of natural 
numbers. Any subset of T is called a temporal set. A temporal set can be represented as a 
union of disjoint time intervals. The most basic property of temporal sets is that they are 
closed under finite unions, intersections, and complementation. That is, if T1 and T2 are 
temporal sets, then so are TluT2, Tlr-)T2, TI-T2, and -, T1. 

We incorporate the temporal dimension at the object level. If an object o exists in a certain 
period of time, which is a subset of T (i. e., the temporal set), this period is called the 
object's lifespan, denoted as 4o) for the object o. In order to support for derived lifespans, 

we allow the usual set-theoretic operations over lifespans. That is, if L, and L2 are 
lifespans, then so are LluL2, LlnL2, L1_L2, and-11. 

A temporal object is defined as an ordered pair <4o), o>, where 4o)E T and o is any real 
word entity, which asserts that the object o is valid for its lifespan 4o). For a constant 
object, it may be represented with no timestamp where its time reference is implied as 
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Uo). It can also be represented with explicit time references as a temporal object <Lýo), 
O>. Further, in the real world, even though the properties of an object change with time, 
we think of it as the same object [16]. We treat an object such as an attribute value as a function of time. This helps us prevent fragmentation of an object description. Even if the firne domain is physically fragmented, as in [11,271 and [30,401, the attribute value can 
stay in the database as a single logical entity. We express this as <4o), o(t)> (or simply 
<Uo), o> without causing a confusion). In general, the word object %krill refer to a 
temporal object within this paper. 
In OODBs, every real world entity is uniformly modelled as an object that is grouped into 
a class (relation) and interrelated to other objects through association. Now we isolate a 
class (relation) C from its association relationship, as shown in Fig. 1. The valuermn is an 
object with lifespan I., The tuple,,, is also an object, its lifespan is denoted as 4tm)- We 
have 

Utm)`ln4lUltm2U Ulm, n 
The lifespan of attribute A,, is 

UAnMJ, nUI2, nU ... Ultmn 

The lifespan of relation C is 

Relation Al A2 
... An 

tuplel 
tuple2 

... ... ... ... 
tuplem valueý 

Fig. 1. Interaction of Tuple lifespan and Attribute I-ifespan 

UUAJ: --40ý40J ... u4tm) 

It is obvious that 
lij=4tdr)4Aj) 

This implies that there is no value for an attribute in a tuple for any moment in time 
outside the intersection of the life spans of the tuple and the attribute. Obviously our 
temporal object model can support a completely heterogeneous temporal dimension, but at 
the cost of maintaining a distinct lifespan for each value. This is important because 
homogeneity is sometimes difficult to maintain, although homogeneity is necessary as no 
timeslices of a homogenous relation produce null values [14]. 

It is possible to refer to the components of a temporal object. For a temporal object 
o=<T, o>, o., u and o. T refer to its value and temporal set components, respectively. 
Sometimes we omit -o, i. e., o. v=o, (or o. 1)(t)=o(t) ) to 
refer to the value of the object o without causing a Time 

.................... confusion. Let A be the name of an attribute that can 
Attributes-- take a temporal object for its values, then Am and A. T 

represent names for the value and temporal set 
components of the attribute A. Further, the same 
notation may be applied to class (relation) C. If C is a 
temporal relation, then Cm and CT represent names ....................... for the value and temporal set components of the class Values 

C. Tbus a 2-dimensional relation (class) Aable" 
Fig. 2. A 3-Dimensional Class 

becomes a 3-dimensional "cube", as shown in Fig. 2, 

which is also a set. 

If the domain of attribute Ai of class C is another class C', then imPlicitlY, 4Ad=4C')- If 
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class C is a subclass of class C', then UC)=UC'). Moreover, if a database consists of n 
classes (relations) C1, C2 .... C,,, the lifespan of the database schema is L-- UCIýjUC2ýj... 

2.3 A Case Study 

Using this model, a database is designed for "The Wood Panel Deformation Measurement 
System" [3,4,15,231, which brings together the results of recent research in art observation, 
electro-optical image processing and advanced database management in order to increase 
knowledge and understanding of deformation and cracking of wood panel paintings 
(which lead to paint loss) caused by changes in ambient conditions. A deformation 
analysis of movement occurring in wood panels was required by the Hamilton Kerr 
Institute of the Fitzwilliam Museum, University of Cambridge, where 74 wood panels 
used for supporting fine art painting were tested. An automated 3-D measuring system 
using photogrammetric and machine vision techniques has been developed at City 
University. The panels to be measured were divided according to wood type: linden; oak; 
poplar; and Scots pine. Each type was supported by a number of different reinforcement 
type to give 74 panel reinforcement combinations. An array of retro-reflective targets were 
placed on each test panel. The number and disposition of the targets on each test panel 
varied from 175 to 464 according to the pattern of auxiliary supports. The total number of 
epochs (the number of sequential images) at which the initial set of images of the 74 test 
panels would be acquired was 25 (i. e. 25 humidity levels at different time). For each 
epoch, there were about 400 images in total to be grabbed by 5 cameras at different 

positions, which occupied about 170M storage. Tlierefore over 10,000 images were 
grabbed and processed. The average number of targets on each test panel was 250, 

resulting in a total of 2,500,000 targets to be processed. 

WOODPANEL IMAGE 

Day INTEGER 
Puncl# INTEGER Hurni(fity FLOAT 
W(xxrrype STRING TargetNumber INTEGER 
Reinforcement SUPPORT 2-DCoordinates ARRAY(5(X). 2) 
Test Description STRING 

STRING d i 
Pixel-Imagc ARRAY(I(X). 568) 

Recornmen at on 
e IMAGE Ima Display g 

Processing 
Analysis 
Recognition 

SUPPORT 

Foffn STRING 
Material STRING 

IMAGE2 IMAGE5 IMAGEI 

Cameral Cafncra2 Carncra5 

Fig. 3. Database Schema of "Wood Panel Deformation Measurement System" 

The database schema is shown in a simplified form in Fig. 3, which is a collection of 

classes. Each node is a class (synonymously a relation). A node is subdivided into three 
levels, the first of which contains the name of the class, the second the attributes and the 

third the methods or procedures attached. Two nodes C and Ccan be connected by two 

types of arcs: (1) a thin arc, indicating that C' is the domain of an attribute of A of C, or 
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h t at C'is the class of the result of a method of C (resulting in the aggregation hierarchy); 
(2) a thick arc, indicating that C is the superclass of C' (resulting in the inheritance 
hierarchy). Arrows indicate the directions of connection. We use the epoch to represent 
the time dimension t, where tE L and L--[1,2,... 

'25jr= T is a lifespan. t can be viewed as a 
normalised time and may (or may not) be related to the attribute Day. IMAGE] to IMAGE5 are subsets of IMAGE, so they inherit all three dimensional attributes from 
IMAGE. <L IMAGEI> represents the 25 sequential images grabbed by Camera 1. 
IMAGEI(3) represents the 3rd image grabbed by Camera I. 

3 Query Algebra 
'--From the algebra point of view, a temporal OODB can be viewed as a collection of 

temporal objects, grouped together in classes (relations) and interrelated through 
associations: aggregation, generalisation and time-reference. Each temporal relation can 
be viewed as a 3-dimensional cube. If the existing hierarchical structure of "inheritance" 
hierarchy and "aggregation" hierarchy between classes is not considered, the structure of 
queries is essentially the same in both the RDB and OODB paradigm. Temporal aspects 
only transform some tables or even only some attributes to cubes (many relational 
databases already support timestamps). We therefore have a common base to expand 
(temporal) relational algebra to temporal object algebra. 
Baýiically, the standard relational algebra provides a unary operator for each of its two 
dimensions: select for the value dimension and project for the attribute dimension. An 
object operator allows the predicate of the select operation on a contiguous sequence of 
attributes along a branch of class-aggregation hierarchy. We will add more operators for 
the added time dimension. The algebra is defined against set objects, and "a class" = "set 
objects" = "relation" concept is preserved so that it can readily take advantage of 

. 
inheritance and enable application to automatically reach any existing objects of interest, 
without acquiring explicit references to those objects [241. 

3.1 Predicate 

There are three types of predicate: a simple predicate, a nested predicate and a temporal 
predicate. 
A simple predicate is of the form <attribute-name operator value>. The value may be an 
instance of a primitive class (type) (e. g., string, integer, etc. ) or an object identifier (OID) 

of the instance of some class. The latter is important because it may be used for testing the 

object equality, that is, equality of referenced ob ects. The operator is a scalar comparison j 

operator >, etc. ) or a set comparison (e, c::, c, set-equality, etc. ). 

A nested predicate is a predicate on a contiguous sequence of attributes along a branch of 
the class-aggregation hierarchy of a class. Path-expression [2] is used to express the nested 

predicate. A path is defined as 
P=CI. Al. A2 .... A,, (ný! ]) 

where CI is the class in the database schema, Al is an attribute of class CI, Ai is an 

attribute of a class Ci such that Ci is the domain of the attribute Ai-I of class Ci-1, I<i! -ýn. 
For example, WOODPANEL Reinforcement. Form is a path, and WOODPANEL 
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Reinforcenzent. Form = "lattice" is a predicate. 
A temporal predicate is a predicate referred to temporal set along the time dimension. 
There are two types of temporal predicates: a simple temporal predicate and a nested 
temporal predicate. A simple temporal predicate can be expressed as <ternporal-set 
operator value>. The operator could be <, !ý, =, >, ý! , and the combination, 
representing time before, whileAvhen, after, during, etc. A nested temporal predicate can 
be expressed by integrating the path-expression into a simple temporal predicate. If o is a 
attribute name or a path-expression or a predicate, we use function When 63(o) to express 
the temporal domain of o( we will give a formal definition later). For example, we use the 
following expression to refer to epoch 4 at which the image's humidity level is, say, 30 % 
rh: W(WOODPANEL Image. Humidity =30% rh)=4. 
We also extend the path-expression [2] to express the nested predicate %krith a time 
dimension, using the enhanced path-like expression to refer to the value components of a 
temporal object. For example, a path-like expression which refers to an image's humidity 
level=30 % rh is WOODPANEL Image. Humidity(t)=30 % rh, say, t=4. More generally, 
we use ol T1 to denote the restriction of o to the temporal set T1. For example, 
WOODPANELImage. Humiditylt=4 = 30 % rh, and WOODPANELIniage. Humidity 1=4,5,6 

= 130 % r/4 40% rh, 50% MI. 

A method may be used for any part of a predicate, that is, as the attribute-name, the 
operator, or the value. We could think of 63(0) and oJT1 as methods as well. 

If P, and P2 are predicates, then so are P&P2, PIAP2, and -, P1. These constitute complex 
predicates. 

3.2 Identity and Equality 

Identity is a property of an object that distinguishes the object from all others. It is 
important to distinguish between the follo, 'Aring different types of equality. 

1) Identity equality of objects: two objects o and o' are identity equal if they are the same 
object (i. e., they have the same OID), denoted as "ý". That is, o==o' if 
O1D(o)=OID(o'). 

2) Value equality of objects: two temporal objects are equal if the values and the temporal 

sets of all their attributes are recursively equal, denoted by "=". That is, two temporal 

objects o and o'are equal if o. T(Ai)=o'. T(Ad and o. wAiý--o'. i)(Ad (or om(Ai)(t) = o'-'J 
(Ai)(t) at every t). The term value equality is analogous to the snapshot 
equivalent/weekly equivalent in temporal RDBs that states that two tuples are snapshot 
equivalent or weekly equivalent if the snapshots of the tuples at all times are identical. 

Two identical objects are also equal whereas the reverse is not true. 

3) Shallow-equality: two objects are shallow-equal if their attributes share the same value 
and the same references, and their corresponding temporal sets are equal although 
they are not identical, denoted as =I. 

Duplication in set membership is based on object identity, i. e., a set will not contain two 
objects with the same identifier. There are many cases in algebra that implicit 
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comparisons are made using identity equality. 71bere are also some cases that the 
comparison is made by value equality. Shallow equality is required for join operation. 

3.3 Set-Theoretical Operations 

If 01,02 are temporal object sets, then the sets operators Union, Intersection and 
Difference are identical to Codd's corresponding relational operators: 
Difference 03=01-02=10 OG 01 A--ioE 021 where 403)=401ý-402) 
Union 03=01UO2=10 OE OIVOE 021 where 403)=40]ýJU02) 
Intersection 03=0, r)02=[o oE 01 AoE 021 where U03)=UOjYW02) 

Like relational algebra, the duplication in the resulting set is eliminated. 

3.4 Special Operations 
Select op 0 selects the elements "o " of set 0 such as the predicate P(o, t) holds. 

(Tp 0=[O 10E0 
AP(Ot)] 

Select is a hybrid operation, reducing a class (relation) in both the value and the temporal 
dimension. If no predicate is referred to time, it then reduces the class along the value 
dimension. 

Map g: 01-02: for the type of objects in 01 (i. e., oE 01), g returns an object of type Of 02 

(i. e., g(o)c= 02). 

9: 01-ý02-'-'-'49(0) 1 
OE 01) 

Project 7E<A1,... 
'Ai>O 

extends Map by allowing the application of many functions to an 

object, thus supporting the creation and maintenance of selected relationships between 

objects. 
7C<A1,... 

'Ai> 
0 ==[<A1: g1(o),... ' Ai: glfo)> I OE 01 

where 0 is of type set [T], the Ai's are unique attribute names, and each gi takes a single 
input of type T and returns an object of type Ti. gl... gi are similar to g. If gi=], it returns 
OID of the domain object of Ai unless Ai is aton-ýic. We retain gi=1 (unless it is specified 
not) so that we keep our project operator on a set of objects (relationy like the relational 
project. Tberefore the project operator, when applied to class (relation) 0, removes from 0 

all but a specified set of attributes. As such it reduces a relation along the attribute 
dimension. 

Unw-slice ýLI(O) defines the relation (set of objects) containing those objects derived by 

restricting each objects in the operand relation to those times specified by LI. 
ýLI(O)-""': (O' VtF: (LI(WOMO(OF: 011 

Obviously the lifespan Of ýL](O) is LjrWo). So the time-slice reduces the relation solely 
along the temporal dimension. If L, equals to a time point ti, i. e., Tl=tl, then ýU(O) 

represents the event o(tj) happened at tj. 

Offset ý(O, 1) "shifts" a snapshot relation at tj by the number of positions specified by the 

offset. 
7(0(tl), 1)= 0(tl+l) 
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When GYO) defines an operator that maps a relation (set of objects) 0 to its temporal set: 
00=40) 

The result of when is a time value; it can serve as a parameter or a predicate to those 
operators, like time-slice, etc. 
Join 010-`ý P<AolAo2> 02 is an explicit join operator used to create relationships between 
Objects from two collections in the databases. Unlike relational joins, in which the 
domains of the join attributes must be identical, we require the join attribute to only be 
compatible [9]. Two attributes Ai and Aj are compatible, if the value domain and the 
temporal domain of Ai is identical to those of Aj (or a superclass or subclass of the domain 
of A). Shallow-equality could express this compatibility. Although join attributes are 
compatible, they have different OIDs. So the join we defined is essentially a 0-join as in 
relational algebra. 

AO E AP 01"'>"ý'P<AolAo2>02ý--[<Aol: ol, Ao2: 02>IOIE: 01 2rO2 (01,02)] 

T Unnest (4KO) Suppose relation (class) 01 have the scheme <AI,..., A, >=<oI(I), --., oI(n)> 
and the scheme of ol(k) (i. e., <ntAk>) be <Ak. ],..., Ak- M>, ]!! ýk<-n, then Unnest T is defined 
as 

02 =-- 9KOI 

: -- 102 102(i)=ol(i)for 1: 5i! ýk-l IN 02(i)=Ol(i+ ])for k-<isýn- I 

A 02(i)=Ak(i-n+ ])for n<-i:! ýn+m-1j 
T Nest (byo) Let the relation (class) 01 have the scheme <ý4,..., A, >=<oj(I),..., oj(n)>, 

Y=flIJ2,... jkj is a subset of 11,2,..., n], and x=11,2,..., n-yj. Nest has the scheme of <B,,..., 
Bn-k+]>= <02(I),... 'o2(n-k+I)>, where 02W=odr) for ]! ýj<-n-k n=-x, and 02(n-k+]) has 

the scheme relation: <B,, -k+]. 
],..., Bn-k+l. k>. Similar to the unnest operator, the nested 

component is placed at the last column ofoyO. So Nest T is defined as 
02=1)yOI=tO2I o2iy)=oI(r)for ]: ýj! ýn-k rEx 

A 02(n-k+ ])=tz 130 (OE 01 A o(r)=oI(r)for rE xA zU)=o(ij)for ]: ýj:! ýk)j I 

Besides the above database operators, we can easily define some aggregate operators. 
Suppose Aggfiinc is one of functions Avg, Min, Max, and Sum, then Agg-fimcTI(O) 

returns the function value over the specified period TI. Null records in tuples are ignored 
if there is at least one non-Null records otherwise the output is Null record. 

4 Data Query Examples and Evaluation 

In this section the applicability of our algebra to data queries is illustrated through 
following query examples and a brief evaluation is made at the end of the section. 

Query I "Find all the wood panels whose type is 'pine' and was reinforced in form of 
Iattice! by 'Oak, glued' ". '111is query did not involve any temporal aspect. We can treat it 
like a constant object query while its lifespan implies the same as the lifespan of temporal 
objects. We express this query in the following algebra: 

Owl=. cy p, WOODPANEL 

:= 10 1 or= WOODPANEL A WOODPANEL WoodType = "pine" 
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A WOODPANELRein rcententFonn= "lattice" Ifo 
A WOODPANELReinforcenwntMaterial= "oak, glued"] 

For the attributes of Reinforcement and Image, this query only gives the OIDs instead of 
all the SUPPORT objects and MAGE objects (sequential images). 

Qugýý 2'T)ecide when the humidity level of above selected wood panel is 30% rh". 
Ot=W(oc-0,,, Ao. IMAGE. <Humidity., u>=30 % rh) 

OuM 3 "Select the wood panel image whose wood type is'pine'and reinforced in form of 
'lattice' by 'oak, glued', while its humidity level is 30 % rh (at the 4th epoch) and grabbed 
by Camera V. We have the following algebra: 

092 
--': TC<WOODPANELlnzage> ((YPI WOODPANEL)ý 'c<WOODPANELlnwge> OWI 

0%3=Map. - Ow2-->Io oE IMAGE]] 
OW4 = cr p2 (OW3)=fo oE IMAGE] A Otj 

Cp4gýý 4 "Find the humidity level values of above selected IMAGEI which appeared 
before time Qt". This query involves the temporal reasoning. We apply the following 
algebra operators to support this reasoning. 

OW5==R 
<IMAGEJ. Humi4itY> (0") 

Ow6= (Yp3 (Ow5)=(o I 
oE Humidity A t< Otl 

QuM 5 'VwA the average humidity level of above selected panel". 
Agg-fiinc T, OW6=Avg Tl=[,, Qtj Ovv6 

The closure property states that output finom one operation can beconw input to another 
[7]. Our algebra imposes operators (except when G3(o), we already treat it as a method) on 
relations (sets of objects). So the output is also a relation. In this sense our algebra is 
closed. Besides, because our algebra supports object identity, it is also polymorphic in the 
sense that it is defined across all "objects" [241. 

These models which employ tuple-time-stamping are termed temporally ungrouped 
whereas those models that employ complex attribute values bearing the temporal 
dimension are termed temporally grouped [14]. While the expressive power of ungrouped 
complete was generally accepted as a desirable property for TSQL, there were 
considerable concerns on grouped complete [14]. The benefit of being grouped complete 
is that it supports a rather strong notion of the "history of an attribute". For example, one 
can talk about "Panel #I's humidity history' as a single object, and ask to see it, or define 

constraints over it, etc. In temporal RDBs, as stated in [5,14], there is no algebra that has 
been shown to be grouped complete. In our temporal object data model, every object is 

associated with a OID. If every OID is maintained in a database (in some data models, 
primitive entities such as integers, or characters, are represented by values and have no 
OID associated with), then our algebra will be grouped complete. 

5 Related Work 
Although temporal databases have been an active area of research for over fifteen years, 

there is no commonly accepted consensus data model, nor is there well-accepted temporal 
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database algebra [141. It is advocated [14] that a very simple conceptual data model is 
adopted that captures the essential semantics of time varying relations, but has no illusions 
of being suitable for representation, storage, or query evaluation. Our work pursues this. 
There are quite a few reports on defining a temporal relafional data model and algebra. 
Clifford [5] associated lifespans at both attribute and tuple level as timestamps to define 
the historical relational data model and algebra. Tansel [21] adopted temporal sets for 
timestamps and a temporal atom for a timestamped object. Gadia et al. [16] provided a 
parametric data model, treating the attribute value as a function of time. These features of 
the above work have been integrated and applied to our data model and algebra. But 
because our data model is a temporal object data model, the heterogeneity in time 
dimension and grouped completeness of algebra can be supported. 
Over two dozen proposals have been made for an object algebra [12]. No query algebra 
thus defined is based on any unified model of RDBs and OODBs, although it has been 
claimed that an object algebra should extend relational algebra consistently [21,17]. None 
of these object algebra consider the temporal dimension. Our temporal object algebra 
reflects the spirit of object algebra [17,20,6,1]. But in addition to support the access 
through aggregation and inheritance associations, our algebra accesses objects through 
time dimension. These are embodied in the enhanced nested predicates and (nested) 
temporal predicates. 

Conclusions 
In this paper, we have presented a temporal object data model and its algebra. The 
adaptation of the unified model of RDB and OODB by adding a time dimension to form 
the relational-like cubes but with aggregation and inheritance associations provides a basis 
to extends techniques of defining temporal relational algebra for developing the temporal 
object algebra. The temporal object algebra will become an object algebra when the time 
dimension is not taken into account, and the object algebra extends the relational algebra 
consistently. On the other hand, the modelling capability of OODBs that every real world 
entity can be uniformly modelled as an object, makes it easy to model the temporal 
aspects. The temporal object we defined can be used to represent any object with a time 
dimension, such as representing an attribute as a function of time which avoids 
fragmentation of an object description. In addition, it can support both homogeneity and 
heterogeneity in the time dimension. This is important because homogeneity sometimes 
becomes difficult to maintain. Furthermore, the grouped completeness of the algebra can 
be maintained. 
Future work will extend the query evaluation and optimization techniques developed for 
temporal RDBs and OODBs to temporal OODBs. 
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