522 research outputs found

    Design of High Performance Microstrip Dual-Band Bandpass Filter

    Get PDF
    This paper presents a new design of dual-band bandpass filters using coupled stepped-impedance resonators for wireless systems. This architecture uses multiple couple stubs to tune the passband frequencies and the filter characteristics are improved using defected ground structure (DGS) technique. Measurement results show insertion losses of 0.93 dB and 1.13 dB for the central frequencies of 2.35 GHz and 3.61 GHz, respectively. This filter is designed, fabricated and measured and the results of the simulation and measurement are in good agreement

    Novel Compact and High Selectivity Dual-band BPF with Wide Stopband

    Get PDF
    A novel type of compact and high selectivity dual-band bandpass filter (BPF) incorporating a dual-mode defected ground structure resonator (DDGSR) and a dual-mode open-stub loaded stepped impedance resonator (DOLSIR) is proposed in this paper. Utilizing capacitive source-load coupling and the intrinsic characteristics of the two types of dual-mode resonators, compact dual-band BPF with multi transmission zeros near the passband edges as well as a wide stopband which can be used to achieve high selectivity is realized. An experimental dual-band BPF located at 2.4 and 3.2 GHz was designed and fabricated. The validity of the design approach is verified by good agreement between simulated and measurement results

    The Beauty of Symmetry: Common-mode rejection filters for high-speed interconnects and balanced microwave circuits

    Get PDF
    Common-mode rejection filters operating at microwave frequencies have been the subject of intensive research activity in the last decade. These filters are of interest for the suppression of common-mode noise in high-speed digital circuits, where differential signals are widely employed due to the high immunity to noise, electromagnetic interference (EMI) and crosstalk of differential-mode interconnects. These filters can also be used to improve common-mode rejection in microwave filters and circuits dealing with differential signals. Ideally, common-mode stopband filters should be transparent for the differential mode from DC up to very high frequencies (all-pass), should preserve the signal integrity for such mode, and should exhibit the widest and deepest possible rejection band for the common mode in the region of interest. Moreover, these characteristics should be achieved by means of structures with the smallest possible size. In this article, several techniques for the implementation of common-mode suppression filters in planar technology are reviewed. In all the cases, the strategy to simultaneously achieve common-mode suppression and all-pass behavior for the differential mode is based on selective mode-suppression. This selective mode suppression (either the common or the differential mode) in balanced lines is typically (although not exclusively) achieved by symmetrically loading the lines with symmetric resonant elements, opaque for the common-mode and transparent for the differential mode (common-mode suppression), or vice versa (differential-mode suppression).MINECO, Spain-TEC2013-40600-R, TEC2013-41913-PGeneralitat de Catalunya-2014SGR-15

    Fractal Geometry: An Attractive Choice for Miniaturized Planar Microwave Filter Design

    Get PDF
    Various fractal geometries are characterized by the self-similarity and space-filling properties. The space-filling feature has been successfully applied to design multiband antenna structures for a wide variety of multifunction wireless systems. On another hand, the second feature has proved its validity to produce miniaturized antennas and passive microwave circuits including the band-pass filters (BPF). This chapter demonstrates the design of miniaturized microstrip BPFs that are derived from fractal-based DGS resonators. Many microstrip BPFs based on the Minkowski fractal DGS resonators will be presented together with those based on Moore and Peano fractal geometries. Simulation results, of all of the presented BPFs, show that an extra-size reduction can be obtained as the iteration level becomes higher. Measured and simulated results agree well with each other. A comparison has been conducted with other filters based on Peano and Hilbert fractal geometries. The results reveal that the proposed BPF offers acceptable performance and a significant decrease of higher harmonics

    Design of Compact Planar Diplexer Based on Novel Spiral-Based Resonators

    Get PDF
    A miniaturized planar diplexer utilizing the novel spiral-based resonators is proposed. The given cell which is initially proposed in this article is composed of two separated rectangular spirals which are asymmetrical to each other and thus, it is called as ‘asymmetrical separated spirals resonator’ (ASSR). ASSR has more superior transmission property than the previous prototype and extremely compact dimension is also achieved. It is demonstrated that ASSR can exhibit bandpass performance with high frequency selectivity and good transmission property within the relatively low frequency band. Based on the given characteristic, one planar diplexer composed of T-junction and two ASSRs is synthesized and the fabricated prototype with compact dimension is achieved, thanks to ASSRs explored. Simultaneously, the transversal dimension of each channel is extremely compact because ASSRs are completely embedded in the feed lines. Both the simulated and measured results indicate that satisfactory impedance matching and high isolation between two channels are achieved. Furthermore, the proposed diplexer is uniplanar and no defected ground structure is introduced

    Design of compact stop-band extended microstrip low-pass filters by employing mutual-coupled square-shaped defected ground structures

    Full text link
    A new technique to reduce the size, improve the rejection in the stop-band of a low-pass filter using modified defected ground structure (DGS) is proposed. An equivalent circuit model is used to study the DGS characteristics. The parameters are extracted by using a simple circuit analysis method. Several comparisons between the EM-simulations and the circuit simulations of the new structure are demonstrated to show the validity of the proposed equivalent circuit model. We demonstrated that the filter can provide a sharp transition domain and a wide rejection in stop-band. To further verify the new technique, a filter employing the new deformed DGS is fabricated and measured. The agreement between the simulation and the measured results confirms the effectiveness of the proposed concept. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 1107–1111, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23273Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58033/1/23273_ftp.pd

    A review article of multi-band, multi-mode microstrip filters for RF, WLAN, WiMAX, and wireless communication by using stepped impedance resonator (SIR)

    Get PDF
    Filters are the basic part in wired, and wireless telecommunications and radar system circuits and they play an important role in determining the cost and performance of a system. The increasing demand for high performance in the fields of RF, WLAN, WiMAX and other wireless communications led to the great revolution in the advancement of the development of a compact microstrip resonator filter design. All these have made a vital contribution to both the required performance specifications for filters and other commercial requirements in terms of low cost, large storage capacity and high-speed performance. This review paper presents several design examples for multi-band, multi - mode microstrip filter resonators to satisfy RF, WLAN, WiMAX, UWB and other wireless communication frequency bands. To analyse the resonant frequencies odd - mode and even -modes can be used for the symmetrical structure. In general, the multi-mode resonators can be designed by using different methods like cross-coupling resonators Structure, and the allocation of the fundamental resonant frequencies of the resonator as stated by the Chebyshev's insertion loss function

    Design and optimization of a new compact 2.4 GHz-bandpass filter using DGS technique and U-shaped resonators for WLAN applications

    Get PDF
    The objective of this work is the study, the design and the optimization of an innovative structure of a network of coupled copper metal lines deposited on the upper surface of a R04003 type substrate of height 0.813 with a ground deformed by slots (DGS). This structure is designed in an optimal configuration for use in the design of narrowband bandpass filter for wireless communication systems (WLAN), the aim of use the defected ground structure is to remove the unwanted harmonics in the rejection band, the simulation results obtained from this structure using CST software show a very high selectivity of the designed filter, a very low level of losses (less than-0.45 dB) with a size overall size of 43.5x34.3 mm

    Design of compact microstrip bandpass filter using square DMS slots for Wi-Fi and bluetooth applications

    Get PDF
    This paper presents the design of a compact bandpass filter based on two identical rectangular resonators and is implemented on microstrip technology for Wi-Fi and bluetoothapplications. To reduce the size of the filter, the defected microstrip structure (DMS) technique is proposed. This technique consists of etching slots in the rectangular resonator, which results in a change in the line properties and increase of the effective inductance and capacitance. This feature is used for miniaturization. The designed filter has a compact size (6.82x8.3) mm² with a low insertion loss of -0.1 dB and a good return loss of -36 dB. The simulation results are realized using the (computer simulation technology) CST Microwave software
    corecore