250,647 research outputs found

    Ensemble residual network-based gender and activity recognition method with signals

    Get PDF
    Nowadays, deep learning is one of the popular research areas of the computer sciences, and many deep networks have been proposed to solve artificial intelligence and machine learning problems. Residual networks (ResNet) for instance ResNet18, ResNet50 and ResNet101 are widely used deep network in the literature. In this paper, a novel ResNet-based signal recognition method is presented. In this study, ResNet18, ResNet50 and ResNet101 are utilized as feature extractor and each network extracts 1000 features. The extracted features are concatenated, and 3000 features are obtained. In the feature selection phase, 1000 most discriminative features are selected using ReliefF, and these selected features are used as input for the third-degree polynomial (cubic) activation-based support vector machine. The proposed method achieved 99.96% and 99.61% classification accuracy rates for gender and activity recognitions, respectively. These results clearly demonstrate that the proposed pre-trained ensemble ResNet-based method achieved high success rate for sensors signals. © 2020, Springer Science+Business Media, LLC, part of Springer Nature

    Domain Adaptive Computational Models for Computer Vision

    Get PDF
    abstract: The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source domain is transferred to a target domain in the form of learned models and efficient feature representations. The dissertation outlines novel domain adaptation approaches across different feature spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a nonlinear kernel based approach that embeds domain-aligned data for enhanced classification; (iii) a hierarchical model implemented using deep learning, that estimates domain-aligned hash values for the source and target data, and (iv) a proposal for a feature selection technique to reduce cross-domain disparity. These adaptation procedures are tested and validated across a range of computer vision applications like object classification, facial expression recognition, digit recognition, and activity recognition. The dissertation also provides a unique perspective of domain adaptation literature from the point-of-view of linear, nonlinear and hierarchical feature spaces. The dissertation concludes with a discussion on the future directions for research that highlight the role of domain adaptation in an era of rapid advancements in artificial intelligence.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    An Overview of Human Activity Recognition Using Wearable Sensors: Healthcare and Artificial Intelligence

    Full text link
    With the rapid development of the internet of things (IoT) and artificial intelligence (AI) technologies, human activity recognition (HAR) has been applied in a variety of domains such as security and surveillance, human-robot interaction, and entertainment. Even though a number of surveys and review papers have been published, there is a lack of HAR overview papers focusing on healthcare applications that use wearable sensors. Therefore, we fill in the gap by presenting this overview paper. In particular, we present our projects to illustrate the system design of HAR applications for healthcare. Our projects include early mobility identification of human activities for intensive care unit (ICU) patients and gait analysis of Duchenne muscular dystrophy (DMD) patients. We cover essential components of designing HAR systems including sensor factors (e.g., type, number, and placement location), AI model selection (e.g., classical machine learning models versus deep learning models), and feature engineering. In addition, we highlight the challenges of such healthcare-oriented HAR systems and propose several research opportunities for both the medical and the computer science community

    Machine learning techniques for sensor-based household activity recognition and forecasting

    Get PDF
    Thanks to the recent development of cheap and unobtrusive smart-home sensors, ambient assisted living tools promise to offer innovative solutions to support the users in carrying out their everyday activities in a smoother and more sustainable way. To be effective, these solutions need to constantly monitor and forecast the activities of daily living carried out by the inhabitants. The Machine Learning field has seen significant advancements in the development of new techniques, especially regarding deep learning algorithms. Such techniques can be successfully applied to household activity signal data to benefit the user in several applications. This thesis therefore aims to produce a contribution that artificial intelligence can make in the field of activity recognition and energy consumption. The effective recognition of common actions or the use of high-consumption appliances would lead to user profiling, thus enabling the optimisation of energy consumption in favour of the user himself or the energy community in general. Avoiding wasting electricity and optimising its consumption is one of the main objectives of the community. This work is therefore intended as a forerunner for future studies that will allow, through the results in this thesis, the creation of increasingly intelligent systems capable of making the best use of the user's resources for everyday life actions. Namely, this thesis focuses on signals from sensors installed in a house: data from position sensors, door sensors, smartphones or smart meters, and investigates the use of advanced machine learning algorithms to recognize and forecast inhabitant activities, including the use of appliances and the power consumption. The thesis is structured into four main chapters, each of which represents a contribution regarding Machine Learning or Deep Learning techniques for addressing challenges related to the aforementioned data from different sources. The first contribution highlights the importance of exploiting dimensionality reduction techniques that can simplify a Machine Learning model and increase its efficiency by identifying and retaining only the most informative and predictive features for activity recognition. In more detail, it is presented an extensive experimental study involving several feature selection algorithms and multiple Human Activity Recognition benchmarks containing mobile sensor data. In the second contribution, we propose a machine learning approach to forecast future energy consumption considering not only past consumption data, but also context data such as inhabitants’ actions and activities, use of household appliances, interaction with furniture and doors, and environmental data. We performed an experimental evaluation with real-world data acquired in an instrumented environment from a large user group. Finally, the last two contributions address the Non-Intrusive-Load-Monitoring problem. In one case, the aim is to identify the operating state (on/off) and the precise energy consumption of individual electrical loads, considering only the aggregate consumption of these loads as input. We use a Deep Learning method to disaggregate the low-frequency energy signal generated directly by the new generation smart meters being deployed in Italy, without the need for additional specific hardware. In the other case, driven by the need to build intelligent non-intrusive algorithms for disaggregating electrical signals, the work aims to recognize which appliance is activated by analyzing energy measurements and classifying appliances through Machine Learning techniques. Namely, we present a new way of approaching the problem by unifying Single Label (single active appliance recognition) and Multi Label (multiple active appliance recognition) learning paradigms. This combined approach, supplemented with an event detector, which suggests the instants of activation, would allow the development of an end-to-end NILM approach

    Low-power dynamic object detection and classification with freely moving event cameras

    Get PDF
    We present the first purely event-based, energy-efficient approach for dynamic object detection and categorization with a freely moving event camera. Compared to traditional cameras, event-based object recognition systems are considerably behind in terms of accuracy and algorithmic maturity. To this end, this paper presents an event-based feature extraction method devised by accumulating local activity across the image frame and then applying principal component analysis (PCA) to the normalized neighborhood region. Subsequently, we propose a backtracking-free k-d tree mechanism for efficient feature matching by taking advantage of the low-dimensionality of the feature representation. Additionally, the proposed k-d tree mechanism allows for feature selection to obtain a lower-dimensional object representation when hardware resources are limited to implement PCA. Consequently, the proposed system can be realized on a field-programmable gate array (FPGA) device leading to high performance over resource ratio. The proposed system is tested on real-world event-based datasets for object categorization, showing superior classification performance compared to state-of-the-art algorithms. Additionally, we verified the real-time FPGA performance of the proposed object detection method, trained with limited data as opposed to deep learning methods, under a closed-loop aerial vehicle flight mode. We also compare the proposed object categorization framework to pre-trained convolutional neural networks using transfer learning and highlight the drawbacks of using frame-based sensors under dynamic camera motion. Finally, we provide critical insights about the feature extraction method and the classification parameters on the system performance, which aids in understanding the framework to suit various low-power (less than a few watts) application scenarios

    Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring

    Get PDF
    How to fuse multi-channel neurophysiological signals for emotion recognition is emerging as a hot research topic in community of Computational Psychophysiology. Nevertheless, prior feature engineering based approaches require extracting various domain knowledge related features at a high time cost. Moreover, traditional fusion method cannot fully utilise correlation information between different channels and frequency components. In this paper, we design a hybrid deep learning model, in which the 'Convolutional Neural Network (CNN)' is utilised for extracting task-related features, as well as mining inter-channel and inter-frequency correlation, besides, the 'Recurrent Neural Network (RNN)' is concatenated for integrating contextual information from the frame cube sequence. Experiments are carried out in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Experimental results demonstrate that the proposed framework outperforms the classical methods, with regard to both of the emotional dimensions of Valence and Arousal

    Wearable EEG-based Activity Recognition in PHM-related Service Environment via Deep Learning

    Get PDF
    It is of paramount importance to track the cognitive activity or cognitve attenion of the service personnel in a Prognostics and Health Monitoring (PHM) service related training or operation environment. The electroencephalography (EEG) data is one of the good candidates for cognitive activity recognition of the user. Analyzing electroencephalography (EEG) data in an unconstrained (natural) environment for understanding cognitive state and classifying human activity is a challenging task due to multiple reasons such as low signal-to-noise ratio, transient nature, lack of baseline availability and uncontrolled mixing of various tasks. This paper proposes a framework based on an emerging tool named deep learning that monitors human activity by fusing multiple EEG sensors and also selects a smaller sensor suite for a lean data collection system. Real-time classification of human activity from spatially non collocated multi-probe EEG is executed by applying deep learning techniques without performing any significant amount of data preprocessing and manual feature engineering. Two types of deep neural networks, deep belief network (DBN) and deep convolutional neural network (DCNN) are used at the core of the proposed framework, which automatically learns necessary features from EEG for a given classification task. Validation on extensive amount of data, which was collected from several subjects while they were performing multiple tasks (listening and watching) in PHM service training session, is presented and significant parallels are drawn from existing domain knowledge on EEG data understanding. Comparison with machine learning benchmark techniques shows that deep learning based tools are better at understanding EEG data for task classification. It is observed via sensor selection that a significantly smaller EEG sensor suite can perform at a comparable accuracy as the original sensor suite

    UntrimmedNets for Weakly Supervised Action Recognition and Detection

    Full text link
    Current action recognition methods heavily rely on trimmed videos for model training. However, it is expensive and time-consuming to acquire a large-scale trimmed video dataset. This paper presents a new weakly supervised architecture, called UntrimmedNet, which is able to directly learn action recognition models from untrimmed videos without the requirement of temporal annotations of action instances. Our UntrimmedNet couples two important components, the classification module and the selection module, to learn the action models and reason about the temporal duration of action instances, respectively. These two components are implemented with feed-forward networks, and UntrimmedNet is therefore an end-to-end trainable architecture. We exploit the learned models for action recognition (WSR) and detection (WSD) on the untrimmed video datasets of THUMOS14 and ActivityNet. Although our UntrimmedNet only employs weak supervision, our method achieves performance superior or comparable to that of those strongly supervised approaches on these two datasets.Comment: camera-ready version to appear in CVPR201
    corecore