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ABSTRACT

It is of paramount importance to track the cognitive activ-
ity or cognitve attenion of the service personnel in a Prog-
nostics and Health Monitoring (PHM) service related train-
ing or operation environment. The electroencephalography
(EEG) data is one of the good candidates for cognitive ac-
tivity recognition of the user. Analyzing electroencephalog-
raphy (EEG) data in an unconstrained (natural) environment
for understanding cognitive state and classifying human ac-
tivity is a challenging task due to multiple reasons such as low
signal-to-noise ratio, transient nature, lack of baseline avail-
ability and uncontrolled mixing of various tasks. This paper
proposes a framework based on an emerging tool named deep
learning that monitors human activity by fusing multiple EEG
sensors and also selects a smaller sensor suite for a lean data
collection system. Real-time classification of human activity
from spatially non-collocated multi-probe EEG is executed
by applying deep learning techniques without performing any
significant amount of data preprocessing and manual feature
engineering. Two types of deep neural networks, deep be-
lief network (DBN) and deep convolutional neural network
(DCNN) are used at the core of the proposed framework,
which automatically learns necessary features from EEG for
a given classification task. Validation on extensive amount
of data, which was collected from several subjects while they
were performing multiple tasks (listening and watching) in
PHM service training session, is presented and significant
parallels are drawn from existing domain knowledge on EEG
data understanding. Comparison with machine learning bench-
mark techniques shows that deep learning based tools are bet-
ter at understanding EEG data for task classification. It is ob-
served via sensor selection that a significantly smaller EEG
sensor suite can perform at a comparable accuracy as the orig-
inal sensor suite.
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1. INTRODUCTION

It is becoming an ubiquitous practice in industry for the field
technicians to use wearables (with multi-modal sensor nodes)
while performing PHM related service. The wearables keep
track of vital statistics of the technicians to make sure that
safety-critical jobs are not compromised due to some physi-
cal issues. Also Real-time tracking of the the service person-
nel’s cognitive activity in a Prognostics and Health Monitor-
ing (PHM) related environment is significant both for design-
ing an effective multi-media training module and evaluating
the quality of service at the PHM-critical industries. EEG
data is a preferable non-invasive candidate for tracking hu-
man activity. Electroencephalography (EEG) is the process
of measuring the brain’s neural activity as electrical voltage
fluctuations along the scalp that results from the current flows
in brain’s neurons (Niedermeyer & da Silva (2005)). Brain-
computer interface (BCI) or Brain-Machine interface (BMI),
depending on understanding brain waves, has become one of
the main tools to help estimating the cognitive state of the
subject in real-time. For industries, real-time understanding
of individual workload, fatigue and alertness of field main-
tenance personnel facilitates the process of creating an effi-
cient and safe work environment. But historically, the EEG
data collection system has been bulky and EEG data is highly
transient and noisy. Also the quality of data analysis is sig-
nificantly dependent on proper calibration of the baseline data
for a specific human, which needs to be updated periodically.
Most existing state-of-the-art techniques analyze EEG data
collected in a constrained environment along with a known
baseline activity response. For a real work environment, an
activity monitoring process along with a lean data collection
system have to be developed which can process EEG data
and recognize human activity in real-time without baseline
knowledge.

Any proposed representation of EEG waves needs to address
low signal-to-noise ratio and other interferences like muscle
movement, cardiac cycles, and ocular movements. Many ap-
proaches have been proposed to represent EEG signals and
classify these representations into mental tasks that the sub-
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ject is performing. Iscan et al.(Iscan et al. (2011)) applied
multiple signal processing tools based on time domain (power
spectral density), frequency domain (power spectral density)
and wavelet transform based features for understanding EEG
data. Initial baseline values and changes in baseline have al-
ways been an issue in estimating cognitive state (Vartak et
al. (2008)). There have been multiple endeavors in apply-
ing Artificial Neural Networks (ANNs) (Tsoi et al. (1993))
as the classifier for EEG data analysis while using various
types of features such as relative wavelet energy (RWE) (Pe-
ters et al. (1998)), lifting-based discrete wavelet transform
(LBDWT) (Subasi et al. (2005)), statistical parameters from
the decomposed wavelet co-efficients (Patnaik & Manyam
(2008)), kurtosis and amplitudes (Chambayil et al. (2010)),
principle component analysis (PCA) (Kottaimalai et al. (2013))
based features, and multi-resolution analysis (MRA) based
wavelet features (Omerhodzic et al. (2013)). Recurrent neural
network (RNN) has also been used for temporal EEG classifi-
cation (Güler et al. (2005); Naderi & Mahdavi-Nasab (2010)).
An autoencoder neural network was implemented in (Mori-
moto & Sketch (n.d.)) to automatically learn features from
unlabeled EEG data and apply binary logistic regression (BLR)
and a support vector machine (SVM). The output layer of the
final RBM as the input to a classifier and k-nearest neighbor
(k-NN), support vector machines (SVM), and logistic regres-
sion as classifiers are used in a modular fashion in (Turner et
al. (2014)). Classification of L/R Hand Movement EEG Sig-
nals is performed by (Alomari et al. (2013)), where feature
vector to the classifiers (ANN and SVM) included the Event-
Related (De) Synchronization (ERD/ERS) and movement- re-
lated cortical potentials (MRCP) features in addition to the
mean, power and energy of the activations of the resulting In-
dependent Components (ICs) of the epoched feature datasets.
It is important to understand that the choices made in im-
plementing baseline correction can influence the results of
analyses and that differences in the baseline correction proce-
dure may be one reason for inconsistent results across studies
(Roach & Mathalon (2008)). Multiple methods such as sim-
ple subtraction of baseline values (Spencer et al. (2004)), per-
cent change from baseline (Hoogenboom et al. (2006)), deci-
bels normalization (Delorme & Makeig (2004)), and baseline-
adjusted z scores (Le Van Quyen et al. (2001); Lachaux et al.
(1999); Rodriguez et al. (1999)) have been applied to nullify
the effect of the baseline from EEG data.

Recent advancements in deep learning shows that multi-layered
neural networks are excellent at low-level feature extraction
from raw data for automated learning and discriminative tasks
without significant manual feature engineering. A deep neu-
ral network model extracts hierarchical features from the train-
ing data (Hinton & Salakhutdinov (2006)) through the use
of multiple layers of latent variables. Deep Learning is an
emerging branch of machine learning with a strong emphasis
on modeling multiple levels of abstraction (from low-level

features to higher-order representations, i.e., features of fea-
tures) from data (Deng & Dong (2014); Bengio et al. (2013)).
For example, in a typical image processing application while
low-level features can be partial edges and corners, high-level
features may be combination of edges and corners to form
parts of an image. Deep Learning generally revolves around
implementing complex model structures composed of nonlin-
ear transformations such as sigmoid function in order to learn
the higher representations of data (Bengio et al. (2013)). In
the last decade, Deep Belief Network (DBN) has emerged as
an attractive option for data dimensionality reduction (Hin-
ton & Salakhutdinov (2006)), feature learning (Coates et al.
(2011)), and solving classification problems (Larochelle &
Bengio (2008)). Several other deep learning architectures
such as Convolutional Neural Networks, Stacked Denoising
Autoencoders, and Deep Recurrent Neural Networks have
also gained immense traction recently as they have been shown
to outperform all other state-of-the-art machine learning tools
for handling very large dimensional data spaces for learning
features in order to perform detection, classification and pre-
diction. A Convolutional Neural Network (CNN) (LeCun et
al. (1998); Kavukcuoglu et al. (2010)) is used in particular
to automatically learn the multi-resolution features from im-
ages for object classification. Recent studies carried out in
2015 (Giering et al. (2014); Sarkar et al. (2014)) at United
Technologies Research Center have shown that Deep Con-
volutional Neural Networks (DCNN) can be used for multi-
modal sensor registration and occlusion detection in vision
based tasks.

This paper proposes an architecture based on deep learning
which monitors human activity in real time by fusing mul-
tiple EEG sensors in an unconstrained environment (without
baseline) and also selects a smaller sensor suite (similar per-
formance) for a lean data collection system. The main contri-
butions of this paper are summarized as:

• real-time classification of cognitive activity from spatially
non-collocated multi-probe EEG by applying deep learn-
ing techniques (DBN and DCNN) without any signifi-
cant amount of data preprocessing and manual feature
engineering,

• sensor selection for designing smaller EEG sensor suite,
that is more usable at a typical PHM shop-floor environ-
ment, without degrading the performance,

• performance validation on extensive amount of data, which
was collected from several subjects while they were per-
forming multiple tasks (listening and watching) in PHM
service training session,

• semantic validation of the trained deep network based on
domain knowledge.

• comparison with machine learning benchmark techniques
for multiple activity classification tasks.

The paper is organized in five sections, including the present
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Figure 1. Position of the EEG sensors on the scalp

one. Section 2 describes the data collection process by a
multi-probe (nine probes) EEG apparatus, which serves as
a test apparatus for experimental validation of the proposed
architecture for real-time human activity monitoring. Sec-
tion 3 describes the proposed framework for task classifica-
tion along with its building blocks via explaining the con-
cepts of DBN and DCNN. Section 4 presents the capability
and advantages of the proposed approach. Finally, the paper
is summarized and concluded in Section 5 with selected rec-
ommendations for future research.

2. DATA COLLECTION

Extensive data collection was performed mainly in a repair
and maintenance training scenario. The EEG sensors collect
data generated from brain waves via sensors placed on the
scalp. The wireless EEG sensor set used in this study was
developed by Advanced Brain Monitoring (ABM). The sys-
tem combines a 1.5 V battery-powered headset with a sensor
placement system, following international standards (Jasper
(1958)). The EEG sensor strip has 9 channels of EEG data
collected from the following scalp sites, Fz, F3, F4, Cz, C3,
C4, POz, P3, P4. Figure 1. below (left) shows the position
of the sensor sites on the scalp and pictured (right) shows the
sensor strip as it would be positioned on the participants head.
A non-toxic electrolyte gel applied to the scalp improves the
acquisition of the brain signal. This gel has a similar chemi-
cal make-up to sweat and wipes out of the hair with a tissue.
The EEG system also has the capability of collecting heart
rate data and inter-beat heart rate interval data. The system
uses two sensors: 1 sensor placed on the right clavicle or col-
lar bone and the other across the body on the first rib on the
left side. The sensor operates using a 9V battery, and the data
is transmitted to the main computer wirelessly.

To begin the experimental session, participants were fitted
with the 9-channel, wireless EEG system consisting of a soft
elastic band, a plastic strip containing the EEG sensors and a

transmitter box to stream the data to the laptop for collec-
tion. Before participating in the main tasks, a baseline of
each participant’s psychophysiological state was taken. An
impedance check of all sensors was performed to ensure that
proper contact with the scalp was made. When the sensors
were settled and read under 20 mV, a set of baseline tasks (a
3-choice vigilance task, an eyes-open rest task, and an eyes-
closed task) was performed to characterize the participant’s
brain patterns before participating in the experimental task.
Although the baselines were collected for each participant as
a part of the usual experimental procedure, those were not
considered in the activity monitoring analysis for this paper.
Once the baseline was completed, the participant was ready to
enter the scenario. Participants were asked to complete sev-
eral tasks, each lasting approximately five minutes. The tasks
mostly centered on the repair and maintenance of a Roof-Top
Unit (RTU) and are as follows: (i) Music task− an aural task
during which participants close their eyes and listen to a se-
lection of music, (ii) Audio Task− an aural task during which
participants listened to the RTU manual read aloud to them
by the experimenter (iii) Reading task − a visual task dur-
ing which participants are asked to read pages from the RTU
manual, and (iv) Video Task − a visual task during which
participants view the use of the augmented reality RTU main-
tenance application on a tablet. Between tasks, participants
moved to a different area of the room in order to separate the
parts of the experiment. After each task, with the exception of
the music task, participants were asked questions to encour-
age attention and engagement with the material. Completing
each task once was considered completing one block. Also
the tasks were performed in a random order. Each participant
was intended to complete 4 blocks. In this paper, the four
tasks are grouped into two major classes which are ’watching’
(task (i) and (ii)) and ’listening’ (task (iii) and (iv)). Limited
by the current Institutional Review Board (IRB), a total of
three people participated in the study. Two participants com-
pleted four blocks each. At the finish, each participant had
generated 15 to 20 minutes of data per task. The sampling
frequency of the data was 256Hz.

3. CLASSIFICATION FRAMEWORK

This section describes the proposed framework which ana-
lyzes multi-sensor EEG data for classification of human ac-
tivity. Figure 2 shows the whole architecture in a modular
fashion. Synchronized windows are traversed over EEG sen-
sor time series with overlap and windows from each sensor
are concatenated. Each of the sensor windows is denoised
by a simple low-pass filter and major muscle movements are
filtered out. After that, filtered window data are converted
to power spectral density (PSD) via fast fourier transform
(FFT). A large vector containing all normalized PSDs from
each sensor are fed into the deep neural network. Specifically
for DCNN, spectrogram is fed into the deep learning mod-
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Figure 2. Classification Framework

ule. Deep neural networks (DBN and DCNN) are trained by
backpropagation and stochastic gradient descent (Hinton &
Salakhutdinov (2006)) based on the output task labels. While
testing, the whole tool chain is operated in a feed-forward
fashion in real-time and provides an output containing task
decision for each window of EEG data. Detailed description
of DBN and DCNN are provided as follows.

3.1. Deep Belief Network (DBN)

Deep Belief Networks (DBN) is a type of deep neural net-
works consisting of multiple layers hidden variables (Hinton
& Salakhutdinov (2006)). As shown in figure 3, DBN ar-
chitecture is built up by putting multiple layers of Restricted
Boltzmann Machines (RBM) on top of one another. RBM is a
type of energy-based generative probabilistic graphical model
that learns a probability distribution over the input space to
optimally explain the observed data. Structurally, RBM is a
bipartite graph that connects visible units (the inputs) and hid-
den units except the same type of units. Due to the presence
of latent variables, a single layer of RBM is powerful enough
to represent complex distributions. The capacity to respresent
nonlinearity is further increased when multiple hidden layers
are stacked on top of each other, with the outputs of lower
layer becoming the input of adjacent higher layer.

Multi-layered Deep Belief Networks are notorious for opti-
mization to be caught in poor local minima due to the large
number of parameters in the model. However, it has been
discovered that DBNs can be trained in an unsupervised man-
ner to help initialize better weights as opposed to using ran-
domized weights, leading to a superior generalization perfor-
mance. Pretraining is performed in a greedy layer-wise man-

ner. The weights and biases of the first RBM stack is updated
iteratively based on an unsupervised training criterion. Af-
ter a user-defined stopping condition (e.g. maximum number
of iterations), the parameters from this layer is fixed and the
outputs of the layer (a new representation for the raw input)
becomes the input of another layer for pretraining in a similar
fashion. Essentially, the objective is to find the hidden unit
features that are more common in the training inputs than in
the random inputs, such that the pretrained weights may help
to guide the parameters of that later towards better regions in
the parameter space.

Consider a single RBM stack with hidden units h. The prob-
ability of observing a sample v is

Pr(v) =
e−F (v)∫
e−F (v) (1)

where
F(v) = − log

∑
h

e−E(v,h) (2)

and
E(v,h) = −bT v− cT h− hWT v (3)

Pretraining seeks to find the set of parameters {Ŵ, b̂, ĉ} (i.e.,
layer weights, visible unit biases and the hidden unit biases,
respectively) that maximizes the expected log-likelihood of
the training data V. Thus, the optimization problem can be
formally represented as:

{Ŵ, b̂, ĉ} = argmax
W,b,c

E

[∑
v∈V

log Pr(v)

]
(4)

and the problem is solved by stochastic gradient descent. Con-
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vergence in learning is confirmed by the fact that each newly
pretrained layer guarantees an increase on the lower-bound of
the log-likelihood of the data, hence improving the model.

Activity Classes 
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(Hidden) 

Layer 2 
(Hidden) 

Bottleneck  

Layer (Hidden) 

) 

Figure 3. Deep belief network (DBN)

The pretrained network is finetuned using an error backpropa-
gation algorithm. For a classification problem, the class labels
are compared against the neural net outputs based on an input
vector via an error metric that becomes the cost function of
the algorithm (Larochelle & Bengio (2008)). Specifically, the
loss function ` to be minimized for a dataset V, parametrized
by θ is:

`(θ = {W,b, c},V) =

−
|V|∑
i=0

[
log
(

Pr(Y = y(i)|v(i),W,b, c)
)] (5)

where y(i) denotes the class index. All weights and biases in
the network are then optimized by the algorithm to produce a
fully trained model for further classification.

3.2. Deep Convolutional Neural Network (DCNN)

Among various deep learning techniques, Deep Convolutional
Neural Network (DCNN) (LeCun et al. (1998); Krizhevsky
et al. (2012)) is an attractive option for extracting pertinent
features from images in a hierarchical manner for detection,
classification, and prediction. Regarding time series analy-
sis, DCNN has been used for automatic speech recognition
(ASR) (Abdel-Hamid et al. (2014)) where a spectrogram of
the phenoms served as the input. In this paper, the spectro-
gram is of the concatenated EEG sensors are used as input.
DCNNs are also easier to train while achieving a comparable
(and often better) performance despite the fact that there are
fewer parameters relative to other fully connected networks
with the same number of hidden layers. DCNN has fewer pa-
rameters because the filters share weights for a feature map
(LeCun et al. (1998)).

In DCNNs, data is represented by multiple feature maps in
each hidden layer as shown in the figure 4. Feature maps
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Figure 4. Deep Convolutional Neural Network (DCNN)

are obtained by convolving the input image by multiple fil-
ters in the corresponding hidden layer. To further reduce the
dimension of the data, these feature maps typically undergo
non-linear downsampling with a 2× 2 or 3× 3 max-pooling.
Max-pooling essentially partitions the input image into sets
of non-overlapping rectangles and takes the maximum value
for each partition as the output. After max-pooling, mul-
tiple dimension-reduced vector representations of the input
is acquired and the process is repeated in the next layer to
learn a higher representation of the data. At the final pooling
layer, resultant outputs are connected to the fully connected
layer where sigmoid outputs from the hidden units are post-
processed by a softmax function in order to predict the class
that possesses the highest joint probability given the input
data. This way, spectrogram structures of the EEG sensors
at different tasks can be learned. For more detailed descrip-
tion on how DCNN works in general, refer to (LeCun et al.
(1998); Krizhevsky et al. (2012)).

4. RESULTS AND DISCUSSIONS

This section discusses the training parameters and the perfor-
mance results that are obtained when the proposed framework
is applied on EEG data for activity classification.

4.1. DBN/DCNN Parameters for Training

The EEG data collected from first and third participants are
used for constructing training set and remaining data from
the second participant is used for testing. Each participant
performed around 20 minutes of each of the 4 tasks. This
generates around 40 minutes of data for each of the ’listen-
ing’ and ’watching’ activity classes. For training, a window
length of 5 seconds with an overlap of 4.5 seconds is chosen
to capture adequate slow time-scale dynamics along with fast
time scale transience. This parameters are considered after a
2 dimensional grid search over window lengths and overlaps.
For example, at smaller window size such as 2 seconds, activ-
ity recognition performance drops by more than 10%. Com-
bining participant one and three, around 14000 windows of
multi-sensor concatenated time series are produced, that are
equally divided among classes of activities. Seventy percent
of this data is used for training and remaining thirty percent is
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Figure 5. Real-time monitoring performance (ground truth: 0
- listening and 1 - watching)

used as the validation set for the deep learning models. After
the training and validation set are constructed, they are de-
noised by ABM system (see section 2) via eliminating both
the frequencies more than 120Hz and the frequencies mainly
responsible for muscle movements. Each segment of the con-
catenated denoised signal, representing an EEG sensor, is
converted to power spectral density (PSD) and normalized to
a range of [0, 1] for DBN. The PSD array for each sensor is
640 unit long because the sampling frequency is 256Hz and
window length is 5 seconds. The length of the input vector of
the DBN is 5760 (640 × 9) after concatenation of 9 sensors.
The DBN is comprised of three layers with 4000, 1000, and
20 hidden units for the first, second, and third hidden layer
respectively (see figure 3). A learning rate of 0.01 is used for
the stochastic gradient descent algorithm while performing
both pre-training and supervised finetuning. Pre-training is
performed in batches of 50 samples and each layer undergoes
50 complete iterations of pre-training before moving onto the
next layer. During supervised finetuning, classification errors
on the validation data is compared against the errors from
training set as a measure to prevent overfitting to the available
data. For the two-class problem (classifying ’listening’ and
watching’), the optimized model is obtained around 200th it-
eration after which the validation error becomes consistently
higher than the training error.

For DCNN, each segment of the concatenated denoised sig-
nal is converted to spectrogram and normalized to a range of
[0, 1]. For each training window, the input concatenated spec-
trogram is resized to a greyscale image of size 28×28 pixels.
In the first convolutional layer as shown in figure 4, 20 fil-
ters of size 5 × 5 pixels reduce the input image to 20 feature
maps of 24×24 pixels. Next, the feature maps are downsam-
pled by a 2 × 2 max-pooling layer, resulting in pooled maps
of 12 × 12 pixels. Each of these maps goes through another
convolutional layer with 50 filters of 5× 5 pixels which pro-
duces feature maps of 8 × 8 pixels, and 4 × 4 pixels pooled
maps after max-pooling. All generated maps are connected
to the fully connected layer of 500 hidden units followed by
class labels. A learning rate of 0.1 along with a batch size
of 500 are used for stochastic gradient descent. For the two-
class problem, the optimized model is obtained around 350th
epochs under the similar criteria as DBN.

Table 1. Comparison of classification performances with two
major classes of activities: ’listening’ and ’watching’

Test
Method

accuracy (%)
k-NN 74.08
SVM 86.61
DBN 91.15

DCNN 91.63

Table 2. Comparison of classification performances with all
four tasks

Test
Method

accuracy (%)
k-NN 38.94
SVM 43.55
DBN 48.76

DCNN 49.50

4.2. Testing and Performance Comparisons

The proposed framework is tested on the EEG data from the
second participant. The overlap is reduced to 4 seconds while
testing, such that the framework gives a decision regarding
the ongoing task every second. A snapshot of the testing
phase is shown in the figure 5, which shows the ground truth
(0 - listening and 1 - watching) and the probability of ’watch-
ing’. If a simple threshold of 0.5 is chosen for the binary clas-
sification, a classification accuracy of 91.15% and 91.63%
can be achieved by DBN and DCNN respectively.

The performance in binary classification from deep learning
are compared to the state-of-the-art techniques such as k near-
est neighbor (k-NN) classifier (Bishop (2006)) and support
vector machine (SVM) (Bishop (2006)) as shown in the ta-
ble 1. For fair comparison, k-NN and SVM are optimized for
k (optimal k = 5) and kernel parameters respectively based
on the training and validation set exactly same as the pro-
posed deep learning framework. Table 1 shows that DCNN
and DBN perform significantly better than SVM and k-NN.
Although the 4-task classification task is a tough problem in
this setting due to wide overlap of EEG features among tasks,
the proposed framework is tested in classifying all the four
tasks for completeness. Table 2 presents that both the DCNN
and DBN perform better than k-NN with a margin of around
10%. As the data is limited, a three-way cross validation (di-
ifferent participant for testing) is performed and it is observed
that the performance varies within 2% of the reported ones in
the previous tables.

4.3. Feature Visualization and Sensor Selection

In the DBN, perfect class representations at the output layer
i.e., [1 0] for listening and [0 1] for watching are backprop-
agated through the optimal network to visualize the repre-
sentative inputs for two classes. Those representative inputs
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Figure 6. Spectral energy distribution among multiple frequency bins from trained neural network for (a) class 1: Listening, (b)
class 2: Watching
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Figure 7. (a) All 9 EEG probes, (b) sensor selection, and (c) Selected EEG probes

are divided among multiple spectral bins, which are impor-
tant to domain experts, to identify the validity of the network.
A spatio-spectral distribution of normalized spectral energy
over various frequency bins are presented by figure 6. Fig-
ure 6 shows that α dominance of P sensors while listening
shifts to β zone during watching. Also the presence of domi-
nant γ activity during watching strongly supports the domain
knowledge regarding cross-modal (audio-visual) sensory pro-
cessing and short-term memory matching of recognized ob-
jects (Kisley & Cornwell (2006)). These observations show
that the DBN has learned a model without significant prepro-
cessing, which has an adequate semantic meaning according
to the domain experts (Kisley & Cornwell (2006)).

A backward feature selection procedure (Bishop (2006)) is
carried out based on DBN. Figure 7(b) reveals that the P sen-
sors (POz, P3, P4) in general and Fz and Cz contribute the
most towards class separability. If a sensor suite is created
containing Pz, Fz and Cz (see 7(c)) based on the class sepa-
rability criterion, it still classifies two activities with an accu-
racy as high as 90.1%. The suite of Pz, Fz and Cz is selected
instead of just P sensors to capture spatial variability. Hence

the 9-probe EEG sensor suite can be reduced to a smaller 3-
probe (Pz, Fz and Cz) sensor suite for this type of activity
classification problem while keeping the performance simi-
lar. This observation paves the possibility of making EEG
sensor suite less clunky and more user-friendly.

5. CONCLUSIONS AND FUTURE WORK

This paper proposes a framework consisting of deep learning,
that recognizes human activities in real time via the fusion of
multiple EEG sensors in an unconstrained environment (with-
out baseline) and selects a smaller sensor suite (similar per-
formance) for a lean data collection system. Classification
of human activity from spatially non-collocated multi-probe
EEG by applying deep learning techniques is performed with-
out any significant amount of data preprocessing. The ability
to label data with the tasks would also enable attention and
workload experiments to be performed in unconstrained (nat-
ural) and colloborative setting. Two major types of deep neu-
ral networks namely, deep belief network (DBN) and deep
convolutional neural network (DCNN) are used in this pa-
per at the core of the framework. It is observed that both
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DBN and DCNN exhibit more than 91% accuracy at classify-
ing activities such as ’listening’ and ’watching’. Comparison
with machine learning benchmark techniques reveals supe-
rior performance of the deep learning tools. Main advantages
of the proposed framework include simple preprocesssing,
training without baseline and testing on unforeseen subject,
which make this framework more generalizable to broader ar-
ray of applications relevant to EEG data understanding. Sen-
sor selection via backward feature selection shows the pos-
sibility of designing smaller EEG sensor suite while keeping
the performance equivalent. Feature visualization and valida-
tion against domain knowledge regarding spectral energy dis-
tribution supports the fact that the deep networks learn seman-
tic and useful features. Future work will attempt to validate
this approach on more data collected from larger group of
participants for finer classification of tasks along with quan-
tifying the robustness. Future research will also investigate
fusion among broader array of heterogeneous sensors such as
heart monitors, galvanometers and eye trackers.
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