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ABSTRACT

The widespread adoption of computer vision models is often constrained by the issue

of domain mismatch. Models that are trained with data belonging to one distribution,

perform poorly when tested with data from a different distribution. Variations in

vision based data can be attributed to the following reasons, viz., differences in image

quality (resolution, brightness, occlusion and color), changes in camera perspective,

dissimilar backgrounds and an inherent diversity of the samples themselves. Machine

learning techniques like transfer learning are employed to adapt computational models

across distributions. Domain adaptation is a special case of transfer learning, where

knowledge from a source domain is transferred to a target domain in the form of

learned models and efficient feature representations.

The dissertation outlines novel domain adaptation approaches across different fea-

ture spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a

nonlinear kernel based approach that embeds domain-aligned data for enhanced clas-

sification; (iii) a hierarchical model implemented using deep learning, that estimates

domain-aligned hash values for the source and target data, and (iv) a proposal for

a feature selection technique to reduce cross-domain disparity. These adaptation

procedures are tested and validated across a range of computer vision applications

like object classification, facial expression recognition, digit recognition, and activity

recognition. The dissertation also provides a unique perspective of domain adaptation

literature from the point-of-view of linear, nonlinear and hierarchical feature spaces.

The dissertation concludes with a discussion on the future directions for research that

highlight the role of domain adaptation in an era of rapid advancements in artificial

intelligence.
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Chapter 1

INTRODUCTION

In a recent article in the Harvard Business Review, dated November 2016, leading

computer science researcher Andrew Ng, compared artificial intelligence to electricity

saying, “A hundred years ago electricity transformed countless industries; 20 years

ago the internet did, too. Artificial intelligence is about to do the same,” Ng (2016).

On the other hand, the unprecedented success of artificial intelligence in recent years

has also raised concerns from eminent scientist Stephen Hawking and prominent en-

trepreneur Elon Musk, regarding the implications of superhuman intelligence on hu-

manity’s future, Editorial (2016).

With exponential growth in technology, the utopian world of superhuman intelli-

gent robots or, as some would like to call it - the ‘technological singularity’, 1 may not

be far away. However, human intelligence is a competitive benchmark that machine

intelligence is seeking to emulate and eventually outperform. One of the hallmarks

of human intelligence, is the ability to adapt and transfer knowledge across multiple

domains. For e.g., if a human is familiar with a language, they can easily understand

almost anyone speaking it, even if they were to hear them for the first time, or, if a

person has learned to drive a car, they can easily adapt to driving a truck, by adapting

some of their previously learned knowledge to the new setting. In order to enhance

machine intelligence to the level of human intelligence and beyond, machine learning

models will have to model knowledge transfer. The ability to transfer knowledge will

provide tools to process the vast amounts of unlabeled data available in the form of

online video, audio, images and text. These advances in articial intelligence and ma-

1https://en.wikipedia.org/wiki/Technological_singularity
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chine learning will greatly benefit a wide range of applications including, healthcare,

communication, education and clean energy.

This dissertation discusses machine learning models for transferring knowledge.

The concept of knowledge transfer and the need for adaptive machine learning models

is illustrated in the following example. Consider the example of an autonomous

driving car developed in the Silicon Valley, California. This system has been trained

with data gathered from navigating roads in the valley. It can read and interpret

road signage, avoid hitting pedestrians and safely navigate from point A to point

B, in normal traffic conditions. However, the same level of performance cannot be

expected when the car is put to test on the streets of London. In London, the data

gathered by the car’s sensors need to be interpreted differently and the rules for

driving in London are quite different from those in the Silicon Valley - the signage

is different, there are no turns on red, driving is to the left side of the road are

merely some of them. The challenge lies with the fact that the car has been trained

to interpret California street data and not London street data. A self-driving car

will need to be trained with London street data (signage, images, pedestrians, etc.),

before it can be put to test on the streets of London. However, it would be expensive

and time consuming to acquire such labeled training data and retrain a new self-

driving car. It is in these situations domain adaptation algorithms help to transfer

the knowledge gained from learning to drive in California, and reduce the training

effort when adapting the self-driving car to a new environment.

Domain adaptation algorithms are usually trained to adapt between two domains,

the source and the target. The data from the source and the target, although similar,

is from different distributions, for e.g. California street data vs. London street data.

A machine learning model trained on the source dataset, is often adapted to the target

dataset. The challenge for transfer of knowledge occurs when there is limited or no
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labeled data in the target domain, which makes it hard to train models that need

some form of supervision. This dissertation discusses developing models in domain

adaptation for the computer vision application of classification.

1.1 Goals and Motivations

The goal of this dissertation is to propose domain adaptation models for image

classification problems in computer vision. It seeks to highlight the role of domain

adaptation in machine learning and summarize the literature in domain adaptation.

It also intends to outline a set of directions for research in the future.

This dissertation has been inspired by some overarching challenges and goals in

artificial intelligence, big-data analysis and ubiquitous computing. The motivations

are highlighted below.

1. Reverse-Engineer the Brain: The National Academy of Engineering (NAE) has

laid down 14 challenges for the 21st century 2 ranging from sustainability, clean

resources and medicine. One of these challenges is to reverse-engineer the brain.

It seeks to create machines capable of emulating human intelligence, the impact

of which will go far beyond artificial intelligence, with applications in healthcare,

manufacturing and communications. The ability to transfer previously gained

knowledge and adapt to a wide range of data inputs, will be crucial to the

success of this venture. A potential solution to this hard challenge will have to

account for knowledge transfer and domain adaptation.

2. Big Data Challenges : The four V-s of big data are Volume, Velocity, Variety

and Veracity 3. With the advent of the Internet of Things (IoT), the scale

of data (volume), the speed of data generation and processing (velocity), the

2http://www.engineeringchallenges.org/challenges.aspx
3https://en.wikipedia.org/wiki/Big_data

3
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different types of data (variety) and the uncertainty of the data (veracity), are

amplified. Most of this data is often not annotated (labeled). It is hard to

create useful models using unlabeled data based on unsupervised learning. It

is also impractical to train task specific models for every variation in data.

Transfer learning and domain adaptation will play a crucial role in utilizing the

inexhaustible supply of unlabeled data and in customizing pre-trained models

and adapting them to the task at hand.

3. Person-Centered Adaptation: Human Centered Computing (HCC) is a branch

of computer science that transcends traditional Human Computer Interaction

(HCI) paradigms by placing the human at the center of research activity. In

recent years, the concept of Person-Centered Computing (PCC) Panchanathan

et al. (2012), has evolved to adapt computing to individual needs rather than

adopting a ‘one-size-fits-all’ approach. The roots of PCC are based on the phi-

losophy of co-adaptation, where a bidirectional interaction between the user and

the system is used to co-adapt a system tailored to the needs and idiosyncrasies

of a user. Computing has become nearly ubiquitous with computing devices em-

bedded in the environment and in the devices that people use, such as phones,

watches, wristbands, etc. To co-adapt this complex environment to the needs

of an individual would require sophisticated models in transfer learning and

domain adaptation. Such adaptation models will ensure individualized designs,

while also maintaining applicability to a wide range of users.

1.2 Contributions

The contributions of the dissertation are as follows.

1. A new organization was proposed for the literature in domain adaptation. The

various methods developed over the years are organized on the basis of feature
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spaces viz., linear, nonlinear and hierarchical methods. This provides a unique

perspective on domain adaptation models.

2. A linear model for domain adaptation was proposed with the Coupled-Support

Vector Machine. When there are a few labeled data points available in the

target domain, this method can be applied to learn SVM decision boundaries

for the source and the target simultaneously, using standard SVM libraries.

3. A nonlinear embedding transform (NET) based on kernel-Principal Component

Analysis (kernel-PCA) was implemented. In the NET, the joint distributions

(data and labels) of two domains are aligned along with embedding the data to

ensure that classification is enhanced. This work also introduced a validation

procedure in the absence of labeled target data.

4. A hierarchical feature space (deep learning) procedure was developed. A deep

learning network called Domain Adaptive Hashing (DAH), was created to esti-

mate domain aligned hash values for the source and target images. A unique

loss for unlabeled target data was introduced, which ensured discriminative hash

values for the target.

5. An information gain based feature selection technique was proposed. The NP-

hard problem of feature selection was solved using approximate solutions from

related problems in graph theory. A nonlinear feature selection method was

proposed for reducing cross domain disparity.

6. A new dataset (Office-Home) was introduced for object classification based

domain adaptation. The dataset consists of images from 65 categories and 4

domains. The dataset consists of nearly 15, 500 images - a significant increase

over existing datasets.
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1.3 Dissertation Outline

The dissertation is structured in the following manner.

Chapter 2 provides an overview of domain adaptation. The first section is an in-

troduction to domain adaptation. It introduces the different types of learning with

labeled and unlabeled data. It is followed by an introduction to transfer learning

and a discussion on the various types of transfer learning and the different kinds of

domain adaptation with regards to availability of labeled data. The second section

provides a theoretical analysis of domain adaptation along with a discussion on gen-

eralization bounds for performance. The third section describes the role of domain

adaptation in computer vision research. It outlines the current state of research in

domain adaptation, followed by a brief outline on the deep learning trends in domain

adaptation. This section also introduces the Office-Home dataset for deep learning

based domain adaptation, which is one of the contributions of this dissertation.

Chapter 3 is a literature survey on the research in domain adaptation for computer

vision. The survey is organized to reflect the contributions of this dissertation. It

looks upon domain adaptation in the light of feature spaces. It has a section on lin-

ear feature spaces, where linear feature models for domain adaptation are classified

into categories. The following section gives an overview of nonlinear feature models

that have been applied towards domain adaptation applications in computer vision.

The subsequent section outlines the latest trend in computer vision - deep learning

methods for domain adaptation. These are considered as hierarchical feature models

because of the highly nonlinear and hierarchical nature of feature extraction. The

chapter concludes with a discussion on a few miscellaneous models.
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Chapter 4 describes a linear domain adaptation technique based on support vector

machines. It is a semi-supervised domain adaptation procedure where there is labeled

source data along with a few labeled target data samples. The chapter introduces a

Coupled-Support Vector Machine (Coupled-SVM) model that trains two classifiers;

one for the source and the other for the target. The source and target SVM decision

boundaries are learned as a pair of coupled classifiers with the similarity between data

from the source and target domains being modeled as the similarity between SVM

decision boundaries. The coupled SVM formulation is reduced to a standard single

SVM model that can be trained using existing SVM libraries.

Chapter 5 progresses from linear feature spaces to nonlinear feature spaces. This

chapter outlines an unsupervised domain adaptation technique using kernel meth-

ods. It introduces the Nonlinear Embedding Transform (NET) for unsupervised do-

main adaptation. The NET reduces cross-domain disparity through nonlinear domain

alignment. The NET model also embeds the domain-aligned data such that similar

data points are clustered together. This results in enhanced classication. To deter-

mine the parameters in the NET model (and also for other unsupervised domain

adaptation models), a validation procedure is introduced by sampling source data

points that are similar in distribution to the target data.

Chapter 6 introduces a hierarchical feature based domain adaptation method. This

chapter outlines a deep learning domain adaptation method based on hashing. This

model exploits the feature learning capabilities of deep neural networks to learn rep-

resentative hash codes to address the domain adaptation problem. There are two

advantages to estimating a hash values: (i) hash values enable efcient storage and

retrieval of data due to their fast query speed and low memory costs and (ii) during

7



prediction, the hash code of a test sample can be compared against the hash codes of

the training samples to arrive at a more robust prediction. Extensive empirical stud-

ies on multiple transfer tasks corroborate the usefulness of the framework in learning

efcient hash codes which outperform existing competitive baselines for unsupervised

domain adaptation.

Chapter 7 proposes a feature selection method for domain adaptation. The first

part of the chapter lays out a feature selection technique based on conditional mutual

information (CMI). The technique adapts algorithms from related problems in graph

theory to do feature selection. These algorithms provide very good approximations to

the NP-hard problem of feature selection. The second part of the chapter outlines a

model for domain adaptation using feature selection. This is based on the hypothesis

that selecting the right features would help align the domains of the source and target.

Preliminary results with digit based datasets validate the approach with promising

results.

Chapter 8 outlines directions for future research in domain adaptation. This chap-

ter is based on the insights gained from working on this dissertation. The proposed

directions are a segue to the next generation of domain adaptation algorithms. It

deals with arguments for a better understanding and modeling of domain shift and

calls for the introduction of new and large datasets based on an improved interpre-

tation of domain shift. Some of these outlooks for the feature should help guide new

researchers in domain adaptation in formulating their research agenda.

Chapter 9 concludes the dissertation by summarizing the contributions of the dis-

sertation.
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1.4 Previously Published Work

The contents of Chapter (4) are based on previously published work, “Coupled

Support Vectors Machines for Supervised Domain Adaptation” in Venkateswara et al.

(2015b). Chapter (5) is adapted from published works, “Multiresolution Match Ker-

nels for Gesture Recognition” in Venkateswara et al. (2013), and “Nonlinear Em-

bedding Transform for Unsupervised Domain Adaptation” in Venkateswara et al.

(2016) and “Model Selection with Nonlinear Embedding for Unsupervised Domain

Adaptation” in Venkateswara et al. (2017a). Chapter (6) on deep learning based

domain adaptation, is adapted from work accepted at the CVPR 2017 conference,

“Deep Hashing Network for Unsupervised Domain Adaptation” Venkateswara et al.

(2017b). Chapter (7) on feature selection is based partly on published work, “Effi-

cient Approximate Solutions to Mutual Information Based Global Feature Selection”

in Venkateswara et al. (2015a).
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Chapter 2

DOMAIN ADAPTATION - BACKGROUND

While chapter (1) highlighted the role of domain adaptation in machine learning, this

chapter provides a more detailed and formal introduction to domain adaptation in

computer vision. It is organized as follows. Section (2.1) begins with a discussion

on the types of learning leading to a classification of the different kinds of transfer

learning and domain adaptation. Section (2.2) provides some theoretical guarantees

when using a domain adaptation model. It also describes proxy measures for estimat-

ing the amount of discrepancy between domains. Section (2.3) gives an introduction

to how domain adaptation models are developed and evaluated in computer vision.

It discusses the datasets that are used and some drawbacks to the way research in

domain adaptation is currently approached. The section concludes with a discussion

on deep learning based domain adaptation that is the cutting edge of research in this

area.

2.1 Introduction to Domain Adaptation

In order to understand the nature of domain adaptation, it will be useful to

outline the different learning paradigms in machine learning and discuss how domain

adaptation is related to them.

2.1.1 Unsupervised, Supervised and Semi-Supervised Learning

The traditional learning paradigms of machine learning are unsupervised, super-

vised and semi-supervised learning (Chapelle et al. (2006)). In an unsupervised learn-

ing setup, data is available as a set of n examples, X = {x1, . . . ,xn}, where xi ∈ X
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for all i ∈ [1, . . . , n]. X is the feature space of input data. For e.g., X could be

a subset of the Euclidean space of d-dimensions, Rd, or a space of normalized gray

scale images of dimensions M × N , RM×N . The data X is drawn from an arbitrary

distribution P (X), which is unknown. Here X is a random variable and p(X = xi) is

the probability for a data instance xi. The task of unsupervised learning is to model

the data by finding structure in it. This effectively means, learning or estimating

the distribution P (X) given X. Other approaches to understanding the data are

clustering, quantile estimation, dimensionality reduction and outlier detection.

In a supervised learning paradigm, data is available in the form of labeled pairs,

Xl = {xi, yi}ni=1. Like in the case of unsupervised learning, xi ∈ X for all i ∈ [1, . . . , n]

and yi ∈ Y are called the labels. The label space Y could be discrete binary like

Y = {0, 1} or discrete {1,. . . ,C} for applications in classification. Y could be a real

number (R) for applications in regression or it could be a space similar to X for

applications is structured prediction Nowozin and Lampert (2011). The data Xl is

drawn from a joint distribution P (X, Y ), which is unknown. Here, X and Y are

random variables and p(X = xi, Y = yi) is the probability for the joint occurrence of

(xi, yi). The task of supervised learning is to learn a mapping function f : X → Y

based on the training example pairs in Xl. This mapping function is used to predict

the label y for a new data point x. There are two standard approaches to estimating

this mapping function. Generative models learn the joint distribution P (X, Y ) by

estimating the marginal distributions P (X), the prior distributions P (Y ) and the

conditional distributions P (X|Y ). So, when a new data point x is provided, the

model predicts its label y by applying the Bayes theorem,

p(y|x) = p(x|y)p(y)
∫

Y
p(x|y)p(y)dy (2.1)

Some of the examples of generative models are, Gaussian Mixture models, Hidden
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Markov models, Näıve Bayes. Discriminative models on the other hand learn the

posterior distribution P (Y |X) directly as a function in order to predict the label

y. Some examples of discriminative models are Support Vector Machines (SVM),

Random Forests and Logistic Regression.

In the semi-supervised learning paradigm, there are two datasets available, Xl =

{xi, yi}nl

i=1 and Xu = {xi}nu

i=1, where Xl is the labeled dataset and Xu is the unlabeled

dataset. The data Xl is drawn from a joint distribution P (X, Y ), which is unknown.

Similarly, Xu is drawn from a distribution P (X), which is unknown. In addition, the

marginal distribution P (X) for x : (x, y) ∈ Xl is the same as P (X) for x ∈ Xu.

Similar to supervised learning, the goal is to learn a mapping function f : X → Y

based on the training example pairs in Xl and Xu. The challenge is, the number of

labeled data points are few with nl ≪ nu and it may not be possible to estimate the

joint probability P (X, Y ) or learn a discriminator P (Y |X) with the limited labeled

data. There are two approaches to solving semi-supervised learning problems, (i)

inductive and transductive. In inductive learning, a prediction model is learned which

can predict the labels y for the entire space, i.e., ∀x ∈ X , whereas in transductive

learning, a prediction model is learned to predict labels y only for the unlabeled

data Xu. An example of a transductive model is the Transductive SVM in Joachims

(1999).

Semi-supervised learning is closely related to domain adaptation. In a domain

adaptation setting, the labeled dataset Xl can be viewed as the source dataset Ds

and the unlabeled datasetXu can be viewed as the target datasetDt. There is however

one important distinction. The marginal distributions of the source PS(X) and the

target PT (X), are different. If this distribution difference were to be bridged, semi-

supervised learning algorithms can be easily adopted to domain adaptation. In the

following subsection, domain adaptation is discussed in greater detail by contrasting
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it with other transfer learning methods.

2.1.2 Transfer Learning

The traditional machine learning paradigms seen in the previous section, train

statistical models in order to make predictions on unseen data in the future. However,

the models learned using these paradigms can be viewed as static - meaning, they

are not capable of adapting to changes in the data. In other words, these models

do not guarantee optimal performance if the test data is vastly different from the

data the models were trained with. For example, a facial expression recognition

system trained using only female subjects, may perform poorly when tested with

data from male subjects, because men tend to have more rugged facial features along

with facial hair even. Transfer learning is the branch of machine learning that trains

models to learn from multiple sources of data and adapt to test data from a different

setting. Transfer learning can be said to be inspired from the way humans learn. For

example, a human who has learned to ride a bicycle can adapt to riding a motorcycle

with limited training and effort. Transfer learning can also be viewed as a problem of

‘learning to learn’, which is the ability to perform life-long learning and adaptation

(Thrun and Pratt (1998)).

In the remainder of this subsection, different types of transfer learning are outlined

and compared with each other. To this end, some notation and definitions are outlined

below in line with Pan and Yang (2010). For the purpose of this discussion, the

definitions of a “Domain” and “Task” are outlined. A domain D is said to consist of

two components, a feature space X and a marginal probability distribution P (X) that

governs the feature space, where X = {x1, . . . ,xn} ⊂ X is the set of samples from the

feature space. For example, if the learning task is audio transcription, the data from

different subjects can be treated as different domains. The voice of the subject can be
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considered to be the feature space X and X = {x1, . . . ,xn} is the set of audio signals

(words) uttered by the subject where P (X) is the marginal probability that governs

X ⊂ X . Two domains are considered different if their feature spaces are different

(example, different users) or their probability distributions are different (example,

casual conversation vs reading a report). If D = {X , P (X)} is a domain, then a

task T consists of two components, T = {Y , f(.)}, where Y is the label space and

f(.) is the function f : X → Y . The function f(.) is unknown and in a supervised

setting, it is learned from training data pairs (xi, yi), where xi ∈ X and yi ∈ Y .

The function f(x) can then be used to predict the label of a test instance x. From

a probabilistic perspective f(x) can be viewed as the posterior probability p(y|x).

Sometimes a domain D can also be viewed as consisting of a joint space of features

and labels and a joint probability distribution {(X × Y), P (X, Y )}. In most of the

examples of transfer learning, two domains are usually considered, the source and the

target. With a slight abuse of notation, a source dataset is represented as a collection

of data points Ds = {(xs
1, y

s
1), . . . , (x

s
ns
, ysns

)}, where xs
i ∈ XS and yi ∈ YS. Similarly,

a target dataset is represented as Dt = {(xt
1, y

t
1), . . . , (x

t
nt
, ytnt

)}, where xt
i ∈ XT and

yi ∈ YT . The following definition provides a good starting point for the discussion on

different kinds of transfer learning.

Definition 2.1.1. Transfer Learning: (Pan and Yang (2010)) Given a source

domain DS and a source learning task TS, a target domain DT and a target learning

task TT , transfer learning aims to improve the target predictive function fT (.) using

DS and TS, where DS 6= DT , or TS 6= TT .

When two domains are different (DS 6= DT ), then either their feature spaces

are not the same (XS 6= XT , like audio samples from two different subjects) or their

probability distributions are different (PS(X) 6= PT (X), like audio from casual talk vs
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audio from reading a book) or both. Similarly, when two tasks are different (TS 6= TT ,

where TS = {YS, PS(Y |X)} and TT = {YT , PT (Y |X)}), then either their label spaces

are different (YS 6= YT , like transcription vs sentiment analysis) or the posterior

distributions are different (PS(Y |X) 6= PT (Y |X), the case where source and target

are unbalanced in the number of user defined classes). Each of these combinations

of domain difference and task difference gives rise to learning scenarios that can

be addressed using transfer learning. The following paragraphs outline the most

prominent learning paradigms that can be viewed as special cases of transfer learning.

A transfer learning model retains knowledge from one or more tasks, domains or

distributions and applies that knowledge to develop an effective hypothesis for a new

task, domain or distribution (Bruzzone and Marconcini (2010)). The different types

of learning paradigms in machine learning that can be classified as transfer learning

are, multitask learning, self-taught learning, sample selection bias, lifelong machine

learning, zero-shot learning and domain adaptation.

1. Multitask Learning (MTL): In this setting, labeled training data is available

for a set of K tasks T = {T1, T2, . . . , TK} where each task is associated with a

different domain, D = {D1,D2, . . . ,DK}. Given the kth task, it is not possible

to estimate the empirical joint distribution P̂k(X, Y ) reliably with data from

the kth domain, Dk = {xi
k, y

i
k}nk

i=1, x
i
k ∈ Xk and yik ∈ Yk. A good approximation

for P̂k(X, Y ) is learned by exploiting the training data from all the domains

D = {D1,D2, . . . ,DK} and learning all the tasks simultaneously Bruzzone and

Marconcini (2010). The tasks are different irrespective of the equality of the

domains. In terms of availability of labels, all the domains usually have labels.

Even by this definition, P̂k(X, Y ) is inferred by combining the data from all the

tasks and learning all the tasks simultaneously. An introduction and a survey of

multitask learning procedures is provided in Caruana (1997); Thrun and Pratt
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(2012).

As an example, consider a problem with K tasks, where each task is represented

by Xk ∈ R
nk×d, where nk is the number of samples and d is the dimension.

The labels are represented by Yk ∈ R
nk×1. The goal is to estimate a simple

linear model W = [W1,W2, . . . ,WK ] such that Yk = Xk ×Wk. One of the

standard procedures to model task relatedness is to assume Wk are close to one

another. Regularized Multitask Learning by Evgeniou and Pontil (Evgeniou and

Pontil (2004)) is a landmark work in modeling task relatedness. The authors

incorporated task relatedness by assuming the Wk are close to each other. The

optimization problem sought to minimize,

min
W

1

K

(

K
∑

i

Loss(Xk,Wk,Yk) + λ

K
∑

k

∣

∣

∣

∣Wk −
1

K

K
∑

k′

Wk′
∣

∣

∣

∣

2

2

)

(2.2)

The first term is a standard loss term. The second term captures the inter-task

relationship, where tasks are closely related to each other and their distance

from the mean task is minimized. Although the model is very elegant, real

world tasks need not be so closely related to one another. Improvements upon

this very basic model, along with other procedures to perform multitask learning

are outlined in the following works: Bakker and Heskes (2003); Evgeniou and

Pontil (2007); Collobert and Weston (2008); Weinberger et al. (2009); Kang

et al. (2011); Kumar and Daumé III (2012) and Gong et al. (2012b).

2. Self-taught Learning : This learning paradigm was introduced in Raina et al.

(2007). The concept of learning is based on how humans learn in an unsuper-

vised manner from unlabeled data. In this paradigm, the transfer of knowledge

is from unrelated domains in the form of learned representations. Given un-

labeled data, {x1
u, . . . ,x

k
u} where xi

u ∈ R
d, the self-taught learning framework

estimates a set of K basis vectors that are later used as a basis to represent the
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Figure 2.1: Different learning paradigms with labeled data in orange border. Su-
pervised learning uses labeled examples, semi-supervised uses additional unlabeled
examples, transfer learning uses additional labeled examples from different domain
and self-taught learning uses unlabeled data to learn. (Image based on Raina et al.
(2007)).

target data. Specifically,

min
∑

i

||xi
u −

K
∑

j

ajibj||2 + β||ai||1

s.t.||bj|| ≤ 1, ∀j ∈ 1, . . . K (2.3)

where, {b1, . . . , bK} are a set of basis vectors that are learned from unlabeled

data and bi ∈ R
d. For input data xi

u, the corresponding sparse representation

is ai = {a1i , . . . , aKi } with aji corresponding to the basis vector bj. The transfer

of learning occurs when the same set of basis vectors {b1, . . . , bK} are used as

a basis to represent labeled target data. Figure (2.1), provides an overview of

the different learning paradigms compared with self-taught learning. Although

the Figure (2.1) distinguishes transfer learning from self-taught learning, this

discussion treats it as a special case of transfer learning. The unlabeled dataset

(outdoor scene images in Figure (2.1)) can be considered as the source data set

and the labeled dataset (elephants and rhinos in Figure (2.1)) can be treated

as the target dataset. Some of the prominent machine learning and computer

vision techniques that incorporate self-taught learning are Yang et al. (2009);

Bengio (2009); Lee et al. (2009); Mairal et al. (2010).

3. Sample Selection Bias : The concept of sample selection bias was introduced in
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Economics as a Nobel prize winning work by James Heckman in 1979 (Heckman

(1979)). When the distribution of sampled data does not reflect the true dis-

tribution of the dataset it is sampled from, it is a case of sample selection bias.

For example, a financial bank intends to model the profile of a loan defaulter in

order to deny such defaulters a loan from the bank. It therefore builds a model

based on the loan defaulters it has in its records. However, this is a small subset

and therefore does not truthfully model the general public the bank wants to

profile but does not have access to. Therefore, the defaulter profile generated

by the bank can be considered to be offset by what is termed as the sample

selection bias.

In this learning scenario, a dataset X = {xi, yi}ni=1 is made available. This

dataset is used to estimate the joint distribution P̂ (X, Y ) which is an approx-

imation for the true joint distribution P (X, Y ). However, P̂ (X, Y ) 6= P (X, Y )

where P̂ (X, Y ) is the estimated distribution and P (X, Y ) is the true distri-

bution (Bruzzone and Marconcini (2010)). This could be because of very few

data samples, which could lead to a poor estimation of the prior distribution,

P̂ (X) 6= P (X). In other cases, when the training data does not represent the

target (test) data, and introduces a bias in the class prior (P̂ (Y ) 6= P (Y )), this

eventually leads to incorrect estimation of the conditional (P̂ (Y |X) 6= P (Y |X)).

When both the marginal (P̂ (X) 6= P (X)) and the conditionals are differ-

ent (P̂ (Y |X) 6= P (Y |X)), the problem is referred to as sample selection bias

Zadrozny (2004); Dud́ık et al. (2005); Huang et al. (2006). When only the

marginals vary (P̂ (X) 6= P (X)) and the conditionals are approximately equal

(P̂ (Y |X) ≈ P (Y |X)), the problem is termed as covariate shift Shimodaira

(2000); Quionero-Candela et al. (2009); Bickel et al. (2009); Gretton et al.

(2009).
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4. Lifelong Machine Learning (LML): The concept of life long learning was dis-

cussed by Thrun in the seminal work Thrun (1996). The concept of transfer

in life long learning can be formulated as follows. A machine learning model

trained for K tasks {T1, T2, . . . , TK} is updated by learning task TK+1 with data

DK+1. The work discussed if learning the K + 1th task was easier than learning

the first task. The key characteristics of life long learning are: (i) a continuous

learning process, (ii) knowledge accumulation, and (iii) use of past knowledge

to assist in future learning 1 Fei et al. (2016).

Lifelong machine learning differs from multitask learning because it retains

knowledge about previous tasks and applies that knowledge to learn new tasks.

It also differs from standard domain adaptation which transfers knowledge to

learn only one task (target). This germane concept of lifelong learning is closely

related to the paradigm of incremental learning where a model is updated with

new data to learn a new task. Lifelong machine learning can also be viewed as

lifelong incremental learning. However, some incremental learners depend on

data from previous tasks when learning a new task Mensink et al. (2013). Other

approaches learn succinct data representations (also termed as exemplars) to

model data from previous tasks and recall them when updating the classifier

for a new task Rebuffi et al. (2017). In an uncompromising form of incremental

learning, no data is used from previous tasks and the learner is updated using

only the data from the new task Li and Hoiem (2016).

5. One-shot Learning and Zero-shot Learning : These can be viewed as extreme

cases of transfer learning Goodfellow et al. (2016). Both these forms of transfer

seek to learn data categories from minimal data. The key motivation is the

1https://www.cs.uic.edu/~liub/Lifelong-Machine-Learning-Tutorial-KDD-2016.pdf
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ability to transfer knowledge from previously learned categories to recognize

new categories. In one-shot learning, the model is trained to recognize a new

category of data based on just one labeled example Fei-Fei et al. (2006). It

relies on the ability of the model to learn representations that cleanly separate

the underlying categories. The single labeled example from a new category is

used to identify the cluster center around which other unseen examples of the

same category are going to cluster. One-shot learning relies on the ability to

discover representations that matter and those that do not in order to recognize

categories.

Zero-shot learning is the ability to recognize new categories without having

seen any example of the new category. Zero-data learning (Larochelle et al.

(2008)) and zero-shot learning (Palatucci et al. (2009); Socher et al. (2013)) are

examples where the model has learned to transfer knowledge from training data

not completely related to the categories of interest. For example, a model that

has been trained to recognize breeds of dogs can be provided with a description

of the categories {fox, wolf, hyena, wild-dog}. Without having ever seen an

image of any of these categories, the zero-data learning model can be trained to

associate the textual description of the category to learn a model to recognize

the new category.

6. Domain Adaptation: Domain adaptation is a special case of transfer learning

where transfer of knowledge generally occurs between two domains, source and

target. There are examples of multi-source domain adaptation as in Sun et al.

(2011); Mansour et al. (2009); Chattopadhyay et al. (2012), although, two do-

main transfer is the popular setting. In domain adaptation, the source domain

DS and the target domain DT are not the same, and the goal is to solve a com-
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mon task T = {Y , f(.)}. For example, in a image recognition task, the source

domain could contain labeled images of objects against a white background and

the target domain could consist of unlabeled images of objects against a noisy

and cluttered background. Both the domains inherently have the same set of

image categories. The difference between the domains is modeled as the vari-

ation in their joint probability distributions PS(X, Y ) 6= PT (X, Y ). Standard

domain adaptation assumes that there is plenty of labeled data in the source

domain and there is no labeled data (or few samples, if any) in the target do-

main. Since there are no labeled samples (or very few, if any) of target data,

it is difficult to get a good estimate of P̂T (X, Y ). The key task of domain

adaptation lies in approximating P̂T (X, Y ) using the source data distribution

estimation P̂S(X, Y ). This is possible because the two domains are ‘correlated’.

This correlation is often modeled as covariate shift where, PS(X) 6= PT (X) and

PS(Y |X) ≈ PT (Y |X). The goal of the domain adaptation problem is to min-

imize the expected prediction error on the target. If h(x) is the hypothesis of

interest, the expected error on the target distribution is given by 2,

ǫT (h) = EpT (X=x)Ep(Y =y|X=x)

(

h(x) 6= y
)

=
∑

x

pT (x)Ep(y|x)

(

h(x) 6= y
)

Multiplying and dividing by pS(x)

=
∑

x

pS(x)

pS(x)
pT (x)Ep(y|x)

(

h(x) 6= y
)

The target error is equivalent to a weighted source error

with weights given by w,

ǫT (h) = ǫS(h,w) = EpS(x)
pT (x)

pS(x)
Ep(y|x)

(

h(x) 6= y
)

(2.4)

2http://adaptationtutorial.blitzer.com/
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The above derivation uses the covariate shift assumption (PS(Y |X) ≈ PT (Y |X)

and PS(X) 6= PT (X)) and the concept of shared support, i.e. (PS(X) =

0 iff PT (X) = 0). The weight for each source data point is pT (x)
pS(x)

. Domain adap-

tation approaches that estimate the weights for source data points are called in-

stance weighting techniques. Most domain adaptation algorithms estimate this

weight using Kernel Mean Matching (Gretton et al. (2009)) or Kullback-Leibler

divergence (Sugiyama et al. (2008)). Domain adaptation can also be viewed as a

case of covariate shift or sample selection bias Quionero-Candela et al. (2009).

Another approach to domain adaptation is feature matching, where a shared

feature representation between the source and target is estimated. Examples of

this technique are discussed in Pan et al. (2008, 2011); Long et al. (2013).

Other procedures learn feature subspaces that are common to the source and

target datasets. They project the source and target dataset into that space and

train a classifier on the source and expect it to work on the projected dataset

Fernando et al. (2013); Gong et al. (2012a); Long et al. (2014); Hoffman et al.

(2012). Recently, there has been work modeling the difference in class prior

and conditional shift Zhang et al. (2013). All of the above procedures can be

viewed as fixed representation approaches. In a fixed representation approach,

the features are predetermined and fixed and domain adaptation is performed

using these pre-determined features. In recent years deep learning approaches

have outperformed fixed representation techniques in domain adaptation. Deep

learning based domain adaptation learns to extract transferable feature repre-

sentations using deep neural networks Tzeng et al. (2014); Long et al. (2015);

Ganin et al. (2016). The following chapter provides a classification of domain

adaptation procedures including recent approaches involving deep learning.
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In addition to these types of transfer learning there are a couple of other learning

approaches that have elements of knowledge transfer. The problem of concept drift

occurs when the data changes its distribution gradually over time. Models in this

case must adapt to the changing distribution while also transferring knowledge from

previously seen data. Multimodal learning can also be viewed as an example of

transfer learning where a relationship is captured between representations in multiple

modalities in order to enhance learning Srivastava and Salakhutdinov (2012).

2.1.3 Types of Domain Adaptation

This subsection outlines the different approaches to posing problems in domain

adaptation. A detailed discussion on different approaches to solving domain adap-

tation problems is described in the following chapter. This subsection merely lists

the different ways in which a domain adaptation problem is posed. There are two

standard domain adaptation problem statements.

1. Supervised or Semi-supervised Domain Adaptation: In this setting the source

domain consists of labeled data Ds = {xs
i , y

s
i }ns

i=1 and the target domain also

consists of labeled data Dt = {xt
i, y

t
i}nt

i=1 ∪ {xt
i}nt+nu

i=nt+1. There are nt labeled

target data points and nu unlabeled target data points with nt ≪ nu. However,

it is not possible to estimate the joint distribution PT (X, Y ) over the target

because of limited number of target samples nt, without the risk of overfitting.

The source dataset has more labeled samples than the target with nt ≪ ns

and it can be used to estimate the joint distribution PS(X, Y ). Therefore, the

source dataset Ds is used along with Dt to train a classifier for the target data

as in Daumé III et al. (2010); Saenko et al. (2010); Hoffman et al. (2013) and

Venkateswara et al. (2015b). When ns and nt are of similar size, the problem

can also be viewed as a multi-task learning setup.
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2. Unsupervised Domain Adaptation: This is by far the most standard and also

the most challenging approach to domain adaptation. In this setting the source

domain consists of labeled data Ds = {xs
i , y

s
i }ns

i=1 and the target data consists

of only unlabeled data Dt = {xt
i}nt

i=1. The task is to learn a classifier for the

target data using the source dataset Ds and the target dataset Dt. There is no

restriction on the number of source and target samples. The source data can be

used to estimate the joint distribution PS(X, Y ). But the source data is adapted

to the target using the unlabeled target data to approximate PT (X, Y ) as in

Gopalan et al. (2011); Gong et al. (2012a); Long et al. (2014) and Venkateswara

et al. (2016).

Apart from these standard setups for domain adaptation, there is also multi-source

domain adaptation where, as the name indicates, there are multiple source domains

and one target domain as in Mansour et al. (2009); Chattopadhyay et al. (2012) and

the multiple source domains are adapted to the target to estimate a classifier for the

target.

2.2 Performance Bounds for Domain Adaptation

Generalization bounds give the probability that a function chosen from a hypoth-

esis set achieves a certain error in a statistical learning model. Generalized learning

bounds have been applied to evaluate the consistency of Empirical Risk Minimization

(ERM) based learning methods Vapnik (2013). However, these learning bounds are

based on the assumption that the test set is drawn from the same distribution as

the training set. There have been attempts to adapt these generalization bounds for

domain adaptation, where the test (target) set is from a different distribution than

the training (source) set Ben-David et al. (2010); Mansour et al. (2009) and Zhang

et al. (2012).
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A binary classification task is considered with input space X ⊆ R
d and label space

Y = {0, 1}. The source domain is denoted by DS = {(X × Y), PS(X, Y )}, where

PS(X, Y ) is the source joint distribution. Similarly, the target domain is denoted by

DT = {(X × Y), PT (X, Y )}, where PT (X, Y ) is the target joint distribution. The

source dataset consists of labeled data Ds = {xs
i , y

s
i }ns

i=1 and the target dataset is

Dt = {xt
i}nt

i=1. The goal of domain adaptation is to learn a classifier h : X → Y for

the target data with minimum risk of prediction,

ǫT (h) = Pr
(xt,yt)∼DT

(

h(xt) 6= yt
)

(2.5)

where, Pr(.) is probability.

2.2.1 Divergence Between Domains

The standard procedure for bounding the target error in terms of the source error

and a factor measuring the discrepancy between the source and the target. This

reasoning is based on the notion that the source error is a good substitute for the

target error when the distributions are similar. The distance between the marginal

distributions PX
S and PX

T is defined for a hypothesis class H and is termed as the

H-divergence Kifer et al. (2004).

dH(P
X
S , P

X
T ) = 2 sup

h∈H

∣

∣

∣
Pr

xs∼PX
S

(

h(xs) = 1
)

− Pr
xt∼PX

T

(

h(xt) = 1
)

∣

∣

∣
. (2.6)

The H-divergence is based on the ability of the hypothesis class H to distinguish

between samples generated from PX
S and PX

T . An empirical divergence can also be

estimated based on samples Ds and Dt from the two domains Ben-David et al. (2010).

d̂H(Ds,Dt) = 2

(

1−min
h∈H

[

1

ns

ns
∑

i=1

I[h(xs
i ) = 1] +

1

nt

nt
∑

i=1

I[h(xt
i) = 0]

]

)

(2.7)

where, I[c] is an indicator function which is 1 when the condition c is true, otherwise

it is 0. The goal is to determine the best classifier that can differentiate between
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the two domains. The H-divergence is then represented in terms of the error of that

classification.

2.2.2 Proxy Divergence Measure

To determine the best classifier may be difficult in practice. Even in the space

of linear classifiers, Equation (2.7) may be intractable. Ben-David et al. outline a

procedure to determine a proxy distance as a substitute for the H-divergence Ben-

David et al. (2010). The proxy-distance is based on the same principle of learning a

classifier to distinguish between the two domains. The Proxy A-distance is given by,

d̂A = 2(1− 2ǫ) (2.8)

where, ǫ is the average error using a linear classifier to distinguish between data points

from the two domains. The proxy distance measure has been used to estimate the

distances between pairs of datasets in domain adaptation experiments Glorot et al.

(2011), Long et al. (2015) and Venkateswara et al. (2017b).

2.2.3 Generalization Bound on Target Risk

To estimate a generalization bound for the target error, a few definitions are first

outlined. For a hypothesis function h : X → {0, 1} and a marginal distribution PX
S ,

the probability that the hypothesis disagrees with the labeling function f(.) is given

by,

ǫS(h, f) = Ex∼PX
S
[|h(x)− f(x)|] (2.9)

If H is a hypothesis class and AH is a set of subsets over X , that are a support over

the hypothesis set H, i.e. ∀h ∈ H, {x : x ∈ X , h(x) = 1} ∈ AH, then the distance

between two distributions PX
S and PX

T can be defined according to Blitzer et al. (2008)
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as:

dH(P
X
S , P

X
T ) = 2 sup

A∈AH

|PrPX
S
[A]− PrPX

S
[A]|. (2.10)

Following the definition of distance in Equation (2.10), a symmetric difference hy-

pothesis space is defined as,

H∆H = {h(x)⊕ h′(x) : h, h′ ∈ H}, (2.11)

where the XOR operator ⊕ indicates that ∀g ∈ H∆H which labels x as positive,

∃h, h′ ∈ H : h(x) 6= h′(x). Similarly, AH∆H is defined as a set of all subsets A such

that A = {x : x ∈ X , h(x) 6= h′(x)} for some h, h′ ∈ H. Along with the definition

of error probability in Equation (2.9), the definition of distance in Equation (2.10)

and the outline of the symmetric difference hypothesis space in Equation (2.11), Ben-

David et al. (2010) derive the distance dH∆H between two distributions as,

|ǫS(h, h′)− ǫT (h, h′)| ≤
1

2
dH∆H(P

X
S , P

X
T ). (2.12)

Blitzer et al. Blitzer et al. (2008) derive a target error bound for a pair of source

and target datasets Ds and Dt with n data samples based on a hypothesis space H

that has a VC-dimension d. With a probability of at least 1 − δ (over the choice of

samples), for every h ∈ H,

ǫT (h) ≤ ǫS(h) +
1

2
d̂H∆H(Ds,Dt) + 4

√

2dlog(2n) + log4
δ

n
+ λ. (2.13)

Here λ = minh∈H ǫT (h)+ ǫS(h), the sum of source and target errors for the least error

hypothesis. The bound guarantees that if the distance d̂H∆H between the domains

is small (i.e., the domains are similar) and n is large, then the target error can be

approximated by the source error. If the combined error of the ideal hypothesis is

large, then there is no classifier that can be trained using the source data which will

be a good target hypothesis. If λ is small (as it is usually for domain adaptation),

then the key factor is the d̂H∆H for computing target error.
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2.3 Domain Adaptation in Computer Vision

This section outlines how domain adaptation research is currently being pursued.

It brings to attention the drawbacks with current approaches and proposes changes

to the field.

2.3.1 Research in Domain Adaptation

While the problem of variations in data coming from different distributions is

outstanding, the solutions provided by domain adaptation models have not been

easily applied to real world applications in computer vision. This can be attributed

to the manner in which domain adaptation models are currently being developed

and evaluated in the research community. Most of the proposed solutions in domain

adaptation are based on models developed in the following environment: (i) Two

different datasets to represent the source and the target domains. (ii) Source dataset

with labeled data and target dataset with unlabeled data. (iii) The label space of

the source and target being exactly the same. These restrictions limit the adoption

of the proposed domain adaptation models to real world problems and confine them

to the research community.

While these self-imposed restrictions help to formulate a well-defined domain

adaptation problem, they do not reflect a real world setting. An environment for

domain adaptation that is closer to a real world setting ought to be: (i) Two well

defined domains (rather than datasets) to represent the source and the target. This

would entail that the domain shift between the two domains is modeled. (ii) Both the

source and target domains have labeled and unlabeled data. The target labeled data

is essential to evaluate the performance of the model. Currently, domain adaptation

models are evaluated using test data. (iii) There is no restriction on the label space
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of the domains being exactly the same. One weak restriction could be an intersection

of the label spaces of the source and target.

The definition of a domain is rather ambiguous when dealing with images. Unlike

in audio signal processing and text data processing (NLP), domains in computer

vision are defined by dataset. Images from different datasets are likely to belong

to two different domains. This is due to the bias introduced by the data capture

methods and the representation procedures for a dataset and not necessarily the data

itself Torralba and Efros (2011). There has been some work in estimating domains by

segregating data from multiple datasets into clusters Gong et al. (2013b). However,

this has not been applied or extended by subsequent research in the area. A primary

focus area for research in domain adaptation would be to develop comprehensive

models for domain shift.

2.3.2 Computer Vision Datasets for Domain Adaptation

Figure 2.2: Sample images from the Office-Home dataset. The dataset consists
of images of everyday objects organized into 4 domains; Art: paintings, sketches
and/or artistic depictions, Clipart: clipart images, Product: images without back-
ground and Real-World: regular images captured with a camera. The figure displays
examples from 16 of the 65 categories. Image based on Venkateswara et al. (2017b).

Evolution in datasets and the evolution of models for domain shift should com-

plement each other. Current datasets for domain adaptation are not based on any

models of domain shift. They are merely data samples coming from different sources
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of data all with the same categories. The domain difference between these datasets is

attributed to the ‘bias’ between the datasets, without a specific model characterizing

the domain shift Torralba and Efros (2011). The domain adaptation procedures that

are developed using these datasets can therefore be considered to be very generic.

There is no guarantee on the performance of these procedures when applied to new

problems. For e.g., if a domain adaptation approach were to be developed using the

digit datasets (USPS and MNIST Jarrett et al. (2009)), there is no guarantee that

this procedure would work well for a domain adaptation problem with medical im-

ages. On the other hand, if a dataset were to be created based on a domain shift

model, then algorithms that are developed using this dataset can be applied to any

domain adaptation problem where the same domain shift is observed. This is one pri-

mary reason for introducing new datasets for domain adaptation based on modeling

domain shift.

Domain adaptation for vision based applications has generated great interest in

the computer vision community in recent years Patel et al. (2015). Given the richness

of their feature representations, deep learning based domain adaptation approaches

like Tzeng et al. (2015a); Long et al. (2015); Ganin et al. (2016) have outperformed

traditional shallow learning techniques Saenko et al. (2010); Pan et al. (2011); Gong

et al. (2012a); Shekhar et al. (2013); Long et al. (2013); Fernando et al. (2013); Sun

et al. (2015a). However, supervised deep learning models require a large volume

of labeled training data. Unfortunately, existing datasets for vision-based domain

adaptation are limited in their size and are not suitable for validating deep learn-

ing algorithms. In the absence of large datasets, domain adaptation algorithms are

evaluated on datasets with few images.

The standard datasets for vision based domain adaptation are, facial expression

datasets CKPlus (Lucey et al. (2010)) and MMI (Pantic et al. (2005)), digit datasets

30



SVHN (Netzer et al. (2011)), USPS and MNIST (Jarrett et al. (2009)), head pose

recognition datasets PIE (Long et al. (2013)), object recognition datasets COIL (Long

et al. (2013)), Office (Saenko et al. (2010)) and Office-Caltech (Gong et al. (2012a)).

These datasets were created before deep-learning became popular and are insufficient

for training and evaluating deep learning based domain adaptation approaches. For

instance, the object-recognition dataset Office has 4110 images across 31 categories

and Office-Caltech has 2533 images across 10 categories. A notable exception is the

recently released Cross-Modal Places dataset with nearly 1 million images for indoor

scene-recognition based on 5 different domains, viz., natural images, clip-art, sketches,

text and spatial-text Castrejon et al. (2016).

One of the most popular datasets for computer vision is the Office dataset. Recent

works in domain adaptation have also outlined some flaws with the dataset like label

noise and lack of variation in object pose. They have used other datasets to evaluate

their algorithms Bousmalis et al. (2017, 2016). Although the dataset lists 3 domains

viz., Amazon, DSLR, and Webcam, it effectively has only 2 domains because the DLSR

and Webcam domains are very similar with no domain discrepancy.

This also raises the question of what constitutes a domain in computer vision, for

which there is no clear answer. Variations in vision based data can be attributed to

the following reasons, viz., differences in image quality (resolution, brightness, occlu-

sion, color), changes in camera perspective, dissimilar backgrounds and an inherent

diversity of the samples themselves. Differences in any or all of these factors are

what makes data from two domains dissimilar. A thorough evaluation of domain

adaptation models can be done when testing with data that exhibits most of these

variations. The existing datasets in domain adaptation for computer vision are very

limited in the amount of variations in between the domains.

To address these limitations, a new dataset has been released as one of the con-

31



Table 2.1: Statistics for the Office-Home dataset. Min: # is the minimum number
of images amongst all the categories, Min: Size and Max: Size are the minimum
and maximum image sizes across all categories andAcc. is the classification accuracy.

Domain. Min: # Min: Size Max: Size Acc

Art 15 117×85 pix. 4384×2686 pix. 44.99±1.85

Clipart 39 18×18 pix. 2400×2400 pix. 53.95±1.45

Product 38 75×63 pix. 2560×2560 pix. 66.41±1.18

Real-World 23 88×80 pix. 6500×4900 pix. 59.70±1.04

tributions of this dissertation. The Office-Home is an object recognition dataset,

that can be used to evaluate deep learning algorithms for domain adaptation. The

Office-Home dataset consists of 4 domains, with each domain containing images from

65 categories of everyday objects and a total of around 15, 500 images. The domains

include, Art: artistic depictions of objects in the form of sketches, paintings, orna-

mentation, etc.; Clipart: collection of clipart images; Product: images of objects

without a background, akin to the Amazon category in Office dataset; Real-World:

images of objects captured with a regular camera.

Public domain images were downloaded from websites like www.deviantart.com

and www.flickr.com to create the Art and Real-World domains. Clipart images

were gathered from multiple clipart websites. The Product domain images were

exclusively collected from www.amazon.com using web-crawlers. The collected images

were manually filtered on the basis of quality, size and content. The dataset has an

average of around 70 images per category and a maximum of 99 images in a category.

The primary challenge in creating this dataset was acquiring sufficient number of

public domain images across all the 4 domains. Figure (2.2) depicts a sampling of 16

categories from the Office-Home dataset and Table (2.1) outlines some meta data for

the dataset. The Acc. column in the Table (2.1) refers to classification accuracies

using the LIBLINEAR SVM (Fan et al. (2008)) classifier (5-fold cross validation) with
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deep features extracted using the VGG-F network Simonyan and Zisserman (2014).

The dataset is made publicly available for research 3.

The domains in the Office-Home dataset include many of the variations that

contribute to domain discrepancy. However, the Office-Home dataset is merely a

stop-gap in the evolution of domain adaptation datasets. A more comprehensive

understanding of domain discrepancy is necessary in order to create datasets for

domain adaptation. An evolution in the nature of datasets will lead to more robust

models for domain adaptation that can be applied to real world problems.

2.3.3 Deep Learning for Domain Adaptation

Most of the research in computer vision over the last few decades, has been driven

by research in object recognition Oquab et al. (2014). From algorithms that recognize

a few instance categories, to systems that can recognize thousands of categories of

objects, computer vision has made rapid advances. The progress has been exponential

in the last few years due to the following reasons:

• Deep neural network based architectures that extract features relevant to the

problem using a deep hierarchical network. Training with deep massive networks

having millions of parameters has been made possible by adapting graphical

processing units (GPUs) for parallel processing of operations on data.

• Large labeled datasets with hundreds of object categories like Pascal VOC (Ev-

eringham et al. (2015)), Caltech256 (Griffin et al. (2007)) and more recently

ImageNet (Deng et al. (2009)). Training large models with millions of param-

eters like deep neural networks requires large datasets in order to prevent over

fitting.

3https://hemanthdv.github.io/officehome-dataset/
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Both of these advancements complement each other. Training a deep neural network

requires lots of data and to train a reliable recognition model for a large number

of categories, requires a deep neural network that can extract task specific feature

representations.

Prior to deep neural networks, object recognition was carried out in two stages,

(i) feature extraction and (ii) recognition model. Feature extraction was implemented

by using hand-crafted descriptors such as HOG, SIFT, SURF etc., to capture distinct

patterns in an image, in order to estimate a vector using a bag-of-features representa-

tion. The work by Chatfield et al. provides an evaluation of the different techniques

for encoding these feature descriptors Chatfield et al. (2011b). These vectors were

then used to train object recognition models. Deep neural networks combine feature

extraction and model creation into a single unit. The task-specific and highly dis-

criminative features from deep models have been key to their successful adoption for

multiple problems in computer vision.

In the last couple of years, domain adaptation models based on deep learning have

outperformed methods based on hand-crafted features (also termed shallow methods).

Deep architectures are a convenient tool to represent high level abstractions because

of composition. Low-level representations are composed to represent a higher-level

concept. Some of these low-level features may be common across different domains

for a given task. Deep learning based architectures exploit the existing underlying

common factors across multiple tasks Bengio et al. (2012).

Deep neural networks extract features at multiple layers and compose them in a

hierarchical manner. The specificity and generality of these features with regards to

the task varies between the layers. The work by Yosinski et al., captures the extant

of generality and specificity of neurons in each layer Yosinski et al. (2014). Features

from the lower layers of the network were demonstrated to be more transferable than
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features from upper layers.

Deep learning systems like deep CNNs learn representations of data that capture

underlying factors of variation between different tasks in a multi-task transfer learning

setting. These representations also disentangle the factors of variation allowing for

the transfer of knowledge between tasks Bengio et al. (2013). Therefore, deep learn-

ing methods are very successful for multitask learning and transfer learning based

applications.

It is therefore reasonable to conclude that the future of domain adaptation lies in

the successful adoption of deep learning techniques for transfer learning. All of these

factors are crucial and need to be considered when applying deep neural networks

for domain adaptation. The following chapter provides a summary of deep learning

methods for domain adaptation, including the latest trend on adversarial networks.
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Chapter 3

LITERATURE SURVEY

The dissertation approaches the problem of domain adaptation through the concept

of feature spaces. The contributions of the dissertation are organized under linear,

nonlinear and hierarchical feature based models. In consonance with the dissertation

structure, the literature survey is also compiled under a similar construction. Apart

from aligning with the dissertation organization, there are certain benefits to viewing

domain adaptation in computer vision, through the lens of feature spaces.

• The wide range of research in the area is organized uniquely by the different

survey compilations like Pan and Yang (2010); Beijbom (2012), Patel et al.

(2015) and Csurka (2017). Each organization provides a salient perspective

to domain adaptation from the view of domain alignment. This survey orga-

nization provides a unique and novel perspective to domain adaptation from

the point of view of features, which promises new insights into the problem of

domain adaptation.

• The advancements in computer vision can be traced to the progress of de-

scriptors and feature representations. Beginning with hand-crafted features like

HOG and SIFT Chatfield et al. (2011a), using linear classifiers like LIBLINEAR

(Fan et al. (2008)), the state-of-the-art in computer vision currently is hierar-

chical feature spaces with highly nonlinear classifiers enabled by deep neural

networks. Feature extraction and representation lies at the heart of computer

vision problems like object recognition. It would therefore serve researchers

well to view computer vision based domain adaptation from the point of view
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of feature spaces.

The chapter is organized as follows. Section (3.1) outlines the mathematical no-

tation for describing domain adaptation. The linear feature models are described in

Section (3.2). The nonlinear feature models are summarized in Section (3.3). The lat-

est research in domain adaptation is captured under hierarchical feature space models

in Section (3.4). Sundry models that do not adhere to the above classification are

outlined in Section (3.5).

3.1 Notation

The notation used in the chapter is defined as follows. The source dataset is

represented by Ds = {(xs
i , y

s
i )}ns

i=1 ⊂ S and the target dataset is represented by

Dt = {(xt
i, y

t
i)}nt

i=1 ⊂ T . In matrix notation, the source data is given by XS =

[xs
1, . . . ,x

s
ns
] ∈ R

d×ns and the target data by XT = [xt
1, . . . ,x

t
nt
] ∈ R

d×nt . Similarly,

the corresponding labels are represented by YS = [ys1, . . . , y
s
ns
] and YT = [yt1, . . . , y

t
nt
]

for the source and target data respectively. The source and target data have the

same dimensionality where, xs
i and xt

i ∈ R
d and the label space for the two domains

is identical, i.e., ysi and y
t
i ∈ {1, . . . , C}. Additional terms are introduced for later use

like, X := [x1, . . . ,xn] = [XS,XT ], with n = ns + nt. In the unsupervised domain

adaptation setting, the target labels YT are unknown and the joint distributions of

the two domains are different with, PS(X, Y ) 6= PT (X, Y ).

3.2 Linear Feature Spaces for Domain Adaptation

This section outlines existing models for domain adaptation that are based on

linear feature spaces. These include linear transformations of data to reduce domain

disparity, adapting linear classifiers from one domain to another, linearly projecting

data to a subspace to increase domain overlap, aligning moments of the data from
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the domains using linear transformations and an assortment of random methods.

3.2.1 Linear Transformation Models

In this set of linear approaches, a linear transformation matrix is estimated to

transform the source (or target) data so that it becomes similar in distribution to the

target (or source) data. Saenko et al. in Saenko et al. (2010), developed one of the

earliest transformation based approaches in domain adaptation for image classifica-

tion. Their algorithm determines a transformation matrix W ∈ R
d×d. W is used to

estimate the similarity between pairs of source and target data points by computing,

simW = xs⊤Wxt (3.1)

The similarity can be viewed as a dot product between transformed source data

W⊤xs and the target data xt. W is estimated through an optimization problem

which consists of constraints on the similarity between pairs of data points from the

source and target along with a regularization factor onW . The minimization problem

is given by,

min
W

tr(W )− log det(W ) + λ
∑

i

ci(X
⊤
SWXT ) (3.2)

The first two terms control the smoothness of W with regularization and the last

term minimizes the error sum over all constraint pairs ci(.). The solution to W is

obtained with information theoretic metric learning (ITML), Davis et al. (2007). A

nonlinear version of this algorithm is outlined in Kulis et al. (2011).

Jhuo et al. in Jhuo et al. (2012), learn a transformation matrix W ∈ R
d×d, to

transform the source XS so that it can be expressed as a linear combination of target

38



data points. The minimization problem to arrive at W is given by,

min
W,Z,E

rank(Z) + α||E||2,1

s.t. WXS = XTZ + E,

WW⊤ = I, (3.3)

where the first term penalizes the rank of the matrix Z ∈ R
nt×ns . This leads to

a low rank structure for Z which essentially captures the reconstruction of related

source data points. The ℓ2,1 norm encourages columns of error matrix E to be zero,

which accounts for the outlier source data points. α is a weighting factor. The last

constraint on W ensures that W is an orthonormal basis. The transformed source

data is augmented to the target data. The authors also extend the algorithm to a

multi-source domain setting.

The authors in Fernando et al. (2013), learn a transformation matrix M ∈ R
k×d

to align the source subspace with the target subspace. If US ∈ R
d×k is the k-

dimensional subspace for the source data (i.e. US = PCA(XS, k) where PCA is

Principal Component Analysis) and UT ∈ R
d×k is the k-dimensional subspace for

XT , the transformation matrix M is obtained by

min
M

||USM −UT ||2F

= ||U⊤
SUSM −U⊤

SUT ||2F

= ||M −U⊤
SUT ||2F , (3.4)

where, the last equation uses U⊤
SUS = I. The optimal solution is given by M =

U⊤
SUT . The transformed source data is obtained with X̂⊤

S ← X⊤
S USU

⊤
SUT and

the target data is transformed as in X̂⊤
T ← X⊤

T UT . A 1-NN (Nearest Neighbour)

classifier is trained with the transformed source data and tested on the transformed

target data.
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The last set of transformation based methods deal with graph laplacian based

embedding of data to reduce domain disparity. In Yao et al. (2015), the authors

consider a binary classification setting with source data XS, unlabeled target data

XT u and labeled target data XT l. The labels YS and YT belong to {−1,+1}. The

algorithm learns a linear source classifier fs(x) = w⊤
s MSx + bs and a linear tar-

get classifier ft(x) = w⊤
t MTx + bt. Here, {ws,wt} ∈ R

k, {bs, bt} are biases, and

{MS,MT} ∈ R
k×d are orthonormal transformation matrices. The optimization prob-

lem minimizes the classification error along with an embedding loss. The embedding

loss ensures the labeled data are clustered according to category, i.e., the positive

samples in the projected data are close together and the negative samples are close

together. In addition, the unlabeled data is also projected to maintain its exist-

ing neighborhood relations. The algorithm incorporates structural risk, structure

preservation and manifold regularization in one model to develop a semi-supervised

domain-adaptive subspace-learning algorithm (SDASL).

3.2.2 Linear Max-Margin Models

This set of linear methods is based on adapting a linear Support Vector Machine

(SVM) classifier from the source to the target. The domain adaptive SVM (DASVM)

by Bruzzone and Marconcini (2010), is a unique linear SVM based solution for un-

supervised domain adaptation. The DASVM initially trains a SVM classifier using

the labeled source data. In successive iterations the decision boundary for the SVM

is re-estimated as batches of unlabeled target data are added to the pool of labeled

data and labeled source data is removed in batches. The SVM classifier is used to

predict the labels (termed as ‘semi-labels’) for the unlabeled target data. At every

iteration, a batch of unlabeled data that is closest to the SVM boundary within the

SVM margins is chosen to be added to the pool of labeled data. Any semi-labeled
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data that changes its labels across iterations is removed from the labeled set. Also,

a batch of source data points that is far from the decision boundary and therefore

does not affect the decision boundary, is removed from the labeled set. The algorithm

converges when the number of unlabeled data points within the margin goes below

a threshold. The authors also outline a circular cross validation strategy to validate

model parameters for the SVM using unlabeled target data.

The authors in Yang et al. (2007a), adapt a SVM classifier trained on the source

(auxillary) data to the target (primary) data. This is a supervised domain adaptation

problem that has labeled data in the target domain. Let ws be the source data SVM

classifier, then the target data SVM classifier is modeled so that it is not very different

from the source SVM with the following optimization problem,

min
wt

=
1

2
||wt −ws||2 + C

nt
∑

i=1

ξ

subject to ξ ≥ 0, ytiw
⊤
y x

t
i ≥ 1− ξ ∀i (3.5)

The first term in the optimization framework is the regularization over the decision

boundaries. The constraint ensures that the target classifier wt is similar to the

source classifier ws. In a closely related work, Yang et al. (2007b), the authors train

a SVM classifier for the target data which is based on the source data SVM.

ft(x) = fs(x) + ∆f(x)

= w⊤
s x+w⊤

t x (3.6)

Both of the above works are also extended to the nonlinear setting by introducing

kernels. In Aytar and Zisserman (2011), the authors extend the Adapt-SVM to a

Projective Model Transfer SVM (PMT-SVM), by introducing a constant factor γ,
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which controls the amount of transfer.

min
wt

=
1

2
||wt||2 + γ||Pwt||2 + C

nt
∑

i=1

l(xt
i, y

t
i ;wt)

subject to w⊤
t ws ≥ 0. (3.7)

Here P = I − wsw
⊤
s

w⊤
s ws

is the projection matrix and l(.) is the hinge loss. ||Pwt||2 =

||wt||2sin2θ, where θ is the angle between ws and wt. The constraint confines wt to

the positive half-space of ws.

A technique that combines both linear transformations and classifier adaptation

is presented in Hoffman et al. (2013). The Max Margin Domain Transform (MMDT)

algorithm learns a transformation matrix W , that projects the target data to a sub-

space that makes it similar to the source data. Simultaneously, the model learns a

SVM classifier {w, b}, to classify both the source and target data. The minimization

problem is given by,

min
W,w,b

=
1

2
||W ||2F +

1

2
||w||2

s.t. ysi

([

xs
i

1

]⊤[
w
b

])

≥ 1, i ∈ {1, . . . , ns}

yti

([

xt
i

1

]⊤

W⊤
[

w
b

])

≥ 1, i ∈ {1, . . . , nt} (3.8)

The first and the second terms are the regularization on the transformation matrix

W and the decision boundary w, respectively. The constraints are the standard max-

margin constraints for SVM, with the target data being transformed by W . The

parameters W and {w, b} are estimated using alternating minimization strategies.

3.2.3 Linear Alignment of Moments

In these set of linear models, domain adaptation is achieved by alining the mo-

ments of the source and target data. One such algorithm is the Feature LeArning with
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second Moment Matching (FLAMM) method in Jiang et al. (2015). In FLAMM, the

authors derive a bound for the expected error difference between the source data and

the target data for a common classifier h(x). This error difference can be minimized

by minimizing the difference between the second moments given by MS = 1
ns
XSX

⊤
S

andMT = 1
nt
XTX

⊤
T . IfM =MS−MT , the goal is to learn a transformation matrix P

such that the transformed data P⊤X has the domains aligned. This condition can be

represented as a minimization over tr(P⊤M2P ). The minimization problem is given

by,

min
P
||X⊤ −X⊤P ||2F + γ1tr(P

⊤ΛP ) + γ2tr(P
⊤M2P ) (3.9)

Here, Λ is a diagonal matrix where Λii = XiX
⊤
i , and Xi is the row i of X. The first

term is to ensure the projected data is similar to the target so as to avoid trivial

solutions when the mismatch between source and target data is small. The solution

to P is iteratively refined by updating X ← P⊤X in every iteration and solving for

Equation (3.9).

The CORrelation ALignment (CORAL) algorithm in Sun et al. (2015a), is an-

other unsupervised domain adaptation method that seeks to match the second order

statistics of the source and the target. In CORAL, the authors learn a transformation

matrix to transform the source data so that the source and target covariance matrices

are nearly identical. If the source data is transformed by matrix A, i.e., X̂S ← AXS,

the difference between the correlation matrices of the transformed source ĈS and the

target CT , is given by,

min
A
||ĈS − CT ||2F

=min
A
||A⊤CSA− CT ||2F . (3.10)

Here CS is the correlation of the original source data. The optimal solution to Equa-
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tion (3.10) is given by,

A∗ = (USΣ
+
S

1
2U⊤

S )(UT [1:r]Σ
1
2

T [1:r]U
⊤
T [1:r]), (3.11)

where, CS = USΣSU
⊤
S is the singular value decomposition of CS and CT = UTΣTU

⊤
T

is the singular value decomposition of CT . The value r is the minimum of the ranks

of CS and CT . The authors interpret Equation (3.11) in the following manner. The

first term within the parenthesis can be viewed as a source whitening matrix. The

second term can be viewed as a target coloring matrix. It implies that the source is

first whitened to remove source related covariance. It is then colored with the target

related covariance so that the covariance becomes similar to the target. The authors

also extend this work to a deep learning based CORAL model in Sun and Saenko

(2016).

3.3 Nonlinear Feature Spaces for Domain Adaptation

This section describes the literature for domain adaptation in nonlinear feature

spaces. Here, the domain disparity is reduced by projecting the data from the do-

mains into high-dimensional nonlinear feature spaces using kernels. A standard proce-

dure that is applied for nonlinear domain adaptation is Maximum Mean Discrepancy

(MMD). A brief introduction to MMD is provided at the beginning of the section

before proceeding to the different methods that apply MMD for domain adaptation.

Given data samples Ds and Dt from two distributions, the MMD measure esti-

mates the distance between the distributions. Most existing measures require the

assumption of certain parameters to estimate the distance between distributions, but

not the MMD. The MMD is a nonparametric distance estimate designed by embed-

ding the data into a Reproducing Kernel Hilbert Space (RKHS), Smola et al. (2007).

The data is mapped to a high-dimensional (possibly infinite-dimensional) space de-
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fined by Φ(X) = [φ(x1), . . . , φ(xn)]. φ : Rd → H defines a mapping function and

H is a RKHS. The dot product between the high-dimensional mapped vectors φ(x)

and φ(y), is estimated by the kernel-trick. The dot product is given by the positive

semi-definite (psd) kernel, k(x,y) = φ(x)⊤φ(y). The kernel k(.) can be viewed as

a similarity measure between x and y. A standard kernel function is the Gaussian

radial basis function (RBF), k(x,y) = exp(− ||x−y||2

2σ2 ). The similarity measure be-

tween all pairs of data points in X, can represented using the kernel gram matrix

which is given by, K = Φ(X)⊤Φ(X) ∈ R
n×n. Gretton et al. in Gretton et al. (2007),

introduced the MMD to estimate the distance between Ds and Dt, which is given by,

MMD =

∣

∣

∣

∣

∣

∣

∣

∣

1

ns

ns
∑

i=1

φ(xs
i )−

1

nt

nt
∑

j=1

φ(xt
j)

∣

∣

∣

∣

∣

∣

∣

∣

2

H

(3.12)

The distance between the two distributions is the distance between their means in

the RKHS. When the RKHS is universal, the MMD measure approaches 0 only when

the distributions are the same (Smola et al. (2007)). Many of the methods in the

following subsections apply the MMD in different ways to achieve nonlinear domain

adaptation.

3.3.1 Max Margin Kernel Methods

In an early adoption of the MMD for domain adaptation, Duan et al. in Duan

et al. (2009), introduced a Domain Transfer SVM (DTSVM) model for video concept

detection. The MMD distance between the source and target domains is represented

as,

MMD =

∣

∣

∣

∣

∣

∣

∣

∣

1

ns

ns
∑

i=1

φ(xs
i )−

1

nt

nt
∑

j=1

φ(xt
j)

∣

∣

∣

∣

∣

∣

∣

∣

2

H

= ||Φ(X)m||2 = tr(Φ(X)⊤Φ(X)M) = tr(KM), (3.13)
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where, m ∈ R
n is a vector with its first ns values as 1/ns and the last nt values

as −1/nt. The matrix M ∈ R
n×n is given by M = mm⊤. K and Φ(X) have been

defined at the beginning of the section. Along with the SVM component, the DTSVM

is given by,

min
K�0

max
α∈A

1

2
tr(KM)2 + λ

(

α⊤1− 1

2
(α ◦ y)⊤KL(α ◦ y)

)

(3.14)

The second term is the SVM dual formulation for the labeled data where KL is the

kernel over labeled data and α is the SVM vector of dual variables for the labeled

data. This is a semi-definite programming problem with K � 0. The SVM related

constraint on α is A = {α ∈ R
nl |C1 ≥ α ≥ 0,α⊤y = 0}, where nl is the number of

labeled data points from source and target and C is the SVM constant. The authors

adopt a multiple kernel formulation for K where, k(.) =
∑M

i=1 dmkm, with dm ≥ 0

and
∑M

m=1 dm = 1 and km for m ∈ {1, . . . ,M}, are predefined positive semi-definite

(psd) kernels. The problem now reduces to estimating coefficients d = [d1, . . . , dM ]⊤

and α. The min-max problem is solved to reach a saddle point through alternating

optimization for d and α. The same idea is elaborated using different loss functions

along with a study on complexity in Duan et al. (2012).

In the Selective Transfer Matching (STM) algorithm Chu et al. (2013), the au-

thors outline a novel SVM technique for domain adaptation for facial action unit

recognition. STM performs instance selection, where a set of source data points are

selected that have a distribution similar to the target and these are used to train a

SVM. The nonlinear SVM component in the primal form is given by,

min
β

1

2
β⊤KSβ + C

ns
∑

i=1

si.l(yi,KS
⊤
i β) (3.15)

In the above equation KS, is the kernel matrix for the source (training data). β

are the coefficients for the SVM decision boundary and the regularization over the
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decision boundary ||w||2 is given by the first term. This is the result of the representer

theorem Kimeldorf and Wahba (1970), where the SVM solution can be expressed as

f(x) =
∑ns

i=1 βik(x
s
i ,x) and βi 6= 0 for support vectors only. l(.) is the hinge loss with

l(y, .) = max(0, 1− y.) and KSi is the i
th row of KS. Each of the source data points

has an importance (weight) associated with it which is given by si. The loss value

from each of the source data points is weighted by si. The weights si, i = 1, . . . , ns,

are estimated using MMD in the following quadratic programming problem,
∣

∣

∣

∣

∣

∣

∣

∣

1

ns

ns
∑

i=1

siφ(x
s
i )−

1

nt

nt
∑

j=1

φ(xt
j)

∣

∣

∣

∣

∣

∣

∣

∣

2

H

. (3.16)

In order to simplify the equation, κi :=
ns

nt

∑nt

j=1 k(x
s
i ,x

t
j), i = 1, . . . , ns and KSij

=

k(xs
i ,x

s
j) are defined. The minimization can now be represented as a quadratic pro-

gramming problem,

min
s

=
1

2
s⊤KSs− κ⊤s,

s.t. si ∈ [0, B],

∣

∣

∣

∣

ns
∑

i=1

si − ns

∣

∣

∣

∣

≤ nsǫ. (3.17)

In the first constraint, the scope of discrepancy between source and target distri-

butions is limited, with B → 1, leading to an unweighted solution. The second

constraint ensures that w(x)PS(x), remains a probability distribution (Gretton et al.

(2009)). Equations (3.15) and (3.17) are biconvex (convex when either of s or β is

fixed). The solution is arrived at using alternate optimization methods.

3.3.2 MMD - Instance Weighting and Selection Methods

Instance selection in domain adaptation deals with sampling source data points

whose distribution is similar to the target. This approach is based on the reasoning

that although the source and target data are from different distributions, there could

be some overlap between the two distributions. MMD is applied to identify data

points in the source whose distribution is similar to the target data.
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The Joint Optimization based Transfer and Active Learning (JO-TAL), proposes

a single framework to perform transfer and active learning by solving a convex op-

timization problem in Chattopadhyay et al. (2013). To implement transfer learning,

the framework uses the MMD (Borgwardt et al. (2006)) measure to weight the source

data points xs ∈ Ds, such that their distribution is similar to the unlabeled target

dataset XT u (unlabeled data points from the target). The authors included active

learning into the MMD measure by sampling a block of b data points from XT u.

These are the batch of unlabeled data points that will be queried for labels (active

learning). The model also accounts for labeled target data (if any) with dataset XT l.

The minimization problem is given by,

min
α,β

∣

∣

∣

∣

∣

∣

∣

∣

1

ns + nl + b

(

∑

i∈Ds

βiφ(x
s
i ) +

∑

j∈XT l

φ(xt
j) +

∑

k∈XT u

αkφ(x
t
k)

)

− 1

nu − b
∑

k∈XT u

(1− αk)φ(x
t
k)

∣

∣

∣

∣

∣

∣

∣

∣

2

H

s.t. αi ∈ {0, 1}, βi ∈ [0, 1], α⊤1 = b (3.18)

ns is the number of source data points in Ds, nl is the number of labeled target data

points in XT l, b is the batch size, nu is the number of unlabeled target data points in

XT u, nt = nu + nl, and 1 is a vector of ones. βi are the weights for the source data

points and α is a binary vector that samples b unlabeled target points for query. All

selected points will have αi = 1. Equation (3.18) can be written as,

min
α,β

1

2
β⊤KSβ +

1

2
α⊤KUα+ β⊤KSUα−α⊤KU1− β⊤KSU1

+α⊤KUL1+ β⊤KSL1+ const

s.t. αi ∈ {0, 1}, βi ∈ [0, 1], α⊤1 = b (3.19)

The K terms are the kernels over the source (S), the labeled target (L) and the

unlabeled target (U). The last four terms excluding the constant are linear in α and
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β. Equation (3.19) can be expressed as a Quadratic Programming problem in a single

variable x = [α⊤,β⊤]⊤. The constraint on α makes the problem NP-hard and it can

be relaxed to αi ∈ [0, 1] and the b highest values are chosen as the active learning

batch. The formulation is very elegant and accounts for all the desirable properties

of transfer and active learning, namely, representativeness, diversity, and minimum

redundancy.

In another example of instance selection, Gong et al. in Gong et al. (2013a) iden-

tify landmarks from the source dataset using multiple kernels. The MMD formulation

is given by,

min
α

∣

∣

∣

∣

∣

∣

∣

∣

1
∑ns

i αi

ns
∑

i

αiφ(x
s
i )−

1

nt

nt
∑

j

φ(xt
j)

∣

∣

∣

∣

∣

∣
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∣

2

H

s.t.
1

∑

i αi

∑

i

αiy
s
ic =

1

ns

∑

i

ysic

α ∈ {0, 1}ns , (3.20)

where, ysic indicates y
s
i = c. The nonzero values of α are the indices of the sampled

source data points. The first constraint ensures class balance in the instance selection.

The second condition makes the problem a hard combinatorial problem. It is relaxed

by introducing variable βi = αi(
∑

i αi)
−1. Unlike α which is a binary variable, β ∈

[0, 1]ns is continuous. The geodesic flow kernel is used estimate the kernel with,

k(xi,xj) = φ(xi)
⊤φ(xj)

= exp
(

− (xi − xj)
⊤G(xi − xj)

σ2

)

, (3.21)

where G, is determined using subspaces US and UT of the source and target that

are estimated using PCA (Gong et al. (2012a)). The geodesic flow kernel will be

discussed towards the end of the chapter. The authors select landmarks at multiple

granularity by defining different kernels with {σq ∈ [σmin, σmax]}Qq=1. The domain
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invariant mapping is represented as φq(x) =
√

Gqx. These domain invariant vectors

from multiple kernels are concatenated into a super vector f and cast into a multiple

kernel SVM model in order to learn a domain adaptive classifier.

3.3.3 MMD - Spectral Methods

In this class of nonlinear methods, domain adaptation is achieved by nonlinear

projection of the data where the projection matrix is a solution to an eigen-value

problem. All of the methods in this subsection model the domain adaptation problem

using kernel-PCA. In kernel-PCA a coefficient matrix A ∈ R
n×k is determined and

the nonlinear projection of X is obtained using A. The projection matrix is obtained

by solving,

max
A⊤A=I

tr(A⊤KHK⊤A). (3.22)

Here, H is the n×n centering matrix given by H = I− 1
n
1, I is an identity matrix and

1 is a n × n matrix of 1s. The matrix of coefficients is A ∈ R
n×k and the nonlinear

projected data is given by Z = [z1, . . . , zn] = A⊤K ∈ R
k×n. In order to account for

domian alignment after the projection, MMD can be incorporated as follows:

min
A

∣

∣

∣

∣

∣

∣

∣

∣

1

ns

ns
∑

i=1

A⊤ki −
1

nt

n
∑

j=ns+1

A⊤kj

∣

∣

∣

∣

∣

∣

∣

∣

2

H

= tr(A⊤KM0K
⊤A), (3.23)

where, M0, is the MMD matrix which given by,

(M0)ij =































1
nsns

, xi,xj ∈ Ds

1
ntnt

, xi,xj ∈ Dt

−1
nsnt

, otherwise,

(3.24)

Maximizing Equation (3.22) and minimizing Equation (3.23) is achieved with the

following optimization problem,

min
A⊤KHK⊤A=I

tr(A⊤KM0K
⊤A) + γ||A||2F , (3.25)
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where, the final term is the regularization over A to ensure smoothness. The solution

to Equation (3.25) is a generalized eigen-value problem given by,

(

KM0K
⊤ + γI

)

A = KDK⊤AΛ. (3.26)

where the eigen-values are the Lagrangian constants captured in the diagonal matrix

Λ = diag(λ1, . . . , λk). The coefficient matrixA is given by the k-smallest eigen-vectors

of Equation (3.26). The domain-aligned data points are then given by Z = A⊤K.

This is the Transfer Component Analysis (TCA) model described in Pan et al. (2011)

although using a different derivation and notation.

The authors in Long et al. (2014), extend the TCA to incorporate instance sam-

pling with a sparse norm over the coefficient matrix A. The optimization problem

with these constraints is given by,

min
A⊤KHK⊤A=I

tr(A⊤KM0K
⊤A) + γ

(

||As||2,1 + ||At||2F
)

, (3.27)

where, As := A1:ns,: is the transformation matrix for the source instances and At :=

Ans+1:n,: is the transformation matrix for the target. The ℓ2,1-norm regularization

ensures row-sparsity of As effectively doing instance selection of the source data

points. Similar to the TCA, Equation (3.27) is transformed to a generalized eigen-

value problem and A is estimated.

The TCA and the TJM can be viewed as aligning the marginal probabilities

PS(X) and PT (X) of the source and the target data. To ensure the joint distributions

(PS(X, Y ) and PT (X, Y )) of the source and target are aligned, the Joint Distribution

Adaptation (JDA) (Long et al. (2013)), algorithm is adopted, which seeks to align

both the marginal and conditional probability distributions of the projected data. The

marginal distributions are aligned as in Equation (3.23). The conditional distribution

difference can also be minimized by introducing matrices Mc, with c = 1, . . . , C,
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defined as,

(Mc)ij =
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0, otherwise.

(3.28)

Here, Ds and Dt are the subsets of source and target data points respectively. D(c)
s

is the subset of source data points whose class label is c and n
(c)
s = |D(c)

s |. Similarly,

D(c)
t is the subset of target data points whose class label is c and n

(c)
t = |D(c)

t |. For

the target data, since the labels are not known, the predicted target labels are used

to determine D(c)
t . The target data labels are initialized using a classifier trained on

the source data and refined over iterations. Incorporating both the conditional and

marginal distribution alignments, the JDA optimization problem is written as,

min
A⊤KHK⊤A=I

tr(A⊤K
C
∑

c=0

McK
⊤A) + γ||A||2F . (3.29)

Similar to the TCA and TJM, Equation (3.29) is transformed to a generalized eigen-

value problem and A is estimated. The domain-aligned data points are then given

by Z = A⊤K.

3.4 Hierarchical Feature Spaces for Domain Adaptation

In recent years, deep neural networks have revolutionized the field of machine

learning. Deep learning based domain adaptation has outperformed non-deep learning

algorithms because of the highly discriminatory nature of the features extracted using

deep neural networks. The features extracted using deep neural networks are termed

‘hierarchical’ due to the hierarchical nature of the model and the nonlinear multilayer
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structure of the network. This section describes recent work in the last few years in

the area of deep learning based domain adaptation.

3.4.1 Näıve Deep Methods

Deep convolutional neural networks (CNN)s have been shown to be very good

feature extractors. Deep CNNs trained on millions of images are by themselves very

good feature extractors, not just for the dataset they are trained on, but for any

generic image. Razavian et al. in Razavian et al. (2014), have demonstrated how a

deep CNN trained on the ILSVRC 2013 ImageNet dataset (ImageNet (2013)) can be

used for extracting generic features for any image. Regular SVMs trained on these

generic features have shown astounding results across multiple applications like, scene

recognition, fine grained recognition, attribute recognition and image retrieval. A pre-

trained CNN can be used to extract generic features for the source and the target.

This can be termed as a näıve form of domain adaptation.

Pre-trained deep neural networks can also be fine tuned to the task at hand. It

is well documented that the lower layers of a CNN extract generic features that are

common across multiple tasks and the upper layers extract task specific features.

Features transition from general to specific by the last layer of the CNN. The work

by Yosinski et al. in Yosinski et al. (2014), captures the extant of generality and

specificity of neurons in each layer. Transferability has been shown to be negatively

affected by two issues: (i) the specificity of neurons (to the source task) in the higher

layers, adversely affects transfer to the target task, (ii) the fragile nature of depen-

dencies between layers that are task specific. Adding new layers to a pre-trained

(trained on source data) network and retraining it with target data, is another in-

tuitive method to transfer knowledge in a deep learning setting. When the entire

newly adapted network is fine tuned with target data, it can lead to a very efficient
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adaptation. This form of adaptation has been explored in Oquab et al. (2014). The

authors demonstrate a procedure to reuse the layers trained on the ImageNet dataset

to compute mid-level representations for images. Despite the differences in image

statistics, these features lead to improved results for object and action classification

for different datasets.

The authors in Donahue et al. (2014), study the features extracted from the final

layers of a deep neural network for a fixed set of object classification and detection

tasks. The generic features from the 5th, 6th and 7th fully connected layers of an

AlexNet (Krizhevsky et al. (2012)), show remarkable adaptation properties and out-

perform state-of-the-art methods in classification and detection. Whereas Donahue

et al. (2014) studied adaptation using CNNs, Glorot et al. (2011) studied adaptation

of features extracted using stacked denoising autoencoders for text based sentiment

classification.

3.4.2 Adopted Shallow Methods

These set of deep learning methods adopt shallow (non-deep learning) domain

adaptation procedures in a deep neural network. In these approaches the features

extracted by the layers of the deep network are learned to be domain invariant. Do-

main alignment is achieved either through MMD, moment alignment or a loss function

that drives the source and target classifiers to be indistinguishable. In discussing these

methods, the central idea is outlined leaving out the details of network architecture,

optimization procedures, loss functions etc.

In Tzeng et al. (2014), the authors adapt an AlexNet (Krizhevsky et al. (2012))

to output domain invariant features in the final fully connected fc8 layer in the Deep

Domain Confusion (DDC) algorithm. The network has two loss components, (i)

softmax classification loss for the source data points and (ii) domain confusion loss.
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The network minimizes a MMD loss over the source and target data outputs of the

fc8 layer in every mini-batch during training. This is termed as the domain confusion

loss. A related idea is studied in Tzeng et al. (2015b), where the network has a domain

confusion loss along with a domain classification loss. The domain classification loss

ensures the output feature representations of the source and target data are distinct.

This is in contrast to the goal of the domain confusion loss which tries to learn

domain invariant representations. The network is trained to alternately minimize

the two losses and reach a equilibrium. Long et al. introduce the Deep Adaptation

Networks (DAN) model (Long et al. (2015)), which extends the concept of domain

confusion by incorporating a MMD loss for all the fully connected layers (fc6, fc7

and fc8) of the AlexNet. The MMD loss is estimated for the feature representations

over every mini-batch during training. The work also introduces MMD estimation

computed with an efficient linear complexity based on Gretton et al. (2012). The

linear MMD estimation is also unbiased because the MMD for the entire source and

target data can be expressed as the sum of MMD across min-batches.

An extension to DAN is achieved with the Residual Transfer Network (RTN) in

Long et al. (2016b), which implements a residual layer as the final layer of the network

in addition to the softmax loss. In the RTN, the feature adaptation is achieved with

MMD loss and the source and target classifier adaptation is implemented through the

residual layer (He et al. (2016)). The source classifier fS(x) is tightly coupled with

the target classifier fT (x) varying with only a slight perturbation ∆f(fT (x)) which

is learned by the network,

fS(x) = fT (x) + ∆f(fT (x)) (3.30)

In addition, the source classifier is constrained by the softmax loss over the source

data and the target classifier is constrained with unlabeled entropy loss over the target

55



data.

Compacting deep neural networks and reducing the number of parameters is es-

sential for creating smaller more manageable networks. These procedures usually

replace the larger convolutional layer kernels with kernels of size 1× 1 and 3× 3. Al-

though such procedures produce networks that maintain the classification accuracies,

the authors Wu et al. Wu et al. (2017), note that the adaptability of these networks

is adversely affected resulting in low accuracies for domain adaptation. Wu et al.

propose a set of layers called Conv-M, which consists of multi-scale convolution and

deconvolution with kernels larger than 3 × 3 . The proposed compact network also

uses MMD to align the source and target features at multiple layers and produces

state-of-the-art results on the standard Office and Office-Caltech datasets. In addi-

tion, the network is guided with a reconstruction loss that tries to reconstruct images

the encoded feature representations. The Domain reconstruction and Classification

Network (DRCN) developed by Ghifary et al. Ghifary et al. (2016), is also guided

by a reconstruction loss that decodes the feature encoding along with a standard

classification loss.

While the MMD is a standard non-parametric measure used to align the features

of the domains, Koniusz et al. Koniusz et al. (2017) propose a technique to align

the higher order statistics of the features. The scatter statistics of samples belong-

ing to a class (within-class) are aligned across the two domains. These include the

means, scale/shear and the orientation measures of samples belonging to a single

class. The procedure also maintains good separation for between-class scatters to

enhance classification accuracies. Unlike the popular unsupervised setting, this deep

learning technique is trained using a few labeled data from the target domain.

In all the above deep domain adaptation approaches, the weights are shared be-

tween the source and the target network to ensure domain invariant features. The
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authors in Rozantsev et al. (2016), argue that merely ensuring domain invariant fea-

tures may be detrimental to the discriminative power of the features. Their model is

a twin network (one for the source and another for the target) with a loss function

over the weights for every source target layer pair. The loss term ensures the weights

of the source and the target are closely related (but not identical). The source net-

work is trained with a softmax loss over the source data and both the networks also

minimize the MMD loss to extract domain invariant features.

3.4.3 Adversarial Methods

In recent years, one of the most significant advances to deep learning has been the

introduction of Generative Adversarial Networks (GAN) by Goodfellow et al. (2014).

GANs are generative networks that generate data (text, images, audio, etc.), such that

the data follows a predetermined distribution P (X). A vanilla GAN implementation

has two deep networks, generator g(.) and discriminator f(.), competing against each

other. The generator network takes in a noise vector z ∈ R
d sampled from a uniform

or normal distribution and generates an output g(z). The discriminator takes in

x ∈ P (X) and g(z) are tries to discriminate between the two. The generator network

tries to fool the discriminator network by generating data that appears to belong to

P (X) and the discriminator tries to distinguish between real images and fake images.

The equilibrium is a saddle point in the network parameter space.

Apart from GANs, there are other generative models like the Variational Autoen-

coders (VAE) in Kingma and Welling (2013) and PixelRNN in Oord et al. (2016)

and they all have their pros and cons 1. GANs provide the sharpest images but are

very difficult to optimize due to unstable training dynamics. VAEs provide complex

Bayesian inference models but the generated images can be blurry. PixelRNNs have

1https://openai.com/blog/generative-models/
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a simple and stable training process, but their sampling strategy is inefficient. GANs

have had tremendous success in multiple applications. Some of these include, image

super-resolution (Ledig et al. (2016)), text-to-image generation (Reed et al. (2016);

Zhang et al. (2016)), image-to-image generation (Isola et al. (2016)) and conditional

image generation (Nguyen et al. (2016); Chen et al. (2016)). In this section, some of

the successful adversarial based domain adaptation techniques will be discussed.

In the Domain Adversarial Neural Network (DaNN) in Ganin et al. (2016), the

authors train a deep neural network in a domain adversarial manner for image clas-

sification based domain adaptation. The bottom layers of the network act as feature

extractors. The features from the bottom layers are fed into two branches of the

network. The first branch is a softmax classifier trained with the labeled source data.

The second branch is a domain classifier trained to distinguish between the features

of the source and the target. The key to the DaNN is the gradient reversal layer

connecting the bottom feature extraction layers and the domain classifier. During

backpropagation, the gradient from the domain classifier is reversed when learning

the feature extractor weights. In this way, the feature extractor is trained to extract

domain invariant features. A closely related work is also presented in Ajakan et al.

(2014).

Liu and Tuzel implement a Coupled Generative Adversarial Network model (Co-

GAN) in Liu and Tuzel (2016). The CoGAN trains a coupled network which shares

weights at different layers of the GAN. The CoGAN is setup so that the lower layers

of the generator and the upper layers of the discriminator share weights. A common

noise vector z, is fed into the two generators g1(.) and g2(.) to generate outputs g1(z)

and g2(z). These inputs are fed into two discriminators f1(.) and f2(.). The discrim-

inator f1(.) is trained to discriminate between g1(z) and the source xs. Likewise,

the discriminator f2(.) is trained to discriminate between g2(z) and the target xt.
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In addition, the source discriminator has an additional softmax layer to classify the

source data points xs. The CoGAN was tested with MNIST and USPS data to yield

impressive unsupervised domain adaptation results. It remains to be seen if these

results can be replicated with object classification datasets.

The Pixel-GAN in Bousmalis et al. (2017), is a straightforward extension of the

GAN for unsupervised domain adaptation. In this model, instead of a noise vector

input z, the generator is input the source images and trained to convert them into

target images. The discriminator on the other hand, is trained to distinguish between

real target images and generated target images (fake target images generated from

the source). In addition, a separate network is trained to classify the generated target

images. There have been many recent works applying adversarial training for domain

adaptation. A few of the most recent procedures are, Kamnitsas et al. (2016), Tzeng

et al. (2017), Sankaranarayanan et al. (2017) and Peng and Saenko (2017).

3.4.4 Sundry Deep Methods

One of the earliest procedures for deep learning domain adaptation was proposed

by Chopra et al. Chopra et al. (2013). The Deep Learning for domain adaptation by

Interpolation between Domains (DLID) learns a cross-domain representation by inter-

polating the path between the source and target domains along the lines of Gopalan

et al. (2011). Multiple datasets with varying ratios of source and target data points

are sampled to create intermediate representations between the two domains. The

final cross-domain feature is a concatenation of all the intermediate feature represen-

tations.

Hu et al. (Hu et al. (2015)), develop a metric learning method for supervised

transfer learning using clustering. The Deep Transfer Metric Learning (DTML) model

trains a deep neural network to minimize intra-class distances and increase inter-class
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distances. In addition, the features of the last layer of the network are learned to

be domain invariant by minimizing the MMD between the source and target feature

outputs. Further along clustering methods, Sener et al. in Sener et al. (2016), train

a deep neural network to estimate the labels of target data in a transductive setting.

The algorithm learns an asymmetric similarity metric relating the source data with

the target data. The deep network predicts the labels so as to minimize intra-class

distances and maximize inter-class distances.

Sun et al. Sun et al. (2015b) develop a domain transfer method called the local-

ized action frame (LAF) for fine-grained action localization in temporally untrimmed

videos. The LAF motivates domain transfer between weakly labeled web images and

videos. The domain transfer works in both directions; the video frames are used to

select web images that are relevant and drop non-action web images and in turn the

web images are used to select action-like frames and drop non-action frames in the

video. After the relevant frames and images are selected, a long short-term mem-

ory (LSTM) network to is used to train a fine-grained action detector to model the

temporal evolution of actions and classify the action in the frames. The work also

released a dataset of sports videos with over 130, 000 videos from 240 categories.

Bousmalis et al. (Bousmalis et al. (2016)), train Domain Separation Networks

(DSN) to extract domain-invariant feature representations and domain-specific rep-

resentations of source and target data. A shared encoder network Ec(x) is trained to

extract domain invariant feature representations for the source and the target data.

Private encoder networks Es
p(x) and E

t
p(x) for the source and target respectively, are

trained to extract feature representations that are distinct from the domain-invariant

representations that are the outputs of Ec(x). A shared decoder network is trained to

reconstruct the original input data based on the outputs from Ec(x), E
s
p(x) and E

t
p(x)

A classifier is trained with the source outputs of Ec(x). The feature representations
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that are the outputs of Ec(x) can be declared to be domain-invariant.

3.5 Miscellaneous Methods for Domain Adaptation

This section outlines an assortment of methods that could not be classified into

the above categories.

3.5.1 Manifold based Methods

Manifold methods for domain adaptation treat the subspaces of the source and

target domains as points on a manifold. Since it is a manifold of subspaces, these

manifolds are termed as Grassmann manifolds. The task of domain adaptation is

to then learn a transformation that transforms one domain to another and can be

represented as a curve on the manifold. In Gopalan et al. (2011) and Gopalan et al.

(2014), the authors sample intermediate subspaces along the manifold curve connect-

ing the source domain to the target domain. These transformations are applied to

the source data to gradually transfer it to the target subspace. The authors in Gong

et al. (2012a), sample an infinite number of such subspaces along the source-target-

curve. The effect of applying a sequence of infinite such subspace transformations is

captured with the Geodesic Flow Kernel.

3.5.2 Dictionary Based Methods

A sparse representation of signals and images has multiple applications. High

dimensional data can often be represented using sparse combination of signals from

a specified dictionary. Dictionary based domain adaptation methods seek to learn

common dictionaries for the source and target and represent data from either domains

as sparse vectors encoding these signals. A framework for transforming a dictionary

learned on one domain to another, while maintaining a sparse domain-invariant signal
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representation, is implemented in Qiu et al. (2012). In Shekhar et al. (2013), the

authors learn a common domain invariant dictionary for both the domains in a semi-

supervised setting. In order to ensure high correlation between the features from

different domains, the model projects the data to a common low-dimensional subspace

while also maintaining the data structure on the manifold. Ni et al. in Ni et al. (2013),

bring together manifold methods along with dictionary approaches by generating a

set of dictionaries connecting the source dictionary with the target dictionary along

the lines of Gopalan et al. (2011).

3.5.3 Feature Augmentation Methods

One of the less complex approaches to domain adaptation was developed by

Daumé III in Daumé III (2007). The procedure concatenates the vectors from the

domains to capture domain specific representations and domain invariant represen-

tations. Every data point in the source and target domain is represented as follows:

φs(xs) = [xs⊤,xs⊤,0⊤]⊤, and φt(xt) = [xt⊤,0⊤,xt⊤]⊤. It was demonstrated that

for a linear classifier trained with these features, the first component captured the

domain invariant attributes of the data and the next two components captured the

domain specific attributes. Daumé III also introduced a kernelized version of the

algorithm in the same work. In Daumé III et al. (2010), the authors extend the work

to semi-supervised domain adaptation.

The authors in Li et al. (2014), extend feature augmentation by including feature

transformation. The new augmented and transformed features are given by,

φs(xs) = [W1x
s⊤,xs⊤,0⊤

dT
]⊤ and φt(xt) = [W2x

t⊤,0⊤
dS
,xt⊤]⊤ (3.31)

The method is applicable for heterogeneous domain adaptation where the source

and target data have different dimensions. W1 ∈ R
k×dS and W2 ∈ R

k×dT are the
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transformation matrices with dS and dT being the source and target data dimensions

respectively. The transformation matrices W1 and W2 map the data to a common

subspace enabling domain adaptation.

This concludes the survey on domain adaptation methods for computer vision.

The survey gives a new perspective on the gamut of research in this area and will

hopefully provide new insights to researchers interested in domain adaptation.
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Chapter 4

LINEAR FEATURE SPACES FOR DOMAIN ADAPTATION

There are various models that attempt to achieve domain adaptation between the

source and the target. Chapter (3), provides a classification of different approaches

to achieving domain adaptation. This chapter describes an example from one such

class of methods - namely linear approaches. Linear models for domain adaptation

are built using some form of linear transformation of the source and/or the target. A

standard approach is to learn a projection matrix that transforms data from one do-

main, so that cross domain disparity is minimized as in Saenko et al. (2010). Another

standard linear approach is to match the higher order moments of the two domains,

and this reduces domain discrepancy as discussed in Sun et al. (2015a). The most

common approach for linear domain adaptation is based on classifier adaptation using

the Support Vector Machine (SVM). The linear SVM learns a linear decision bound-

ary, which can be expressed as a linear combination of the training data points. In an

adaptive SVM, the decision boundary learned with the source training data, is modi-

fied to act as a decision boundary for the target data, as in Bruzzone and Marconcini

(2010); Aytar and Zisserman (2011).

In this chapter, a linear SVM for domain adaptation is outlined. In this case

the domain adaptive model is a couple of SVM decision boundaries - one for the

source and the other for the target. Section (4.1) introduces the linear model for

domain adaptation which is then developed in Section (4.2). This section derives the

two decision boundary SVM and reduces it to a standard SVM form. Section (4.3)

outlines the experiments that were conducted to test the proposed model. The final

section summarizes the contributions along with proposals for extensions.
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4.1 A Linear Model for Domain Adaptation

This work considers the problem of semi-supervised domain adaptation, where

labeled samples from the source domain are used along with a limited number of

labeled samples from the target domain, to train a linear classier for the target do-

main. A linear Support Vector Machine called Coupled-SVM model is outlined. The

Coupled-SVM simultaneously estimates linear SVM decision boundaries ws and wt,

for the source and target training data respectively.

Using a technique termed as instance matching, researchers sample source data

points such that the difference between the means of the sampled source and target

data is minimized, Duan et al. (2012); Long et al. (2014). The intuition behind

the Coupled-SVM is along similar lines, where the difference between ws and wt is

penalized. Since the SVM decision boundaries are a linear combination of the data

points, penalizing the difference between ws and wt, can be viewed as penalizing the

difference between the weighted means of the source and target data points. Figure

(4.1a), illustrates standard SVM based domain adaptation, where ws is first learned

for the source and it is perturbed to obtain the target (wt). The perturbed SVM wt

could be vastly different from ws and can over fit the target training data. Figure

(4.1b), depicts the Coupled-SVM, where ws and wt, are learned simultaneously. The

source SVM ws, provides an anchor for the target SVM wt. The difference between

ws and wt is modeled based on the difference between the source and target domains.

In addition, the Coupled-SVM trades training error for improved generalization, as

illustrated in Figure (4.1c).

The following sections describe the Coupled-SVM model. Although the model

outputs two decision boundaries, the Coupled-SVM can be reduced to a standard

SVM formulation. The model is compared with other SVM based domain adaptation
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models using different datasets.
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Figure 4.1: (a) Domain adaptation with a SVM. The SVM for the source ws is
modified to get the target SVM wt. (b) In the Coupled-SVM, both ws and wt are
learned together. In this setting, the training error can be high. (c) The Coupled-
SVM does not over fit. Red is source and Green is target data. Filled objects are
train data and unfilled objects are test data. Image based on Venkateswara et al.
(2015b).

4.2 The Coupled Support Vector Machine

A linear classifier is learned with the coupled SVM model for the source and the

target simultaneously. The idea is to modify the source classifier (ws) to learn a

target classifier (wt). The difference ||ws −wt||2, between the source and the target

classifier is penalized by a weight.

4.2.1 Coupled-SVM Notation

The source data is denoted as {(xs
i , y

s
i )}ns

i=1 ⊂ S , where S is the source domain,

xs
i ∈ R

d, are data points and ysi ∈ {−1,+1}, are their labels. The following discussion

considers a binary category classification model which can be extended to a multi-

category scenario. Similarly, {(xt
i, y

t
i)}nt

i=1 ⊂ T , where T is the target domain, xt
i ∈

R
d, are data points and yti ∈ {−1,+1}, are their labels. The goal is to develop a

classifier ft(.), that can predict the labels ŷt = sgn
(

ft(x
t)
)

, ∀xt ∈ {xt|(xt, yt) ∈ T },
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where, sgn(.) is the sign function. The constraint here is that the number of target

samples, nt, is limited to a few samples from each category, i.e. nt ≪ ns. Training

the classifier ft(.) with only nt samples could lead to over-fitting. The classifier ft(.),

should generalize to a larger subset of T and must not over-fit the training data

{(xt
i, y

t
i)}nt

i=1. To this end, the source data {(xs
i , y

s
i )}ns

i=1 is also used to train the

target classifier.

4.2.2 Coupled-SVM Model

The linear domain adaptation model is outlined as follows:

min
fs,ft

λD(fs, ft) +R(fs, ft) + Cs

ns
∑

i

L(ysi ,xs
i , fs) + Ct

nt
∑

i

L(yti ,xt
i, ft) (4.1)

The aim is to estimate classifiers {fs, ft} such that Equation (4.1) is minimized. The

first term is a measure of the difference between the source classifier fs and target

classifier ft. λ controls the importance of this difference. The hypothesis is that

the source and target classifiers are related. The similarity(dissimilarity) between

the datasets is expected to be captured by the similarity(dissimilarity) between the

classifiers. The second term penalizes the complexity of the classifiers fs and ft. The

third and fourth terms are a measure of the classification error over the source data

and the target data respectively. Cs and Ct, control the importance of the loss terms

for the source and target data respectively. A linear classifier such as a Linear SVM

is considered for the discussion, with f(x) = w⊤x + b, where, w ∈ R
d is the SVM

decision boundary, b is the SVM bias, which is a scalar and w⊤ represents transpose

of w. The square of the L2 norm, ||.||22 is chosen as the Regularizer R(.). The loss

function is set to the standard hinge loss, L(y,x, f) = max
(

0, 1− y.f(x)
)

. The loss

function can be rewritten in the form of constraints for a ‘soft’-margin SVM model

(see Figure (4.2)).
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SVM Model: This box outlines a brief review of the constrained SVM model

and its equivalence to the unconstrained SVM model. The linearly separable case

for SVM requires solving the constrained optimization problem,

min
w
||w||22

s.t. yi(w
⊤xi + b) ≥ 1 for i ∈ {1, . . . , n} (4.2)

Here, {xi, yi}ni=1 is the labeled training data and xi ∈ R
d and yi ∈ {−1,+1}. The

‘soft’-margin constrained SVM model addresses the case of linear inseparability

and is given by,

min
w
||w||22 + C

n
∑

i=1

ξi

s.t. yi(w
⊤xi + b) ≥ 1− ξi and ξi ≥ 0 for i ∈ {1, . . . , n} (4.3)

The slack variables ξi ease the strict constraint on separability by allowing data

points to lie within the margin and also on the incorrect side of the SVM margin.

The constraint yi(w
⊤xi+ b) ≥ 1− ξi can be rephrased as, yif(xi) ≥ 1− ξi, where

f(x) = w⊤x+ b. Along with ξi ≥ 0, the constraint can be written as,

ξi = max(0, 1− yif(xi)) (4.4)

Equation (4.3) can then be expressed in an unconstrained form as,

min
w
||w||22 + C

n
∑

i=1

max(0, 1− yif(xi)) (4.5)

The second term in Equation (4.5) is the loss and in this case, it is called the

hinge loss.

Figure 4.2: SVM Model: Constrained and unconstrained formulations.
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The source classifier is defined by fs(x) = w⊤
s x+bs. Similarly, the target classifier

is, ft(x) = w⊤
t x + bt. The source and target SVM decision boundaries are ws and

wt, respectively. The source and target biases are bs and bt, respectively. To simplify

the notation, bias values are incorporated into the decision boundaries. The decision

boundaries are redefined as, ws ← [w⊤
s , bs]

⊤ and wt ← [w⊤
t , bt]

⊤. To account for

the bias, the data variables are augmented with 1. The re-defined data variables are,

xs
i ← [xs⊤

i , 1]⊤ and xt
i ← [xt⊤

i , 1]
⊤. Including these definitions, Equation (4.1) can be

redefined as follows,

{w∗
s ,w

∗
t } = argmin

ws,wt

1

2
λ||ws −wt||22 +

1

2
||ws||22 +

1

2
||wt||22 + Cs

ns
∑

i

ξsi + Ct

nt
∑

i

ξti

s.t. ysi (w
⊤
s x

s
i ) ≥ 1− ξsi , ξsi ≥ 0, i ∈ [1, . . . , ns]

yti(w
⊤
t x

t
i) ≥ 1− ξti , ξti ≥ 0, i ∈ [1, . . . , nt] (4.6)

The terms in Equation (4.6) are rearranged for formatting reasons. The dissimilarity

measure D(.), is defined as the square of the Euclidean distance between ws and wt.

The rest of the terms make up a set of two SVM models, one for the source data

and the other for the target data. Equation (4.6) is a modification of the standard

Linear SVM having two decision boundaries along with an additional term capturing

the relation the two decision boundaries. In the following subsection, Equation (4.6)

is re-formulated as a standard SVM.

4.2.3 Coupled-SVM Solution

In order to reduce Equation (4.6) to a standard SVM problem, a new set of vari-

ables are defined based on the existing variables. The two SVM decision boundaries

are concatenated into a single variable, w ∈ R
2(d+1) defined as,

w ← [w⊤
s ,w

⊤
t ]

⊤ (4.7)
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The individual SVMs ws and wt can be extracted from w using permutation matrices

Is ∈ R
(d+1)×2(d+1) and It ∈ R

(d+1)×2(d+1), where Is and It are binary matrices such

that,

Isw = ws and Itw = wt (4.8)

For example, let v1 = [a, b]⊤, v2 = [c, d]⊤ and v ← [v⊤
1 ,v

⊤
2 ]

⊤. Then the permutation

matrices Iv1 and Iv2 such that, Iv1v = v1 and Iv2v = v2, are given by,

Iv1 =







1 0 0 0

0 1 0 0






, Iv2 =







0 0 1 0

0 0 0 1






.

New variables (xi, yi, ci) ∀i ∈ {1, . . . , (ns + nt)}, are introduced, where, xi ∈ R
2(d+1)

and yi ∈ {−1,+1} are the new data points and ci ∈ {Cs, Ct} is the importance of the

classification error for the ith data point. xi is defined as,

xi ←















[xs⊤

i ,0⊤]⊤ 1 ≤ i ≤ ns

[0⊤,xt⊤

i−ns
]⊤ (ns + 1) ≤ i ≤ (ns + nt)

(4.9)

where, 0 ∈ R
d+1 is a vector of zeros. Similarly, {yi, ci} are defined as,

{yi, ci} ←















{ysi , Cs} 1 ≤ i ≤ ns

{yti−ns
, Ct} (ns + 1) ≤ i ≤ (ns + nt)

(4.10)

With the definitions of w and xi, it can be noted that

w⊤xi =















w⊤
s x

s
i 1 ≤ i ≤ ns

w⊤
t x

t
i−ns

(ns + 1) ≤ i ≤ (ns + nt)

(4.11)

For the remaining derivation, it is assumed the data is linearly separable, i.e. slack

variables ξsi = 0 and ξti = 0, ∀i. The slack variables will be re-introduced towards the
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end. The minimization problem in Equation (4.6) can now be re-formulated as,

{w∗} = argmin
w

1

2
λ||Istw||22 +

1

2
||w||22

s.t. yi(w
⊤xi) ≥ 1 ∀i ∈ {1, . . . , (ns + nt)} (4.12)

where, Ist ← (Is − It) with Isw = ws, Itw = wt for the first term. The second term

is obtained with, 1
2
||ws||22 + 1

2
||wt||22 = 1

2
||w||22. Since this is a linearly separable case,

the constraints adhere to a margin 1. In order to solve the optimization problem,

Lagrangian variables {αi} are introduced for each of the constraints, yi(w
⊤xi) ≥ 1.

The Lagrangian is defined as,

L(w,α) =
1

2
λ||Istw||22 +

1

2
||w||22 −

ns+nt
∑

i

αi

(

yi(w
⊤xi − 1)

)

(4.13)

The Lagrangian needs to be minimized w.r.t. w and maximized w.r.t. to α. Opti-

mization is carried out first w.r.t. w by setting the derivative ∂L(w,α)
∂w

= 0

∂L

∂w
= λI⊤stIstw +w −

ns+nt
∑

i

αiyixi = 0 (4.14)

=⇒ w = D

ns+nt
∑

i

αiyixi (4.15)

where, I is an identity matrix and,

D = (I + λI⊤stIst)
−1 (4.16)

Because of the nature of the permutation matrices Is and It, (I + λI⊤stIst) is full rank

and therefore, D exists. Following the definition of v ← ∑ns+nt

i αiyixi and a sub-

stitution for w in Equation (4.13), the optimization problem in terms of Lagrangian
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variable α is,

{α∗} = argmax
α

λ
1

2
v⊤D⊤I⊤stIstDv +

1

2
v⊤D⊤Dv − v⊤Dv + 1⊤α

= argmax
α

v⊤(
1

2
D⊤D +

1

2
λD⊤I⊤stIstD −D)v + 1⊤α

= argmax
α

v⊤(
1

2
D⊤(I + λI⊤stIst)D −D)v + 1⊤α

= argmax
α

v⊤(
1

2
D⊤ −D)v + 1⊤α (Equation (4.16))

= argmin
α

1

2
v⊤Dv − 1⊤α (D is symmetric)

= argmin
α

1

2
v⊤Dv − 1⊤α

= argmin
α

1

2
α⊤Qα− 1⊤α. (4.17)

Equation (4.17) can be viewed as the standard SVM dual where Qij = yiyjx
⊤
i Dxj

and 1 is a vector of 1s. By defining x̃i = D1/2xi, the matrix Q can be expressed in a

standard SVM dot product form, Qi,j = yiyjx̃
⊤
i x̃j which reduces Equation (4.17) to

a standard quadratic minimization problem. Any of the standard SVM libraries can

then be used to arrive at a solution for α.

In the space of x̃i, the decision bondary is given by, w̃ =
∑

i αiyix̃i. In the space

of xi, the decision boundary is given by w = D
∑

i αiyixi. Therefore, w = D1/2w̃.

For the experiments in this chapter, the LIBLINEAR Fan et al. (2008), package was

adapted. It has an implementation of a weighted SVM where weights (importance)

can be specified for each training data point. The slack variables ξsi and ξti will now

be re-introduced through the weight term ci. The ci is introduced as a constraint on

αi. In solving Equation (4.17), the constraint on αi is usually given by, 0 ≤ αi ≤ ∞.

This constraint is used for a linearly separable SVM solution. The linearly inseparable

SVM (‘soft’-margin), can be modeled by modifying the constraint to, 0 ≤ αi ≤ ci.

This is equivalent to solving a ‘soft’-margin SVM by introducing slack variables, ξsi
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and ξti .

Once w is known, ws and wt, can be estimated using Equation (4.8). The

Coupled-SVM can be easily extended to the multi-class setting using one-vs-one or

one-vs-all settings. SVM packages like LIBLINEAR provide solutions to multi-class

configurations. Using LIBLINEAR, the decision boundaries of the multi-class SVM

with P categories will be a matrixW ∈ R
(P×2(d+1)), where each row ofW is a decision

boundary. The first (d + 1) columns of each row correspond to ws and the second

(d+ 1) columns correspond to wt for a particular category. The Coupled-SVM algo-

rithm for the binary case is outlined in Algorithm (1).

Algorithm 1 Coupled-SVM Domain Adaptation

Input: {(xs
i , y

s
i )}ns

i=1, {(xt
i, y

t
i)}nt

i=1, λ, Cs, Ct

Output: w∗
s ,w

∗
t as in Equation (4.6)

1: D ← (I + λI⊤stIst)
−1 (Equation (4.16))

2: for i← 1 to (ns + nt) do

3: Define xi as in Equation (4.9)

4: x̃i ← D1/2xi

5: Define {yi, ci} as in Equation (4.10)

6: w̃ ← Linear Weighted SVM {x̃i, yi, ci}(ns+nt)
i=1

7: w ← D1/2w̃

8: w∗
s ← Isw and w∗

t ← Itw (Equation (4.8))

4.3 Experimental Analysis for the Coupled-SVM

This section discusses the extensive experiments that were conducted to study

the Coupled-SVM model. The different datasets and their domains are first outlined

followed by a brief introduction to the baselines that are used for camparison. This
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is followed by the experimental layout and a discussion of the results.

4.3.1 Experimental Setup

The Coupled-SVM was evaluated with multiple datasets from different applica-

tions and with multiple types of features. For all the experiments (except Office-

Caltech) the following setting has been used. For the training data, 20 examples are

sampled from the source domain and 3 examples from the target domain from every

category. The remaining examples in the target domain that are not used for training

are considered as test data. A few sampled images from the datasets are depicted in

Figure (4.3).

Figure 4.3: Top Row: Images of objects from Datasets, Amazon, Dslr, Webcam and
Caltech. Second Row: Facial expression images from CKPlus and MMI. Thrid row:
Digit images from MNIST and USPS followed by snapshots from HMDB51 and UCF50.

MNIST-USPS datasets: The digit datasets MNIST and USPS consist of images

of individual digits from 0 to 9. They are benchmark datasets for handwritten digit

recognition. In the following experiments, a subset of these datasets (2000 images
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from MINST and 1800 images from USPS ) based on Long et al. (2014) has been

used. The images are represented as vectors of length 256 after resizing the images

to 16× 16 pixels. These domains are referred to as MNIST and USPS respectively.

Office-Caltech datasets: The experimental setup for this dataset has been adapted

from Gong et al. (2012a). The Office dataset is made up of three domains, Amazon,

Dslr and Webcam. An additional domain called Caltech is included based on the

Caltech256 dataset. All of these domains are made up of images from a set of common

categories viz., {back-pack, bike, calculator, headphones, computer-keyboard, laptop,

monitor, computer-mouse, coffee-mug, video-projector}. For the experiments, the

800 dimension SURF-Bag-of-Words (SURF-BoW) features provided by Gong et al.

(2012a) are used. In creating the training data, 8 examples are sampled from the

source domain (for Amazon 20 are used) and 3 examples are sampled from the target

domain.

CKPlus-MMI dataset: The CKPlus Lucey et al. (2010) and MMI Pantic et al.

(2005) are popular datasets for facial expression recognition. From these datasets, six

categories were selected viz., {anger, disgust, fear, happy, sad, and surprise}, from

video frames with the most intense expression (peak frames) for every facial expres-

sion video sequence. This yields around 1500 images for each dataset with around 250

images per category. These domains are referred to as CKPlus and MMI. A deep neural

network was used to extract feature vectors from the images. Features extracted us-

ing pre-trained convolutional neural networks (CNN) have shown astonishingly good

results across a wide array of applications Razavian et al. (2014). Therefore, the

deep CNN developed by Simonyan and Zisserman Simonyan and Zisserman (2014)

was deployed as an ‘off-the-shelf’ feature extractor. The outputs of the first fully

connected layer from the 16 weight layer model with dimension 4096 were used as

features. These were reduced to 100 dimensions using PCA.
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HMDB51-UCF50 dataset: Eleven common categories of activity were gathered

from HMDB51 Kuehne et al. (2011) and UCF50 Reddy and Shah (2013). The cat-

egories from UCF50 are as follows with the corresponding categories from HMDB51

in parenthesis, {BaseballPitch(throw), Basketball(shoot ball), Biking(ride bike), Div-

ing(dive), Fencing(fencing), GolfSwing(golf), HorseRiding(ride horse), PullUps (pullup),

PushUps(pushup), Punch(punch), WalkingWithDog(walk)}. These domains are re-

ferred to as HMDB51 and UCF50. State-of-the-art HOG, HOF, MBHx and MBHy

descriptors were extracted from the videos based on the work of Kantorov and Laptev

(2014). The descriptors were then pooled into a grid 1x1x1, and Fisher Vectors were

estimated with K = 256 Gaussians. The resulting large dimension Fishers Vectors

(202, 752 dimensions) were reduced to 100 dimensions using PCA.

4.3.2 Baselines for Comparison

The Coupled-SVM is compared with the following semi-supervised domain adap-

tation techniques based on SVMs. SVM(T): This is a linear SVM trained on the

target labeled data. It can be expected to over-fit the training data and perform

poorly on the test data. SVM(S): This is a linear SVM with training data from

source domain. It can be expected to perform poorly when there is domain discrep-

ancy between the source and target domains. SVM(S+T): This is a linear SVM

trained with a union of source and target domain training data. In this case too,

domain discrepancy can lead to poor performance. The above three methods are

baselines that the Coupled-SVM is expected to outperform. MMDT: The Max-

Margin Domain Transform Hoffman et al. (2013), learns a single SVM model for the

source and the transformed target data. In the MMDT, the target data is transformed

by a transformation matrix to be similar to the source data and the transformation

is learned in an optimization framework along with the SVM classifier. AMKL: The
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Adaptive Multiple Kernel Learning Duan et al. (2012), implements a multiple kernel

method where multiple base kernel classifiers are combined with a pre-learned aver-

age classifier obtained from fusing multiple nonlinear SVMs. Unlike in Coupled-SVM

where the similarity between source and target is learned by the model, Widmer et al.

Widmer et al. (2012) use a similar approach to solve multitask problems using graph

Laplacians to model task similarity. The Coupled-SVM holds a unique position in

this wide array of SVM solutions for domain adaptation. The Coupled-SVM trains

a linear SVM for both the source and target domains simultaneously, thereby mini-

mizing the chances of over-fitting, especially when there are very few labeled samples

from the target domain. The Coupled-SVM is labeled C-SVM in the figures and

tables.

4.3.3 Results

Eighteen experiments were conducted using different pairs of datasets as source

and target. Table (4.1) depicts the target recognition accuracies for multiple algo-

rithms. The results were averaged across 20 splits of data for the Office-Caltech

dataset. For the remaining datasets, 100 splits were used. The domain difference is

highlighted with the results from the SVM(S) experiments. Although the datasets

comprise of the same categories, a classifier trained on the source does not perform

as well on the target because of the domain disparity. This fact is further highlighted

by the success of SVM(T), which shows improved accuracies even when a few of the

target training data points are labeled. The SVM(S+T) illustrates that the näıve

union of the source and target training data may be beneficial in some cases but not

always. The Coupled-SVM outperforms the remaining algorithms but is nearly on

par with the AMKL. Although there is little to choose between the two in terms of

recognition accuracies, the Coupled-SVM is faster and it is easier to implement it
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Table 4.1: Target recognition accuracies (%) for the object, digit, facial expression
and activity datasets across multiple algorithms. {Amazon(A), Webcam(W), Dslr(D),
Caltech(C), MNIST(M), USPS(U), CKPlus(K), MMI(I), HMDB51(H), UCF50(F)}. A→W
implies A is source domain and W is target domain. The best results are highlighted
in bold.

Expt. SVM(T) SVM(S) SVM(S+T) MMDT AMKL C-SVM

A→ W(1) 56.06±0.95 37.36±1.19 51.26±1.19 64.87±1.26 67.85±1.06 66.40±1.09

A→ D(2) 43.15±0.78 37.64±0.96 47.56±0.99 54.41±1.00 56.22±0.89 57.13±0.98

W→ A(3) 44.39±1.18 32.03±0.90 44.87±0.59 50.54±0.82 52.96±0.57 53.97±0.42

W→ D(4) 45.20±1.34 61.06±0.86 65.39±0.89 62.48±0.98 75.95±0.94 68.27±0.86

D→ A(5) 42.17±1.03 31.48±0.65 46.17±0.44 50.45±0.75 52.36±0.57 54.10±0.55

D→ W(6) 54.91±0.80 69.81±1.06 76.19±0.64 74.34±0.66 85.94±0.44 77.17±0.46

A→ C(7) 26.62±0.60 38.61±0.50 42.46±0.39 39.67±0.50 44.92±0.46 44.74±0.57

W→ C(8) 25.82±0.78 26.67±0.59 34.53±0.76 34.86±0.79 39.20±0.57 39.77±0.59

D→ C(9) 26.88±0.74 25.74±0.47 34.68±0.67 35.82±0.75 41.12±0.44 41.27±0.51

C→ A(10) 43.52±1.07 36.22±0.82 47.75±0.60 51.10±0.76 55.98±0.58 55.56±0.76

C→ W(11) 55.49±1.02 29.72±1.54 51.28±1.23 62.94±1.11 68.70±1.07 67.74±1.05

C→ D(12) 43.07±1.47 32.56±1.03 47.68±1.17 52.56±0.97 58.82±0.83 59.72±1.01

M→ U(13) 70.73±0.41 38.89±0.61 64.36±0.41 68.96±0.43 79.56±0.30 76.02±0.34

U→ M(14) 58.23±0.39 21.67±0.33 38.43±0.36 48.29±0.32 63.80±0.32 63.25±0.31

K→ I(15) 33.31±0.27 13.30±0.15 25.83±0.31 18.28±0.42 31.87±0.29 33.10±0.29

I→ K(16) 45.65±0.47 19.47±0.55 25.63±0.35 21.33±0.81 43.59±0.50 48.54±0.47

H→ F(17) 28.94±0.26 17.45±0.17 23.00±0.19 29.05±0.23 33.06±0.23 35.89±0.25

F→ H(18) 18.64±0.19 16.99±0.16 19.58±0.17 22.28±0.18 24.28±0.16 24.41±0.19

compared to the AMKL which is a multiple kernel based method.

Leave-one-out cross validation was applied for the training target data in order

to determine the optimal values of the model parameters {Cs, Ct, λ}. To get a better

idea of the role of labeled data, the number of labeled data points was varied and

the recognition accuracies were studied. Since the Webcam and Dslr datasets have

fewer data points compared to the other domains, they were left out of this anal-
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Figure 4.4: Average target recognition accuracies (%) for the Coupled-SVM across
different experiments by varying number of labeled training examples in source and
target. Images based on Venkateswara et al. (2015b).

ysis. The results of this study are along expected lines. Increasing the number of

source training data points, has little effect on improving the target test accuracies

as illustrated in Figure (4.4a). The reason being, the decision boundaries do not

vary significantly with additional data. To estimate the source decision boundary,

the SVM relies on support vectors. Only the support vectors affect the direction of

the decision boundary. Since most of the data is not made up of support vectors

and lies away from the boundary, additional source training data does not change the

decision boundaries. On the other hand, the effect of additional target training data
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is comparatively more pronounced as seen in Figure (4.4b). Labeled target data is

limited, and adding any new labeled target data points will help reshape the decision

boundary. Both of the above conclusions are reinforced with the results in Figure

(4.4c). The effect of increasing the number of both the source and target labeled

data points is comparable to increasing the number of labeled target data alone. The

additional source labeled data does not alter the decision boundary as much as the

number of additional labeled target data. In other words, additional source data does

not contribute to the target SVM after the decision boundary has stabilized.

4.4 Conclusions and Summary

The experimental analysis indicates that the Coupled-SVM is a promising alter-

native for domain adaptation. The AMKL is nearly as good as the Coupled-SVM,

but the Coupled-SVM has the advantage of being simple. Being a linear model, the

Coupled-SVM is fast and easy to implement using existing libraries. In its current

form, the Coupled-SVM requires some labeled data in the target domain, which is

not unreasonable. However, a possible extension to the Coupled-SVM could be an

unsupervised version that needs no target data labels. The Coupled-SVM models the

difference between the domains as the difference between their decision boundaries.

In order to estimate the importance of this difference (λ), a target validation dataset

is required which is not available for unsupervised domain adaptation. Chapter (5)

will outline a procedure to create a validation set based on source data.

In this chapter a linear model for semi-supervised domain adaptation was intro-

duced. The Coupled-SVM model trains two SVM classifiers - one for the source and

another for the target. The linear model is efficient, elegant and easy to implement

as it can be implemented using existing SVM libraries. Experimental results indicate

that the Coupled-SVM performs comparably well against competitive linear methods.
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Chapter 5

NONLINEAR FEATURE SPACES FOR DOMAIN ADAPTATION

A linear model for domain adaptation was introduced in Chapter (4). Sometimes,

a linear model may be overly simplistic and may not effectively ameliorate the dis-

crepancy between the distributions of the two domains. When linear approaches are

ineffective in modeling domain diversity, nonlinear transformations of data are the

next available option for achieving domain adaptation. This chapter introduces a

nonlinear model for unsupervised domain adaptation.

Chapter (3) provided a survey of nonlinear approaches for domain adaptation. A

nonlinear model for domain adaptation is usually a kernel method which projects the

data to a high-dimensional (possibly infinite dimensional) space and aligns the do-

mains in that space. A standard procedure for nonlinear domain alignment is using

the Maximum Mean Discrepancy (MMD), as described in Equation (3.12). Many

nonlinear methods for domain adaptation use some form of MMD for domain align-

ment. The standard nonlinear approaches include max-margin methods (nonlinear

SVMs) like Duan et al. (2009), instance selection based on MMD like Chattopadhyay

et al. (2013) and spectral methods like Kernel-PCA as in Long et al. (2014). This

chapter introduces a spectral based nonlinear method for unsupervised domain adap-

tation. In addition to domain adaptation, the model enhances classification using

manifold based embedding of the nonlinearly transformed data.

The chapter is organized as follows. Section (5.1) provides an introduction to the

proposed nonlinear model with an intuitive toy example. Section (5.2) outlines the

model by deriving the various components. This section also introduces a valida-

tion technique for unsupervised domain adaptation, in the absence of labeled target
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data. Section (5.3) provides the results of various experiments with the proposed

model. 50 different domain adaptation experiments were conducted to compare the

proposed model with existing competitive procedures for unsupervised domain adap-

tation. The validation procedure was evaluated using 7 popular domain adaptation

image datasets, including object, face, facial expression and digit recognition datasets.

5.1 A Nonlinear Model for Domain Adaptation

Nonlinear techniques are deployed in situations where the source and target do-

mains cannot be aligned using linear transformations. These techniques apply nonlin-

ear transformations on the source and target data in order to align them. For example,

Maximum Mean Discrepancy (MMD) is applied to learn nonlinear representations,

where the difference between the source and target distributions is minimized, as in

Pan et al. (2011). Even though nonlinear transformations may align the domains, the

resulting data may not be conducive to classification. If, after domain alignment, the

data were to be clustered based on similarity, it can lead to effective classification.

A two domain binary classification toy problem demonstrates this intuition. Fig-

ure (5.1a), depicts the two domains of a two-moon dataset. Figure (5.1b), shows the

data after it has been transformed by Kernel-PCA. Kernel-PCA projects the data

along nonlinear directions (‘curves’) of maximum variance, however the data gets

dispersed and there is no domain alignment. In Figure (5.1c), the data is presented

after the domains have been aligned using Maximum Mean Discrepancy (MMD). The

domains are now more aligned, however the classification enhancement is not guar-

anteed. Figure (5.1d), displays the data after it has been embedded using similarity-

based embedding along with MMD based domain alignment. This makes the data

more classification friendly. A classifier trained on the source will now provide en-

hanced accuracies on the target data.
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Figure 5.1: Two-class classification problem with with source data in blue and
target data in red. The target labels are unknown. (a) Plot of the original 2-
dimensional data, (b) The data after Kernel-PCA based that projects the data along
nonlinear directions of maximum variance, (c) The data after MMD based projection
that aligns the two domains, (d) The data after MMD+Similarity-based Embedding
that aligns the domains and also clusters the data to ensure easy classification. Images
based on Venkateswara et al. (2017a).

This chapter introduces the Nonlinear Embedding Transform (NET), which per-

forms a nonlinear transformation to align the source and target domains and also

cluster the data based on label-similarity. The NET algorithm is a spectral (eigen)

technique that requires certain parameters (like number of eigen bases, etc.) to be

pre-determined. These parameters are often given random values which need not

be optimal as in Pan et al. (2011); Long et al. (2013) and Long et al. (2014). This

chapter also outlines a validation procedure to fine-tune model parameters with a val-

idation set created from the source data. The two major contributions of this work

are outlined as follows:

83



• Nonlinear embedding transform (NET) algorithm for unsupervised DA.

• Validation procedure to estimate optimal parameters for an unsupervised DA

algorithm.

The following sections outline the NET model and compare its performance with

other state-of-the-art domain adaptation techniques across multiple datasets.

5.2 Nonlinear Embedding Transformation Model

The NET algorithm for unsupervised domain adaptation is outlined in the follow-

ing section. It is followed by the description of a cross-validation procedure that can

be used to estimate the model parameters for the NET algorithm.

As is usually the case for domain adaptation, two domains are considered; source

domain S and target domain T . The source domain is represented by Ds =

{(xs
i , y

s
i )}ns

i=1 ⊂ S and the target domain is represented by Dt = {(xt
i, y

t
i)}nt

i=1 ⊂ T .

In matrix notation, the source data is given by XS = [xs
1, . . . ,x

s
ns
] ∈ R

d×ns and

the target data by XT = [xt
1, . . . ,x

t
nt
] ∈ R

d×nt . Similarly, the corresponding la-

bels are represented by YS = [ys1, . . . , y
s
ns
] and YT = [yt1, . . . , y

t
nt
] for the source and

target data respectively. The source and target data have the same dimensional-

ity where, xs
i and xt

i ∈ R
d and the label space for the two domains is identical,

i.e., ysi and yti ∈ {1, . . . , C}. Additional terms are introduced for later use like,

X := [x1, . . . ,xn] = [XS,XT ], with n = ns +nt. In the unsupervised domain adapta-

tion setting, the target labels YT are unknown and the joint distributions of the two

domains are different with, PS(X, Y ) 6= PT (X, Y ).

In order to predict the target data labels, a classifier f(x) = p(y|x) is trained. The

posterior p(y|x) is the probability that data point x is assigned label y. The labels

ŶT = [ŷt1, . . . , ŷ
t
nt
] are the estimated target data labels corresponding to XT using a
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classifier trained on Ds and XT . A classifier trained with only the source data Ds,

may not accurately predict the target data labels because the joint distributions of

the source and target data are different. The NET algorithm modifies the source and

target data by projecting them to a common subspace using nonlinear transforma-

tions. In this subspace, the cross domain disparity is reduced and the data points are

clustered together based on the similarity of their labels. A classifier is then trained

using the projected source data which is then used to predict the target data labels.

5.2.1 Nonlinear Domain Alignment

A standard procedure to project data to a common subspace is through Principal

Component Analysis (PCA). A common basis for the source and target data is esti-

mated and this basis is used to linearly transform the source and target data. This

is often a baseline procedure applied to reduce domain disparity and can be viewed

as a näıve form of domain adaptation. PCA maximizes the variance of the projected

data by estimating a projection matrix U = [u1, . . . ,uk] ∈ R
d×k. The variance of the

projected data is given by
∑n

i ||U⊤xi||22, where U is determined by solving,

max
U⊤U=I

tr(U⊤XHX⊤U). (5.1)

H is the n×n centering matrix given by H = I− 1
n
1, I is an identity matrix and 1 is a

n×n matrix of 1s. The constraint ensures the principal components are orthonormal.

The Lagrangian for Equation (5.1) is given by L(U,Λ) = tr(U⊤XHX⊤U)+U⊤UΛ,

where Λ = diag(λ1, . . . , λk) are the Lagrangian constants. Differentiating with re-

spect to U and setting ∂L
∂U

= 0 leads to the standard eigen-decomposition problem

XHX⊤U = UΛ. The solution to Equation (5.1) is given by the standard eigen-value

problem XHX⊤U = UΛ, where Λ = diag(λ1, . . . , λk) and (λ1, . . . , λk) are the k-

largest eigen-values. The PCA projected data in the k-dimensional subspace is given
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by Z = [z1, . . . , zn] = U⊤X ∈ R
k×n.

The PCA provides a linear projection of the source and target data to a com-

mon subspace. When linear projection does not provide a good basis for projection

(i.e. cross-domain disparity is not reduced), often, Kernel-PCA (KPCA) is applied to

estimate a nonlinear projection of the data. In this case, data is mapped to a high-

dimensional (possibly infinite-dimensional) space defined by Φ(X) = [φ(x1), . . . , φ(xn)].

φ : Rd → H defines a mapping function and H is a RKHS (Reproducing Kernel

Hilbert Space). The dot product between the high-dimensional mapped vectors φ(x)

and φ(y), is estimated by the kernel-trick. The dot product is given by the positive

semi-definite (psd) kernel, k(x,y) = φ(x)⊤φ(y). The kernel k(.) can be viewed as

a similarity measure between x and y. The similarity measure between all pairs

of data points in X, is represented using the kernel gram matrix and is given by,

K = Φ(X)⊤Φ(X) ∈ R
n×n. The high-dimensional mapped data Φ(X) is projected

onto a subspace of eigen-vectors (directions of maximum nonlinear variance in the

RKHS). The leading k eigen-vectors in the RKHS are denoted using the representer

theorem U = Φ(X)A Kimeldorf and Wahba (1970). Matrices U and Φ(X) are never

estimated in practice since they are high dimensional or even infinite dimensional.

The coefficient matrix A is instead determined and the projected data is obtained

using A. The kernelized version of Equation (5.1) with A as the projection matrix

that is obtained by solving,

max
A⊤A=I

tr(A⊤KHK⊤A). (5.2)

Here, H is the n×n centering matrix given by H = I− 1
n
1, I is an identity matrix and

1 is a n × n matrix of 1s. The matrix of coefficients is A ∈ R
n×k and the nonlinear

projected data is given by Z = [z1, . . . , zn] = A⊤K ∈ R
k×n.

Implementing a nonlinear projection of data onto a common subspace may not
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necessarily account for domain disparity. In such a situation, domain alignment is

achieved using Maximum Mean Discrepancy (MMD) Gretton et al. (2009), which is

a standard nonparametric measure to estimate domain disparity. To ensure the joint

distributions of the source and target are aligned, the Joint Distribution Adaptation

(JDA) Long et al. (2013), algorithm which seeks to align both the the marginal and

conditional probability distributions of the projected data, is adopted. The marginal

distributions are aligned by estimating the coefficient matrix A, which minimizes:

min
A

∣

∣

∣

∣

∣

∣

∣

∣

1

ns

ns
∑

i=1

A⊤ki −
1

nt

n
∑

j=ns+1

A⊤kj

∣

∣

∣

∣

∣

∣

∣

∣

2

H

= tr(A⊤KM0K
⊤A). (5.3)

M0, is the MMD matrix which given by,

(M0)ij =































1
nsns

, xi,xj ∈ Ds

1
ntnt

, xi,xj ∈ Dt

−1
nsnt

, otherwise,

(5.4)

Likewise, the conditional distribution difference can also be minimized by introducing

matrices Mc, with c = 1, . . . , C, defined as,

(Mc)ij =
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xi ∈ D(c)
s ,xj ∈ D(c)

t

xj ∈ D(c)
s ,xi ∈ D(c)

t

0, otherwise.

(5.5)

Here, Ds and Dt are the subsets of source and target data points respectively. D(c)
s

is the subset of source data points whose class label is c and n
(c)
s = |D(c)

s |. Similarly,

D(c)
t is the subset of target data points whose class label is c and n

(c)
t = |D(c)

t |. For

the target data, since the labels are not known, the predicted target labels are used
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to determine D(c)
t . The target data labels are initialized using a classifier trained on

the source data and refined over iterations. Incorporating both the conditional and

marginal distribution alignments, the JDA model can be written as,

min
A

C
∑

c=0

tr(A⊤KMcK
⊤A). (5.6)

5.2.2 Similarity Based Embedding

Along with domain alignment, the NET algorithm seeks to project the data in a

classification friendly manner (easily classifiable). Laplacian eigenmaps are used in

order to cluster data points on the basis of class label similarity. For this purpose

an (n × n) adjacency matrix W is initialized. The entries in the adjacency matrix

capture the similarity between pairs of data points. These entries are used to weight

the distances between pairs of data points. W is defined as,

Wij :=















1 ysi = ysj or i = j

0 ysi 6= ysj or labels unknown.

(5.7)

The clustering is implemented by minimizing the sum of squared distances weighted

by the adjacency matrix. This is expressed as a minimization problem,

min
Z

1

2

∑

ij

∣

∣

∣

∣

∣

∣

∣

∣

zi√
di
− zj
√

dj

∣

∣

∣

∣

∣

∣

∣

∣

2

Wij = min
A

tr(A⊤KLK⊤A). (5.8)

Here, di =
∑

k Wik and dj =
∑

k Wjk. They constitute the entries of D the (n× n)

diagonal matrix. ||zi/
√
di−zj/

√

dj||2, is the squared normalized distance between the

projected data points zi and zj, which get clustered together when Wij = 1, (as they

belong to the same category). Since the target labels are unknown, distances involving

target data points are not weighted. The proposition to use predicted target labels

refined over multiple iterations did not provide satisfactory results. The normalized

distance provides a more robust clustering measure when compared to the standard
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Euclidean distance ||zi − zj||2, Chung (1997). By substituting Z = A⊤K, Equation

(5.8) can be expressed in terms of A, where L, denotes the symmetric positive semi-

definite graph laplacian matrix with L := I−D−1/2WD−1/2, and I being an identity

matrix.

5.2.3 Optimization Problem

The different components, namely, nonlinear projection in Equation (5.2), joint

distribution alignment in Equation (5.6) and similarity based embedding in Equation

(5.8) are now included to design the domain adaptation model. Maximizing Equation

(5.2) and minimizing Equations (5.6) and (5.8) is equivalent to maintaining Equation

(5.2) constant and minimizing Equations (5.6) and (5.8), according to the generalized

Raleigh quotient. However, minimizing the similarity embedding in Equation (5.8)

can result in a trivial solution with the projected vectors being embedded in a low

dimensional subspace. A new constraint is introduced in place of A⊤KHK⊤A = I,

in order to enforce subspace dimensionality. The NET is introduced as an optimiza-

tion problem obtained by minimizing Equations (5.6) and (5.8). The goal is still to

determine the (n × k) projection matrix, A. By including Frobenius norm based

regularization for a smooth solution, along with the dimensionality constraint, the

NET optimization problem is given by,

min
A⊤KDK⊤A=I

α.tr(A⊤K
C
∑

c=0

McK
⊤A) + β.tr(A⊤KLK⊤A) + γ||A||2F . (5.9)

The first term controls the domain alignment and its importance is given by α. The

second term weighted by β captures similarity based embedding. The third term

is the standard regularization (Frobenius norm) that ensures a smooth projection

matrix A and its importance is denoted by γ. As mentioned earlier, the constraint

on A (in place of A⊤KHK⊤A = I), prevents a trivial solution where the projection
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could collapse onto a subspace with dimensionality less than k, Belkin and Niyogi

(2003). In order to solve Equation (5.9) the Lagrangian is introduced,

L(A,Λ) =α.tr
(

A⊤K
C
∑

c=0

McK
⊤A
)

+ β.tr(A⊤KLK⊤A)

+ γ||A||2F + tr((I−A⊤KDK⊤A)Λ), (5.10)

where the Lagrangian constants are captured in the diagonal matrixΛ = diag(λ1, . . . , λk).

With the derivative set to zero, ∂L
∂A

= 0, a generalized eigen-value problem is obtained,

(

αK
C
∑

c=0

McK
⊤ + βKLK⊤ + γI

)

A = KDK⊤AΛ. (5.11)

The coefficient matrix A in Equation (5.9) is given by the k-smallest eigen-vectors of

Equation (5.11). The domain-aligned and embedded data points are then given by

Z = A⊤K. The NET algorithm is outlined in Algorithm 2.

5.2.4 Model Selection

In a supervised learning setting, validation data (subset of the training data with

labels) is used to estimate the optimal value of the model parameters. In unsupervised

domain adaptation the target labels are treated as unknown. When estimating the

optimum value for the model parameters, current domain adaptation methods appear

to inherently assume the availability of target labels Long et al. (2013), Long et al.

(2014) for validation. However, in the case of real world applications, when target

labels may not available, it becomes challenging to ensure optimal model parameters.

In the case of the NET model, there are 4 parameters (k, α, β, γ), that need to be

pre-determined. Since the source data is available and it contains labels, a subset of

the source data can be used for validation purposes. A technique using Kernel Mean

Matching (KMM) is introduced to sample the source data to create a validation set.

The KMM is based on the MMD and it is used to weight the source data points in
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Algorithm 2 Nonlinear Embedding Transform

Input: X, YS, constants α, β, regularization γ and projection dimension k. Number

of iterations to converge, T .

Output: Projection matrix A, projected data Z.

1: Compute kernel matrix K, for predefined kernel k(., .)

2: Define the adjacency matrix W (Equation (5.7))

3: Compute D = diag(d1, . . . , dn), where di =
∑

j Wij

4: Compute normalized graph laplacian L = I−D−1/2WD−1/2

5: Train a classifier with source data {[xs
1, . . . ,x

s
ns
], YS}

6: Estimate initial target labels ŷti for t ∈ {1, . . . , nt} with source classifier

7: Construct Mc for c ∈ {0, 1, . . . , C} based on Equations (5.4) and (5.5)

8: for i = 1 to T do

9: Solve Equation (5.11) and select k smallest eigen-vectors as columns of A

10: Estimate Z← A⊤K

11: Train a source classifier with modified data {[z1, . . . , zns
], YS}

12: Re-estimate labels ŷti for t ∈ {1, . . . , nt} with source classifier

13: Re-construct Mc for c ∈ {0, 1, . . . , C} based on Equations (5.4) and (5.5)

14: Solve Equation (5.11) and select k smallest eigen-vectors as columns of A

15: Estimate Z← A⊤K

16: Train a classifier with modified data {[z1, . . . , zns
], YS}

order to reduce the domain disparity between the source and target data Fernando

et al. (2013), Gong et al. (2013a). The KMM learns a set of weights for each of the

source data points. The source data points with large weights can be considered to

have a marginal distribution similar to that of the target data. These data points are

then chosen to constitute subset that can be used for cross validation purposes. The
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weights wi, i = 1, . . . , ns, are estimated by minimizing,
∣

∣

∣

∣

∣

∣

∣

∣

1

ns

ns
∑

i=1

wiφ(x
s
i )−

1

nt

nt
∑

j=1

φ(xt
j)

∣

∣

∣

∣

∣

∣

∣

∣

2

H

. (5.12)

In order to simplify the equation, κi :=
ns

nt

∑nt

j=1 k(x
s
i ,x

t
j), i = 1, . . . , ns and KSij

=

k(xs
i ,x

s
j) are defined. The minimization can now be represented as a quadratic pro-

gramming problem,

min
w

=
1

2
w⊤KSw − κ⊤w,

s.t. wi ∈ [0, B],

∣

∣

∣

∣

ns
∑

i=1

wi − ns

∣

∣

∣

∣

≤ nsǫ. (5.13)

In the first constraint the scope of discrepancy between source and target distributions

is limited, with B → 1, leading to an unweighted solution. The second constraint

ensures that w(x)PS(x), remains a probability distribution Gretton et al. (2009).

In conducting the experiments, 10% of the source data with the largest weights was

chosen to form the validation subset. The optimal values of (α, β, γ, k), were estimated

using the validation set. For fixed values of (α, β, γ, k), the NET model is trained

using the source data (without the validation set) and the target data. The model is

tested on the validation subset since it has labels. A grid search for the parameters is

conducted to estimate the optimal values yielding the highest validation accuracies.

5.3 Experimental Analysis of the NET Model

In the Experiments section, the NET algorithm is compared with other nonlin-

ear domain adaptation procedures. The NET algorithm is evaluated across various

datasets like the Office, Office-Caltech, COIL, MMI and CKPlus, MNIST and USPS.

5.3.1 Experimental Setup

The NET model was evaluated extensively with 7 different datasets. The details

of the datasets are outlined in Table (5.1).
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Table 5.1: Statistics for the benchmark datasets

Dataset Type #Samples #Features #Classes Subsets

MNIST Digit 2,000 256 10 MNIST

USPS Digit 1,800 256 10 USPS

CKPlus Face Exp. 1,496 4096 6 CKPlus

MMI Face Exp. 1,565 4096 6 MMI

COIL20 Object 1,440 1,024 20 COIL1, COIL2

PIE Face 11,554 1,024 68 P05, ..., P29

Ofc-Cal SURF Object 2,533 800 10 A, C, W, D

Ofc-Cal Deep Object 2,505 4096 10 A, C, W, D

MNIST-USPS datasets: This dataset has already been discussed in the previous

chapter. It is presented here again for the sake of completeness. The digit datasets

MNIST and USPS consist of images of individual digits from 0 to 9. They are

benchmark datasets for handwritten digit recognition. In the following experiments,

a subset of these datasets (2000 images from MINST and 1800 images from USPS )

based on Long et al. (2014) has been used. The images are represented as vectors of

length 256 after resizing the images to 16× 16 pixels. These domains are referred to

as MNIST and USPS respectively.

CKPlus-MMI dataset: This dataset has already been discussed in the previous

chapter. It is presented here again for the sake of completeness. The CKPlus Lucey

et al. (2010) and MMI Pantic et al. (2005) are popular datasets for facial expression

recognition. From these datasets, six categories were selected viz., {anger, disgust,

fear, happy, sad, and surprise}, from video frames with the most intense expression

(peak frames) for every facial expression video sequence. This yields around 1500

images for each dataset with around 250 images per category. These domains are

referred to as CKPlus and MMI. A deep neural network was used to extract feature

vectors from the images. Features extracted using pre-trained convolutional neural
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networks (CNN) have shown astonishingly good results across a wide array of ap-

plications Razavian et al. (2014). Therefore, the deep CNN developed by Simonyan

and Zisserman Simonyan and Zisserman (2014) was deployed as an ‘off-the-shelf’ fea-

ture extractor. The outputs of the first fully connected layer from the 16 weight

layer model with dimension 4096 were used as features. These were reduced to 500

dimensions using PCA.

COIL20 dataset: It is an object recognition dataset which consists of 20 categories

with data belonging to two domains, COIL1 and COIL2. The domains consist of images

of objects captured from views that are 5 degrees apart. The images are 32×32 pixels

with gray scale values Long et al. (2013) that are vectorized to 1024 dimensions.

PIE dataset: The “Pose, Illumination and Expression” (PIE) dataset consists of

face images ( 32×32 pixels) of 68 individuals. The images were captured with different

head-pose, illumination and expression. Along the lines of Long et al. (2013), 5

subsets were selected with differing head-pose to create 5 domains, namely, P05 (C05,

left pose), P07 (C07, upward pose), P09 (C09, downward pose), P27 (C27, frontal

pose) and P29 (C29, right pose).

Office-Caltech dataset: This dataset has already been discussed in the previous

chapter. It is presented here again for the sake of completeness. This is currently

the most popular benchmark dataset for object recognition in the domain adaptation

computer vision community. The dataset consists of images of everyday objects. It

consists of 4 domains; Amazon, Dslr and Webcam from the Office dataset and Caltech

domain from the Caltech-256 dataset. The Amazon domain has images downloaded

from the www.amazon.com website. The Dslr and Webcam domains have images

captured using a DSLR camera and a webcam respectively. The Caltech domain is

a subset of the Caltech-256 dataset that was created by selecting categories common

with the Office dataset. The Office-Caltech dataset has 10 categories of objects and
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a total of 2533 images (data points). Two feature types were used for evaluation with

the Office-Caltech dataset; (i) 800-dimensional SURF features Gong et al. (2012a),

(ii) Deep features. The deep features are extracted using a pre-trained network similar

to the CKPlus-MMI datasets.

5.3.2 Baselines for comparison

The NET algorithm is compared with the following baseline and state-of-the-art

methods. Similar to NET, the TCA, TJM and JDA are all spectral (eigen) methods.

Table 5.2: Baseline methods that are compared with the NET.

Method Reference

SA Subspace Alignment Fernando et al. (2013)

CA Correlation Alignment Sun et al. (2015a)

GFK Geodesic Flow Kernel Gong et al. (2012a)

TCA Transfer Component Analysis Pan et al. (2011)

TJM Transfer Joint Matching Long et al. (2014)

JDA Joint Distribution Adaptation Long et al. (2013)

All the above four algorithms apply MMD to align the source and target datasets,

however the NET, in addition uses nonlinear embedding to enhance classification.

In a setting similar to Equation (5.11), TCA, TJM and JDA, solve for A. But

unlike NET, they do not incorporate the similarity based embedding term. Also,

α = 1, is fixed for all the three algorithms. Therefore, these models only have 2 free

parameters (γ and k), that need to be pre-determined in contrast to NET, which

has 4 parameters, (α, β, γ, k). Since TCA, TJM and JDA, are all quite similar to

each other and they have the same model parameters, for the sake of brevity model

selection (estimating optimal model parameters) is evaluated using cross validation

for only JDA and NET. The other algorithms, SA, CA and GFK, do not have any

critical free model parameters that need to be pre-determined.
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In the experiments, NETv is treated as a special case of the NET, with model

parameters (α, β, γ, k), being determined using a validation set derived from Equation

(5.13). Likewise, JDAv is a special case of JDA, where (γ, k), are determined using a

validation set derived from Equation (5.13). There is no theoretical guarantee to the

effectiveness of this validation procedure. However, its effectiveness can be measured

empirically by comparing it with a procedure that uses target data as a validation

set. The results obtained using target data as a validation subset are represented by

NET in the figures and tables. For the rest of the algorithms (SA, CA, GFK, TCA,

TJM and JDA), the parameter settings described in their respective works were used.

5.3.3 Experimental Details

The same experimental protocol as in Gong et al. (2012a); Long et al. (2014)

is followed to ensure a fair comparison with existing methods. 50 different domain

adaptation experiments were conducted with the previously mentioned datasets. In

each of these unsupervised domain adaptation experiments, there is one source do-

main (data points and labels) and one target domain (data points only). Since Mc

is refined over multiple iterations, 10 iterations were run to converge to the predicted

test/validation labels. For the kernel function k(.), a Gaussian kernel was used with

a standard width equal to the median of the squared distances over the dataset as

described in Gretton et al. (2009). For all the experiments, the projected target data

was tested using a 1-Nearest Neighbor (NN) classifier that was trained using the pro-

jected source data. Since it does not require tuning of cross-validation parameters, a

NN classifier was chosen as in Gong et al. (2012a); Long et al. (2014). The percentage

of correctly classified target data points are indicated as target recognition accuracies.
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Table 5.3: Target recognition accuracies (%) for domain adaptation experiments on
the digit and face datasets. {MNIST(M), USPS(U), CKPlus(CK), MMI(MM), COIL1(C1)
and COIL2(C2). M→U implies M is source domain and U is target domain. The best
and second best results in every experiment (row) are highlighted in bold and italic
respectively. The shaded columns indicate accuracies obtained using model selection.

Expt. SA CA GFK TCA TJM JDA JDAv NET NETv

M→U 67.39 59.33 66.06 60.17 64.94 67.28 71.94 75.39 72.72

U→M 51.85 50.80 47.40 39.85 52.80 59.65 59.65 62.60 61.35

C1→C2 85.97 84.72 85.00 90.14 91.67 92.64 95.28 93.89 90.42

C2→C1 84.17 82.78 84.72 88.33 89.86 93.75 93.89 92.64 88.61

CK→MM 31.12 31.89 28.75 32.72 30.35 29.78 25.82 29.97 30.54

MM→CK 39.75 37.74 37.94 31.33 40.62 28.39 26.79 45.83 40.08

P05→P07 26.64 40.33 26.21 40.76 10.80 58.81 77.53 77.84 69.00

P05→P09 27.39 41.97 27.27 41.79 7.29 54.23 66.42 70.96 57.41

P05→P27 30.28 55.36 31.15 59.60 15.14 84.50 90.78 91.86 84.68

P05→P29 19.24 29.04 17.59 29.29 4.72 49.75 52.70 52.08 45.40

P07→P05 25.42 41.51 25.27 41.78 16.63 57.62 74.70 74.55 57.92

P07→P09 47.24 53.43 47.37 51.47 21.69 62.93 79.66 77.08 54.60

P07→P27 53.47 63.77 54.22 64.73 26.04 75.82 81.14 83.84 86.09

P07→P29 26.84 35.72 27.02 33.70 10.36 39.89 63.73 69.24 47.30

P09→P05 23.26 35.47 21.88 34.69 14.98 50.96 77.16 73.98 68.67

P09→P07 41.87 47.08 43.09 47.70 27.26 57.95 78.39 79.01 67.34

P09→P27 44.97 53.71 46.38 56.23 27.55 68.45 84.92 83.48 87.47

P09→P29 28.13 34.68 26.84 33.09 8.15 39.95 65.93 70.04 67.65

P27→P05 35.62 51.17 34.27 55.61 25.96 80.58 92.83 93.07 92.44

P27→P07 63.66 66.05 62.92 67.83 28.73 82.63 90.18 89.99 93.68

P27→P09 72.24 73.96 73.35 75.86 38.36 87.25 90.14 89.71 90.20

P27→P29 36.03 40.50 37.38 40.26 7.97 54.66 72.18 76.84 79.53

P29→P05 23.05 26.89 20.35 27.01 9.54 46.46 60.20 67.32 52.67

P29→P07 26.03 31.74 24.62 29.90 8.41 42.05 71.39 70.23 57.52

P29→P09 27.76 31.92 28.49 29.90 6.68 53.31 74.02 74.63 62.81

P29→P27 30.31 34.70 31.27 33.67 10.06 57.01 76.66 75.43 80.98

Average 41.14 47.55 40.65 47.59 26.79 60.63 72.85 74.67 68.73
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Table 5.4: Target recognition accuracies (%) for domain adaptation experiments on
the Office-Caltech dataset with SURF and Deep features. {Amazon(A), Webcam(W),
Dslr(D), Caltech(C)}. A→W implies A is source and W is target. The best and
second best results in every experiment (row) are highlighted in bold and italic
respectively. The shaded columns indicate accuracies obtained using model selection.

SURF Features
Expt:

SA CA GFK TCA TJM JDA JDAv NET NETv

C→A 43.11 36.33 45.72 44.47 46.76 44.78 45.41 46.45 46.24

D→A 29.65 28.39 26.10 31.63 32.78 33.09 29.85 39.67 35.60

W→A 32.36 31.42 27.77 29.44 29.96 32.78 29.33 41.65 39.46

A→C 38.56 33.84 39.27 39.89 39.45 39.36 39.27 43.54 43.10

D→C 31.88 29.56 30.45 30.99 31.43 31.52 31.08 35.71 34.11

W→C 29.92 28.76 28.41 32.15 30.19 31.17 31.43 35.89 32.77

A→D 37.58 36.94 34.40 33.76 45.22 39.49 31.85 40.76 36.31

C→D 43.95 38.22 43.31 36.94 44.59 45.22 40.13 45.86 36.31

W→D 90.45 85.35 82.17 85.35 89.17 89.17 88.53 89.81 91.72

A→W 37.29 31.19 41.70 33.90 42.03 37.97 38.98 44.41 35.25

C→W 36.27 29.49 35.59 32.88 38.98 41.69 37.97 44.41 33.56

D→W 87.80 83.39 79.66 85.42 85.42 89.49 86.78 87.80 90.51

Average 44.90 41.07 42.88 43.07 46.33 46.31 44.22 49.66 46.24

Deep Features
Expt:

SA CA GFK TCA TJM JDA JDAv NET NETv

C→A 88.82 91.12 90.60 89.13 91.01 90.07 89.34 92.48 90.70

D→A 84.33 86.63 88.40 88.19 88.72 91.22 90.18 91.54 91.43

W→A 84.01 82.76 88.61 86.21 88.09 91.43 87.04 92.58 91.95

A→C 80.55 82.47 81.01 75.53 78.08 83.01 78.27 83.01 82.28

D→C 76.26 75.98 78.63 74.43 76.07 80.09 78.17 82.10 83.38

W→C 78.90 74.98 76.80 76.71 79.18 82.74 78.90 82.56 82.28

A→D 82.17 87.90 82.80 82.17 87.26 89.81 77.07 91.08 80.89

C→D 80.89 82.80 77.07 75.80 82.80 89.17 80.25 92.36 90.45

W→D 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.36 100.00

A→W 82.37 80.34 84.41 76.61 87.12 87.12 79.32 90.85 87.46

C→W 77.29 79.32 78.64 78.31 88.48 85.76 77.97 90.85 84.07

D→W 98.98 99.32 98.31 97.97 98.31 98.98 98.98 99.66 99.66

Average 84.55 85.30 85.44 83.42 87.09 89.12 84.63 90.70 88.71
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5.3.4 Parameter Estimation Study

The procedure for model selection is evaluated below. There are 4 parameters

(k, α, β, γ), for the NET algorithm and 2 parameters (k, γ), for the JDA that need to

be pre-determined. To determine these parameters a validation subset is created from

the source data by weighting them using Equation (5.13) and selecting 10% of the

source data points with the largest weights. This validation subset has a distribution

similar to the target and it can be used to validate the optimal values for the model

parameters (α, β, γ, k) since the source data points have labels. A grid search is

conducted in the parameter space of k ∈ {10, 20, . . . , 100, 200} and α, β, γ from the

set {0, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10}. Although a unique set

of parameters can be evaluated for every domain adaptation experiment, for the sake

of brevity, one set of parameters is presented for every dataset. Once the optimum

parameters are evaluated using cross-validation, the NET model is applied on the

entire source data (data and labels) and the target data (data only) to estimate the

projected source and target data points. The target recognition accuracies obtained

are represented as shaded columns JDAv and NETv in Tables (5.3) and (5.4).

In order to evaluate the proposed model selection method, the parameters were

also determined using the target data as a validation set. The NET column in Ta-

bles (5.3) and (5.4) depicts these results. The target recognition accuracies for the

NET columns can be considered as the best accuracies for the NET model. The

JDAv and NETv should be compared with the NET column to evaluate the proposed

cross-validation procedure. For the rest of the column values, SA, CA, GFK, TCA,

TJM and JDA, their model parameters were fixed based on their respective papers.

The target recognition accuracies for NETv is higher than those of the other domain

adaptation methods and is nearly comparable to the NET. This is an empirical vali-
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dation for the effectiveness of the cross-validation procedure. Interestingly, in Table

(5.3), the JDAv has better performance than the JDA. This highlights the fact that

a validation procedure helps select the optimum model parameters. Both these re-

sults demonstrate that the proposed model selection procedure is a valid technique

for evaluating an unsupervised domain adaptation algorithm in the absence of target

data labels. Figures (5.2a) to (5.2d), depict the variation of average validation set

accuracies for the model parameters in the NET model. Similarly, Figures (5.2e) and

(5.2f), depict the variation of average validation set accuracies for the model param-

eters in the JDA model. The optimal parameters were chosen based on the highest

validation set accuracies for each of the datasets.

5.3.5 NET Algorithm Evaluation

The results of the NET algorithm are depicted under the NET column in Tables

(5.3) and (5.4). The parameters used to obtain these results are depicted in Table

(5.5). NET consistently outperforms non-spectral methods like SA, CA and GFK.

Also, the accuracies obtained with the NET algorithm are better than any of the other

spectral methods (TCA, TJM and JDA). These results confirm that embedding data

based on similarity along with domain alignment improves target data classification.

Table 5.5: Parameters Used for the NET Model

Dataset α β γ k

MNIST & USPS 1.0 0.01 1.0 20

MMI & CK+ 0.01 0.01 1.0 20

COIL 1.0 1.0 1.0 60

PIE 10.0 0.001 0.005 200

Ofc-SURF 1.0 1.0 1.0 20

Ofc-Deep 1.0 1.0 1.0 20
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(a) # bases k (b) MMD weight α

(c) Embed weight β (d) Regularization γ

(e) # bases k (f) Regularization γ

Figure 5.2: NET and JDA cross-validation study. Each of the figures depicts the
recognition accuracies over the source-based validation set. When studying a pa-
rameter (say k), the remaining parameters (α, β, γ) are fixed at the optimum value.
The legend is, Digit (Di), Coil (Cl), MMI&CK+ Face (Fc), PIE (Pi), Office-Caltech
SURF (O-S) and Office-Caltech Deep (O-D). The top 4 figures are for the NET cross-
validation study for (k, α, β, γ). The bottom 2 figures are for the JDA cross-validation
study (k, γ). Images based on Venkateswara et al. (2017a)
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5.4 Conclusions and Summary

The average accuracies obtained with JDA and NET using the validation set are

comparable to the best accuracies with JDA and NET. This empirically validates

the model selection proposition. However, there is no theoretical guarantee that the

parameters selected are the best. In the absence of theoretical validation, further

empirical analysis is advised when using the proposed technique for model selection.

This chapter introduced the Nonlinear Embedding Transform algorithm for unsu-

pervised domain adaptation. The NET algorithm implemented domain adaptation by

aligning the joint distributions of the source and the target using MMD. The aligned

distributions were embedded onto a manifold to ensure enhanced classification. The

chapter also introduced a validation procedure to estimate model parameters in the

absence of labeled target data. The experimental analysis demonstrated that the

NET performs favorably when compared with competitive visual domain adaptation

methods across multiple datasets.
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Chapter 6

HIERARCHICAL FEATURE SPACES FOR DOMAIN ADAPTATION

Deep learning models extract hierarchical patterns from large amounts of data as

demonstrated in Krizhevsky et al. (2012). These feature representations have been

found to be highly discriminative in nature. Since a deep network has a hierarchical

set of layers with nonlinear functions at multiple layers, the deep network can be

viewed as a function with very high nonlinearity. Since they are multilayer networks,

they are also termed as hierarchical methods.

Deep learning is a relatively new area in computer vision when compared to hand-

crafted (shallow) feature extraction methods like SIFT, HOG or SURF. Transfer

learning based on deep networks is still in its formative years, although there has been

a significant amount of work in the last few years. Deep learning has been applied to

domain adaptation and has shown remarkable results compared to non-deep learning

procedures. Chapter (3) discusses the different approaches to deep learning based

domain adaptation. These include a direct extension of shallow methods to deep

networks, as in Tzeng et al. (2014) and Long et al. (2015) and adversarial methods

like Ganin et al. (2016).

This chapter introduces a novel unsupervised domain adaptation procedure based

on a deep network that determines hash values. The deep network is trained with

labeled source data and unlabeled target data to learn hash values for the inputs.

The source data is trained using a supervised hash based loss and the target data is

trained with an unsupervised hash based entropy loss. The chapter is organized as

follows. Section (6.1) provides an introduction to the proposed hierarchical model for

unsupervised domain adaptation. It outlines the main contributions of the approach
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and motivates the reason for a hashing based approach. Section (6.2) describes the

deep learning model, highlighting the different components and their role. This is fol-

lowed by a discussion on the experiments that were conducted to evaluate the model,

in Section (6.3). Two classes of experiments were conducted, (i) unsupervised domain

adaptation experiments and, (ii) unsupervised hashing experiments, to evaluate all

aspects of the model.

6.1 A Hierarchical Feature Model for Domain Adaptation

Conventional shallow transfer learning methods develop their models in two stages,

feature extraction followed by domain adaptation. The features are fixed and then

a model is trained to align the source and target domains, as in Duan et al. (2009)

and Saenko et al. (2010). On the other hand, deep transfer learning procedures

exploit the feature learning capabilities of deep networks to learn transferable feature

representations for domain adaptation and have demonstrated impressive empirical

performance. This chapter outlines a deep hashing network for unsupervised domain

adaptation. In unsupervised domain adaptation, there are no labels for the target

data. It is therefore difficult to train a deep network with target data in a supervised

manner. The proposed model overcomes this challenge by learning hash values for

the data inputs.

The explosive growth of digital data in the modern era has posed fundamental

challenges regarding their storage, retrieval and computational requirements. Against

this backdrop, hashing has emerged as one of the most popular and effective tech-

niques due to its fast query speed and low memory cost Wang et al. (2014). Hashing

techniques transform high dimensional data into compact binary codes and generate

similar binary codes for similar data items. Motivated by this fact, a deep neural

network is trained to output binary hash codes (instead of probability values), which
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can be used for classification. There are two advantages to estimating a hash value

instead of a standard probability vector in the final layer of the network:

1. Hash values enable efficient storage and retrieval of data due to their fast query

speed and low memory costs.

2. During prediction, the hash code of a test sample can be compared against the

hash codes of the training samples to arrive at a more robust prediction.

In this chapter, a novel deep learning framework is proposed called Domain Adap-

tive Hashing (DAH), to learn informative hash codes to address the problem of un-

supervised domain adaptation. A unique loss function is described to train the deep

network with the following components:

1. Supervised hash loss for labeled source data, which ensures that source samples

belonging to the same class have similar hash codes

2. Unsupervised entropy loss for unlabeled target data, which imposes each target

sample to align closely with exactly one of the source categories and be distinct

from the other categories

3. A loss based on multi-kernel Maximum Mean Discrepancy (MK-MMD), which

seeks to learn transferable features within the layers of the network to minimize

the distribution difference between the source and target domains.

Figure (6.1) illustrates the different layers of the DAH and the components of the loss

function.

6.2 Domain Adaptation Through Hashing

In unsupervised domain adaptation, as in the previous chapters, two domains are

considered; source and target. The source consists of labeled data, Ds = {xs
i , y

s
i }ns

i=1
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and the target has only unlabeled data Dt = {xt
i}nt

i=1. The data points x∗
i belong

to X , where X is some input space. The corresponding labels are represented by

y∗i ∈ Y := {1, . . . , C}. The paradigm of domain adaptive learning attempts to address

the problem of domain-shift in the data, where the data distributions of the source

and target are different, i.e. Ps(X, Y ) 6= Pt(X, Y ) for random variables X ∈ X and

Y ∈ Y . The domain-disparity notwithstanding, the goal is to train a deep neural

network classifier ψ(.), that can predict the labels {ŷti}nt

i=1, for the target data.

The neural network is implemented as a deep CNN which consists of 5 convolution

layers conv1 - conv5 and 3 fully connected layers fc6 - fc8 followed by a loss layer.

In this model, a hashing layer hash-fc8 is introduced in place of the standard fully

connected fc8 layer to output a binary code hi, for every data point xi, where hi ∈

{−1,+1}d. Two loss functions direct the hash-fc8 layer, (i) supervised hash loss for

the source data, (ii) unsupervised entropy loss for the target data. The supervised

hash loss is meant to ensure the hash values are distinct and discriminatory, i.e. if

xi and xj belong to the same category, their hash values hi and hj are similar and

different otherwise. The unsupervised entropy loss aligns the target hash values with

source hash values based on the similarity of their feature representations. The output

of the network is represented as ψ(x), where ψ(x) ∈ R
d, which is converted to a hash

code h = sgn(ψ(x)), where sgn(.) is the sign function. Once the network has been

trained, the probability of x being assigned a label y is given by f(x) = p(y|h). The

network was trained using Ds and Dt and the target data labels ŷt∗ were predicted

using f(.).

In order to address the issue of domain-shift, the feature representations of the

target and the source need to be aligned. It was achieved by reducing the domain

discrepancy between the source and target feature representations at multiple layers

of the network. In the following subsections, the design of the domain adaptive hash
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(DAH) network is discussed in detail.

Figure 6.1: The Domain Adaptive Hash (DAH) network that outputs hash codes
for the source and the target. The network is trained with a batch of source and
target data. The convolution layers conv1 - conv5 and the fully connected layers fc6
and fc7 are fine tuned from the VGG-F network. The MK-MMD loss trains the DAH
to learn feature representations which align the source and the target. The hash-fc8
layer is trained to output vectors of d dimensions. The supervised hash loss drives
the DAH to estimate a unique hash value for each object category. The unsupervised
entropy loss aligns the target hash values to their corresponding source categories.
Best viewed in color. Image based on Venkateswara et al. (2017b).

6.2.1 Addressing Domain Disparity

Deep learning methods have been very successful in domain adaptation with state-

of-the-art algorithms Ganin et al. (2016); Long et al. (2015, 2016b); Tzeng et al.

(2015a) in recent years. The feature representations transition from generic to task-

specific as one goes up the layers of a deep CNN Yosinski et al. (2014). The convo-

lution layers conv1 to conv5 have been shown to be generic feature extractors and

so, the extracted features are readily transferable, whereas the feature extractors in

the fully connected layers are more task-specific and need to be adapted before they

can be transferred. In the DAH algorithm, the MK-MMD loss is minimized to reduce

the domain difference between the source and target feature representations for fully
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connected layers, F = {fc6, fc7, fc8}. Such a loss function has been used in previous

research Long et al. (2015, 2016b). The multi-layer MK-MMD loss is given by,

M(Us,Ut) =
∑

l∈F

d2k(U l
s,U l

t), (6.1)

where, U l
s = {us,l

i }ns

i=1 and U l
t = {ut,l

i }nt

i=1 are the set of output representations for the

source and target data at layer l, where u∗,l
i is the output representation of x∗

i for the

lth layer. The final layer outputs are denoted as Us and Ut. The MK-MMD measure

d2k(.) is the multi-kernel maximum mean discrepancy between the source and target

representations, Gretton et al. (2012). For a nonlinear mapping φ(.) associated with

a reproducing kernel Hilbert space Hk and kernel k(.), where k(x,y) = 〈φ(x), φ(y)〉,

the MMD is defined as,

d2k(U l
s,U l

t) =
∣

∣

∣

∣

∣

∣
E[φ(us,l)]− E[φ(ut,l)]

∣

∣

∣

∣

∣

∣

2

Hk

. (6.2)

The characteristic kernel k(.), is determined as a convex combination of κ PSD kernels,

{km}κm=1, K :=
{

k : k =
∑κ

m=1 βmkm,
∑κ

m=1 βm = 1, βm ≥ 0, ∀m
}

. According to

Long et al. (2016b), βm is to 1/κ and it works well in practice.

6.2.2 Supervised Hash Loss

The Hamming distance for a pair of hash values hi and hj has a unique relationship

with the dot product 〈hi,hj〉, given by: distH(hi,hj) =
1
2
(d− h⊤

i hj), where d is the

hash length. The dot product 〈hi,hj〉 can be treated as a similarity measure for

the hash codes. Larger the value of the dot product (high similarity), smaller is the

distance distH and smaller the dot product (low similarity), larger is the distance

distH . Let sij ∈ {0, 1} be the similarity between xi and xj. If xi and xj belong to

the same category, sij = 1 and 0, otherwise. The probability of similarity between

xi and xj given the corresponding hash values hi and hj, can be expressed as a
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likelihood function, given by,

p(sij|hi,hj) =















σ(h⊤
i hj), sij = 1

1− σ(h⊤
i hj), sij = 0,

(6.3)

where, σ(x) = 1
1+e−x is the sigmoid function. As the dot product 〈hi,hj〉 increases,

the probability of p(sij = 1|hi,hj) also increases, i.e., xi and xj belong to the same

category. As the dot product decreases, the probability p(sij = 1|hi,hj) also de-

creases, i.e., xi and xj belong to different categories. The (ns× ns) similarity matrix

S = {sij}, is constructed for the source data with the provided labels, where sij = 1

if xi and xj belong to the same category and 0, otherwise. Let H = {hi}ns

i=1 be the

set of source data hash values. If the elements of H are assumed to be i.i.d., the

negative log likelihood of the similarity matrix S given H can be written as,

min
H
L(H) = −log p(S|H)

= −
∑

sij∈S

(

sijh
⊤
i hj − log

(

1 + exp(h⊤
i hj)

)

)

. (6.4)

By minimizing Equation (6.4), the hash values H can be determined for the source

data which are consistent with the similarity matrix S. The hash loss has been used in

previous research for supervised hashing Li et al. (2016); Zhu et al. (2016). Equation

(6.4) is a discrete optimization problem that is challenging to solve. A relaxation is

introduced on the discrete constraint hi ∈ {−1,+1}d by instead solving for ui ∈ R
d,

where Us = {ui}ns

i=1 is the output of the network and ui = ψ(xi) (the superscript

denoting the domain is dropped for ease of representation). However, the continuous

relaxation gives rise to (i) approximation error, when 〈hi,hj〉 is substituted with

〈ui,uj〉 and, (ii) quantization error, when the resulting real codes ui are binarized

Zhu et al. (2016). The approximation error is accounted for by having a tanh(.) as

the final activation layer of the neural network, so that the components of ui are
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bounded between −1 and +1. In addition, a quantization loss ||ui − sgn(ui)||22 is

introduced along the lines of Gong et al. (2013c), where sgn(.) is the sign function.

The continuous optimization problem for supervised hashing can now be outlined as;

min
Us

L(Us) =−
∑

sij∈S

(

siju
⊤
i uj − log

(

1 + exp(u⊤
i uj)

)

)

+
ns
∑

i=1

∣

∣

∣

∣ui − sgn(ui)
∣

∣

∣

∣

2

2
. (6.5)

6.2.3 Unsupervised Entropy Loss

In the absence of target data labels, the similarity measure 〈ui,uj〉, is used to

guide the network to learn discriminative hash values for the target data. An ideal

target output ut
i, needs to be similar to many of the source outputs from the jth

category
(

{usj
k }Kk=1

)

. It is assumed without loss of generality, that there exist K

source data points for every category j where, j ∈ {1, . . . , C} and u
sj
k is the kth

source output from category j. In addition, ut
i must be dissimilar to most other

source outputs u
sl
k belonging to a different category (j 6= l). Enforcing similarity

with all the K data points makes for a more robust target data category assignment.

A probability measure to capture this intuition is outlined as follows. Let pij be the

probability that input target data point xi is assigned to category j where,

pij =

∑K
k=1 exp(u

t
i
⊤
u

sj
k )

∑C
l=1

∑K
k=1 exp(u

t
i
⊤
u

sl
k )

(6.6)

The exp(.) is introduced for ease of differentiability and the denominator ensures

∑

j pij = 1. When the target data point output is similar to one category only and

dissimilar to all the other categories, the probability vector pi = [pi1, . . . , piC ]
T tends

to be a one-hot vector. A one-hot vector can be viewed as a low entropy realization

of pi. It can therefore be envisaged that all the pi are one-hot vectors (low entropy

probability vectors), where the target data point outputs are similar to source data
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point outputs in one and only one category. To this end a loss is introduced to capture

the entropy of the target probability vectors. The entropy loss for the network outputs

is given by,

H(Us,Ut) = −
1

nt

nt
∑

i=1

C
∑

j=1

pijlog(pij) (6.7)

Minimizing the entropy loss yields probability vectors pi that tend to be one-hot vec-

tors, i.e., the target data point outputs are similar to source data point outputs from

any one category only. Enforcing similarity with K source data points from a cate-

gory, guarantees that the hash values are determined based on a common similarity

between multiple source category data points and the target data point.

6.2.4 The Domain Adaptive Hash (DAH) Network

A model for deep unsupervised domain adaptation is proposed based on hashing

that incorporates unsupervised domain adaptation between the source and the tar-

get in Equation (6.1), the supervised hashing for the source in Equation (6.5) and

unsupervised hashing for the target in Equation (6.7) in a deep convolutional neural

network. The DAH network is trained to minimize

min
U
J = L(Us) + γM(Us,Ut) + ηH(Us,Ut), (6.8)

where, U := {Us ∪ Ut} and (γ, η) control the importance of domain adaptation (6.1)

and target entropy loss (6.7) respectively. The hash values H are obtained from the

output of the network using H = sgn(U). The loss terms in Equation (6.5) and

Equation (6.7) are determined in the final layer of the network with the network

output U . The MK-MMD loss in Equation (6.1) is determined between layer outputs

{U l
s,U l

t} at each of the fully connected layers F = {fc6, fc7, fc8}, where the linear

time estimate for the unbiased MK-MMD was adopted as described in Gretton et al.
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(2012) and Long et al. (2015). The DAH is trained using standard back-propagation.

The detailed derivation of the derivative of Equation (6.8) w.r.t. U is provided in

Appendix B.

6.2.5 Network Architecture

Owing to the paucity of images in a domain adaptation setting, the need to train

a deep CNN with millions of images was circumvented by adapting the pre-trained

VGG-F Chatfield et al. (2014) network to the DAH. The VGG-F was trained on the

ImageNet 2012 dataset and it consists of 5 convolution layers (conv1 - conv5) and 3

fully connected layers (fc6, fc7, fc8). The hashing layer hash-fc8 was introduced that

outputs vectors in R
d in the place of fc8. A tanh() layer was introduced To account for

the hashing approximation. However, the issue of vanishing gradients Hochreiter et al.

(2001) was encountered when using tanh() as it saturates with large inputs. Therefore

the tanh() is prefaced with a batch normalization layer which prevents the tanh() from

saturating. In effect, the fc8 is replaced by hash-fc8 := {fc8→ batch-norm→ tanh()}.

The hash-fc8 provides greater stability when fine-tuning the learning rates than the

deep hashing networks Li et al. (2016); Zhu et al. (2016). Figure (6.1) illustrates the

proposed DAH network.

6.3 Experimental Analysis of the DAH Model

This section discusses the experiments that were conducted to evaluate the DAH

algorithm. Since a domain adaptation technique based on hashing has been pro-

posed, the DAH is evaluated for objection recognition accuracies for unsupervised

domain adaptation and the discriminatory capabilities of the learned hash codes for

unsupervised domain adaptive hashing are also studied.
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6.3.1 Experimental Datasets

Office Saenko et al. (2010): This is currently the most popular benchmark dataset

for object recognition in the domain adaptation computer vision community. The

dataset consists of images of everyday objects in an office environment. It has 3

domains; Amazon (A), Dslr (D) and Webcam (W). The Amazon domain has images

downloaded from amazon.com. The Dslr and Webcam domains have images captured

using a DSLR camera and a webcam respectively. The dataset has around 4, 100

images with a majority of the images (2816 images) in the Amazon domain. The

common evaluation protocol of different pairs of transfer tasks for this dataset Long

et al. (2015, 2016b) was adopted. 6 transfer tasks were considered for all combinations

of source and target pairs for the 3 domains. A → D, D → A, A →W, W → A,

D→W and W→ D. A→ D implies, A is the source and D is the target.

Office-Home1: This is a new dataset that was designed, developed and released

to the research community as part of this dissertation. It consists of 4 domains Art

(Ar), Clipart (Cl), Product (Pr) and Real-World (Rw) and 12 pairs of transfer

were evaluated in a manner similar to the Office dataset. More details about the

dataset are provided in Chapter (2).

6.3.2 Implementation Details for the DAH

The DAH was implemented using the MatConvnet framework Vedaldi and Lenc

(2015). Since a pre-trained VGG-F was deployed, the weights of layers conv1-conv5,

fc6 and fc7 were fine tuned. Their learning rates were set to 1/10th the learning rate

of hash-fc8. The learning rate was varied between 10−4 to 10−5 over 300 epochs with

a momentum 0.9 and weight decay 5× 10−4. K = 5 was the number of samples from

1https://hemanthdv.github.io/officehome-dataset/
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a category. Since there are 31 categories in the Office dataset, this results in a source

batch size of 31×5 = 155. For the target batch, 155 samples were randomly selected.

The total batch size turns out to be 310. For the Office-Home dataset, with K = 5

and 65 categories, the batch size turns out to be 650. The hash code length was set

to d = 64 for most of the experiments, although other hash length were also studied.

Since there is imbalance in the number of like and unlike pairs in S, the values in the

similarity matrix were set to Si,j ∈ {0, 10} with large values for like pairs. Increasing

the similarity weight of like-pairs improves the performance of DAH. The entropy

loss was set to η = 1. For the MK-MMD loss, the heuristics mentioned in Gretton

et al. (2012), were followed to determine the parameters. A Gaussian kernel was

used for MMD with a bandwidth σ given by the median of the pairwise distances in

the training data. To incorporate the multi-kernel, the bandwidth was varied with

σm ∈ [2−8σ, 28σ] with a multiplicative factor of 2. γ, was estimated by validating

a binary domain classifier to distinguish between source and target data points and

selecting γ which gives largest error on a validation set while also comparing the

performance of a source classifier on a source validation set. The target classifier

f(xt
i) = p(y|ht

i) is represented in terms of Equation (6.6). The target data point was

assigned to the class with the largest probability, with ŷi = maxj(pij) using the hash

codes for the source and the target.

6.3.3 Unsupervised Domain Adaptation with DAH

The DAH was compared with state-of-the-art domain adaptation methods: (i)

Geodesic Flow Kernel (GFK) Gong et al. (2012a), (ii) Transfer Component Analysis

(TCA) Pan et al. (2011), (iii) Correlation Alignment (CORAL) Sun et al. (2015a)

and (iv) Joint Distribution Adaptation (JDA) Long et al. (2013). The DAH was also

compared with state-of-the-art deep learning methods for domain adaptation: (v)
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Deep Adaptation Network (DAN) Long et al. (2015) and (vi) Domain Adversarial

Neural Network (DANN) Ganin et al. (2016). For all of the shallow learning meth-

ods, deep features were used that were extracted from the fc7 layer of the VGG-F

network that was pre-trained on the ImageNet 2012 dataset. The effect of the entropy

loss on hashing for the DAH was also studied. The DAH-e is the DAH algorithm

where η is set to zero, which implies that the target hash values are not driven to align

with the source categories. The standard protocol for unsupervised domain adapta-

tion was followed, where all the labeled source data and all the unlabeled target data

was used for training.

Results and Discussion: The results are reported for the target classification in

each of the transfer tasks in Tables (6.1) and (6.2), where accuracies denote the per-

centage of correctly classified target data samples. The hash length was set to d = 64

bits. The DAH algorithm consistently outperforms the baselines across all the do-

mains for the Office-Home dataset. However, DANN marginally surpasses DAH for

the Office dataset, which may be due to domain adversarial training being more effec-

tive than DAH when the categories are fewer in number. Since domain alignment is

category agnostic, it is possible that the aligned domains are not classification friendly

in the presence of a large number of categories. When the number of categories is

large, as in Office-Home, DAH does best at extracting transferable features to achieve

higher accuracies. It is also noted that DAH delivers better performance than DAH-e;

thus, minimizing the entropy on the target data with Equation (6.7) aids in improved

alignment of the source and target samples, which boosts the accuracy.

Feature Analysis: The feature representations of the penultimate layer (fc7) out-

puts using t-SNE embeddings, were also studied as in Donahue et al. (2014). Figure

(6.2a) depicts the A-distance between domain pairs using Deep (VGG-F), DAN and

DAH features. Ben-David et al. Ben-David et al. (2010) defined A-distance as the
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Table 6.1: Recognition accuracies (%) for domain adaptation experiments on the
Office dataset. {Amazon (A), Dslr (D), Webcam (W)}. A→W implies A is source and
W is target.

Expt. A→D A→W D→A D→W W→A W→D Avg.

GFK 48.59 52.08 41.83 89.18 49.04 93.17 62.32

TCA 51.00 49.43 48.12 93.08 48.83 96.79 64.54

CORAL 54.42 51.70 48.26 95.97 47.27 98.59 66.04

JDA 59.24 58.62 51.35 96.86 52.34 97.79 69.37

DAN 67.04 67.80 50.36 95.85 52.33 99.40 72.13

DANN 72.89 72.70 56.25 96.48 53.20 99.40 75.15

DAH-e 66.27 66.16 55.97 94.59 53.91 96.99 72.31

DAH 66.47 68.30 55.54 96.10 53.02 98.80 73.04

Table 6.2: Recognition accuracies (%) for domain adaptation experiments on the
Office-Home dataset. {Art (Ar), Clipart (Cl), Product (Pr), Real-World (Rw)}.
Ar→Cl implies Ar is source and Cl is target.
Expt. Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

GFK 21.60 31.72 38.83 21.63 34.94 34.20 24.52 25.73 42.92 32.88 28.96 50.89 32.40

TCA 19.93 32.08 35.71 19.00 31.36 31.74 21.92 23.64 42.12 30.74 27.15 48.68 30.34

CORAL 27.10 36.16 44.32 26.08 40.03 40.33 27.77 30.54 50.61 38.48 36.36 57.11 37.91

JDA 25.34 35.98 42.94 24.52 40.19 40.90 25.96 32.72 49.25 35.10 35.35 55.35 36.97

DAN 30.66 42.17 54.13 32.83 47.59 49.78 29.07 34.05 56.70 43.58 38.25 62.73 43.46

DANN 33.33 42.96 54.42 32.26 49.13 49.76 30.49 38.14 56.76 44.71 42.66 64.65 44.94

DAH-e 29.23 35.71 48.29 33.79 48.23 47.49 29.87 38.76 55.63 41.16 44.99 59.07 42.69

DAH 31.64 40.75 51.73 34.69 51.93 52.79 29.91 39.63 60.71 44.99 45.13 62.54 45.54

distance between two domains that can be viewed as the discrepancy between two

domains. Although it is difficult to estimate its exact value, an approximate distance

measure is given by 2(1−2ǫ), where ǫ is the generalization error for a binary classifier

trained to distinguish between the two domains. A LIBLINEAR SVM, Fan et al.

(2008), classifier with 5-fold cross-validation was applied to estimate ǫ. Figure (6.2a)

indicates that the DAH features have the least discrepancy between the source and

target compared to DAN and Deep features. This is also confirmed with the t-SNE

embeddings in Figures (6.2b-6.2d). The Deep features show very little overlap be-

tween the domains and the categories depict minimal clustering. Domain overlap and
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Figure 6.2: Feature analysis of fc7 layer. (a) A-distances for Deep, DAN and DAH,
(b), (c) and (d) t-SNE embeddings for 10 categories from Art (•) and Clipart(+)
domains. Best viewed in color. Images based on Venkateswara et al. (2017b).

clustering improves in DAN and DAH features, with DAH providing the best visual-

izations. This corroborates the efficacy of the DAH algorithm to exploit the feature

learning capabilities of deep neural networks to learn representative hash codes and

achieve domain adaptation.

6.3.4 Unsupervised Domain Adaptive Hashing

This subsection demonstrates the performance of the DAH algorithm to generate

compact and efficient hash codes from the data, for classifying unseen test instances,

when no labels are available. This problem has been addressed in the literature, with

promising empirical results by Carreira-Perpinán and Raziperchikolaei (2015); Do

et al. (2016) and Gong and Lazebnik (2011). However, in a real-world setting, labels

may be available from a different, but related (source) domain; a strategy to utilize the

labeled data from the source domain, to learn representative hash codes for the target

domain, is therefore of immense practical importance. The following scenarios were

considered to address this real-world challenge: (i) No labels are available for a given

dataset and the hash codes need to be learned in a completely unsupervised manner.

DAH was evaluated against baseline unsupervised hashing methods (ITQ) by Gong

and Lazebnik (2011) and (KMeans) by He et al. (2013) and also state-of-the-art
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Figure 6.3: Precision-Recall curves @64 bits for the Office-Home dataset. Com-
parison of hashing without domain adaptation (NoDA), shallow unsupervised hash-
ing (ITQ, KMeans), state-of-the-art deep unsupervised hashing (BA, BDNN),
unsupervised domain adaptive hashing (DAH) and supervised hashing (SuH). Best
viewed in color. Images based on Venkateswara et al. (2017b).

methods for unsupervised hashing (BA) by Carreira-Perpinán and Raziperchikolaei

(2015) and (BDNN) by Do et al. (2016). (ii) Labeled data is available from a

different, but related source domain. A hashing model was trained on the labeled

source data and was used to learn hash codes for the target data. This method

is referred to as NoDA, as no domain adaptation is performed. The deep pairwise-

supervised hashing (DPSH) algorithm by Li et al. (2016), was deployed to train a deep

network with the source data and the network was applied to generate hash codes

for the target data. (iii) Labeled data is available from a different, but related source

domain and the DAH formulation is applied to learn hash codes for the target domain,

by reducing domain disparity. (iv) Labeled data is available in the target domain.

This method falls under supervised hashing (SuH) (as it uses labeled data in the

target domain to learn hash codes in the same domain) and denotes the upper bound

on the performance. It was included to compare the performance of unsupervised

hashing algorithms relative to the supervised algorithm. The DPSH algorithm by Li

et al. (2016), was used to train a deep network on the target data and generate hash

codes on a validation subset.

Results and Discussion: Precision-Recall curves and the mean average precision
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Figure 6.4: Precision-Recall curves @64 bits for the Office dataset. Comparison of
hashing without domain adaptation (NoDA), shallow unsupervised hashing (ITQ,
KMeans), state-of-the-art deep unsupervised hashing (BA, BDNN), unsupervised
domain adaptive hashing (DAH) and supervised hashing (SuH). Best viewed in
color. Images based on Venkateswara et al. (2017b).

Table 6.3: Mean average precision @64 bits. For the NoDA and DAH results, Art is
the source domain for Clipart, Product and Real-World and Clipart is the source
domain for Art. Similarly, Amazon and Webcam are source target pairs.

Expt. NoDA ITQ KMeans BA BDNN DAH SuH

Amazon 0.324 0.465 0.403 0.367 0.491 0.582 0.830

Webcam 0.511 0.652 0.558 0.480 0.656 0.717 0.939

Art 0.155 0.191 0.170 0.156 0.193 0.302 0.492

Clipart 0.160 0.195 0.178 0.179 0.206 0.333 0.622

Product 0.239 0.393 0.341 0.349 0.407 0.414 0.774

Real-World 0.281 0.323 0.279 0.273 0.336 0.533 0.586

Avg. 0.278 0.370 0.322 0.301 0.382 0.480 0.707

(mAP) measures were used to evaluate the efficacy of the hashing methods, similar to

previous research in Carreira-Perpinán and Raziperchikolaei (2015); Do et al. (2016)

and Gong and Lazebnik (2011). The results are depicted in Figures (6.3) and (6.4)

(precision-recall curves) and Table (6.3) (mAP values), for hashing with code length

d = 64 bits. For the sake of brevity, the results with Dslr are dropped, as it is very

similar to Webcam, with little domain difference. It can be verified that the NoDA has

the poorest performance due to domain mismatch. This demonstrates the fact that

domain disparity needs to be considered before deploying a hashing network to ex-
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tract hash codes. The unsupervised hashing methods ITQ, KMeans, BA and BDNN

perform slightly better compared to NoDA. The proposed DAH algorithm encom-

passes hash code learning and domain adaptation in a single integrated framework.

It is thus able to leverage the labeled data in the source domain in a meaningful

manner in order to learn efficient hash codes for the target domain. This accounts

for its improved performance, as is evident in Figures (6.3) and (6.4) and Table (6.3).

The supervised hashing technique (SuH), uses labels from the target and therefore

depicts the best performance. The proposed DAH framework consistently delivers the

best performance relative to SuH, when compared with the other hashing procedures.

This demonstrates the merit of the DAH framework in learning representative hash

codes by utilizing labeled data from a different domain. Such a framework is bound

to be immensely useful in a real-world setting.

6.3.5 Effect of Batch-size for Linear-MMD

The domain alignment between the source and the target is achieved using multi-

kernel maximum mean discrepancy (MK-MMD). The outputs of the fully connected

layers F = {fc6, fc7, fc8} are aligned using a linear MK-MMD loss. The MMD loss

outlined in Section (3.3) is based on Gretton et al. (2007). The MMD gives a measure

of discrepancy between two i.i.d. datasets. However, the MMD measure described

in Gretton et al. (2007) requires all the samples from the source and the target

to estimate the discrepancy and it is also quadratic in complexity. The DAH is

trained using back-propagation, an iterative algorithm where only a batch of data

points are available at any given instant. A batch-wise MMD would be a biased

estimate of the MMD for the entire data and also expensive for back-propagation

(since it is quadratic). The DAH therefore uses an online linear version of the MMD.

The online linear version of the MMD outlined in Gretton et al. (2012), provides an
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empirical estimate for the MMD with linear complexity and works in an online setting;

where all the data samples are not available at once. The linear-MMD estimates the

discrepancy between the source and the target using only a batch of data points at a

time unlike the MMD which needs all the data samples from the two domains. The

DAH applies the linear-MMD over every batch of data for the fully connected layers.

An experiment was conducted to study the effect of batch size on domain adaptation

using the linear-MMD. In the DAH the batch size is controlled by the value of K (the

number of source data points for every category). Varying the values of K is bound

to vary the target recognition accuracies since the number of source samples available

for supervised hashing will vary. In order to study the effect of batch size on the

recognition accuracies, K has to remain constant across all batch sizes. However, it is

not possible to vary the batch size without changing K. Since the goal is to study the

effect of batch size on domain alignment, hashing and entropy loss can be replaced

with regular cross-entropy loss. The resulting model is equivalent to the DAN in

Long et al. (2015), where domain alignment is achieved with MK-MMD and the final

layer has a standard cross-entropy loss. Table (6.4) outlines the target recognition

accuracies when different batch sizes are used for this setting. It can be observed

that varying the batch size has no effect on the recognition accuracies when using the

linear-MMD for domain alignment. It can be concluded that the linear-MMD is a

consistent online empirical estimate for MMD.

6.3.6 Classification Experiments with Varying Hash Size

The previous subsections discussed the results for unsupervised domain adapta-

tion based object recognition with d = 64 bits. Here, the classification results with

d = 16 (DAH-16) and d = 128 (DAH-128) bits for the Office-Home dataset are out-

lined in Table (6.5). The (DAH-64), DAN and DANN results are also presented for
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Table 6.4: Effect of batch size on domain alignment when using linear MMD. The
values represent recognition accuracies (%) for domain adaptation experiments on the
Office-Home dataset. {Art (Ar), Clipart (Cl), Product (Pr), Real-World (Rw)}.
Ar→Cl implies Ar is source and Cl is target.
Batch Size Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

32 31.68 42.27 52.57 32.46 48.09 49.39 30.79 32.80 56.82 44.08 38.32 62.16 43.45

64 30.66 42.17 54.13 32.83 47.59 49.78 29.07 34.05 56.70 43.58 38.25 62.73 43.46

128 30.32 43.59 53.59 32.96 47.36 50.00 30.21 33.48 56.11 44.38 38.23 63.57 43.65

512 31.41 42.61 53.61 32.13 48.14 50.45 29.88 33.43 55.16 44.33 37.80 62.91 43.49

1024 31.30 42.80 54.07 32.38 48.11 50.18 30.17 33.75 56.41 43.87 37.95 63.41 43.70

Table 6.5: Recognition accuracies (%) for domain adaptation experiments on the
Office-Home dataset. {Art (Ar), Clipart (Cl), Product (Pr), Real-World (Rw)}.
Ar→Cl implies Ar is source and Cl is target.

Expt. Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

DAN 30.66 42.17 54.13 32.83 47.59 49.78 29.07 34.05 56.70 43.58 38.25 62.73 43.46

DANN 33.33 42.96 54.42 32.26 49.13 49.76 30.49 38.14 56.76 44.71 42.66 64.65 44.94

DAH-16 23.83 30.32 40.14 25.67 38.79 33.26 20.11 27.72 40.90 32.63 25.54 37.46 31.36

DAH-64 31.64 40.75 51.73 34.69 51.93 52.79 29.91 39.63 60.71 44.99 45.13 62.54 45.54

DAH-128 32.58 40.64 52.40 35.72 52.80 52.12 30.94 41.31 59.31 45.65 46.67 64.97 46.26

comparison. There is an increase in the average recognition accuracy for d = 128

bits compared to d = 64 bits because of the increased capacity in representation. As

expected, d = 16 has a lower recognition accuracy.

6.3.7 Hashing Experiments with Varying Hash Size

The unsupervised domain adaptive hashing results for d = 16 and d = 128 bits

are provided in Figures (6.5) and (6.6) respectively. In Tables (6.6) and (6.7), the

corresponding mAP values are outlined. Similar trends are observed for both d = 16

and d = 128 bits compared to d = 64 bits. It is interesting to note that with increase

in bit size d, the mAP does not necessarily increase. Table (6.7) (d = 128) has

its mAP values lower than those for d = 64 (see Table (6.3)) for all the hashing

methods. It can be surmised that merely increasing the hash code length does not

always improve mAP scores. Also, the mAP values for Real-World for d = 128

bits has DAH performing better than SuH. This indicates that in some cases domain
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Table 6.6: Mean average precision @16 bits. Notation similar to Table (6.3).

Expt. NoDA ITQ KMeans BA BDNN DAH SuH

Art 0.102 0.147 0.133 0.131 0.151 0.207 0.381

Clipart 0.110 0.120 0.116 0.123 0.138 0.211 0.412

Product 0.134 0.253 0.241 0.253 0.313 0.257 0.459

Real-World 0.193 0.225 0.195 0.216 0.248 0.371 0.400

Avg. 0.135 0.186 0.171 0.181 0.212 0.262 0.413

Table 6.7: Mean average precision @128 bits. Notation similar to Table (6.3).

Expt. NoDA ITQ KMeans BA BDNN DAH SuH

Art 0.154 0.202 0.175 0.148 0.207 0.314 0.444

Clipart 0.186 0.210 0.196 0.187 0.213 0.350 0.346

Product 0.279 0.416 0.356 0.336 0.432 0.424 0.792

Real-World 0.308 0.343 0.289 0.258 0.348 0.544 0.458

Avg. 0.232 0.293 0.254 0.232 0.300 0.408 0.510

adaptation helps in learning a better generalized model.

123



Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoDA

ITQ

KMeans

BA

BDNN

DAH

SuH

(a) Art

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NoDA

ITQ

KMeans

BA

BDNN

DAH

SuH

(b) Clipart

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NoDA

ITQ

KMeans

BA

BDNN

DAH

SuH

(c) Product

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NoDA

ITQ

KMeans

BA

BDNN

DAH

SuH

(d) Real-World

Figure 6.5: Precision-Recall curves @16 bits for the Office-Home dataset. Nota-
tion similar to Figure (6.3).
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Figure 6.6: Precision-Recall curves @128 bits for the Office-Home dataset. No-
tation similar to Figure (6.3).

6.4 Conclusions and Summary

The DAH model introduced hashing in order to determine a loss for the target

data. There is also another advantage to hashing that was not stressed upon in the

chapter. The hash values can be used to boost predictions. The hash output for a

test sample can be compared with the hash values of multiple training samples in

order to determine its label very accurately. This perhaps makes the prediction more

robust than having a softmax layer based prediction.

Another interesting direction in future work for domain adaptation, would be to

attempt domain alignment in a category cognizant manner. Current approaches align

the marginal probability distributions P (X), of the domains. A deep learning frame-

work that can impute the labels of the target data and align the joint distributions
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P (X, Y ) (data and labels), could potentially be a breakthrough in deep learning based

domain adaptation.

In summary, this chapter introduced a novel domain adaptive hashing (DAH)

framework which can exploit the feature learning capabilities of deep neural net-

works to learn efficient hash codes for unsupervised domain adaptation. The DAH

framework solves two important practical problems: the problem of weak supervision

or insufficient labels (through domain adaptation) and the problem of memory and

computation requirements (through hashing). Thus, two practical challenges are ad-

dressed through a single integrated framework. This research is the first of its kind

to integrate hash code learning with unsupervised domain adaptation. The extensive

empirical results corroborate the competency of the framework for real-world image

recognition applications.
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Chapter 7

FEATURE SELECTION BASED DOMAIN ADAPTATION

One of the strategies for domain adaptation is feature matching through dimensional-

ity reduction, where the distribution difference between the source and target datasets

is minimized by discovering a shared feature representation between the two datasets

(Pan et al. (2008) and Long et al. (2014)). Along similar lines, this chapter discusses

the idea of selecting features between the source and target dataset, such that their

distributions become more similar. The idea of feature selection for domain adapta-

tion has not been explored except in a handful of cases like Helleputte and Dupont

(2009) and Uguroglu and Carbonell (2011). In the area of multitask learning, feature

selection has been studied in great detail through sparsity inducing norms, in order to

increase the overlap between tasks (domains), Evgeniou and Pontil (2007), Obozinski

et al. (2010), and Liu et al. (2009). Since multitasking is a form of transfer learning

closely related to domain adaptation, the concept of feature selection can be extended

to domain adaptation.

The chapter is organized in two parts. The first part outlines a standard feature

selection procedure based on information gain. In Section (7.1), a feature selection

technique based on conditional mutual information, is proposed. This section arrives

at an efficient approximate solution for the NP-hard problem of feature selection

based on solutions from related NP-hard problems like k-Sparse-PCA and Densest-

k-Subgraph. This is followed by experiments, described in Section (7.2), of feature

selection on standard publicly available datasets. The second part proposes a non-

linear feature selection model for unsupervised domain adaptation in Section (7.3).

Some preliminary results for this proposed model are outlined in Section (7.4).
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7.1 Feature Selection Based on Information Gain

Mutual information (MI) is a probabilistic measure that captures the ‘correlation’

between random variables (see Figure (7.1)). Whereas standard correlation captures

linear relationships between variables, mutual information can capture non-linear

dependencies between variables Rodriguez-Lujan et al. (2010). The steps involved in

arriving at a mutual information based formulation for feature selection is discussed

below for a classification setting.

In the standard classification setting, data is independent and identically dis-

tributed (i.i.d), with D = {(xi, yi); i = 1 . . . n}. Each data point xi ∈ R
d, is regarded

as an instance of a set of d continuous random variables X = {X1, X2, . . . , Xd}. The

sample index i is treated as a superscript for the initial part of the discussion and the

subscript will be used to refer to the feature index. The terms features or variables

are used interchangeably to denote X or its subsets. The dependent class label yi,

is considered to be an instance of a discrete random variable Y , that takes values in

[1, . . . , c]. S is defined to be a subset of k feature indices, where 1 ≤ k ≤ d and XS,

the subset of k features indexed by S. Likewise, S̃ is the subset of left over indices,

i.e. {1, . . . , d}\S and X
S̃
is the subset of leftover (d − k) features indexed by S̃, i.e.

X\XS. The posterior probability distribution on the dataset D, is given by p(Y |X).

The problem of feature selection is stated as follows.

Problem 7.1.1. To estimate the optimal subset S∗ ⊂ {1, . . . , d}, of feature indices,

such that p(Y |XS∗) is a good approximation to p(Y |X).

Theorem 7.1.1. p(Y |X) = p(Y |XS), if and only if mutual information I(X;Y ) =

I(XS;Y )
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Proof. Joint probability p(X, Y ) can be factored as

p(X, Y ) = p(X)p(Y |X) = p(X)p(Y |XS)

= p(X
S̃
)p(XS|XS̃

)p(Y |XS) (7.1)

When viewed as elements in a Bayesian network, the random variables can be thought

to form a Markov Chain X
S̃
→ XS → Y where Y is conditionally independent of

X
S̃
given XS. Therefore, the conditional mutual information I(X

S̃
;Y |XS) = 0. With

I(X;Y ) = I(XS;Y )+I(X
S̃
;Y |XS), the necessary condition is proved. The statements

in the proof are also true in the reverse order. �

I(X;Y ) depends only on D and is a constant that is shared between I(XS;Y ) and

I(X
S̃
;Y |XS). It is very likely that I(X

S̃
;Y |XS) is a non-zero value for every S except

for the most trivial case with X
S̃
= ∅. For a fixed value of k, the optimal subset S is

estimated to maximize I(XS;Y ). Theorem (7.1.1) provides the reason for choosing a

mutual information based approach to determining the optimal S∗. In the following

subsection the challenges to estimating S
∗ are discussed and the assumptions made

to arrive at an approximate solution are outlined.

7.1.1 The Binary Quadratic Problem

Given a subset of features XS, in order to evaluate I(XS;Y ), the joint probability

distribution p(XS, Y ) needs to be estimated. If the random variables Xi were binary,

it would still require m = 2d data points to estimate p(XS, Y ), which is impractical

even for a moderate feature size d. To simplify the estimation process of the joint dis-

tribution and make it tractable, an assumption of conditional independence between

features in the spirit of Näıve Bayes is introduced Brown et al. (2012). A new term Si

is defined as the subset S without the index i also denoted as S\{i}. The assumption

that will help make the joint distribution tractable is defined as:
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Assumption 7.1.1. For a set of selected features {XSi
∪ Xi}, the features XSi

are

conditionally independent and class-conditionally independent given Xi

p(XSi
|Xi) =

∏

j∈Si

p(Xj|Xi) (7.2)

p(XSi
|Xi, Y ) =

∏

j∈Si

p(Xj|Xi, Y ) (7.3)

Theorem 7.1.2. If Assumptions in (7.2) and (7.3) are true, and Xi ∈ XS then,

I(XS;Y ) = I(Xi;Y ) +
∑

j∈Si
I(Xj;Y |Xi)

Proof. The mutal information between XS and Y is given by:

I(XS;Y ) = I(XSi
, Xi;Y )

= I(XSi
;Y ) + I(Xi;Y |XSi

)

= I(XSi
;Y ) + I(Xi;Y )− I(Xi;XSi

) + I(Xi;XSi
|Y )

= I(XSi
;Y ) + I(Xi;Y )−H(XSi

) +H(XSi
|Xi)

+H(XSi
|Y )−H(XSi

|Xi, Y )

= I(Xi;Y ) +H(XSi
|Xi)−H(XSi

|Xi, Y ) (7.4)

In the above derivation, the mutual information chain rule I(A,B;C) = I(A;C) +

I(B;C|A) is first applied followed by the application of the mutual information rule

I(A;B|C)− I(A;B) = I(A;C|B)− I(A;C), and the two trailing mutual information

terms are then expressed in terms of entropy. In the proof statements below, applying

Assumption in (7.2) and (7.3) to (7.4), the high order entropy terms can be replaced

with summations and reduced further using H(Xj|Xi)−H(Xj|Xi, Y ) = I(Xj , Y |Xi)

I(XiXSi
;Y ) ≈ I(Xi;Y ) +

∑

j∈Si

H(Xj|Xi)−
∑

j∈Si

H(Xj|Xi, Y )

= I(Xi;Y ) +
∑

j∈Si

I(Xj;Y |Xi) (7.5)
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Since S needs to be selected such that it maximizes Equation (7.5), for every Xi,

the global feature selection problem can be formulated as below,

S = argmax
{S|XS⊂X},|S|=k

∑

i∈S

[

I(Xi;Y ) +
∑

j∈Si

I(Xj ;Y |Xi)
]

(7.6)

This is equivalent to the constrained Binary Quadratic problem,

max
x
{x⊤Qx} s.t. x ∈ {0, 1}d, ||x||1 = k, (7.7)

where, Q is a [d× d] non-negative matrix with Qii = I(Xi;Y ) and Qij = I(Xj ;Y |Xi)

and the non-zero indices of the solution x constitute S. Applying the conditional

mutual information criteria, S can also be estimated using a greedy feature selection

process. Beginning with S = argmaxiQii ∀i, S, is updated iteratively until |S| = k

using,

S←
{

S ∪ argmax
i, i/∈S

[Qii +
∑

j∈S

Qij ]
}

(7.8)

7.1.2 Solution to the Binary Quadratic Problem

The aim is to solve the following constrained binary quadratic problem:

max
x

x⊤Qx s.t. x ∈ {0, 1}d, ‖x‖1 = k, (BQP)

where Q is a symmetric and possibly indefinite matrix with non-negtiave elements,

i.e., Qij ≥ 0 for all 1 ≤ i, j ≤ d. Note that the upper bound of the maximum value

could be approximated by the largest eigenvalue of Q. Although this problem is well

defined, it is highly nonconvex due to the nonconvex constraint on x. And it is also

known that this binary quadratic problem is NP-hard Garey and Johnson (1990). So

it is difficult to find the optimal value in practice. Therefore, an approximate solu-

tion to the BQP is estimated. The proposed binary quadratic problem is also closely
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related to several other NP-hard problems, including k-Sparse-PCA Yuan and Zhang

(2013); Papailiopoulos et al. (2013), Densest-k-Subgraph Papailiopoulos et al. (2014),

Best Principal Sub-matrix and MAX-CUT Goemans and Williamson (1995). Many

approximation methods have been proposed to solve these problems. Those meth-

ods include linear relaxation, spectral relaxation, semidefinite programming, trun-

cated power method and low rank bilinear approximation. A linear approximation to

Equation (7.7) is discussed below along with bounds for the approximation followed

by other approximations to this NP-hard problem.

Linear Relaxation: The proposed BQP problem can be rewritten as follows:

max
d
∑

i=1

d
∑

j=1

Qijxixj

s.t. xi ∈ {0, 1}, ∀1 ≤ i ≤ d,
d
∑

i=1

xi = k. (7.9)

By introducing a new variable wij, the quadratic term can be linearized. Specifically,

it can formulated as follows:

max
d
∑

i=1

d
∑

j=1

Qijwij

s.t. 2wij ≤ xi + xj,

d
∑

i=1

xi = k, xi, wij ∈ {0, 1}, ∀1 ≤ i, j ≤ d.

(LP1)

It can be shown that LP1 is equivalent to BQP, which is also NP-hard. Note that LP1

increases the size of the problem by adding O(d2) variables and O(d2) constraints.

Most linear programs approximate the solution. Global optimal solutions can be

estimated applying Branch and Bound techniques (as in CPLEX IBM-ILOG-CPLEX

(2013)). These procedures are however not computationally efficient. By relaxing

wij ∈ [0, 1], it is not difficult to show that one of the optimality conditions is 2wij =

xi + xj. This dramatically reduces the redundant constraints. The following linear
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relaxation formulation can then be proposed:

Linear = max
d
∑

i=1

d
∑

j=1

1

2
Qij(xi + xj) = ‖Qx‖1

s.t. ‖x‖1 = k, x ∈ {0, 1}d.
(LP2)

Since Qij ≥ 0, the maximum value for Linear is equivalent to the k largest column

(or row) sum of Q. Although LP2 is not equivalent to LP1, it is a very good approx-

imation to LP1 when k is small and it can be solved efficiently. It can be proved that

Linear guarantees a good lower bound to BQP (proof in Appendix A). The solution

from Linear can also be used to initialize the input for more advanced algorithms.

Truncated Power Method: Truncated power (TPower) method aims to find the

largest k-sparse eigenvector. Given a positive semidefinite matrix A, the largest k-

sparse eigenvalue can be defined as follows Yuan and Zhang (2013):

λmax(A, k) = max x⊤Ax, s.t. ‖x‖ = 1, ‖x‖0 ≤ k (7.10)

Matrix A is required to be positive semidefinte, but TPower method can be extended

to deal with general symmetric matrices by setting A← (A+λ̃Id×d) where λ̃ > 0 such

that (A + λ̃Id×d) ∈ S
d
+. The truncated power method can be solved in an iterative

manner, as follows. Starting from an initial k-sparse vector x0, at each iteration t, A

is multiplied by the vector xt−1 and the entries of Axt−1 are truncated to zeros and

the largest k entries are set to 1. TPower can benefit from a good starting point.

The solution from Linear is used as the initial sparse vector x0.

Low Rank Bilinear Approximation: The low rank bilinear approximation (LowRank)

procedure has been applied to solve the k-Sparse-PCA Papailiopoulos et al. (2013)

and the Densest-k-Subgraph Papailiopoulos et al. (2014). It approximates the solu-
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tion to a BQP by applying a bilinear relaxation which is given as,

BQPb =max
x,y
{x⊤Qy} s.t. x ∈ {0, 1}d, y ∈ {0, 1}d, (7.11)

||x||1 = ||y||1 = k

BQPb provides a good (2ρ-approximation Papailiopoulos et al. (2014)) approxima-

tion to BQP and can be solved in polynomial time using a r-rank approximation

of Q. The authors in Papailiopoulos et al. (2014) have developed the Spannogram

algorithm to estimate a candidate set (termed the Spannogram S ) of vector pairs

(x,y) with k features. One of the vectors from the pair that maximizes BQPb, is the

bilinear approximate solution to BQP.

Related BQP Approximation Methods: For the sake of completeness, two other

techniques will be mentioned, that have been applied to approximate the BQP in the

domain of feature selection. The authors in Nguyen et al. (2014) propose two re-

laxation techniques, (1) Spectral relaxation and (2) Semidefinite Programming relax-

ation. In Spectral relaxation (Spectral), the constraint on the values of x are relaxed

to continuous values. The values of x being positive, can be interpreted as feature

weights. The solution to Spectral has been shown to be the largest eigenvector of Q

Nguyen et al. (2014). Semidefinite Programming relaxation (SDP) is a much more

effective approximation to the BQP than Spectral. The BQP is approximated by

a trace maximization problem using semidefinite relaxation. The approximate solu-

tion x, to the BQP, is obtained from the SDP solution through random projection

rounding based on Cholesky decomposition Goemans and Williamson (1995). In the

experiments conducted, random rounding with 100 projections was implemented. For

further details, please refer to Nguyen et al. (2014).
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7.1.3 Other Mutual Information Based Methods

This subsection outlines other mutual information based feature selection methods

that are compared with the techniques discussed above.

Greedy Selectors: These procedures usually begin with an empty set S, and iter-

atively add to it the most important feature indices, until a fixed number of feature

indices are selected or a stopping criterion is reached. Mutual information between

the random variables (features and label) provides the ranking for the features. The

most basic form of the scoring function is Maximum Relevance (MaxRel) Lewis

(1992), where the score is simply the mutual information between the feature and

the class variable. To account for the redundancy I(Xi;Xj) between features, Peng

et al. (2005), introduced the Maximum Relevance Minimum Redundancy (MRMR)

criterion, which selects features with maximum relevance to the label and minimum

redundancy between each other. A greedy procedure very closely related to the pro-

posed technique is the Joint Mutual Information (JMI), that was developed by Yang

and Moody (1999), and later by Meyer et al. (2008).

Global Selectors: There is limited work on mutual information based global feature

selection. In Rodriguez-Lujan et al. (2010), the Quadratic Programming Feature Se-

lection (QPFS) was introduced. This method can be viewed as a global alternative

to MRMR. The second global technique proposed by Nguyen et al. (2014), is related

to the proposed method presented in Equation (7.7). Nguyen et al. (2014), model a

global feature selection problem based on the CMI matrix Q, and apply Spectral

and SDP methods to approximate the solution.
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Figure 7.1: Venn diagram depicting entropy interaction H(X) = {a,e,g,d},
H(Y)={b,e,g,f}, H(Z)={c,d,g,f}, I(X;Y)={e,g}, I(X;Z) = {d,g}, I(Y;Z) = {g,f},
H(X,Y,Z) = {a,b,c,d,e,f,g}. Image based on Venkateswara et al. (2015a).

Information Theory Basics: Figure (7.1) provides a pictorial representa-

tion of these concepts through Venn diagrams. Entropy H(X), is the ex-

pected information content for a random variable X. H(X) = E[I(X)], where

I(X) = − log p(X). Therefore, H(X) = −∑x p(X = x) log p(X = x). En-

tropy H(X), characterizes the uncertainty about the random variable X. Mu-

tual Information (MI) between two random variables X and Y , is a measure of

information shared between them and is represented as I(X;Y ). It is symmetric

with I(X;Y ) = I(Y ;X). In terms of entropy, mutual information is defined as

I(X;Y ) = H(X)−H(X|Y ), where H(X|Y ) is the conditional entropy. Mutual

information between random variables X and Y can also be understood as the

reduction in entropy of X (or Y ) due to the presence of Y (or X). Conditional

Mutual Information (CMI) denoted as I(X;Y |Z), is the expected mutual infor-

mation of two random variables X and Y , given a third random variable Z. Areas

in entropy based Venn diagrams do not always correspond to positive quantities.

In case of two variable overlap it is true as in {e}, {d} or {f}. But, {g} need not

be positive. I(X;Y )− I(X;Y |Z) can be less than 0.
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7.2 Experiments

This section outlines some of the experiments conducted to test the feature selec-

tion model. The experiments were conducted using MATLAB on an Intel Core-i7 2.3

GHz processor with 16GB of memory.

7.2.1 Feature Selectors: A Test of Scalability

Greedy feature selectors have time complexities of the order O(dk), which is neg-

ligible compared to the time complexities of the global feature selectors. Table (7.1)

lists the time complexities for the global algorithms. To study time complexities, mul-

tiple experiments (d, k), were conducted, where a CMI matrix Q was simulated by a

random positive symmetric matrix of size [d× d], and k features were selected. The

time complexity for experiment (d, k), is the average time of convergence over 10 runs.

The same set of random matrices were used for each of the algorithms in the exper-

iment. Figure (7.2) depicts the convergence times for different experiments. Linear

algorithm is the most efficient, followed closely by Spectral and TPower methods.

CVX Grant and Boyd (2014) implementation with SDPT3 solver Toh et al. (1999),

was used for all the SDP experiments. The SDP solver has a huge memory footprint

and with matrix sizes d ≥ 700, the computer ran into ‘Out of Memory’ errors. For

the LowRank method, the following parameters were used, r = 3, ǫ = 0.1, δ = 0.1

for all the experiments.

Table 7.1: Time complexities for the Global approximate solutions for BQP in
number of features d

Linear Spectral SDP LowRank* TPower**

O(dk) O(d2) O(d4.5) O(d(r+1)) O(td2)

*
r is approximation rank, **

t is number of iterations
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Figure 7.2: Average time in seconds for an algorithm to select k features from
data containing d features in experiment (d, k). Image based on Venkateswara et al.
(2015a).

7.2.2 BQP Methods: A Test of Approximation

Figure 7.3: The average percentage difference of the BQP objective values compared
with the Linear BQP objective value. In experiment (d, k), d is the matrix dimension
and k is the number of features selected. Image based on Venkateswara et al. (2015a).

For the next set of experiments, the degree of approximation of the global al-

gorithms was examined. Since the optimal solution is unknown for the BQP, the

methods on evaluated by their relative objective values. The binary feature vector x
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was estimated after applying each of the methods and then the objective value x⊤Qx

was evaluated. The percentage difference of every algorithm’s objective value with

the Linear method’s objective was compared. Similar to the experimental evaluation

used for time complexity, random data was generated for each experiment (d, k) and

the values were averaged over 10 random runs. Figure (7.3) presents the results of

the experiment. TPower and LowRank displayed the largest percentage increase

from the Linear. Since TPower and LowRank approximate the BQP better than

other methods, they must therefore be better feature selectors compared to Linear,

Spectral and SDP. The TPower is also very efficient in terms of execution time

and would therefore be the ideal feature selector when considering both speed and

accuracy.

7.2.3 Feature Selectors: A Test of Classification Error

In these experiments, the TPower and the LowRank are compared with other

algorithms in terms of classification accuracies. 13 publicly available datasets are

chosen that are widely used to study mutual information based feature selection as

in Rodriguez-Lujan et al. (2010); Brown et al. (2012); Nguyen et al. (2014); Peng

et al. (2005). The details of the datasets are captured in Table (7.2). The feature

selection was performed for a set of k values and classification performance was tested

across all values of k. Starting at k = 10, the feature selection was incremented in

steps 1 till d or 100, whichever was smaller. The classifier performance was evaluated

using Leave-One-Out cross validation (if n ≤ 100) or 10-fold cross validation and

the cross validation errors(%) for each fold were obtained. Since the average error

across all values of k is not a good measure of the classifier performance, the paired

t-test was applied, as also mentioned in Rodriguez-Lujan et al. (2010); Nguyen et al.

(2014); Herman et al. (2013), across the cross validation folds. For a fixed dataset
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and a fixed value of k, to compare TPower with say, MaxRel, the one sided paired

t-test was applied at 5% significance over the error(%) of the cross validation folds

for the two algorithms. The performance of TPower vs. MaxRel set to win =

w, tie = t and loss = l, based on the largest number of t-test decisions across all

the k values. Along the lines of earlier studies in feature selection, a linear SVM

classifier was used. To estimate the conditional mutual information, the features were

discretized. The role of discretization is not unduly critical as long as it is consistent

across all the experiments. The features were discretized using the Class Attribute

Interdependence Maximization (CAIM) algorithm developed by Kurgan and Cios

(2004). Feature selection was performed on discretized data but the classification

(after feature selection) was performed on the original feature space.

Table 7.2: Datasets details: d is number of features, n is number of samples, c is
number of categories, Error: is average cross validation error (%) using all features.

Data d n c Error Ref.

Arrhythmia 258 420 2 31.1 Lichman (2013)

Colon 2000 62 2 37.0 Ding and Peng (2005)

Gisette 4995 6000 2 2.5 Lichman (2013)

Leukemia 7070 72 2 26.4 Ding and Peng (2005)

Lung 325 73 7 9.6 Ding and Peng (2005)

Lymphoma 4026 96 9 81.3 Ding and Peng (2005)

Madelon 500 2000 2 45.5 Lichman (2013)

Multi-Feat 649 2000 10 1.5 Lichman (2013)

Musk2 166 6598 2 4.6 Lichman (2013)

OptDigits 62 3823 10 3.3 Lichman (2013)

Promoter 57 106 2 26.0 Lichman (2013)

Spambase 57 4601 2 7.5 Lichman (2013)

Waveform 21 5000 3 13.1 Lichman (2013)
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Using the above procedure, the performance of TPower and LowRank were com-

pared with all the other algorithms. Tables (7.3) and (7.4) display the results of the

experiment. The values in Table (7.3) (likewise Table (7.4)) correspond to the differ-

ence in the average of classification error(%) between TPower (likewise LowRank)

and all the other algorithms. From the results in these tables, it can be gathered that

TPower and LowRank outperform most of the datasets across all the algorithms.

When compared against each other LowRank outperforms TPower. For the sake

of brevity, the comparison between other pairs of algorithms has not displayed The

win/tie/loss numbers by themselves do not provide a complete picture of the com-

parison. The difference in the average error also needs to be taken into account to

assess the performance. A large percentage of negative values in the columns and their

magnitudes indicate the low error values in classification for TPower and LowRank.

Figure (7.4) displays the average classification error(%) trends for varying values of k

for 3 datasets. Figures (7.4a) and (7.4d) for the Colon dataset, suggest that the ad-

dition of more features does not necessarily reduce classification error. Classification

error trends also guide in validating the best value of k for a dataset. For a given

dataset, the error trends between the global and greedy procedures follow a similar

pattern. This perhaps indicates that nearly similar features are being selected using

both types of methods. It should be noted that for huge datasets with large values

of d, greedy methods may not be a bad choice for feature selection.
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Table 7.3: Comparison of TPower with other algorithms. The table values measure
the difference in average classification accuracies of TPower with other algorithms.
w, t and l indicate one-sided paired t-test results. The last row displays the total
number of Wins(W ), Ties(T ) and Loss(L). N/A indicates comparison data was
unavailable for large datasets using SDP.

Data MaxRel MRMR JMI QPFS Spectral SDP LowRank

Arrythmia -0.37 ± 1.4 t 0.32 ± 1.0 l 0.02 ± 1.0 l 0.20 ± 1.8 l -0.08 ± 1.1 t -0.18 ± 1.0 w -0.05 ± 0.8 l

Colon -7.28 ± 4.6 w -4.42 ± 4.2 w -2.47 ± 3.8 w -6.70 ± 4.6 w -0.60 ± 2.8 w N/A 4.03 ± 4.5 l

Gisette -1.32 ± 0.6 w 0.00 ± 0.7 w -1.12 ± 0.6 w -1.38 ± 0.7 w -1.26 ± 0.6 w N/A 0.33 ± 0.6 l

Leukemia 0.11 ± 1.4 w 1.40 ± 1.6 l 1.59 ± 1.8 l 0.41 ± 1.1 t -0.03 ± 0.6 w N/A 1.49 ± 1.3 l

Lung -9.43 ± 4.1 w -2.52 ± 4.2 w -3.83 ± 4.2 w 0.60 ± 2.8 l -0.88 ± 2.2 w -0.88 ± 2.1 w -1.59 ± 2.4 w

Lymphoma -2.76 ± 4.8 w 3.35 ± 4.7 l 2.93 ± 5.3 l 4.99 ± 3.3 l -1.86 ± 2.5 w N/A 3.29 ± 4.2 l

Madelon 0.32 ± 0.5 l 0.80 ± 0.9 l 0.01 ± 0.4 w -0.22 ± 0.7 w -0.01 ± 0.6 w 0.15 ± 0.6 l -0.11 ± 0.4 t

MultiFeatures 0.02 ± 0.3 w 0.24 ± 0.3 l 0.17 ± 0.3 l -0.42 ± 0.3 w 0.10 ± 0.3 w 0.11 ± 0.3 w 0.01 ± 0.3 l

Musk2 -0.45 ± 0.6 w -0.22 ± 0.7 w -0.18 ± 0.5 w -0.31 ± 0.6 w 0.06 ± 0.4 w 0.03 ± 0.5 w 0.05 ± 0.4 w

OptDigits -0.19 ± 0.5 w -0.01 ± 0.6 t 0.16 ± 0.6 l -0.65 ± 1.0 w 0.03 ± 0.3 l -2.53 ± 13.0 w 0.08 ± 0.4 l

Promoter 0.73 ± 3.0 l -0.04 ± 3.2 w 0.19 ± 3.0 l -1.29 ± 3.8 w -0.48 ± 2.8 w -0.56 ± 2.9 w -0.17 ± 3.1 w

Spambase -0.34 ± 0.3 w 0.06 ± 0.2 l -0.23 ± 0.3 w 0.03 ± 0.4 l -0.09 ± 0.3 w -0.10 ± 0.3 w 0.02 ± 0.1 l

Waveform -0.13 ± 0.3 w 0.06 ± 0.3 l -0.01 ± 0.0 t 0.04 ± 0.2 t 0.04 ± 0.1 t 0.00 ± 0.2 t -0.01 ± 0.2 t

#W/T/L: 10/1/2 5/1/7 6/1/6 7/2/4 10/2/1 7/1/1 3/2/8

Table 7.4: Comparison of LowRank with other algorithms. Table structure similar
to Table 7.3

Data MaxRel MRMR JMI QPFS Spectral SDP TPower

Arrythmia -0.32 ± 1.3 l 0.36 ± 1.0 l 0.07 ± 1.0 l 0.25 ± 1.7 l -0.03 ± 1.1 t -0.13 ± 1.0 w 0.05 ± 0.8 w

Colon -11.31 ± 4.7 w -8.45 ± 4.3 w -6.50 ± 3.9 w -10.73 ± 5.3 w -4.63 ± 5.0 w N/A -4.03 ± 4.5 w

Gisette -1.65 ± 0.5 w -0.32 ± 0.5 w -1.44 ± 0.7 w -1.70 ± 0.6 w -1.58 ± 0.6 w N/A -0.33 ± 0.6 w

Leukemia -1.39 ± 1.4 w -0.09 ± 1.5 t 0.09 ± 1.7 t -1.09 ± 1.3 w -1.52 ± 1.2 w N/A -1.49 ± 1.3 w

Lung -7.83 ± 4.1 w -0.92 ± 4.5 w -2.23 ± 4.5 w 2.19 ± 3.7 l 0.71 ± 2.5 l 0.71 ± 2.3 l 1.59 ± 2.4 l

Lymphoma -6.06 ± 3.5 w 0.06 ± 2.1 l -0.36 ± 2.1 l 1.70 ± 2.5 l -5.15 ± 3.8 w N/A -3.29 ± 4.2 w

Madelon 0.43 ± 0.5 l 0.91 ± 0.8 l 0.12 ± 0.5 l -0.11 ± 0.7 w 0.10 ± 0.6 l 0.26 ± 0.5 l 0.11 ± 0.4 t

MultiFeatures 0.01 ± 0.4 l 0.23 ± 0.3 l 0.16 ± 0.4 l -0.43 ± 0.3 w 0.10 ± 0.4 l 0.10 ± 0.4 l -0.01 ± 0.3 w

Musk2 -0.50 ± 0.4 w -0.27 ± 0.7 w -0.23 ± 0.5 w -0.36 ± 0.5 w 0.02 ± 0.3 l -0.02 ± 0.4 l -0.05 ± 0.4 l

OptDigits -0.26 ± 0.6 w -0.09 ± 0.4 w 0.08 ± 0.4 l -0.72 ± 1.2 w -0.04 ± 0.4 t -2.61 ± 13.1 w -0.08 ± 0.4 w

Promoter 0.90 ± 3.1 l 0.13 ± 2.7 w 0.35 ± 2.9 w -1.13 ± 3.7 w -0.31 ± 2.8 t -0.40 ± 2.5 t 0.17 ± 3.1 l

Spambase -0.36 ± 0.3 w 0.04 ± 0.2 l -0.24 ± 0.3 w 0.02 ± 0.4 t -0.11 ± 0.3 w -0.12 ± 0.3 w -0.02 ± 0.1 w

Waveform -0.12 ± 0.4 w 0.07 ± 0.1 l 0.00 ± 0.2 t 0.05 ± 0.1 t 0.05 ± 0.1 t 0.02 ± 0.1 t 0.01 ± 0.2 t

#W/T/L: 9/0/4 6/1/6 6/2/5 8/2/3 5/4/4 3/2/4 8/2/3

141



1 11 21 31 41 51 61 71 81 91

5

10

15

20

25

30

Number of Features

C
ro

sv
al

id
at

io
n 

E
rr

or
 R

at
es

 

 

Max−Rel

MRMR

JMI

TPower

LowRank

(a) Colon

1 11 21 31 41 51 61 71 81 91

4

6

8

10

12

14

Number of Features

C
ro

sv
al

id
at

io
n 

E
rr

or
 R

at
es

 

 

Max−Rel

MRMR

JMI

TPower

LowRank

(b) Gisette

1 11 21 31 41 51 61 71 81 91

4

5

6

7

8

9

10

11

12

13

14

Number of Features

C
ro

sv
al

id
at

io
n 

E
rr

or
 R

at
es

 

 

Max−Rel

MRMR

JMI

TPower

LowRank

(c) Musk2

1 11 21 31 41 51 61 71 81 91

5

10

15

20

25

30

Number of Features

C
ro

sv
al

id
at

io
n 

E
rr

or
 R

at
es

 

 

QPFS

Spectral

TPower

LowRank

(d) Colon

1 11 21 31 41 51 61 71 81 91

4

6

8

10

12

14

16

Number of Features

C
ro

sv
al

id
at

io
n 

E
rr

or
 R

at
es

 

 

QPFS

Spectral

TPower

LowRank

(e) Gisette

1 11 21 31 41 51 61 71 81 91

4

5

6

7

8

9

10

11

12

13

Number of Features

C
ro

sv
al

id
at

io
n 

E
rr

or
 R

at
es

 

 

QPFS

Spectral

SDP

TPower

LowRank

(f) Musk2

Figure 7.4: Average cross validation error(%) vs. Number of features. First
Row: Comparison of Greedy methods with TPower and LowRank for 3 datasets.
Second Row: Comparison of Global methods across 3 datasets. Images based on
Venkateswara et al. (2015a).
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7.3 Nonlinear Feature Selection for Domain Adaptation

The following subsections outline a domain adaptation model that reduces cross

domain disparity by selecting samples (instance selection) and also by selecting fea-

tures (feature selection). The hypothesis is that performing both instance and feature

selection can align the source and target domains. As in standard unsupervised do-

main adaptation, two domains are considered; source and target. The source consists

of labeled data, Ds = {xs
i , y

s
i }ns

i=1 and the target has only unlabeled data Dt = {xt
i}nt

i=1.

The data points x∗
i belong to R

d, where d is the dimension of each feature. The cor-

responding labels are represented by y∗i ∈ Y := {1, . . . , c}. The main idea behind

feature selection based domain adaptation is to select k < d features to reduce do-

main disparity between Ds and Dt.

7.3.1 Instance Selection

The Maximum Mean Discrepancy (MMD) measure, proposed by Borgwardt et

al., is used to determine if two distributions are similar (Borgwardt et al. (2006)).

The MMD is a non-parametric criterion that measures the distances between distri-

butions in terms of distances between their means in a Reproducing Kernel Hilbert

Space (RKHS). It has been discussed in detail in previous chapters. Researchers

have adapted the MMD measure to perform instance selection for domain adaptation

Long et al. (2014). Here, data points are sampled from the source domain such that

their distribution is similar to the target distribution. A classifier trained on these

sampled source data points can then be used for target data prediction. The MMD

143



for instance selection of source data points is formulated below,

min
β
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≤ ǫ (7.12)

In Equation (7.12), the weights β indicate the importance of the source data points.

The kernel K̂s is the ns × ns source data kernel matrix, K̂t is the nt × nt target

kernel matrix and K̂st is the ns × nt source target kernel matrix. The kernel entries

correspond to a nonlinear mapping where k(xi,xj) =< φ(xi), φ(xj) >. B defines

the scope bounding discrepancy between the source and target distributions. B → 1

gives an unweighted solution. The second constraint ensures that βip(x
s
i ) is still a

probability distribution. The indices of β with the largest values are the indices of

the sampled data points from the source. A nonlinear classifier trained with these

source instances can be used to classify the target data.

7.3.2 Nonlinear Feature Selection

In Equation (7.12), instance sampling is performed by transforming the data

points into a high dimensional (possibly infinite dimensional) space. In addition,

feature selection must also be performed in a high dimensional space. Mutual infor-

mation based feature selection discussed in the previous sections is infeasible when

confronted with high dimensional (infinite dimensional) spaces. To perform feature

selection in infinite dimensional spaces, the data can be visualized in terms of indi-

vidual features. The source data can also be represented as Xs = [u1,u2, . . . ,ud]
⊤,

where up ∈ R
ns for p ∈ {1, . . . , d}. In order to do feature selection, the source kernel

Ks is redefined as the sum over individual feature kernels, Ks = Ks
1 + Ks

2 . . . , K
s
d,
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where, Ks
p ∈ R

ns×ns is the kernel using just the pth feature of Xs. Feature selection

is implemented as selection over feature kernels as outlined in Venkateswara et al.

(2013). The elements Ks
i,j = k(upi,upj), where upl is the l

th element of up. Similarly,

Kst = Kst
1 + Kst

2 . . . , K
st
d and Kt = Kt

1 + Kt
2 . . . , K

t
d. Nonlinear feature selection is

implemented by selecting the most important features by assigning weights to the

respective feature kernels Ks
p , K

st
p and Kt

p. The optimization problem is outlined

below,

min
β,γ
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γ ∈ [0, 1]d,
d
∑

i

γi = k (7.13)

The above equation needs to be minimized in two variables β and γ. Equation (7.13)

is an example of a bi-convex problem. A function f : X × Y → R is bi-convex, if

f(x, y) is convex in y for a fixed x ∈ X, and f(x, y) is convex in x for a fixed y ∈ Y .

Equation (7.13) is quadratic in β when γ is a constant and is therefore convex in β.

Similarly, Equation (7.13) is linear in γ when β is constant and is therefore convex

in γ. Therefore, Equation (7.13) is a bi-convex problem. Under these conditions,

an alternating minimization approach is bound to converge to a critical point Gorski

et al. (2007). Therefore, an alternating optimization procedure is applied to estimate

β and γ. When γ is fixed, the solution for β is a standard MMD solution which

is solved by quadratic programming. When β is fixed, the solution for γ can be

expressed as a linear problem given by,

min
α: 0≤αp≤1,∑

p αp=k

d
∑

p=1

αpvp (7.14)
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where vp is given by:

vp = β⊤Ks
pβ −

2

nt

β⊤Kst
p 1+

1

n2
t

1⊤Kt
p1

The constraint
∑

p αp = k ensures that at least k features are selected. The k features

to be chosen are given by the indices of the k largest elements of v = [v1, . . . , vd].

7.4 Experiments

For the experiments, digit datasets MNIST (LeCun et al. (1998)) and USPS

(Roweis (2000)) datasets were used. Some examples from both the datasets are

depicted in Figure (7.5). To the naked eye, there is a clear difference between the

images in the two datasets. 500 samples were chosen from both the datasets. The

digit image sizes were resized to 16× 16 pixels resulting in images of 256 dimensions.

Equation (7.13) was solved using alternate minimization.

Figure (7.6a) depicts the original datasets. The data points have been reduced

to 2 dimensions using the unsupervised tSNE (Van der Maaten and Hinton (2008)).

The two datasets cluster separately showing the distinct difference between the data

points in the two domains. Equation (7.13) was solved with MNIST as source and

USPS as target dataset and 100 features were selected out of 256 to reduce the

domain disparity. Figure (7.6b) depicts the tSNE embeddings of two datasets using

the reduced features. The size of the source data points indicates their importance

Figure 7.5: Example digits from the MNIST and the USPS datasets. There is a
visible distinction between the digits from the two datasets.
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(β) for domain adaptation. Similarly, Equation (7.13) was solved with USPS as the

source dataset and MNIST as the target dataset and 100 features were selected out

of 256 to reduce the domain disparity. The quadratic problem (estimating β) was

solved using MATLAB’s quadprog function and the linear problem (estimating γ)

was solved using MATLAB’s linprog function. In both the cases, the alternating

optimization converges in a few iterations. Figure (7.6c) depicts the tSNE embeddings

of two datasets using the reduced features. In both Figures (7.6b), (7.6c), the datasets

seem to have much more overlap compared to Figure (7.6a). Table (7.5) compares the

classification accuracies for unsupervised domain adaptation using the two datasets.

Table 7.5: Unsupervised domain adaptation experiments with digit data. In all
cases, the classifier is trained with source data and tested on the target. MNIST→
USPS means, MNIST is source and USPS is target. SVM - regular linear SVM.
SVM(β) - source data points are weighted by β, SVM(γ) - source and target features
are selected with γ, SVM(β, γ) - source data points are weighted by β and source
and target features are selected with γ.

Expt. SVM SVM(β) SVM(γ) SVM(β, γ)

MNIST→ USPS 36.6% 36.2% 35.2% 41.8%

USPS→ MNIST 21.8% 26.6% 23.8% 24.0%

In the MNIST→ USPS experiment, there is marked improvement using both the

weighted source and feature selection. The results in Table (7.5) show that feature

selection with instance sampling gives better accuracies than just doing feature selec-

tion or instance sampling in the case of MNIST → USPS. In the USPS → MNIST

experiment, there is not much improvement compared to other methods and doing

only instance sampling appears to perform better than feature selection and instance

sampling. In these experiments, the model estimation (β and γ) and classification are

carried out in two steps. A more rigorous implementation would be to include both

model estimation and classification in the same step, thereby learning an efficient

classifier for the source with weighted training data points and reduced dimensions.
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(a)

(b)

(c)

Figure 7.6: The tSNE embeded images depicting both the datasets in two dimen-
sions. (a) The two datasets are clearly different distributions. There appears to be
little overlap between the clustered digits in the two datasets. (b) tSNE image after
solving Equation (7.13) with MNIST as source and USPS as target and selecting 100
features. The importance of the source data points β is denoted by the size of the
unfilled circles. There is more overlap between the source and target datasets when
compared to (a). (c) tSNE image after solving Equation (7.13) with USPS as source
and MNIST as target and selecting 100 features.
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7.5 Conclusions and Summary

There is scope for improvement in the area of mutual information based feature

selection. Feature selection is a NP-hard problem and newer methods to approximate

the solution will help drive research in this area. Currently, information gain based

feature selection is based on conditional independence assumptions that is similar to

Näıve Bayesian models. While mutual information and conditional mutual informa-

tion are the existing criteria for determining the importance of 2 or 3 features at a

time, there is need to derive measures to better approximate the importance of a

group of selected features. In the area of feature selection for domain adaptation,

the proposed model is a promising start. Although the preliminary results on feature

selection are encouraging, more experiments need to be conducted to firmly establish

the hypothesis that feature selection can reduce domain disparity.

In summary, there were two parts to this chapter. In the first part, two global pro-

cedures for feature selection were introduced, namely the Truncated Power Method

TPower and the Low Rank Bilinear Approximation LowRank. The experiments

compared the proposed technique with existing feature selectors and showed that

both TPower and LowRank perform better than existing global and iterative tech-

niques across most of the datasets. While LowRank slightly outperforms TPower,

it does not compare well with regards to time. The role of conditional mutual infor-

mation in feature selection was also demonstrated by the theorems. In the second

half of the chapter, a nonlinear feature selection and instance selection model for do-

main adaptation was introduced. Preliminary experiments were conducted with digit

datasets MNIST and USPS. These results indicate that feature selection can be used

to increase domain overlap.

149



Chapter 8

DOMAIN ADAPTATION - FUTURE DIRECTIONS

This chapter proposes some directions for future research in domain adaptation.

8.1 Understanding Domain Shift

The concept of a domain has been defined vaguely in computer vision. Images

from different datasets are viewed as belonging to different domains. It is true that

datasets have an inherent bias and images from a dataset have certain properties that

can help identify the dataset (Torralba and Efros (2011)). However, there has been

limited effort in understanding what creates this bias and on modeling the domain

shift between datasets. The authors in Tommasi et al. (2016) attempt to identify the

domainness - a measure for domain specificity of an image.

The difficult problem of modeling domain shift in computer vision has been rarely

addressed. There has been work on identifying domains from a mixture of multiple

datasets and then studying transfer of knowledge between the domains (Gong et al.

(2013b)). Although this does not necessarily model a domain, it provides some di-

rection towards identifying a domain through analysis. The difficulties of modeling

domain shift in computer vision mostly arise due to variations in representation and

not merely variations in the data being represented. The very process of imaging

(camera perspective, occlusion), storage (resolution, size) and representation (color,

brightness, contrast) can lead to variations. Image background (context) is another

cause for variation. Finally, the diversity in the ‘real data’ itself could also lead

variations in their images.

Most domain adaptation systems create adaptive models that perform generic

150



domain adaptation. The models are often guided by the datasets that are used. On

the other hand, it might be beneficial to tailor the adaptation model to a specific

variation in the data. This would however need a comprehensive understanding of

domain shift. It might also lead to task-specific domain adaptation models based on

the nature of domain-shift, leading to increased adoption of domain adaptation in

real world applications.

8.2 Datasets

The standard datasets for computer vision based domain adaptation are, facial

expression datasets CKPlus (Lucey et al. (2010)) and MMI (Pantic et al. (2005)),

digit datasets SVHN (Netzer et al. (2011)), USPS and MNIST (Jarrett et al. (2009)),

head pose recognition datasets PIE (Long et al. (2013)), object recognition datasets

COIL (Long et al. (2013)), Office (Saenko et al. (2010)) and Office-Caltech (Gong

et al. (2012a)).

The following reasons outline the need for new datasets.

1. The currently available datasets for domain adaptation are not suitable for deep

learning. These datasets were created before deep learning became popular

and are insufficient for training and evaluating deep learning based domain

adaptation approaches. These datasets are small with a limited number of

categories. For instance, the most popular object-recognition dataset Office,

has 4110 images across 31 categories and the newly introduced Office-Home

has 15, 000 images across 65 categories. A deep learning model with millions

of parameters requires millions of images for training. Current approaches fine-

tune pre-trained deep networks avoiding over-fitting issues. In order to train

large scale adaptive systems, deep learning is the preferred model which in turn

demands large datasets.
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2. The datasets were developed for evaluating generic domain adaptation. As also

discussed in the previous section, these datasets were created without modeling

domain shift. The domain boundaries are determined by dataset identity and

not by the nature of domain shift. When datasets are modeled on a specific

domain shift it will lead to the generation of task-specific domain adaptation

models leading to a rich family of domain adaptation models. This will in turn

lead to widespread adoption of domain adaptation for real world problems.

Modeling of domain-shift and creation of new datasets complement each other.

8.3 Generative Models

Generative models, like Generative Adversarial Networks (GANs) are currently

very popular in the research community. They have a wide range of applications

from image super-resolution (Ledig et al. (2016)), text-to-image generation (Reed

et al. (2016); Zhang et al. (2016)), image-to-image generation (Isola et al. (2016))

and conditional image generation (Nguyen et al. (2016); Chen et al. (2016)). The

intuition behind the idea of generative models is based on a quote from physicist

Richard Feynman 1,

‘What I cannot create, I do not understand.’

It is common knowledge that when humans see an object for the first time, they form

a mental image of the object and call upon that generated image when referencing the

object at a later point in time. They are also able to understand the object based on

their previous learning of similar looking objects. For e.g. they can guess the texture

and weight of an object or ‘imagine’ how the object would appear when viewed from a

different perspective. All of this is perhaps due to the generative models and transfer

1https://openai.com/blog/generative-models/
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learning models in the brain that have evolved and perfected over millions of years.

Based on this common understanding of the human brain and encouraged by the

current success of generative adversarial models for domain adaptation, it would not

be farfetched to hypothesize that transfer learning and generative models are closely

related. In order to advance transfer learning and domain adaptation to the next

level, generative models appear to hold the most promise.

8.4 Aligning Joint Distributions

Current forms of adaptation merely align the marginal distributions of the source

and the target PS(X) and PT (X). The popular Maximum Mean Discrepancy (MMD)

measure from Borgwardt et al. (2006), is often applied to align the marginal distribu-

tions of the source and target data, as described in this instance selection approach

Gong et al. (2013a). The goal of domain adaptation is not merely aligning the do-

mains but also being able to use the models trained on the source upon the target.

In most cases, the domain adaptive models are created for classification. It would

therefore make more sense to align the joint distributions PS(X, Y ) with PT (X, Y )

rather than merely the marginal distributions. The alignment of joint distributions

will make a classifier trained on the source, an effective classifier for the target.

The challenge with this approach is that target labels are not available in unsu-

pervised domain adaptation. The workaround is to impute the target data labels and

refine them iteratively. There has been work in this regard as in Long et al. (2013),

where the joint distributions are aligned in a spectral method using Kernel-PCA,

by imputing the labels and refining them over multiple iterations. A deep learning

approach has also been attempted in this regard in Long et al. (2016a), using a trans-

ductive approach to learn the target labels while also minimizing the joint domain

discrepancy. Conditional generative models (discussed the Section 8.3) along with
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joint distribution alignment could be the next wave of domain adaptation models.

8.5 Person-Centered Domain Adaptation

Very soon, computing is going to become all pervasive. The environment is

plugged with computing devices and an average person carries quite a few smart-

devices like a phone, watch, wristband, etc. Can this computing be adapted to every

user ? Computing that adapts to a user’s needs and idiosyncrasies can be called

Person-Centered Computing (PCC) (Panchanathan et al. (2012)). This would mean

that personal devices would model their interaction and response based on the user’s

needs, rather than a one-size-fits-all approach where users train themselves to adapt

to their devices, in order to effectively interact with them. This paradigm, where the

user and the device adapt to each other, is termed as co-adaptation.

These personalized devices will need to be designed to have core functional com-

ponents making them applicable to a broad range of users. In addition, they must

also have co-adaptive components that help customize the device at an individual

user level. The device must adapt to the user based on patterns gathered from user

interaction with the device. The learning models for co-adaptation will be based on

unsupervised domain adaptation, which would involve gleaning patterns from unla-

beled user interaction data. There has been no work so far in domain adaptation

literature for person-centered device adaptation and these person-centered adaptive

models would make technology more accessible, especially to individuals with disabil-

ities.
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Chapter 9

SUMMARY

The dissertation approaches the problem of domain adaptation from the concept of

feature spaces. The literature survey was presented along these lines and it provides a

new perspective on domain adaptation approaches. The dissertation presented three

models for domain adaptation based on linear, nonlinear and hierarchical feature

spaces.

The linear model was a max-margin solution with a pair of linear decision bound-

aries for the source and the target that was learned simultaneously. The nonlinear

model was a kernel-PCA solution based on domain alignment using maximum mean

discrepancy. The method also embedded data onto a manifold to ensure enhanced

classification. A highlight of this work was a validation procedure that can be used

to learn model parameters for unsupervised domain adaptation. The hierarchical

method was a deep learning model based on estimating domain aligned hash values

for the source and target data. This work introduced an unsupervised hash loss for

the unlabeled target. The dissertation introduced the Office-Home dataset for do-

main adaptation consisting of 4 domains and around 15, 000 images. It also proposed

a nonlinear method for domain adaptation based on feature selection.

The solutions for domain adaptation developed over the years can be viewed

as dataset or feature specific. Although the proposed models have been tested on

different datasets, the range of problems being addressed has been narrow. The

gamut of applications that can tackled by domain adaptation, have not been fully

explored. The lack of variety in datasets has restricted the range of domain adaptation

problems that have been explored. The chapter on future directions provides some
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insights into the promising areas of research in domain adaptation. The advent of deep

learning and its unprecedented success in tackling domain adaptation, will eventually

lead to the introduction of new datasets and generic problem statements in domain

adaptation.
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This section estimates the goodness of approximation to BQP provided by the
solution to LP2. An equivalent problem to BQP is defined as,

Proposition A.0.1.

q : {0, 1}n → (−∞, 0], where

q(x) = BQP− ||Q||1
is equivalent to BQP.

Proof. ||Q||1 is the sum of all elements in Q. Since Qij ≥ 0, BQP ≤ ||Q||1 ∀x.
Therefore, q(x) ≤ 0, ∀x. Since ||Q||1 is a constant for a matrix, under the same set
of constraints,

argmax
x

BQP ≡ argmax
x

q(x)

�

A few new terms are defined before the derivation of the bound. Let x∗ be the
solution of BQP. Let x̄ be the solution of LP2. Since ||Q||1 =

∑

ij Qij, ||Q||1 can be

expanded in terms of any binary vector x. Specifically ||Q||1, is defined in terms of
x̄,

Definition A.0.1.

||Q||1 = Q0 +Q1 +Q2 where, (A.1)

Q0 ←
∑

i,j|x̄i+x̄j=0

Qij (A.2)

Q1 ←
∑

i,j|x̄i+x̄j=1

Qij (A.3)

Q2 ←
∑

i,j|x̄i+x̄j=2

Qij ≡ x̄⊤Qx̄ (A.4)

Lemma A.0.1. ||Q||1 − x̄⊤Qx̄ ≥ Q1

Proof. From (A.1),

||Q||1 = Q0 +Q1 +Q2

||Q||1 ≥ Q1 +Q2

||Q||1 − x̄⊤Qx̄ ≥ Q1 using (A.4)

�

Let Q∗ denote the maximum value of BQP and let Q∗
LP2 denote maximum value

of LP2. If x∗ is the solution of BQP and x̄ is the solution of LP2. The following
result is obtained:

Lemma A.0.2. Q∗
LP2 ≥ Q∗
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Proof.

Q∗
LP2 = max ||Qx||1

= ||Qx̄||1
≥ ||Qx∗||1
≥ x∗⊤Qx∗

= Q∗

�

The bound for LP2 can now be stated.

Theorem A.0.1.

2q(x∗) ≤ q(x̄) (A.5)

Proof. From Lemma (A.0.2):

x∗⊤Qx∗ ≤ 1

2

∑

ij

Qij(x̄i + x̄i) (A.6)

x∗⊤Qx∗ ≤ 1

2
Q1 + x̄⊤Qx̄ (A.3, A.4) (A.7)

2x∗⊤Qx∗ ≤ Q1 + 2x̄⊤Qx̄ (A.8)

2x∗⊤Qx∗ ≤ ||Q||1 + x̄⊤Qx̄ Lemma (A.0.1) (A.9)

2q(x∗) ≤ q(x̄) (A.10)

�

The last statement (A.10) is arrived at by adding −2||Q||1 on both sides. Since
q(x) ≤ 0, 2q(x∗) ≤ q(x̄) implies that q(x̄) is a lower bound for q(x∗). This guarantees
a lower bound for BQP by solving LP2 and Equation (A.10) provides the tightness
of the bound.
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In this section the partial derivative of Equation (6.8) for the backpropagation
algorithm is outlined;

min
U
J = L(Us) + γM(Us,Ut) + ηH(Us,Ut), (6.8)

where, U := {Us ∪ Ut} and (γ, η) control the importance of domain adaptation (6.1)
and target entropy loss (6.7) respectively. In the following subsections, the partial
derivative of the individual terms w.r.t. the input U is outlined.

B.1 Derivative for MK-MMD

M(Us,Ut) =
∑

l∈F

d2k(U l
s,U l

t), (6.1)

d2k(U l
s,U l

t) =
∣

∣

∣

∣

∣

∣
E[φ(us,l)]− E[φ(ut,l)]

∣

∣

∣

∣

∣

∣

2

Hk

. (6.2)

The linear MK-MMD loss is implemented according to Gretton et al. (2012). For this
derivation, the loss at just one layer is considered. The derivative for the MK-MMD
loss at every other layer can be derived in a similar manner. The output of ith source
data point at layer l is represented as ui and the output of the ith target data point is
represented as vi. For ease of representation, the superscripts for the source (s), the
target (t) and the layer (l) are dropped. Unlike the conventional MMD loss which
is O(n2), the MK-MMD loss outlined in Gretton et al. (2012) is O(n) and can be
estimated online (does not require all the data). The loss is calculated over every
batch of data points during the back-propagation. Let n be the number of source
data points U := {ui}ni=1 and the number of target data points V := {vi}ni=1 in the
batch. It is assumed there are equal number of source and target data points in
a batch and that n is even. The MK-MMD is defined over a set of 4 data points
wi = [u2i−1,u2i,v2i−1,v2i], ∀i ∈ {1, 2, . . . , n/2}. The MK-MMD is given by,

M(U ,V) =
κ
∑

m=1

βm
1

n/2

n/2
∑

i=1

hm(wi), (B.1)

where, κ is the number of kernels and βm = 1/κ is the weight for each kernel and,

hm(wi) = km(u2i−1,u2i) + km(v2i−1,v2i)− km(u2i−1,v2i)− km(u2i,v2i−1), (B.2)

where, km(x,y) = exp
(

− ||x−y||22
σm

)

. Re-writing the MK-MMD in terms of the kernels:

M(U ,V) = 2

nκ

κ
∑

m=1

n/2
∑

i=1

[

km(u2i−1,u2i) + km(v2i−1,v2i)

− km(u2i−1,v2i)− km(u2i,v2i−1)
]

, (B.3)
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The partial derivative of Equation (B.3) w.r.t. source output uq and target output
vq is outlined as,

∂M
∂uq

=
2

nκ

κ
∑

m=1

n/2
∑

i=1

[ 2

σm
km(u2i−1,u2i).(u2i−1 − u2i).(I{q = 2i} − I{q = 2i− 1})

+
2

σm
km(u2i−1,v2i).(u2i−1 − v2i).I{q = 2i− 1}

+
2

σm
km(u2i,v2i−1).(u2i − v2i−1).I{q = 2i}

]

, (B.4)

where, I{.} is the indicator function which is 1 if the condition is true, else it is false.
The partial derivative w.r.t. the target data output vq is,

∂M
∂vq

=
2

nκ

κ
∑

m=1

n/2
∑

i=1

[ 2

σm
km(v2i−1,v2i).(v2i−1 − v2i).(I{q = 2i} − I{q = 2i− 1})

− 2

σm
km(u2i−1,v2i).(u2i−1 − v2i).I{q = 2i}

− 2

σm
km(u2i,v2i−1).(u2i − v2i−1).I{q = 2i− 1}

]

, (B.5)

B.2 Derivative for Supervised Hash Loss

The supervised hash loss is given by,

min
Us

L(Us) =−
∑

sij∈S

(

siju
⊤
i uj − log

(

1 + exp(u⊤
i uj)

)

)

+
ns
∑

i=1

∣

∣

∣

∣ui − sgn(ui)
∣

∣

∣

∣

2

2
. (6.5)

The partial derivative of Equation (6.5) w.r.t. source data output up is given by,

∂L
∂uq

=
∑

sij∈S

[

I{i = q}
(

σ(u⊤
i uj)− sij

)

uj + I{j = q}
(

σ(u⊤
i uj)− sij

)

ui

]

+ 2(uq − sgn(uq)) (B.6)

where, σ(x) = 1
1+exp(−x)

. It is assumed sgn(.) is a constant in order to avoid the

differentiability issues with sgn(.) at 0. Since S is symmetric, the partial derivative
can be reduced to,

∂L
∂uq

=
ns
∑

j=1

[

2
(

σ(u⊤
q uj)− sqj

)

uj

]

+ 2
(

uq − sgn(uq)
)

. (B.7)
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B.3 Derivative for Unsupervised Entropy Loss

The partial derivative of dH
dU

is outlined in the following section, where H is defined
as,

H(Us,Ut) = −
1

nt

nt
∑

i=1

C
∑

j=1

pijlog(pij) (6.7)

and pij is the probability of target data output ut
i belonging to category j, given by

pij =

∑K
k=1 exp(u

t
i
⊤
u

sj
k )

∑C
l=1

∑K
k′=1 exp(u

t
i
⊤
u

sl
k′)

(6.6)

For ease of representation, the target output ut
i is denoted as vi and superscript t is

dropped. Similarly, the kth source data point in the jth category u
sj
k is denoted as

u
j
k, after dropping the domain superscript. The probability pij with the new terms is

now,

pij =

∑K
k=1 exp(vi

⊤u
j
k)

∑C
l=1

∑K
k′=1 exp(vi

⊤ul
k′)

(B.8)

Further simplification is achieved by replacing exp(v⊤
i u

j
k) with exp(i, jk). Equation

(B.8) can now be represented as,

pij =

∑K
k=1 exp(i, jk)

∑C
l=1

∑K
k′=1 exp(i, lk

′)
(B.9)

The outer summations are dropped (along with the -ve sign) and will be reintroduced
at a later time. The entropy loss can be re-phrased using log(a

b
) = log(a) - log(b) as,

Hij =

∑K
k=1 exp(i, jk)

∑C
l=1

∑K
k′=1 exp(i, lk

′)
log
(
∑K

k=1 exp(i, jk)
)

(B.10)

−
∑K

k=1 exp(i, jk)
∑C

l=1

∑K
k′=1 exp(i, lk

′)
log
(
∑C

l=1

∑K
k′=1 exp(i, lk

′)
)

(B.11)

Both,
∂Hij

∂vi
for the target and

∂Hij

∂up
q
for the source need to be estimated. ∂up

q is used

to refer to source data. The partial derivative
∂Hij

∂up
q
for Equation (B.10) is,

[

∂Hij

∂up
q

]

B.10
=

vi
∑

l,k′ exp(i, lk
′)

[

∑

k I{j=p,
k=q}exp(i, jk).log

(
∑

k exp(i, jk)
)

+
∑

k I{j=p,
k=q}exp(i, jk)− pijexp(i, pq)log

(
∑

k exp(i, jk)
)

]

, (B.12)
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where, I{.} is an indicator function, which is 1 only when both the conditions within

are true, else it is 0. The partial derivative
∂Hij

∂up
q
for Equation (B.11) is,

[

∂Hij

∂up
q

]

B.11
=− vi

∑

l,k′ exp(i, lk
′)

[

∑

k I{j=p,
k=q}exp(i, jk).log

(
∑

l,k′ exp(i, lk
′)
)

+ pijexp(i, pq)− pijexp(i, pq)log
(
∑

l,k′ exp(i, lk
′)
)

]

(B.13)

Expressing
∂Hij

∂up
q

=
[

∂Hij

∂up
q

]

B.10
+
[

∂Hij

∂up
q

]

B.11
, and defining p̄ijk = exp(i,jk)∑

l,k′ exp(i,lk
′)

the

partial derivative w.r.t. the source is,

∂Hij

∂up
q
=vi

[

∑

k I{j=p,
k=q}p̄ijk.log

(
∑

k exp(i, jk)
)

+
∑

k I{j=p,
k=q}p̄ijk

− pij p̄ipqlog
(
∑

k exp(i, jk)
)

−∑k I{j=p,
k=q}p̄ijk.log

(
∑

l,k′ exp(i, lk
′)
)

− pij p̄ipq + pij p̄ipqlog
(
∑

l,k′ exp(i, lk
′)
)

]

(B.14)

=vi

[

∑

k I{j=p,
k=q}p̄ijklog(pij)− pij p̄ipqlog(pij) +

∑

k I{j=p,
k=q}p̄ijk − pij p̄ipq

]

=vi

(

log(pij) + 1
)

[

∑

k I{j=p,
k=q}p̄ijk − pij p̄ipq

]

(B.15)

The partial derivative of H w.r.t the source output up
q is given by,

∂H
∂up

q
= − 1

nt

nt
∑

i=1

C
∑

j=1

vi

(

log(pij) + 1
)

[

∑

k I{j=p,
k=q}p̄ijk − pij p̄ipq

]

(B.16)

The partial derivative ∂H
∂vi

for Equation (B.10) is outlined as,

[

∂Hij

∂vi

]

B.10
=

1
∑

l,k′ exp(i, lk
′)

[

log
(
∑

k exp(i, jk)
)
∑

k exp(i, jk)u
j
k +

∑

k exp(i, jk)u
j
k

− 1
∑

l,k′ exp(i, lk
′)

∑

k exp(i, jk)log
(
∑

k exp(i, jk)
)
∑

l,k′ exp(i, lk
′)ul

k′

]

,

(B.17)

and the partial derivative ∂H
∂vi

for Equation (B.11) as,

[

∂Hij

∂vi

]
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=− 1

∑

l,k′ exp(i, lk
′)
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log
(
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)
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]

,

(B.18)
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Expressing
∂Hij

∂vi
=
[

∂Hij

∂vi

]

B.10
+
[

∂Hij

∂vi

]

B.11
,
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=
(

log(pij) + 1
)(
∑

k p̄ijku
j
k − pij

∑

l,k′ p̄ijk′u
l
k′

)

(B.21)

The partial derivative of H w.r.t. target output vq is given by,

∂H
∂vq

= − 1

nt

C
∑

j=1

(

log(pqj) + 1
)(
∑

k p̄qjku
j
k − pqj

∑

l,k′ p̄qjk′u
l
k′

)

(B.22)

The partial derivative of H w.r.t. the source outputs is given by Equation (B.16) and
w.r.t. the target outputs is given by Equation (B.22).
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