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We present the first purely event-based, energy-efficient approach for dynamic object

detection and categorization with a freely moving event camera. Compared to

traditional cameras, event-based object recognition systems are considerably behind

in terms of accuracy and algorithmic maturity. To this end, this paper presents

an event-based feature extraction method devised by accumulating local activity

across the image frame and then applying principal component analysis (PCA) to the

normalized neighborhood region. Subsequently, we propose a backtracking-free k-d tree

mechanism for efficient feature matching by taking advantage of the low-dimensionality

of the feature representation. Additionally, the proposed k-d tree mechanism allows for

feature selection to obtain a lower-dimensional object representation when hardware

resources are limited to implement PCA. Consequently, the proposed system can be

realized on a field-programmable gate array (FPGA) device leading to high performance

over resource ratio. The proposed system is tested on real-world event-based datasets

for object categorization, showing superior classification performance compared to

state-of-the-art algorithms. Additionally, we verified the real-time FPGA performance of

the proposed object detection method, trained with limited data as opposed to deep

learning methods, under a closed-loop aerial vehicle flight mode. We also compare the

proposed object categorization framework to pre-trained convolutional neural networks

using transfer learning and highlight the drawbacks of using frame-based sensors under

dynamic camera motion. Finally, we provide critical insights about the feature extraction

method and the classification parameters on the system performance, which aids in

understanding the framework to suit various low-power (less than a fewwatts) application

scenarios.

Keywords: object recognition, neuromorphic vision, low-power FPGA, closed-loop control, object detection,

event-based descriptor, rectangular grid, FIFO processing

1. INTRODUCTION

Through these fruitful decades of computer vision research, we have taken huge strides in
solving specific object recognition tasks, such as classification systems for automated assembly
line inspection, hand-written character recognition in mail sorting machines, bill inspection in
automated teller machines, to name a few. Despite these successful applications, generalizing object

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Western Sydney ResearchDirect

https://core.ac.uk/display/351841502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00135
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00135&domain=pdf&date_stamp=2020-02-20
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bharath.ramesh03@u.nus.edu
https://doi.org/10.3389/fnins.2020.00135
https://www.frontiersin.org/articles/10.3389/fnins.2020.00135/full
http://loop.frontiersin.org/people/451776/overview
http://loop.frontiersin.org/people/861794/overview
http://loop.frontiersin.org/people/908867/overview
http://loop.frontiersin.org/people/908657/overview
http://loop.frontiersin.org/people/94312/overview


Ramesh et al. PCA-RECT: Event-Based Object Detection

appearance, even under moderately controlled sensing
environments, for robust and practical solutions for industrial
challenges like robot navigation and sense-making is a major
challenge. This paper focuses on the industrially relevant
problem of real-time, low-power object detection using an
asynchronous event-based camera (Brandli et al., 2014) with
limited training data under unconstrained lighting conditions.
Compared to traditional frame-based cameras, event cameras do
not have a global shutter or a clock that determines its output.
Instead, each pixel responds independently to temporal changes
with a latency ranging from a low of tens of microseconds to a
high of few milliseconds. This local sensing paradigm naturally
results in a wider dynamic range (120 dB), as opposed to the
usual 60 dB for frame-based cameras.

Most significantly, event cameras do not output pixel
intensities, but only a spike output with a precise timestamp,
also termed an event, that signifies a sufficient change in log-
intensity of the pixel. As a result, event cameras require lower
transmission bandwidth and consume only a few hundred mW
vs. a fewWby standard cameras (Posch et al., 2014). In summary,
event-based cameras offer a fundamentally different perspective
to visual imaging while having a strong emphasis on low-latency
and low-power algorithms (Conradt et al., 2009; Ni et al., 2012;
Delbruck and Lang, 2013; Kueng et al., 2016).

Despite the notable advantages of event cameras, there
still remains a significant performance gap between event
camera algorithms and frame-based counterparts for various
vision problems. This is partly due to a requirement of
totally new event-by-event processing paradigms. However, the
burgeoning interest in event-based classification/detection is
focused on closing the gap using deep spiking neural networks
(O’Connor et al., 2013; Lee et al., 2016), something that again
entails dependence on powerful hardware like its frame-based
counterpart. On the other hand, a succession of frames captured
at a constant rate (say 30 Hz), regardless of the scene dynamics
and ego-motion, works well with controlled scene condition
and camera motion. Frame-based computer vision algorithms
have benefited immensely from sophisticated methodologies that
reduce the computational burden by selecting and processing
only informative regions/keypoints within an image (Lowe,
2004; Galleguillos et al., 2008; Vikram et al., 2012; Ramesh
et al., 2017a). In addition, frame-based sensing has led to
high hardware complexity, such as powerful GPU requirements
for efficiently re-training and deploying state-of-the-art object
detection frameworks using deep neural networks (Ren et al.,
2017; Redmon and Farhadi, 2018).

Since event-based vision is relatively new, only a limited
amount of work addresses object detection using these devices
(Liu et al., 2016; Iacono et al., 2018; Lenz et al., 2018). Liu et al.
(2016) focuses on combining a frame-based CNN detector to
facilitate the event-based module. We argue that using intensity
images, either reconstructed from the event stream (Scheerlinck
et al., 2018) or captured simultaneously (Liu et al., 2016; Iacono
et al., 2018), with deep neural networks for event-based object
detection may achieve good performance with lots of training
data and computing power, but they go against the idea of low-
latency, low-power event-based vision. In contrast, Lenz et al.

(2018) presents a practical event-based approach to face detection
by looking for pairs of blinking eyes. While Lenz et al. (2018) is
applicable to human faces in the presence of activity, we develop
a general purpose event-based, object detection method using a
simple feature representation based on local event aggregation.
Thus, this paper is similar in spirit to the recently spawned
ideas of generating event-based descriptors, such as histogram of
averaged time surfaces (Sironi et al., 2018) and log-polar grids
(Ramesh et al., 2017b, 2019b), or low-level corner detectors as
features (Manderscheid et al., 2019). Moreover, the proposed
object detection and categorization method was accommodated
on FPGA to demonstrate energy-efficient low-power vision.

In contrast to the above works, this paper introduces a
simple, energy-efficient approach for object detection and
categorization. Figure 1 illustrates the local event-based
feature extraction pipeline that is used for classification using
a codebook-based method. Accordingly, efficient feature
matching with the codebook is required, which is handled
by a backtracking-free branch-and-bound k-d tree. This
proposed system was ported to a field programmable gate
array (FPGA) with certain critical design decisions, one of
which demanded a virtual dimensionality reduction method
based on the k-d tree, to accommodate very low-power
computational needs.

This paper is an extended version of the work initially
published in ACCV Workshops 2018 (Ramesh et al., 2019a).
Novel contributions over (Ramesh et al., 2019a) include closed-
loop aerial flight, tested for the first time using event-based
sensors to the best of our knowledge, and robustness analysis
using hand-held experiments (section 3.3) with critical insights
into the system performance for various hyper-parameters
(section 3.1.1). Additionally, this work includes a comprehensive
comparison to deep learning methods (section 3.4) and further
provides full implementation details in section 2, including a
free-running mode implementation capable of a classification
output at any point in time, as opposed to a classifier periodically
operating on a set of events like (Ramesh et al., 2019a).

2. MATERIALS AND METHODS

We follow the event-based classification framework proposed
in Ramesh et al. (2017b), with the following crucial changes:
a new descriptor (PCA-RECT), a virtual dimensionality
reduction technique using k-d trees (vPCA) and a simplified
feature matching mechanism to account for hardware
limitations. The framework consists of four main stages:
feature extraction, feature matching with a codebook, creating
an object representation, which is lastly fed to a linear classifier.
Additionally, we incorporate an object detector in the framework
as explained in the following subsections.

2.1. PCA-RECT
Each incoming event, ei = (xi, yi, ti, pi)

T with pixel location xi
and yi, timestamp ti, polarity pi, is encoded as a feature vector
xi. To deal with hardware-level noise from the event camera,
two main steps are used: (1) nearest neighbor filtering and
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FIGURE 1 | PCA-RECT representation (best viewed on monitor). Useful events are sub-sampled and filtered after applying nearest-neighbor temporal filtering and

refractory filtering, termed as rectangular event context transform (RECT). The sparser RECT event representation is updated dynamically using a first in, first out

(FIFO) buffer. Subsequent feature extraction is carried out by applying principal component analysis (PCA) to project RECT onto a lower-dimensional subspace to

obtain the final PCA-RECT feature representation.

(2) refractory filtering. We define a spatial Euclidean distance
between events as,
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∣

∣

∣

∣

∣

∣

∣

∣

(

xi
yi

)

−
(

xj
yj

)∣

∣

∣

∣

∣

∣

∣

∣

. (1)

Using the above distance measure, for any event we can define a
set of previous events within a spatial neighborhood, N (ei, γ ) =
{ei | j < i, Di,j < γ } , where γ =

√
2 for an eight-connected

pixel neighborhood. When the time difference between the
current event and the most recent neighboring event is less than
a threshold, 2noise, the filter can be written as

Fnoise (e) = {ei| N(ei,
√
2)\N(ei, 0) ∋ ej | ti − tj < 2noise} .

(2)
When the neighborhood is only the current pixel, γ = 0, the set
of events getting through the refractory filter Fref are those such
that,

Fref (e) = {ej| ti − tj > 2ref ∀ j | ej ∈ N
(

ej, 0
)

} . (3)

Cascading the filters, we can write the filtered incoming events as,

{

ê
}

= Fnoise
(

Fref (e)
)

. (4)

As shown in Figure 1, the incoming events êi are first pushed into
a FIFO buffer. The FIFO queue is then used to update an event-
count matrix C ∈ R

m×n, where m and n denote the number of
rows and columns of the event camera output.

C(xi, yi) = C(xi, yi)+ 1 . (5)

Before pushing the latest event, the FIFO buffer of size S

is popped to make space and simultaneously update the
count matrix C,

C(xi−s, yi−s) = C(xi−s, yi−s)− 1 . (6)

The event-count C is pooled to build local representations, which
are further aggregated to obtain the RECT representation of each
event. In particular, let A be a p×q rectangular grid filter, the 2-D
convolution is defined as,

R(j, k) =
∑

p

∑

q

A(p, q)C(j− p+ 1, k− q+ 1) , (7)

where p run over all values that lead to legal subscripts of A(p, q)
and C(j − p + 1, k − q + 1). In this work, we consider a filter
containing equal weights (commonly known as an averaging
filter) for simplicity, while it is worth exploring Gaussian-
type filters that can suppress noisy events. The resultant 2-D
representation is termed as filtered matrix R ∈ R

(m/p)×(n/p),
where the filter dimensions are chosen to be give integer values
for m/p and n/q or conversely C is zero-padded sufficiently.
Subsequently, the RECT representation for êi is obtained as a
patch ui (see Figure 1) of dimension d centered at R(y/p, x/q).
Subsequently, the filtered event-count patch is projected on-to a
lower-dimensional subspace using principal component analysis
(PCA) for eliminating noisy dimensions and improving classifier
accuracy. For the sake of completion, the details of extracting the
principal components (PCs) are given below.

For a set of n mean-centered feature vectors ui ∈ R
d with Ni

samples in the subset Di belonging to class ωi, (i = 1, · · · ,C),
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principal component analysis (PCA) seeks a projection W that
minimizes the error function:

JPCA(W) =
N

∑

k=1
||uk − vk||2 . (8)

where vk is obtained after projection of uk byW as vk =WWTuk.
The minimization is equivalent to finding the eigenvectors of the
total scatter matrix defined as:

ST =
N

∑

k=1
(uk − µ)(uk − µ)T . (9)

where µ is the mean of all training samples:

µ = 1

N

N
∑

k=1
uk . (10)

The columns of W associated with non-trivial eigenvalues are
the PCs and those with negligible eigenvalues are regarded as
arising from noise. After projecting the RECT representation
using the PCs, each filtered event is thus encoded as a feature

vector xi ∈ R
d′ where d′ < d.

2.2. Feature Selection and Matching Using
K-d Trees
The PCA-RECT feature representation for each event is matched
to a codebook for creating the object representation. However,
exhaustive search is too costly for nearest neighbor matching
with a codebook, and approximate algorithms can be orders
of magnitude faster than exact search, while almost achieving
par accuracy.

In the vision community, k-d tree nearest-neighbor search
is popular (Silpa-Anan and Hartley, 2008; Muja and Lowe,
2009), as a means of searching for feature vectors in a large

training database. Given n feature vectors xi ∈ R
d′ , the

k-d tree construction algorithm recursively partitions the d′-
dimensional Euclidean space into hyper-rectangles along the
dimension of maximum variance. However, for high dimensional
data, backtracking through the tree to find the optimal solution
still takes a lot of time.

Research in the vision community has therefore aimed at
increasing the probability of success while keeping backtracking
within reasonable limits. Two similar and successfully applied
approximated search methods are the best-bin-first search (Beis
and Lowe, 1997) and priority search (Arya and Mount, 1993).
Backtracking is accomplished in such methods by maintaining
an estimate of the distance from the query point to any
of the nodes down all of the branches. In the best-bin-
first search, a parameter specifies the number of data points
that can be checked before terminating and returning the
closest point traversed up to that point. This process however
still requires the computationally expensive Euclidean distance
calculation to a subset of the data points in the codebook or
training database.

This paper proposes a simple, backtracking-free branch-
and-bound search for matching (Algorithm 1), taking
advantage of the low-dimensionality of the PCA-RECT
representation. The hypothesis is that, in general, the point
recovered from the leaf node is a good approximation to the
nearest neighbor in low-dimensional spaces, and performance
degrades rapidly with increase in dimensionality, as inferred
from the intermediate results in Beis and Lowe (1997). In
other words, with (log2 n) − 1 scalar comparisons, nearest
neighbor matching is accomplished without an explicit distance
calculation. While the PCA-RECT representation is useful for
software implementations, an extra PCA projection step can be
computationally demanding on FPGA devices. To this end, we
propose a virtual PCA-RECT representation based on the k-d
tree, termed as vPCA-RECT.

2.2.1. vPCA-RECT
A key insight is that only a fraction of the data dimensions are
used to partition the k-d tree, especially when the codebook
size is only a few times more than the feature dimension.
Therefore, instead of using the PCA-RECT representation, an
alternative dimensionality reduction scheme can be implemented
by discarding the unused dimensions in the k-d tree structure.
In other words, the RECT representation is first used to build
a k-d tree that selects the important dimensions (projection
π), which are then utilized for codebook learning and
classification. It is worth noting that exactly the same k-d
tree will be obtained if the RECT data is first projected by
π onto a subspace that is aligned with the coordinate axes.
Since no actual projection takes place, we refer to this as a
virtual projection—the irrelevant dimensions chosen by the
k-d tree are discarded to obtain a lower-dimensional feature
representation.

2.3. Event-Based Object Categorization
and Detection
The learning stage: Using the PCA-RECT event representation,
the learning process corresponds to creating a set of K features
denoted asM = {1, 2, · · · ,K} to form the codebook (also termed

Algorithm 1:KDSEARCHFAST(node, y): Fast k-d tree search for
PCA-RECT
Input: The root of the kdtree structure, and a query point y
Output: kdtree leaf node data-point j

1: if node.type 6= leaf then
2: if y(node.splitDimension) ≤ node.splitThreshold then

3: node← node.left
4: KDSEARCHFAST(node, y)
5: else

6: node← node.right
7: KDSEARCHFAST(node, y)
8: end if

9: else

10: return node.dataIndex
11: end if
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as dictionary). The clustering is done by randomly selecting
a sufficiently large pool of event representations of various
categories from the training samples. It is worth noting that
the dictionary features are learned from the training set using
unsupervised clustering for all the objects jointly.

In contrast to the above single-shot learning for PCA, the
vPCA-RECT representation requires two codebook learning
steps. First, using the RECT representation, an initial codebook
of size Kv, where Kv << K, is built to spot the
unused feature dimensions in the k-d tree. The unused
dimensions simply correspond to those which were not used
by the k-d tree construction algorithm to recursively partition
the d’-dimensional Euclidean space into hyper-rectangles.
Subsequently, the projection π is used to obtain a lower-
dimensional representation for the training data and then the
final codebook of size K is generated. The initial, smaller
codebook helps to partition the RECT feature space with much
higher entropy, and thus is an essential step for the virtual
PCA-RECT representation.

The learning stage for detection builds on top of the
categorization module, in such a way that the learning process
corresponds to selecting a subset of features from the codebook
for each object. In contrast to the learning phase of the
categorizationmodule, the detector features are selected from the
whole training set in a supervised one-vs-all manner.

We propose to evaluate the balanced matches Yk
+ to each

codeword fk from the target events against the matches Yk
− for

all the other events to the respective feature. Mathematically,
the ratio

D(k) = βk
+Y

k
+

βk
−Y

k
−
, where βk

+ =
|Yk
+|

K
∑

k=1
|Yk
+|

, and βk
− =

|Yk
−|

K
∑

k=1
|Yk
−|

,

(11)

is to be maximized. The balancing component βk
+ denotes the

percentage of target events matched to the codeword fk. Similarly,
βk
− denotes the percentage of non-target events matched to

the codeword fk. Thus, choosing the detector features with the
D–largest ratios completes the learning phase.

The classification/detection stage: At runtime, the event
representations are propagated through the k-d tree. On the
one hand, the distribution of the codewords are then extracted
and further passed to a simple linear classifier (we experimented
with both linear SVM and Kernel Methods). On the other hand,
the event representations propagated through the k-d tree are
matched with the detector features. Those matched events are
used to update a location map for the target object and the
region with the highest activation is considered to be the final
detection result.

2.4. FPGA Implementation
An overview of the whole system is shown in Figure 2. Learning
is performed in software first and the relevant data is transferred
to the FPGA, which corresponds to the SVM weights and the
information regarding the nodes of the k-d tree. This process
does not require fine tuning of the FPGA code, except for the
case of a different codebook size, in which only the new size has
to be updated in the FPGA side. The memory initialization for
the block memories is automated from the files generated during
training in software.

2.4.1. Categorization Pipeline
In order to showcase energy-efficient event-based object
recognition, the FPGA implementation of the algorithm is
designed as a series of four independent hardware units: event
sub-sampling, vPCA-RECT generation, a recursive k-d tree and a
SVM classifier output on an event-by-event basis, each of which
has an independent block design. Generally, these hardware
counterparts are not a direct application of the algorithm

FIGURE 2 | Pipeline of the proposed system.
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presented in the earlier section, i.e., certain design decisions were
taken for this task, among them, to desist the use of an extra PCA
projection along the pipeline.

The sub-sampling block receives the filtered event locations as
input values x and y, each 8-bit in size, which are used to update
the zero-padded count matrix C ∈ R

m×n (Equation 5, 6). The
sub-sampling behavior can be achieved in hardware through a
combinatorial module that performs the division by shifting the
inputs by one bit, and subsequently adding p and q to that value to
obtain the sub-sampled representation (Equation 7). This results
in two 7-bit values which are then concatenated to output a single
memory address (Figure 3A).

The next block uses the cell-count matrix R ∈ R
(m/p)×(n/q),

created by a block of distributed RAM of depth ((m/p) × (n/q))
and log(s)-bits width, corresponding to the FIFO buffer size s,
initialized to zero for generating the vPCA-RECT representation.
To generate a descriptor with respect to the last event received

would add a considerable overhead, since each element of the
descriptor would have to be read sequentially from the block
RAMwhile being stored by the next module. Instead, the address
corresponding to the center of the descriptor is provided, i.e., the
input address of the count matrix is passed over to the k-d tree
module. This allows to trigger the k-d tree in one clock cycle
once the count matrix is updated and later read the descriptor
values based on this single coordinate. However, a new issue
arises, the count matrix then can not be modified while the k-d
tree exploration is being performed. Hence a buffering element is
added between the sub-sampling and count matrix modules that
will only provide the next address once there is a valid output
from the tree.

The k-d tree nodes are represented in a 49-bit number stored
in a previously initialized single port ROM of depth equal to the
number of nodes. This number is conformed by the elements of
a node: type, left node, right node, index output, split value and

FIGURE 3 | FPGA implementation details: (A) Sub-sampling module, (B) A k-d tree node in hardware, and (C) Recursive logic-driven k-d tree implemented in

hardware.
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split dimension; these are concatenated and their width is shown
in Figure 3B.

The k-d tree module follows a three steps cycle (Figure 3C).
The split dimension of a k-d tree node provides the address
that needs to be read from the cell-count matrix block RAM
to get the relevant descriptor value. Next, the descriptor value
is compared to the previously stored split value from the
node, taking a path down the tree, left or right, depending
on the boolean condition. The corresponding node to get is
then retrieved from the respective left or right address element
acquired in the retrieval step. This cycle repeats until the node
type belongs to a leaf, then the leaf node output is made available
for the classifier module. It is worth mentioning that in the
software implementation of this algorithm, once the descriptor
is formed, it is then normalized before being passed to the
k-d tree. A normalization step in hardware would add a big
overhead to the pipeline, disturbing its throughput, and it was
removed from the FPGA implementation after verifying that the
overall performance was not affected harshly. The “distribution
of the codewords” normalization that is input to the SVM is
an important step (Equation 12). It is implicitly performed by
limiting the number of events quantized to that of the FIFO buffer
size. This is more important than normalizing the descriptors.
Using the N-SOD, we noticed only a small drop in test accuracy
(from 98 to 93%) without normalization, which is acceptable for
real-time applications.

At runtime in a software implementation, the classification
is performed by a linear combination of the weights and a
feature vector created by the k-d tree after a buffer time
of S events. To achieve this in a hardware implementation,
the depth of the feature vector would have to be transversed
while performing several multiplications which would require a
considerable amount of multiplier elements from the FPGA, and
would affect the speed of themodule. Thus, it was desired to avoid
this solution and the following was proposed.

The elements of the linear combination mentioned would be
acquired as readily available and would be added to an overall
sum vector of length equal to the number of classes to classify,
hence performing the dot product operation as one addition
per event. Then, after Sc events, a resulting vector is formed,
which is equal to the result of the same linear combination
first mentioned in the software implementation. Thus, the final
module to perform the classification receives the output index
from the k-d tree and adds its corresponding classifier parameter
to a sum vector of length equal to the number of classes. In
parallel, this index value is stored in another FIFO element.When
the queue is full, the oldest value would be passed to the module
to be subtracted from the sum. This allows to have a classification
output at any point in time, corresponding to the last Sc events.

Let ki be the output of the k-d tree, which also corresponds
to the codeword index of the dictionary, and kold be the k-d
tree index corresponding to the oldest event being removed from
the FIFO buffer. Let the SVM weights and bias be WSVM ∈
R
K×C and BSVM ∈ R

1×C, respectively for C object categories
with K features. Thus, the former element ki contributes to the
SVM representation whereas kold must be removed from the
SVM representation. A classification output for an event i is

computed as Soi = WSVM · Hi + BSVM , considering a dictionary
representation denoted by Hi ∈ R

K×1. The equivalent free-
running SVM update can be represented using Equation (12).

Soi = Soi−1 +WSVM

(

ki, 1 :C
)

−WSVM

(

kold, 1 :C
)

(12)

Note that the number of input events used to form the feature
representation Hi is always constant, and corresponds to the
last S events that creates the PCA-RECT representation using a
FIFO (Equation 6). Hence, it is not a single event that is being
classified. As the queue is updated on an event-by-event basis, the
classification output corresponds to the entire block, although the
classification output is triggered by every event.

2.4.2. Detection Pipeline
Parallel to the modules performing the classification pipeline,
the aim of the detection process is to find the coordinates
corresponding to “landmarks” with the highest activation after
Sd events, and then find the most probable location for the
object. Again, the algorithm was divided into multiple coherent
hardware modules that would produce the same results as the
original software version. The designed blocks are: landmarks
detector, detection heat map and mean calculation.

First, the codewords corresponding to the landmarks that
were calculated offline are loaded into a binary memory block.
This module receives as input the codeword index provided by
the k-d tree for the current event. If the feature is found as
one of the landmarks, the respective event coordinates x and y
are passed as a concatenated address to the next module in the
pipeline. Next, a stage corresponding to the heat map is utilized.
This module holds a matrix represented as a block RAM of depth
m× n, since the coordinates are not sub-sampled and have the
ranges 1 ≤ x ≤ m and 1 ≤ y ≤ n. For each new input address,
its value in memory is incremented.

Since the aim of the detection algorithm is to calculate the
average of the coordinates with the highest activation, it would
be inefficient to find these event addresses after Sd events.
Therefore, the coordinates with the highest count are stored
in a FIFO element while the counting is performed. At the
end, this will contain all the x and y coordinates needed for
the average calculation. Once the classification flag is triggered,
all the coordinates stored in the previous step (which belong
to the highest activation) are acquired for calculating the total
activation (the divisor). Subsequently, it will calculate the sum
of the respective x and y values, and pass these as dividends
to hardware dividers that will provide the final coordinates of
the detected object. Algorithm 2 summarizes the above object
detection hardware pipeline clearly.

2.5. Experiment Setup
We validated our approach on two benchmark datasets (Orchard
et al., 2015a), namely the N-MNIST and N-Caltech101, that have
become de-facto standards for testing event-based categorization
algorithms. Figure 4 shows some representative samples from
N-MNIST and N-Caltech101.

The above datasets are good for only evaluating the
categorization module. In addition, as the benchmark datasets
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Algorithm 2: Event-based FPGA Object Detection

Input: Filtered event stream
{

ê
}

, detector landmarks l, number
of events S
Output: Mean object location (xobj, yobj)

1: Initialize detector count D(y, x) = 0m,n, detector cut-off
threshold = 0

2: for t = 1 : S do
3: For each incoming event êt = (xt , yt , tt , pt , x

T
t )

T

4: For xt get leaf node index lt using k-d tree
5: if lt ∈ l then
6: D(yt , xt) = D(yt , xt)+ 1
7: if D(yt , xt) > threshold then
8: threshold = threshold + 1
9: Reset detector mean calculation FIFO
10: end if

11: if D(yt , xt) = threshold then
12: Push xt , yt into the mean calculation FIFO
13: end if

14: end if

15: end for

16: Output the mean of the coordinates in the FIFO as (xobj, yobj)

were generated by displaying images on a monitor with limited
and predefined motion of the camera, they do not generalize
well to real-world situations. To overcome these limitations,
we created a new dataset by directly recording objects in lab
environment with a freely moving event-based sensor. The in-
house dataset, called as Neuromorphic Single Object Dataset
(N-SOD), contains three objects with samples of varying length
in time (up to 20 s). The three objects to be recognized are
a thumper 6-wheel ground robot, an unmanned aerial vehicle,
a landing platform along with a background class (Figure 5A).
The proposed object categorization and detection framework
based on PCA-RECT is compared to state-of-the-art event-based

works and thus software implementation is used with double
numeric precision.

For real-time experiments, we use the commercial event
camera, the Dynamic and Active-pixel Vision Sensor (DAVIS)
(Brandli et al., 2014). It has 240× 180 resolution, 130 dB dynamic
range and 3 microsecond latency. The DAVIS can concurrently
output a stream of events and frame-based intensity read-outs
using the same pixel array. An event consists of a pixel location
(x, y), a binary polarity value (p) for positive or negative change
in log intensity and a timestamp in microseconds (t). In this
work, polarity of the events are not considered, and only the event
stream of the DAVIS is used.

2.5.1. Parameter Settings
The time thresholds for the nearest neighbor filter and the
refractory filter are nominally set to be 2noise = 5 ms and
2ref = 1 ms, respectively, as suggested in Padala et al. (2018).
We used a FIFO buffer size of 5000 events for dynamically
updating the count matrix as and when events are received.
Subsequently, the RECT representation with a 2 by 2 averaging
filter without zero padding at the boundaries is used to obtain a
9× 9 feature vector for all event locations. We also experimented
with other feature vector dimensions using a 3 × 3, 5 ×
5, 7 × 7 sampling region and found that increasing the
context improved the performance slightly. For obtaining the
PCA-RECT representation, the number of PCs can be chosen
automatically by retaining the PCs that hold 95% eigenenergy
of the training data. For testing on the benchmark datasets,
a codebook size of 3000 along with spatial pyramid matching
(SPM) (Lazebnik et al., 2006) was universally used with a k-d tree
with backtracking to find precise feature matches.

3. RESULTS

3.1. N-MNIST and N-Caltech101
The object categorization results on the N-MNIST and N-
Caltech101 datasets are given in Table 1. As it is common

FIGURE 4 | Samples from the Event-based Benchmark Datasets: (A) N-MNIST Samples, (B) N-Caltech101 Samples.
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FIGURE 5 | Samples from the in-house datasets containing a Landing platform, UAV and Thumper (Empty Floor as background class): (A) N-SOD dataset, (B)

Frame-based dataset similar to N-SOD, (C) Frame-based dataset with blur similar to N-SOD.

TABLE 1 | Comparison of classification accuracy on event-based datasets (%).

N-MNIST N-Caltech101

H-First 71.20 5.40

HOTS 80.80 21.0

Gabor-SNN 83.70 19.60

HATS 99.10 64.20

vPCA-RECT (this work) 98.72 70.25

PCA-RECT (this work) 98.95 72.30

Phased LSTM 97.30 –

Deep SNN 98.70 –

The bold values correspond to the best results for the N-MNIST and N-

Caltech101 datasets.

practice, we report the results in terms of classification
accuracy. The baselines methods considered were HATS (Sironi
et al., 2018), HOTS (Lagorce et al., 2016), HFirst (Orchard
et al., 2015b), and Spiking Neural Network (SNN) frameworks
reported in Lee et al. (2016) andNeil et al. (2016) andGabor-SNN
as reported in Sironi et al. (2018).

On the widely reported N-MNIST dataset, our method is as
good as the best performing HATS method (Table 1). Moreover,
other SNNmethods are also in the same ballpark, which is due to
the simple texture-less digit event streams giving distinct features

for most methods. Therefore, it is a good benchmark as long
as a proposed method performs in the high 90’s. A test on the
challenging NCaltech-101 dataset will pave way for testing the
effectiveness close to a real-world scenario. Our method has
the highest classification rate ever reported for an event-based
classification method on the challenging N-Caltech101 dataset.
The unpublished HATS work is the only comparable method in
terms of accuracy, while the other learning mechanisms fail to
reach good performance.

3.1.1. Vary Hyper-Parameters
There are two important considerations while using the RECT
representation: the feature dimension d obtained from the
filtered matrix Equation (7) and the size of the filter itself (p× q).
Another way of interpreting the feature dimension is the “square
grid length” that determines the number of filtered cells (these are
the opaque rectangular grids containing more than one event in
Figure 1) aggregated from the filtered event count matrix. This
is easier to visualize and also vary in steps of 3 × 3, 5 × 5,
7 × 7, etc. In a similar vein, the pooling of the event count
matrix (C) using the rectangular filter A(p, q) results in a “sub-
sampled” representation R ∈ R

(m/p)×(n/p), and consequently,
choosing a RECT patch of dimension d centered at R(y/p, x/p) is
equivalent to choosing a “larger radius” in the event count matrix
C ∈ R

(m)×(n) and then performing filtering and aggregation.
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Again, it is easy to vary and visualize this RECT radius, say in
steps of 5, instead of choosing various combinations of filter sizes
(p, q). In the following, we vary the RECT grid and the radius
to investigate the effects on classification performance using the
N-Caltech101 dataset.

Figure 6A illustrates the classification performance trend
observed for increasing radius of the event descriptor while
keeping the resolution of the grid fixed. Similar to the trend
observed in Ramesh et al. (2019a), a radius of more than 10
pixels results in sub-optimal performance. On the other hand,
Figure 6B shows the effect of varying grid resolution on the
accuracy. It is interesting to see that as the contextual information
is captured finely using denser grids, while fixing the RECT radius
to 10, there is a general increase in accuracy at the expense of
increase in feature dimension. For instance, a 11×11 grid already
results in a high feature dimension of 121 and thus increasing
the complexity of the subsequent feature matching step using

FIGURE 6 | Vary RECT parameters: (A) RECT radius vs. accuracy, (B) RECT

square grid length vs. accuracy.

the k-d tree. In our application using N-SOD, presented in
the next subsection, a 9 × 9 grid with a radius of 10 was
used. Next, the performance of the feature selection methods
are investigated.

Figure 7A shows the performance of the feature selection
methods (PCA and vPCA). As expected for PCA, increase
in the number of PCs results in better performance until
about the 95% eigenenergy cut-off, which is typically about
60 in our case. It is also worth noticing that just retaining
five dimensions can give better performance compared to
existing works. For vPCA feature selection, the number
of selected features depends on the size of the smaller
evaluation codebook. The smaller the evaluation codebook,
the lesser the entropy, and thus lesser the number of
features selected. Similar to PCA, when noisy features
are discarded from the RECT representation, the classifier
performance increases.

FIGURE 7 | Vary feature dimension and codebook size: (A) Feature selection

methods (PCA, vPCA) vs. Classification Accuracy, (B) Codebook size vs.

Classification accuracy.
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Besides feature selection, larger dictionaries or codebooks
tend to provide higher classification accuracy (Nowak
et al., 2006), however, the high-dimensionality of the object
representation when combined with spatial pyramid matching
(14 times the codebook size for a 1 × 1, 2 × 2, and 3 × 3
SPM representation) can degrade the performance for larger
codebooks, as shown in Figure 7B, where two distinct clusters
can be spotted. Codebook sizes less than 5000 with SPM perform
better than larger codebooks. This trend has been observed in
previous works as well (Lazebnik et al., 2006).

3.2. N-SOD
For testing on the N-SOD dataset, we divide the dataset into
training and testing, with 80% temporal sequence samples per
class for training and the remaining for testing. Using the training
features, a dictionary is generated. Since the temporal sequences
are of different length, for a fixed number of events, say every 105

events, an object representation is extracted using the codebook
and a linear SVM classifier is trained. Similarly for testing, for
every 105 events, the object representation is classified using
the SVM.

Based on the above setup, an accuracy of 97.14% was obtained
(Table 2) with a dictionary size of 950, which resulted in a
k-d tree with 10 layers. We also experimented with lower
dictionary sizes such as 150, 300, 450, etc., and the performance
drop was insignificant (>96%). On the other hand, using
a k-d tree with backtracking, descriptor normalization, etc.,
achieved close to 100% accuracy on offline high-performance
PCs, which of course does not meet low-power and real-
time requirements. In summary, the proposed vPCA-RECT
method with a backtracking-free k-d tree implementation mildly
compromises on accuracy to handle object detection and
categorization using an event camera in real-time.

We report the precision and recall of the detection results by
ascertaining if the mean position of the detected result is within
the ground truth bounding box. We obtained: (a) Precision -
(498/727) = 0.685: The percentage of the detections belonging
to the object that overlap with the groundtruth (b) Recall -
(498/729) = 0.683: The percentage of correct detections that
are retrieved by the system. The number of “landmarks" were
set to 20 in the above experiments while similar results were
obtained for values such as five and ten. It is worth pointing
out that the codebook size used for 4-class N-SOD detection and
recognition, thereby for the FPGA implementation, need not be
in the thousands as with the complex N-Caltech101 dataset for
giving high accuracy.

TABLE 2 | Confusion Matrix (%) for the best result on the in-house

N-SOD dataset.

Background LP Thumper UAV

Background 95.4128 0.3058 3.3639 0.9174

LandingPlatform 0 99.2268 0.5155 0.2577

Thumper 0 1.9257 96.9739 1.1004

UAV 0 0 3.1884 96.8116

3.3. FPGA Performance
The hardware implementation and performance of the Xilinx
Zynq-7020 FPGA running at 100 MHz was evaluated by direct
comparison with the results of the algorithm’s software version
in MATLAB. The Zynq was interfaced to a down-looking DAVIS
camera, on-board an unmanned aerial vehicle flying under
unconstrained lighting scenarios. We recommend viewing our
submitted video1 that clearly shows the classification/detection
process better than still images. Vivado design suite was used for
synthesis and analysis of the design. The in-built logic simulator
ISIM was used for testing; first, to verify that the behavior was
met, and later for verification of timing performance and latency
requirements post-synthesis and post-implementation.

3.3.1. Timing
The time taken for a single event to be classified for the worst
possible k-d tree path was 560 nanoseconds, where roughly
80% of the time is employed traversing the tree. The rest is
employed for buffering (5%), count matrix updating (5%), and
SVM inference (10%). On the other hand, the detection task
includes a comparison of codewords and consequent updating
of the detection count matrix, which happens for each event
and takes 50 nanoseconds. Later, the mean calculation between
the respective coordinates consists of a summation and division.
The former is proportional to the number of values in the
operation and takes one clock cycle per element (in operation this
approximates to 5 values), and the latter requires 80 nanoseconds
of processing. This amounts to 130 nanoseconds which is
negligible since it only happens once for every set of valid
classified events (Sd).

Due to the asynchronous nature of the sensor, it is not
uncommon to receive a consecutive batch of events in a very
short period (say 10 µs). These events cannot be handled in
parallel, since each of them modifies the classification count
matrix, and the SVM feature representation. Then, the events
that arrive while the tree is been traversed are buffered and later
processed. This may add a delay in the output of about 2 event
cycles (about 1 µs) depending on the amount of events triggered
at the same instant, however, the refractory filter avoids this case
for multiple events triggered at the same pixel. In any case, the
DAVIS camera output has a minimum event throughput at 1µs
(mean inter-event interval about 10 µs), and thus is a rare case
inhibiting real-time processing.

The classification and detection tasks are performed in parallel
and follow different periods of operation. Classification is applied
on a FIFO storing the last Sc events, and it is consequently
updated for each incoming event. Hence, a classification
output is provided for each new input data. Separately, the
detection pipeline works on a periodic basis and only for a
specific classification result, providing a valid output once every
Sd events.

The latency of the system is on par with similar works on
neuromorphic vision tracking on FPGA (Moeys et al., 2016;
Linares-Barranco et al., 2019), taking into consideration that
these works are implemented for low-level object tracking.

1Demo: https://youtu.be/yWfCmHnV5f0
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Additionally, our system outperforms similar applications using
frame-based cameras using FPGA or microprocessors, which by
definition normally operate in the scale of milliseconds. Table 4
presents a summary of these measurements.

3.3.2. Resource Utilization
A summary of utilization of hardware elements can be seen
in Table 3. The modules corresponding to the k-d tree and
SVM require memory initialization to store tree nodes properties
and SVM coefficients. Hence, Read-Only Memory (ROM) was
utilized for this purpose. This accounts to 128 KB for the k-d
tree module and 180 KB for the SVM module. These resources
are synthesized into RAM blocks in the FPGA, but these are
only used for reading as would be the case with a regular ROM
element. Digital signal processing (DSP) slices were utilized to
perform integer division. There are two division operations in
the detection pipeline, and each of these dividers require twoDSP
slices; one multiply block and one multiply adder block.

3.3.3. Power Consumption
Table 4 also lists the power consumption of the vPCA-RECT
system in comparison to state-of-the-art methods. For our
system, the DAVIS event camera operates at a few milliwatts (10
mW) while the Zynq operates at about 3 W including the base
power for running Ubuntu. The algorithmic implementation
itself increases the dynamic on-chip power by only 0.37 W.
As a comparison, event-based blob tracking implementation
on FPGA (Moeys et al., 2016) reported 0.775 W running at
50 MHz. In general, FPGA-based recognition systems for RGB
cameras (Schlessman et al., 2006; Hikawa and Kaida, 2015;
Mousouliotis et al., 2018), which present solutions running at

TABLE 3 | Hardware utilization report for the FPGA running the proposed

modules.

Utilization Available Utilization %

LUT 18238 53200 34.28

LUTRAM 12124 17400 69.68

FF 2065 106400 1.94

BRAM 48 140 34.29

DSP 4 220 1.82

IO 102 200 51.00

TABLE 4 | Comparison of power consumption and latency of existing object

detection systems with the proposed method.

Frequency (MHz) Power (Watts) Latency (ns)

vPCA-RECT (ours) 100 0.37 560

Moeys et al. (2016) 50 0.78 440

Zhai et al. (2013) 58 0.90 11000 k

Ali et al. (2009) 50 0.66 91000 k

De Smedt et al.

(2015)

2600 22.0 ∼

The bold value correspond to our system’s power consumption.

equal or lower clock frequencies, consume more power than our
implementation. Similarly, Zhai et al. (2013) and Ali et al. (2009)
present works that take advantage of the mixed computation
capabilities of the Xilinx Zynq chip, but get hindered by the high
latency characteristic of a frame-based system.

To provide a broader context to the power consumption of
frame-based systems, let us consider (De Smedt et al., 2015)
(Brix embedded system, Intel-I7 processor with 8G RAM) used
for real-time object tracking. It consumes about 22 W, which is
7x more than our full hardware implementation. Note that the
Zynq module is a powerful and flexible development tool, but
far exceeds the utilities compared to SmartFusion FPGAs that
allow sleep modes, non-volatile configuration memory, and have
much lower power consumption overall. In other words, there is
significant room for very low-power implementation (less than
1 W) of our framework with appropriate hardware choices and
development efforts.

3.4. Comparison to CNN
In order to compare to state-of-the-art deep neural networks, we
recorded a similar dataset to N-SOD using a frame-based camera
(Figure 5B) and transfer learning via AlexNet classified the object
images. The total number of images recorded were in the order
of 6000. With an equivalent train/test split compared to N-SOD,
perfect performance can be achieved on the clearly captured
test images. In fact, as Figure 8 shows, perfect performance can
be achieved on the test images with as little as 5% of the data
used for training. It is indeed surprising to see that with 0.5%
training data (8 samples per object category), the accuracy can be
near perfect.

However, when we tested the Alexnet model (trained on
normal images) on a dataset under motion blur conditions
(Figure 5C), an accuracy of only 79.20% was obtained. It was
clear that the black UAV frame when blurred looks like the black-
stripped background and creates much confusion as seen from

FIGURE 8 | Alexnet test accuracy vs. Percentage of training samples.
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TABLE 5 | Confusion Matrix (%) for CNN classifier on the “blur” frame-based

dataset (%).

Background LP Thumper UAV

Background 100.00 0 0 0

Landing platform 0.64 99.36 0 0

Thumper 9.63 0 90.37 0

UAV 72.02 0 9.3 27.05

Table 5. This confirms the disadvantage of using frame-based
cameras to handle unconstrained camera motion. Note that fast
camera motion leads to only an increase in data-rate for event-
based cameras and has no effect on the output. In fact, recordings
of N-SOD have significant amount of such fast motions.

Additionally, we recorded images to test the performance
of CNN on data captured under low-lighting conditions and
slow motion conditions. A near-perfect performance on these
set of images was impressive, as the features extracted by CNN
were robust enough to be invariant under extreme lighting
conditions. Similarly, one could argue that “blurred” images
when included in the training will boost the accuracy of
the deep learning model. We confirmed that by training on
30% normal (1976 images) plus 3% blur (72 images), and
testing on the rest of the data captured under normal, blur,
and low-lighting conditions. This mixed testing allowed the
CNN to correctly classify the UAV blurred images (99.4%
accuracy). Nonetheless, this is a rather unnatural training
setting, one that is not expected to be deployed in the
real-world. Moreover, other works have also concluded that
existing networks are indeed susceptible to many image quality
issues, particularly to blur and noise (Dodge and Karam,
2016).

4. DISCUSSION

We have demonstrated object detection and categorization in
an energy-efficient manner using event cameras, where the
only information that is important for these tasks is how
edges move, and the event camera naturally outputs it. The
proposed PCA-RECT feature takes advantage of this sparsity to
generate a low-dimensional representation. The low-dimensional
representation is further exploited for feature matching using a
k-d tree approach, capable of obtaining the best performance on
the challenging Neuromorphic Caltech-101 dataset compared to
state-of-the-art works.

Although k-d trees enable fast and large scale nearest neighbor
queries among high dimensional data points, such as those
produced by RECT or PCA-RECT2, their application is restricted
to efficiently computing distance measures. Thus, as long as
there are descriptors, global or local, k-d trees are a good fit
to both event data and RGB frames. Nonetheless, it remains
to be seen whether global event-based descriptors, say HATS

2PCA-RECT feature can be high-dimensional when the number of chosen

dimensions are close to that of the corresponding RECT representation.

(Sironi et al., 2018), will benefit from k-d trees. On the other
hand, the sparsity of events leads to less data compared to
intensity frames recorded at 30 Hz or 10 MB/s (the DAVIS
outputs typically at 150KB/s). This tends to lend well to the
use of k-d trees, given there will be lesser information to
build and decode. Overall, k-d trees could be better utilized
for real-time and embedded applications for event camera data
compared to RGB frames, and its performance remains to be
fully explored.

It is important to note that we demonstrated very competitive
performance compared to Deep SNN on the N-MNIST dataset
using the proposed dictionary-based framework. However, it
is indeed expected that deep features learned using neural
networks shall outperform hand-crafted features, such as PCA-
RECT, in the future. Even so, it is non-trivial as to how a
deep learning approach can be effectively and efficiently suited
to a purely spike-based or event-based data. In this work,
real-time FPGA implementation was achieved with several
careful design considerations, such as a backtracking-free k-
d tree for matching to the codewords, a virtual PCA-RECT
representation obtained by analyzing the k-d tree partitioning
of the feature space, etc. To the best of our knowledge, this
is the first work implementing a generic object recognition
framework for event cameras on an FPGA device, verified in a
lab demo setting under unconstrained motion and lighting setup,
thereby demonstrating a high performance over resource ratio.
Additionally, it is well-known that dictionary-based methods
easily scale to the number of samples, since performance depends
only on the codebook size. For instance, searching a large image
dataset with 10 million images takes only about 50 ms (Jégou
et al., 2010) using compact representations of descriptors. This
type of large-scale recognition using event cameras shall be a
future research direction for us and the larger neuromorphic
vision community.

In terms of comparison to a frame-based setup, we found
the average elapsed time for feature extraction of a single
image under CPU execution environment (0.6726 s) hindered
real-time performance. However, this latency can be drastically
reduced using GPUs while power consumption increases
significantly. This is an important case where frame-based
paradigm is unfavorable compared to the low-power event-
based implementation presented in this paper. Additionally,
under fast moving conditions of the sensor, frame-based CNN
was shown to perform unreliably. Thus, when event-based
processing can accomplish higher accuracy and reliability under
low-power settings, as demonstrated in this work under closed-
loop conditions, there is great potential for silicon retinas
as an alternative or complimentary visual sensor for myriad
other applications.
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