41,807 research outputs found

    Deep Tree Transductions - A Short Survey

    Full text link
    The paper surveys recent extensions of the Long-Short Term Memory networks to handle tree structures from the perspective of learning non-trivial forms of isomorph structured transductions. It provides a discussion of modern TreeLSTM models, showing the effect of the bias induced by the direction of tree processing. An empirical analysis is performed on real-world benchmarks, highlighting how there is no single model adequate to effectively approach all transduction problems.Comment: To appear in the Proceedings of the 2019 INNS Big Data and Deep Learning (INNSBDDL 2019). arXiv admin note: text overlap with arXiv:1809.0909

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features

    Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery

    Full text link
    The electrocardiogram or ECG has been in use for over 100 years and remains the most widely performed diagnostic test to characterize cardiac structure and electrical activity. We hypothesized that parallel advances in computing power, innovations in machine learning algorithms, and availability of large-scale digitized ECG data would enable extending the utility of the ECG beyond its current limitations, while at the same time preserving interpretability, which is fundamental to medical decision-making. We identified 36,186 ECGs from the UCSF database that were 1) in normal sinus rhythm and 2) would enable training of specific models for estimation of cardiac structure or function or detection of disease. We derived a novel model for ECG segmentation using convolutional neural networks (CNN) and Hidden Markov Models (HMM) and evaluated its output by comparing electrical interval estimates to 141,864 measurements from the clinical workflow. We built a 725-element patient-level ECG profile using downsampled segmentation data and trained machine learning models to estimate left ventricular mass, left atrial volume, mitral annulus e' and to detect and track four diseases: pulmonary arterial hypertension (PAH), hypertrophic cardiomyopathy (HCM), cardiac amyloid (CA), and mitral valve prolapse (MVP). CNN-HMM derived ECG segmentation agreed with clinical estimates, with median absolute deviations (MAD) as a fraction of observed value of 0.6% for heart rate and 4% for QT interval. Patient-level ECG profiles enabled quantitative estimates of left ventricular and mitral annulus e' velocity with good discrimination in binary classification models of left ventricular hypertrophy and diastolic function. Models for disease detection ranged from AUROC of 0.94 to 0.77 for MVP. Top-ranked variables for all models included known ECG characteristics along with novel predictors of these traits/diseases.Comment: 13 pages, 6 figures, 1 Table + Supplemen

    Improving large vocabulary continuous speech recognition by combining GMM-based and reservoir-based acoustic modeling

    Get PDF
    In earlier work we have shown that good phoneme recognition is possible with a so-called reservoir, a special type of recurrent neural network. In this paper, different architectures based on Reservoir Computing (RC) for large vocabulary continuous speech recognition are investigated. Besides experiments with HMM hybrids, it is shown that a RC-HMM tandem can achieve the same recognition accuracy as a classical HMM, which is a promising result for such a fairly new paradigm. It is also demonstrated that a state-level combination of the scores of the tandem and the baseline HMM leads to a significant improvement over the baseline. A word error rate reduction of the order of 20\% relative is possible

    Learning by stochastic serializations

    Full text link
    Complex structures are typical in machine learning. Tailoring learning algorithms for every structure requires an effort that may be saved by defining a generic learning procedure adaptive to any complex structure. In this paper, we propose to map any complex structure onto a generic form, called serialization, over which we can apply any sequence-based density estimator. We then show how to transfer the learned density back onto the space of original structures. To expose the learning procedure to the structural particularities of the original structures, we take care that the serializations reflect accurately the structures' properties. Enumerating all serializations is infeasible. We propose an effective way to sample representative serializations from the complete set of serializations which preserves the statistics of the complete set. Our method is competitive or better than state of the art learning algorithms that have been specifically designed for given structures. In addition, since the serialization involves sampling from a combinatorial process it provides considerable protection from overfitting, which we clearly demonstrate on a number of experiments.Comment: Submission to NeurIPS 201
    • …
    corecore