1,487 research outputs found

    Deep Learning for Remote Sensing Image Processing

    Get PDF
    Remote sensing images have many applications such as ground object detection, environmental change monitoring, urban growth monitoring and natural disaster damage assessment. As of 2019, there were roughly 700 satellites listing “earth observation” as their primary application. Both spatial and temporal resolutions of satellite images have improved consistently in recent years and provided opportunities in resolving fine details on the Earth\u27s surface. In the past decade, deep learning techniques have revolutionized many applications in the field of computer vision but have not fully been explored in remote sensing image processing. In this dissertation, several state-of-the-art deep learning models have been investigated and customized for satellite image processing in the applications of landcover classification and ground object detection. First, a simple and effective Convolutional Neural Network (CNN) model is developed to detect fresh soil from tunnel digging activities near the U.S. and Mexico border by using pansharpened synthetic hyperspectral images. These tunnels’ exits are usually hidden under warehouses and are used for illegal activities, for example, by drug dealers. Detecting fresh soil nearby is an indirect way to search for these tunnels. While multispectral images have been used widely and regularly in remote sensing since the 1970s, with the fast advances in hyperspectral sensors, hyperspectral imagery is becoming popular. A combination of 80 synthetic hyperspectral channels with the original eight multispectral channels collected by the WorldView-2 satellite are used by CNN to detect fresh soil. Experimental results show that detection performance can be significantly improved by the combination of synthetic hyperspectral images with those original multispectral channels. Second, an end-to-end, pixel-level Fully Convolutional Network (FCN) model is implemented to estimate the number of refugee tents in the Rukban area near the Syrian-Jordan border using high-resolution multispectral satellite images collected by WordView-2. Rukban is a desert area crossing the border between Syria and Jordan, and thousands of Syrian refugees have fled into this area since the Syrian civil war in 2014. In the past few years, the number of refugee shelters for the forcibly displaced Syrian refugees in this area has increased rapidly. Estimating the location and number of refugee tents has become a key factor in maintaining the sustainability of the refugee shelter camps. Manually counting the shelters is labor-intensive and sometimes prohibitive given the large quantities. In addition, these shelters/tents are usually small in size, irregular in shape, and sparsely distributed in a very large area and could be easily missed by the traditional image-analysis techniques, making the image-based approaches also challenging. The FCN model is also boosted by transfer learning with the knowledge in the pre-trained VGG-16 model. Experimental results show that the FCN model is very accurate and has less than 2% of error. Last, we investigate the Generative Adversarial Networks (GAN) to augment training data to improve the training of FCN model for refugee tent detection. Segmentation based methods like FCN require a large amount of finely labeled images for training. In practice, this is labor-intensive, time consuming, and tedious. The data-hungry problem is currently a big hurdle for this application. Experimental results show that the GAN model is a better tool as compared to traditional methods for data augmentation. Overall, our research made a significant contribution to remote sensing image processin

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Cross-domain transfer learning for weed segmentation and mapping in precision farming using ground and UAV images

    Get PDF
    Weed and crop segmentation is becoming an increasingly integral part of precision farming that leverages the current computer vision and deep learning technologies. Research has been extensively carried out based on images captured with a camera from various platforms. Unmanned aerial vehicles (UAVs) and ground-based vehicles including agricultural robots are the two popular platforms for data collection in fields. They all contribute to site-specific weed management (SSWM) to maintain crop yield. Currently, the data from these two platforms is processed separately, though sharing the same semantic objects (weed and crop). In our paper, we have proposed a novel method with a new deep learning-based model and the enhanced data augmentation pipeline to train field images alone and subsequently predict both field images and UAV images for weed segmentation and mapping. The network learning process is visualized by feature maps at shallow and deep layers. The results show that the mean intersection of union (IOU) values of the segmentation for the crop (maize), weeds, and soil background in the developed model for the field dataset are 0.744, 0.577, 0.979, respectively, and the performance of aerial images from an UAV with the same model, the IOU values of the segmentation for the crop (maize), weeds and soil background are 0.596, 0.407, and 0.875, respectively. To estimate the effect on the use of plant protection agents, we quantify the relationship between herbicide spraying saving rate and grid size (spraying resolution) based on the predicted weed map. The spraying saving rate is up to 90 % when the spraying resolution is at 1.78 Ă— 1.78 cm2 . The study shows that the developed deep convolutional neural network could be used to classify weeds from both field and aerial images and delivers satisfactory results. To achieve this performance, it is crucial to perform preprocessing techniques that reduce dataset differences between two distinct domains

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Review on Active and Passive Remote Sensing Techniques for Road Extraction

    Get PDF
    Digital maps of road networks are a vital part of digital cities and intelligent transportation. In this paper, we provide a comprehensive review on road extraction based on various remote sensing data sources, including high-resolution images, hyperspectral images, synthetic aperture radar images, and light detection and ranging. This review is divided into three parts. Part 1 provides an overview of the existing data acquisition techniques for road extraction, including data acquisition methods, typical sensors, application status, and prospects. Part 2 underlines the main road extraction methods based on four data sources. In this section, road extraction methods based on different data sources are described and analysed in detail. Part 3 presents the combined application of multisource data for road extraction. Evidently, different data acquisition techniques have unique advantages, and the combination of multiple sources can improve the accuracy of road extraction. The main aim of this review is to provide a comprehensive reference for research on existing road extraction technologies.Peer reviewe

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others
    • …
    corecore